KR101708795B1 - Coating composition with excellent high temperature acid-resistance and manufacturing method therewith - Google Patents
Coating composition with excellent high temperature acid-resistance and manufacturing method therewith Download PDFInfo
- Publication number
- KR101708795B1 KR101708795B1 KR1020160070658A KR20160070658A KR101708795B1 KR 101708795 B1 KR101708795 B1 KR 101708795B1 KR 1020160070658 A KR1020160070658 A KR 1020160070658A KR 20160070658 A KR20160070658 A KR 20160070658A KR 101708795 B1 KR101708795 B1 KR 101708795B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- acid
- temperature
- resistance
- sol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/082—Anti-corrosive paints characterised by the anti-corrosive pigment
- C09D5/084—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/082—Anti-corrosive paints characterised by the anti-corrosive pigment
- C09D5/086—Organic or non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/10—Anti-corrosive paints containing metal dust
- C09D5/103—Anti-corrosive paints containing metal dust containing Al
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Paints Or Removers (AREA)
Abstract
Description
본 발명은 화력발전소 가스 열교환소자의 고온 내산성 코팅제 및 그의 제조방법에 관한 것으로, 보다 상세하게는 탄소강(carbon steel) 소재로 이루어진 화력발전소 열교환소자의 고온 부식 방지와 스케일 형성을 억제시키기 위한 고온 내산성 코팅제 및 그의 제조방법에 관한 것이다.
TECHNICAL FIELD The present invention relates to a high-temperature acid-resistant coating agent for a thermal power plant gas heat exchanger, and more particularly to a high-temperature acid-resistant coating agent for inhibiting high temperature corrosion and scale formation of a thermal power plant heat exchanger made of carbon steel And a process for producing the same.
일반적으로, 화력발전의 경우, 석탄을 태워 나오는 가스(gas)는 전기집진기를 통과한 후에도 150~180℃의 고온의 부식성 가스를 포함하고 있다.Generally, in the case of thermal power generation, the gas that burns coal contains corrosive gas at a high temperature of 150 to 180 ° C even after passing through the electrostatic precipitator.
상기 고온의 부식성 가스는 SOx(SO2, SO3)로 이루어져 열교환소자(이하 GGH(Gas Gas Heater)라 한다)를 통과할 때 석회(CaO) 및 석탄회(Ash)와 반응하여 경질의 스케일을 형성하는데, 이 스케일은 친수성(hydrophilic) 표면에 잘 부착되어 가스의 흐름을 방해하게 되고, 심한 경우 열교환소자가 집합되어 있는 GGH(gas gas heater)시설의 플루(flue) 가스의 차압을 상승시켜 설비운전을 정지시키기도 하는 단점을 갖는다.The high temperature corrosive gas is composed of SO x (SO 2 , SO 3 ) and reacts with CaO and fly ash when passing through a heat exchanger (hereinafter referred to as GGH (Gas Gas Heater)) to produce a hard scale This scale adheres well to the hydrophilic surface and interferes with the flow of gas. In severe cases, it increases the differential pressure of the flue gas of the GGH (gas gas heater) And the operation is also stopped.
이때 GGH는 보일러에서 유입되는 고온의 가스를 저온으로 하여 흡수탑으로 보내고 다시 저온의 gas를 중온(90℃)으로 가온하여 연돌로 보내는 기능을 한다.
At this time, GGH sends the high temperature gas from the boiler to the absorption tower at a low temperature, and warms the low temperature gas to the middle temperature (90 ° C) and sends it to the stack.
[선행기술문헌][Prior Art Literature]
1. 국내특허공개 : 1020120111050 (공개일 2012.10.10)1. Domestic Patent Disclosure: 1020120111050 (Publication date Oct. 10, 2012)
상기한 바와 같은 문제점을 해결하기 위한 본 발명의 목적은, 탄소강(carbon steel) 소자로 구성된 화력발전소의 GGH의 고온 부식 방지와 스케일 형성을 억제시키기 위한 유기-무기 복합체로로 구성된 sol-gel resin을 제조하고 여기에 합성된 초소수성 분말과 세라믹 충전제를 분산 및 혼합시킨 코팅제 및 그의 제조방법을 제공하는 데에 목적이 있다.
In order to solve the above problems, an object of the present invention is to provide a sol-gel resin composed of an organic-inorganic composite for inhibiting high-temperature corrosion and scale formation of GGH in a thermal power plant composed of a carbon steel element The present invention provides a coating agent prepared by dispersing and mixing a superfine hydrophobic powder and a ceramic filler synthesized therein, and a manufacturing method thereof.
상기한 바와 같은 목적을 성취하기 위한 본 발명의 화력발전소 가스 열교환소자의 고온 내산성 코팅제는 sol-gel resin 68~89wt%, 초소수성(Super-hydrophobic) 유기-무기 복합체 분말 5~20wt%, 산화알루미늄(Al2O3) 분말 3~12wt%, 이산화티타늄(TiO2)분말 3~15wt%로 구성됨을 특징으로 한다.In order to achieve the above-mentioned object, the high-temperature acid-resistant coating material of the thermal power plant gas-heat exchanging element of the present invention comprises 68 to 89 wt% of sol-gel resin, 5 to 20 wt% of super- hydrophobic organic- (Al 2 O 3 ) powder of 3 to 12 wt%, and titanium dioxide (TiO 2 ) powder of 3 to 15 wt%.
또한 화력발전소 가스 열교환소자의 고온 내산성 코팅제 제조방법은 Methyltrimethoxysilane(CH3Si(OCH3), MTMS) 14~16mol%과 Ethanol 15~25 mol% 을 혼합하여 5~10분간 교반하고 상기 용액에 DI water 45~65mol%와 Acetic acid 0.01~0.1mol% 투여하여 상온에서 2시간 동안 교반하며, 교반 후 2-amino-2-methyl-1-propanol 0.01~0.2mol% 투여하고 상온에서 12시간 동안 교반하여 침전된 습윤겔(xerogel)을 얻고, 상기 습윤겔의 상징액을 제거하고 남은 습윤겔을 150℃에서 6시간동안 건조시켜 고체화된 괴상을 얻은 다음 상기 괴상을 분쇄하여 1~10㎛ 크기의 유기-무기 복합체의 분말을 얻는 제 1단계와,Also, 14 ~ 16 mol% of Methyltrimethoxysilane (CH 3 Si (OCH 3 ), MTMS) and 15 ~ 25 mol% of Ethanol were mixed for 5 ~ 10 minutes and DI water And the mixture was stirred at room temperature for 2 hours. After stirring, the mixture was mixed with 0.01-0.2 mol% of 2-amino-2-methyl-1-propanol and stirred at room temperature for 12 hours to precipitate And the remaining wet gel is dried at 150 DEG C for 6 hours to obtain a solidified mass, and then the mass is pulverized to obtain an organic-inorganic composite (1 to 10 mu m in size) having a size of 1 to 10 mu m A first step of obtaining a powder of
MTMS와 TEOS(Tetraethylorthosilicate), PhTMS(Phenyltrimethoxysilane)을 넣고 5~10분간 교반하여 실란 혼합용액을 만들고, 상기 혼합용액에 methoxy functional PDMS(polydimethylsiloxane), Ethanol, Acetic acid를 투여하고 5~30분간 상온에서 교반한 다음 물을 용매로 하는 산성의 실리카 콜로이드를 넣고 6시간 동안 상온에서 교반하여 투명한 sol-gel resin을 얻는 제 2단계와, MTMS, TEOS (Tetraethylorthosilicate) and PhTMS (Phenyltrimethoxysilane) were added, and the mixture was stirred for 5 to 10 minutes to prepare a silane mixed solution. Methoxy functional PDMS (polydimethylsiloxane), ethanol and acetic acid were added to the mixed solution and stirred at room temperature for 5 to 30 minutes A second step of adding an acidic silica colloid using water as a solvent and stirring at room temperature for 6 hours to obtain a transparent sol-gel resin,
상기 제 2단계에서 제조된 sol-gel resin에 제 1단계에서 얻어진 유기-무기 복합체 분말, 산화알루미늄 분말, 이산화티타늄 분말을 첨가하고 상기 분말들을 분산시켜 세라믹 코팅제를 얻는 제 3단계로 이루어짐을 특징으로 한다.
And a third step of adding the organic-inorganic composite powder, aluminum oxide powder, and titanium dioxide powder obtained in the first step to the sol-gel resin prepared in the second step and dispersing the powders to obtain a ceramic coating agent do.
상기와 같은 본 발명의 효과로는 표면경도 9H, 고온 내산성(70% 황산, 80℃) 10시간, 60°표면광택 43%, 물접촉각 84°이상의 고내산성 세라믹코팅막을 화력발전소 열교환소자에 형성함으로써 고온 부식 방지와 스케일 형성을 억제시켜 내구성을 높일 수 있는 매우 유용한 발명인 것이다.
The effect of the present invention as described above is that by forming a high-acid-resistant ceramic coating film having a surface hardness of 9H, a high temperature acid resistance (70% sulfuric acid, 80 DEG C) for 10 hours, a 60 DEG surface gloss of 43% It is an extremely useful invention that can prevent high temperature corrosion and scale formation and enhance durability.
도 1은 GGH열교환소자의 스케일 방지를 위한 고내산성 세라믹코팅제 연필경도 및 광택도 측정 결과서의 사진도.
도 2는 세라믹 코팅 기판 표면 접촉각 측정 평가결과서의 사진도.
Fig. 1 is a photographic view of a pencil hardness and gloss measurement result of a high-acid-resistant ceramic coating agent for preventing scale of a GGH heat exchanging element.
Fig. 2 is a photograph of a contact angle measurement result of a ceramic coating substrate. Fig.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 또 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다. 다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 공식적인 의미로 해석되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present invention pertains. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the invention. Also, the singular forms used herein include plural forms as long as the phrases do not expressly mean the opposite. Means that a particular feature, region, integer, step, operation, element and / or component is specified, and that other specific features, regions, integers, steps, operations, elements, components, and / And the like. Unless otherwise defined, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Commonly used predefined terms are further construed to have meanings consistent with the relevant technical literature and the present disclosure and are not to be construed as ideal or official unless defined otherwise.
이하, 본 발명에 따른 화력발전소 가스 열교환소자의 고온 내산성 코팅제 및 그의 제조방법에 대한 바람직한 실시예에 대해 첨부된 도면들을 참조로 하여 상세히 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of a high-temperature acid-resistant coating agent and a method for producing the same of the thermal power plant gas heat exchanger according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예에 따른 화력발전소 가스 열교환소자의 고온 내산성 코팅제는 sol-gel resin 68~89wt%, 초소수성(Super-hydrophobic) 유기-무기 복합체 분말 5~20wt%, 산화알루미늄(Al2O3) 분말 3~12wt%, 이산화티타늄(TiO2)분말 3~15wt%로 구성된다.High temperature acid resistant coating agent in the thermal power plant gas heat exchange device according to an embodiment of the present invention is sol-gel resin 68 ~ 89wt% , superhydrophobic (Super-hydrophobic) organic - 5 ~ 20wt% inorganic composite powder, aluminum oxide (Al 2 O 3 ) Powder of 3 to 12 wt%, and titanium dioxide (TiO 2 ) powder of 3 to 15 wt%.
상기 sol-gel resin은 sol-gel 반응을 통해 제조된 레진으로서 주위의 충전재와 기재(탄소강)에 산소공유결합을 완성하여 부착되는 작용을 한다. 이때 68wt% 이하는 상대적으로 충전재의 양이 많아 코팅 후 도막의 표면이 거칠고 접착력 및 내열성이 저하된다. 90wt% 이상은 상대적으로 충전재 양이 적어 코팅막의 내산성을 떨어뜨린다. 따라서 바람직한 첨가량은 68~89wt%이다. 이때 가장 바람직한 첨가량은 75wt%이다. The sol-gel resin is a resin prepared through a sol-gel reaction, and functions as an oxygen covalent bond to the surrounding filler and substrate (carbon steel). In this case, since the amount of filler is relatively large, the surface of the coating film after coating is rough, and the adhesive strength and heat resistance are lowered. More than 90wt% of the coating film has a relatively small amount of filler, which degrades the acid resistance of the coating film. Therefore, the preferred addition amount is 68 to 89 wt%. The most preferable amount added is 75 wt%.
상기 초소수성 유기-무기 복합체 분말은 스케일 형성억제를 위한 초소수성 분말로서 400~500℃의 내열성을 나타낸다. 이때 5wt% 이하는 도막형성 후 표면 소수성 성질이 약하고, 20wt% 이상은 코팅제 내에서 층분리(코팅제에 포함되어 있는 물과 잘 섞이지 않아서 상분리 되는 현상)가 발생하여 자주 흔들어 주어야하는 코팅 공정상 불편함이 있다. 따라서 바람직한 첨가량은 5~20wt%이다. 이때 가장 바람직한 첨가량은 10wt%이다.The super-hydrophobic organic-inorganic composite powder is a super-hydrophobic powder for inhibiting scale formation and exhibits heat resistance at 400 to 500 ° C. At this time, less than 5wt% of the coatings have poor surface hydrophobic properties after forming the coating film, and more than 20wt% of the coatings are layer disassociated in the coating agent (phenomenon that they are not mixed with the water contained in the coating agent to cause phase separation) . Therefore, the preferable amount is 5 to 20 wt%. The most preferable amount added is 10 wt%.
상기 산화알루미늄 분말은 내화학성 및 내마모성이 우수한 세라믹스로 주로 내마모재 및 내화재료로 사용되는데, 이때 3wt% 이하는 표면경도가 저하되고, 12wt% 이상은 상대적으로 이산화티타늄 분말과 유기-무기 복합체 분말의 첨가량이 줄어들어 소수성과 내열성을 저해하므로 바람직한 첨가량은 3~12wt%이다. 이때 가장 바람직한 첨가량은 5wt%이다.The aluminum oxide powder is used as an abrasion resistant material and a refractory material mainly because it is excellent in chemical resistance and abrasion resistance. In this case, the surface hardness is lowered to 3 wt% or less, and the titanium dioxide powder and the organic- The addition amount is 3 to 12 wt% because it decreases hydrophobicity and heat resistance. The most preferable amount added is 5 wt%.
상기 이산화티타늄 분말은 내화학성 및 내마모성, 인체무해성 등이 우수한 세라믹스로서 입자크기가 매우 작아 미세 충전에 효과적이고 도막의 은폐율을 증가시키는 작용을 하는 것으로, 3wt% 이하는 은폐력이 떨어져 도막의 치밀도가 낮으며 15wt% 이상은 상대적으로 산화알루미늄 분말과 유기-무기 복합체 분말의 첨가량이 줄어들어 소수성과 내화학성을 저해한다. 따라서 가장 바람직한 범위는 3~15wt%이다. 이때 가장 바람직한 첨가량은 10wt%이다.The titanium dioxide powder is a ceramic excellent in chemical resistance, abrasion resistance and harmlessness of human body, and has a very small particle size, which is effective for microfilling and increases the concealment rate of the coating. Less than 3wt% And more than 15wt%, the addition amount of the aluminum oxide powder and the organic-inorganic composite powder is decreased, which hinders the hydrophobicity and the chemical resistance. Therefore, the most preferable range is 3 to 15 wt%. The most preferable amount added is 10 wt%.
또한 본 발명 화력발전소 가스 열교환소자의 고온 내산성 코팅제 제조방법은 Methyltrimethoxysilane(CH3Si(OCH3), MTMS) 14~16mol%과 Ethanol 15~25 mol% 을 혼합하여 5~10분간 교반하고 상기 용액에 DI water 45~65mol%와 Acetic acid 0.01~0.1mol% 투여하여 상온에서 2시간 동안 교반하며, 교반 후 2-amino-2-methyl-1-propanol 0.01~0.2mol% 투여하고 상온에서 12시간 동안 교반하여 침전된 습윤겔(xerogel)을 얻고, 상기 습윤겔의 상징액을 제거하고 남은 습윤겔을 150℃에서 6시간동안 건조시켜 고체화된 괴상을 얻은 다음 상기 괴상을 분쇄하여 1~10㎛ 크기의 유기-무기 복합체의 분말을 얻는 제 1단계와,The method for producing a high-temperature acid-resistant coating agent for a thermal power plant gas heat exchanger according to the present invention comprises mixing 14 to 16 mol% of Methyltrimethoxysilane (CH 3 Si (OCH 3 ), MTMS) and 15 to 25 mol% of ethanol and stirring for 5 to 10 minutes, The mixture was stirred at room temperature for 2 hours with 45 ~ 65mol% of DI water and 0.01 ~ 0.1mol% of acetic acid. After stirring, 0.01-0.2mol of 2-amino-2-methyl-1-propanol was added and stirred at room temperature for 12 hours To obtain a precipitated wet gel. The supernatant of the wet gel is removed and the remaining wet gel is dried at 150 DEG C for 6 hours to obtain a solidified mass. The mass is pulverized to obtain an organic- Inorganic composite powder;
MTMS와 TEOS(Tetraethylorthosilicate), PhTMS(Phenyltrimethoxysilane)을 넣고 5~10분간 교반하여 실란 혼합용액을 만들고, 상기 혼합용액에 methoxy functional PDMS(polydimethylsiloxane) , Ethanol, Acetic acid를 투여하고 5~30분간 상온에서 교반한 다음 물을 용매로 하는 산성의 실리카 콜로이드(SiO2 농도 30%)를 넣고 6시간 동안 상온에서 교반하여 투명한 sol-gel resin을 얻는 제 2단계와, MTMS, TEOS (Tetraethylorthosilicate) and PhTMS (Phenyltrimethoxysilane) were added, and the mixture was stirred for 5 to 10 minutes to prepare a silane mixed solution. Methoxy functional PDMS (polydimethylsiloxane), ethanol and acetic acid were added to the mixed solution and stirred at room temperature for 5 to 30 minutes A second step of adding an acidic silica colloid (SiO 2 concentration: 30%) using water as a solvent and stirring at room temperature for 6 hours to obtain a transparent sol-gel resin,
상기 제 2단계에서 제조된 sol-gel resin에 제 1단계에서 얻어진 유기-무기 복합체 분말, 산화알루미늄 분말, 이산화티타늄 분말을 첨가하고 상기 분말들을 분산시켜 세라믹 코팅제를 얻는 제 3단계로 이루어진다.A third step of adding the organic-inorganic composite powder, the aluminum oxide powder, and the titanium dioxide powder obtained in the first step to the sol-gel resin prepared in the second step and dispersing the powders to obtain a ceramic coating agent.
이때 Methyltrimethoxysilane(CH3Si(OCH3), MTMS)이 14~16mol% 일 때 Ethanol은 15~25 mol% 범위에서 허용되는데 MTMS 14mol%와 Ethanol 15mol% 이하는 MTMS의 균질한 분산반응을 기대하기 어렵고, MTMS 16mol%와 Ethanol 25mol% 이상은 오히려 겔화 반응을 지연시켜 xerogel을 얻는 시간을 지연시킨다.Ethanol content is in the range of 15 ~ 25 mol% when 14 ~ 16 mol% of Methyltrimethoxysilane (CH 3 Si (OCH 3 ), MTMS) is allowed. It is hard to expect MTMS homogeneous dispersion reaction below 14 mol% MTMS and 15 mol% Ethanol , 16mol% of MTMS and more than 25mol% of ethanol delays gelling reaction and delay time to obtain xerogel.
상기 DI water (deionized water)는 45~65mol%가 적당한데, 45mol% 이하는 MTMS의 가수분해 속도가 느리게 진행되거나 부분적인 가수분해가 완료되어 화학적 균일성이 떨어지고,65mol% 이상의 범위에서는 가수분해 속도는 빠르나 중합속도가 느려져 xerogel을 얻는 시간을 지연시키기 때문이다.The DI water (deionized water) is suitably 45 to 65 mol%, the MTMS hydrolysis rate is slow or the partial hydrolysis is completed and the chemical uniformity is lowered. When the molar ratio is more than 65 mol%, the hydrolysis rate Because it slows down the time to obtain the xerogel because the polymerization rate is slow.
상기 Acetic acid는 0.01~0.1mol%가 적당한데, 0.01mol% 이하는 가수분해 속도가 너무 느리게 되고, 0.1mol% 이상은 가수분해 속도가 너무 빨라 균질한 sol-gel 반응을 진행시킬 수 없기 때문이다. The acetic acid is suitably 0.01 to 0.1 mol%, and when it is 0.01 mol% or less, the hydrolysis rate becomes too slow, and when the molar ratio exceeds 0.1 mol%, the hydrolysis rate becomes too fast and the homogeneous sol-gel reaction can not proceed .
상기 2-amino-2-methyl-1-propanol는 0.01~0.2mol%가 적당한데, 0.01mol% 이하는 gel화 속도가 너무 느리고, 0.2mol% 이상은 gel화 급격히 진행되어 균질한 xerogel을 얻기 어렵기 때문이다.0.01 to 0.2 mol% of the 2-amino-2-methyl-1-propanol is suitable. When the amount is less than 0.01 mol%, the gelation rate is too slow and more than 0.2 mol% .
상기 MTMS는 가수분해된 후 실리카 콜로이드 표면과 결합하고, 다른 실란과 가교하여 Si(silicon)를 중심금속으로 하는 3차원 구조의 유기-무기 복합체 레진을 레진을 형성시키는 물질로써, 20wt% 이하는 레진 접착력이 저하되고 25wt% 이상은 상대적으로 용매가 부족하게 되므로 바람직한 첨가량은 20~25wt%이다.The MTMS is a material which is hydrolyzed and then bonded to the surface of silica colloid and crosslinked with other silane to form a three-dimensional organic-inorganic composite resin having Si (silicon) as a central metal to form a resin. The adhesive strength is lowered, and when it is 25 wt% or more, the solvent becomes relatively insufficient. Therefore, the added amount is preferably 20 to 25 wt%.
상기 TEOS는 가수분해 되어 MTMS oligomer를 서로 연결시키거나 스스로 nano 크기의 SiO2 입자를 형성시키는 물질로써, 첨가량이 0.5wt% 이하일 경우는 가수분해된 MTMS를 서로 연결시키는 커플링(coupling)효과가 미미하여 도막형성 후 크랙발생이 빈번하고, 5.0wt% 이상은 오히려 도막의 부착력이 저하되는 문제가 발생하므로 바람직한 첨가량은 0.5~5wt%이다.The TEOS is hydrolyzed to connect the MTMS oligomers to each other or to form nano-sized SiO 2 particles. When the addition amount is less than 0.5 wt%, the coupling effect of coupling the hydrolyzed MTMS to each other is insignificant Cracks are frequently generated after the formation of the coating film, and when it is 5.0 wt% or more, the adhesion of the coating film is deteriorated. Therefore, the added amount is preferably 0.5 to 5 wt%.
상기 PhTMS는 페닐기를 갖는 실란으로서 가수분해되어 MTMS, TEOS등과 결합하고 황산에 대한 내성을 증가시키는 물질로써, 2.0wt% 이하는 도막 형성 후 진한 황산에 대한 저항성이 낮아지고, 8.0wt% 이상은 최종 용액에서 부분적인 상분리 현상이 발생하여 균질한 sol-gel resin을 얻기 어렵고, 도막의 크랙현상도 심하게 나타나므로 바람직한 첨가량은 2.0~8.0wt%이다.The PhTMS is a silane having a phenyl group and is hydrolyzed to bind to MTMS, TEOS and the like and increase the resistance to sulfuric acid. When the content is less than 2.0 wt%, the resistivity to concentrated sulfuric acid becomes low, It is difficult to obtain a homogeneous sol-gel resin due to the partial phase separation in the solution, and the cracking phenomenon of the coating film is also severe. Therefore, the preferable amount is 2.0 ~ 8.0 wt%.
상기 Methoxy functional PDMS는 PDMS(polydimethylsiloxane)의 편말단 또는 양쪽 말단 또는 측쇄에 -OCH3(메톡시)기가 결합되어있는 화학구조로 도막형성 시 이형성 및 발수성을 부여하는 작용을 하게 되는데, 0.05wt% 이하는 도막의 발수성이 약하고, 1.5wt% 이상은 도막에 다수의 핀홀(pin hole)과 크레이터(crater)를 발생하여 표면조도를 나쁘게 하므로 바람직한 첨가량은 0.05~1.5wt%이다.The methoxy functional PDMS has a chemical structure in which -OCH 3 (methoxy) groups are bonded to one terminal or both terminals or side chains of PDMS (polydimethylsiloxane), and functions to impart dysplasia and water repellency during film formation. The water repellency of the coating film is weak, and when 1.5 wt% or more, many pinholes and craters are generated in the coating film to deteriorate the surface roughness, so that the preferable amount is 0.05 to 1.5 wt%.
상기 에탄올(Ethanol)은 MTMS, TEOS, PhTMS와 같은 실란의 희석용매이며 가수분해 속도 및 나노입자의 형상, 도막형성 시 휘발 속도 등을 결정짓는데, 30wt% 이하는 실란의 희석용매로서 그 양이 부족하며, 50wt% 이상은 상대적으로 실란농도가 낮아져 도막의 치밀도가 떨어지게 되므로 바람직한 첨가량은 30~50wt%이다.Ethanol is a silane dilution solvent such as MTMS, TEOS and PhTMS, and it determines the rate of hydrolysis, the shape of nanoparticles, and the volatilization rate during the formation of the coating film. In the case of 30 wt% or less, , And when it is 50 wt% or more, the silane concentration is lowered to decrease the density of the coating film, so that the added amount is preferably 30 to 50 wt%.
상기 아세트산(Acetic Acid)은 약산으로서 가수분해 속도를 증가시키고 sol-gel반응 시 용액의 점도안정성에도 영향을 미치게 되는데, 0.1wt% 이하는 가수분해 속도가 너무 늦어 반응 소요시간이 너무 길고, 1.0wt% 이상은 가수분해 속도가 너무 빨라 불균질한 sol 용액을 형성시키게 되므로 바람직한 첨가량은 0.1~1.0wt%이다.Acetic Acid increases the hydrolysis rate as a weak acid and affects the viscosity stability of the solution during the sol-gel reaction. When the concentration is less than 0.1 wt%, the hydrolysis rate is too slow, %, The hydrolysis rate is too fast to form a non-homogeneous sol solution, so that the preferable addition amount is 0.1 to 1.0 wt%.
상기 산성 실리카 콜로이드는 물(H2O)을 용매로하는 산성의 콜로이달 실리카로서 수 나노미터에서 수 백 나노미터까지의 다양한 크기의 콜로이드 용액이 존재하는데, 본 발명에서는 10~20nm 크기의 나노입자가 물에 분산된 것을 사용하였다. 이때 산성 실리카 콜로이드는 실리카 나노입자와 물, 미량의 안정화제로 구성되어 있기 때문에 그 자체로서 가수분해에 필요한 물의 공급원이 된다. The acidic colloidal silica is an acidic colloidal silica containing water (H 2 O) as a solvent. There are colloidal solutions of various sizes ranging from several nanometers to several hundreds of nanometers. In the present invention, nanoparticles having a size of 10 to 20 nm Was dispersed in water. Since the acidic silica colloid is composed of silica nanoparticles, water and a small amount of a stabilizer, the acidic silica colloid itself becomes a source of water necessary for hydrolysis.
따라서 20wt% 이하는 상대적으로 물의 양이 적어 실란의 가수분해가 충분치 않고, 45wt% 이상은 도막의 강도를 증진시키지만 불투명도가 증가하고 sol-gel resin의 저장 안정성을 떨어뜨리게 되므로 바람직한 첨가량은 20~45wt%이다.
Therefore, hydrolysis of silane is insufficient because the amount of water is less than 20 wt%, the strength of the coating film is increased by 45 wt% or more, but the opacity is increased and the storage stability of the sol-gel resin is lowered. %to be.
상기와 같은 본 발명 본 발명 화력발전소 가스 열교환소자의 고온 내산성 코팅제 제조방법의 바람직한 실시예는 다음과 같다.
A preferred embodiment of the method for manufacturing a high-temperature acid-resistant coating agent of the present invention of the present invention is as follows.
실시예Example
Methyltrimethoxysilane(CH3Si(OCH3), MTMS)을 15.37mol%, Ethanol을 23.05mol%을 혼합하고 수 분간 교반한다. 이 용액에 DI water (deionized water)를 61.46mol%와 Acetic acid를 0.03 mol% 투여하고 상온에서 2시간 동안 교반한다. 교반이 끝난 후 2-amino-2-methyl-1-propanol을 0.09 mol% 투여하고 상온에서 12시간 동안 교반하여 침전된 습윤겔(xerogel)을 얻는다. 이 습윤겔의 상징액(층분리 되어 위쪽에 분리된 용액)을 따라 내고 남은 습윤겔을 150℃에서 6시간동안 건조시켜 고체화된 괴상을 얻는다. 이 괴상을 분쇄하여 약 1~10㎛ 크기의 유기-무기 복합체의 분말을 얻는다. 이 분말의 화학식은 CH3SiO2-x (x<2)로 표현할 수 있다. MTMS에 한정하지 않고, CnH2n+1Si(OR)을 MTMS 대신 사용할 수 있다. (n은 1~16까지 자연수이고, OR은 methoxy 또는 ethoxy 또는 propoxy 또는 acetoxy이다). 15.37 mol% of Methyltrimethoxysilane (CH 3 Si (OCH 3 ), MTMS) and 23.05 mol% of Ethanol are mixed and stirred for several minutes. To this solution, 61.46 mol% of DI water (deionized water) and 0.03 mol% of acetic acid are added and stirred at room temperature for 2 hours. After the stirring, 0.09 mol% of 2-amino-2-methyl-1-propanol was added and stirred at room temperature for 12 hours to obtain a precipitated wet gel (xerogel). The supernatant of this wetting gel (layer separated and separated solution at the top) is removed and the remaining wet gel is dried at 150 ° C for 6 hours to obtain a solidified mass. The mass is pulverized to obtain an organic-inorganic composite powder having a size of about 1 to 10 mu m. The chemical formula of this powder can be expressed as CH 3 SiO 2-x (x <2). Instead of MTMS, C n H 2n + 1 Si (OR) can be used instead of MTMS. (n is a natural number from 1 to 16 and OR is methoxy or ethoxy or propoxy or acetoxy).
다음 MTMS(Methyltrimethoxysilane)를 25.245wt%, TEOS(Tetraethylorthosilicate)를 1.158wt%, PhTMS (Phenyltrimethoxysilane)를 4.692wt% 넣고 수 분간 교반하여 실란 혼합용액을 만들었다. 이 혼합용액에 methoxy functional PDMS(Methoxy terminated polydimethylsiloxane)을 0.2중량%와 Ethanol을 39.9중량%, Acetic acid를 0.6중량%를 투여하고 수~수 십 분간 상온에서 교반하였다. 여기에 물을 용매로 하는 산성의 실리카 콜로이드(SiO2 농도 30%)를 28.205wt%를 넣고 6시간 동안 상온에서 교반하여 투명한 sol-gel resin을 제조하였다.Next, 25.245 wt% of MTMS (Methyltrimethoxysilane), 1.158 wt% of TEOS (tetraethylorthosilicate) and 4.692 wt% of PhTMS (Phenyltrimethoxysilane) were added and stirred for several minutes to prepare a silane mixed solution. Methoxy functional PDMS (Methoxy terminated polydimethylsiloxane) (0.2 wt%), ethanol (39.9 wt%) and acetic acid (0.6 wt%) were added to the mixed solution and stirred at room temperature for several to several tens of minutes. A transparent sol-gel resin was prepared by adding 28.205 wt% of an acidic silica colloid (SiO 2 concentration 30%) using water as a solvent and stirring at room temperature for 6 hours.
상기 위 <2단계>에서 제조한 sol-gel resin 75wt%에 <1단계>에서 제조한 초소수성(Super-hydrophobic) 유기-무기 복합체 분말 10wt%와 산화알루미늄(Al2O3, 평균입도 1㎛)분말 5wt%, 이산화티타늄(TiO2, 평균입도 0.4㎛)분말 10wt%를 첨가하고, 볼밀(ball mill) 또는 바스킷밀(basket mill)과 같은 장비를 이용하여 분말을 분산시켜 세라믹 코팅제를 제조한다.10wt% of super-hydrophobic organic-inorganic composite powder prepared in <1 step> and 10wt% of aluminum oxide (Al 2 O 3 , average particle size of 1 μm) were added to 75wt% of the sol- ) 10 wt% of powder of titanium oxide (TiO 2, average particle size of 0.4 탆) was added and the powder was dispersed by using a ball mill or a basket mill to prepare a ceramic coating agent do.
이처럼 제조된 고내산성 세라믹코팅제는 도 1 및 도 2에 표시된 바와 같이 연필경도 및 광택도, 접촉각이 매우 우수한 것으로 측정되었다.
The highly acid resistant ceramic coating thus prepared was measured to have excellent pencil hardness, gloss and contact angle as shown in Figs. 1 and 2.
상술 한 바와 같이 본 발명은 비록 한정된 실시예들에 의해 설명되었으나, 본 발명은 이것에 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다 할 것이다.
Although the present invention has been described in connection with certain exemplary embodiments, it is to be understood that the present invention is not limited thereto and that various changes and modifications will be apparent to those skilled in the art. Various modifications and variations are possible within the scope of the appended claims.
Claims (2)
68 to 89 wt% of a sol-gel resin containing MTMS, TEOS, PhTMS, polydimethylsiloxane, ethanol, water, acetic acid and silica colloid, 5 to 20 wt% of a superhydrophobic organic- Al 2 O 3 powder, 3 to 12 wt%, and titanium dioxide (TiO 2 ) powder, 3 to 15 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160070658A KR101708795B1 (en) | 2016-06-08 | 2016-06-08 | Coating composition with excellent high temperature acid-resistance and manufacturing method therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160070658A KR101708795B1 (en) | 2016-06-08 | 2016-06-08 | Coating composition with excellent high temperature acid-resistance and manufacturing method therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101708795B1 true KR101708795B1 (en) | 2017-02-21 |
Family
ID=58313750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160070658A KR101708795B1 (en) | 2016-06-08 | 2016-06-08 | Coating composition with excellent high temperature acid-resistance and manufacturing method therewith |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101708795B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109778169A (en) * | 2019-04-02 | 2019-05-21 | 西南交通大学 | A kind of super-hydrophobic aluminum alloy surface and preparation method thereof with wearability and heat resistance |
CN110497492A (en) * | 2019-08-30 | 2019-11-26 | 北京林业大学 | A kind of preparation method of the super-hydrophobic wooden sponge |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090072234A (en) * | 2007-12-28 | 2009-07-02 | 동부제철 주식회사 | Cr-free surface treatment compositions having high chemical resistance, corrosion resistance and lubricating property, and method for producing anti-fingerprint electrolytic galvanized steel sheet coated thereof |
KR20120099169A (en) * | 2011-02-10 | 2012-09-07 | 한국생산기술연구원 | Coating solution for magnesium materials having excellent corrosion resistance, method of preparing the same, and coating method of magnesium materials using the same |
KR101424082B1 (en) * | 2014-02-24 | 2014-07-28 | 주식회사 에코인프라홀딩스 | Complex ceramic prepared by using sol-gel method, coating material for thin film having heat-resistance to ultra-high temperature and high resistance to corrosion comprising the same and method thereof |
KR20150116717A (en) * | 2014-04-08 | 2015-10-16 | (주)필스톤 | Insulation coating composition and manufacturing method thereof |
-
2016
- 2016-06-08 KR KR1020160070658A patent/KR101708795B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090072234A (en) * | 2007-12-28 | 2009-07-02 | 동부제철 주식회사 | Cr-free surface treatment compositions having high chemical resistance, corrosion resistance and lubricating property, and method for producing anti-fingerprint electrolytic galvanized steel sheet coated thereof |
KR20120099169A (en) * | 2011-02-10 | 2012-09-07 | 한국생산기술연구원 | Coating solution for magnesium materials having excellent corrosion resistance, method of preparing the same, and coating method of magnesium materials using the same |
KR101424082B1 (en) * | 2014-02-24 | 2014-07-28 | 주식회사 에코인프라홀딩스 | Complex ceramic prepared by using sol-gel method, coating material for thin film having heat-resistance to ultra-high temperature and high resistance to corrosion comprising the same and method thereof |
KR20150116717A (en) * | 2014-04-08 | 2015-10-16 | (주)필스톤 | Insulation coating composition and manufacturing method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109778169A (en) * | 2019-04-02 | 2019-05-21 | 西南交通大学 | A kind of super-hydrophobic aluminum alloy surface and preparation method thereof with wearability and heat resistance |
CN109778169B (en) * | 2019-04-02 | 2020-06-02 | 西南交通大学 | Super-hydrophobic aluminum alloy surface with wear resistance and heat resistance and preparation method thereof |
CN110497492A (en) * | 2019-08-30 | 2019-11-26 | 北京林业大学 | A kind of preparation method of the super-hydrophobic wooden sponge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021128879A1 (en) | Method for preparing aqueous non-stick coating modified with carbon nanotube composite ceramic network | |
TW555823B (en) | Primer coating of steel | |
CN103205142B (en) | Organic modified ceramic non-stick ceramic coating and coating method thereof | |
TW200413455A (en) | Colloidal silica composition | |
WO2007097284A1 (en) | Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same | |
CN113292902B (en) | Modified graphene oxide anticorrosive paint and preparation method thereof | |
CN109266057B (en) | Normal-temperature-cured super-weather-resistant high-hardness wear-resistant water-based inorganic nano ceramic coating and preparation method thereof | |
KR100852392B1 (en) | The membrane technique with ceramic liquid binder for enhancing durability performance of concrete and steel structures | |
JP5395656B2 (en) | Transparent coating | |
KR101708795B1 (en) | Coating composition with excellent high temperature acid-resistance and manufacturing method therewith | |
JP2015519442A (en) | Paint dispersion | |
JP2012507597A (en) | Transparent inorganic-organic hybrid material using aqueous sol-gel method | |
CN112138967B (en) | Preparation method of wear-resistant ceramic coating non-stick pan | |
JPH0533275B2 (en) | ||
CN104356937A (en) | Production method of ceramic coating for interior of subway car compartment | |
CN109554110A (en) | A kind of thermostable heat-conductive self-cleaning coating and preparation method thereof | |
JP4829086B2 (en) | Silica sol and coating composition containing the same | |
JP3967538B2 (en) | Method for producing cationic resin-modified silica dispersion | |
JP2019143005A (en) | Coating composition, heat-resistant coating, and formation method thereof | |
CN114989722A (en) | Hydrophobic and oleophobic, non-sticky and oil-stain-resistant easy-to-clean coating and coating preparation method | |
CN105062355B (en) | Nano-composite water durably anticorrosion paint preparation method for ship | |
CN114381151A (en) | Ceramic coating and preparation method thereof | |
JP2003012320A (en) | Organosol of silica base inorganic compound | |
CN114702899A (en) | Water-based one-component baking type polysiloxane coating and preparation method thereof | |
KR101054600B1 (en) | Heavy-duty ceramic coating composition with environmental friendliness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20191125 Year of fee payment: 4 |