KR101701179B1 - Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension, and use thereof - Google Patents

Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension, and use thereof Download PDF

Info

Publication number
KR101701179B1
KR101701179B1 KR1020150028145A KR20150028145A KR101701179B1 KR 101701179 B1 KR101701179 B1 KR 101701179B1 KR 1020150028145 A KR1020150028145 A KR 1020150028145A KR 20150028145 A KR20150028145 A KR 20150028145A KR 101701179 B1 KR101701179 B1 KR 101701179B1
Authority
KR
South Korea
Prior art keywords
peptide
ace
group
amino acid
peptides
Prior art date
Application number
KR1020150028145A
Other languages
Korean (ko)
Other versions
KR20160105022A (en
Inventor
정우재
정우창
최정윤
최아영
Original Assignee
정우재
정우창
최정윤
최아영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정우재, 정우창, 최정윤, 최아영 filed Critical 정우재
Priority to KR1020150028145A priority Critical patent/KR101701179B1/en
Publication of KR20160105022A publication Critical patent/KR20160105022A/en
Application granted granted Critical
Publication of KR101701179B1 publication Critical patent/KR101701179B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/06Tripeptides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/326Foods, ingredients or supplements having a functional effect on health having effect on cardiovascular health

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명의 안지오텐신 전환 효소(angiotensin converting enzyme; ACE)에 대해 저해능을 나타내는 펩타이드의 C-말단을 트립토판(tryptophan)으로 첨가 또는 치환한 펩타이드는 비첨가 또는 비치환된 펩타이드 보다 현저한 ACE 저해능을 가지며 세포독성을 나타내지 않음으로써 심혈관계 질환의 예방 또는 치료용 약학적 조성물의 유효 성분으로 유용하게 사용될 수 있다.The peptide having the C-terminus of the peptide exhibiting an inhibitory effect on the angiotensin converting enzyme (ACE) of the present invention as a tryptophan has a remarkable ACE inhibitory effect than the non-added or unsubstituted peptide, It is useful as an active ingredient of a pharmaceutical composition for preventing or treating cardiovascular diseases.

Description

심혈관 질환 치료를 위한 안지오텐신 I-전환효소 저해용 C-말단 트립토판 펩타이드 및 이의 용도{Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension, and use thereof}C-terminal tryptophan peptides for the inhibition of angiotensin I-converting enzyme for the treatment of cardiovascular diseases and their use {Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension,

본 발명은 굴 가수분해물(Oyster Hydrolysate)로부터 얻은 안지오텐신 I-전환 효소(Angiotensin I-converting enzyme) 저해 펩타이드의 C-말단 잔기를 트립토판(Trptophan)으로 치환하여 저해활성을 개선시킨 펩타이드를 포함하는 심혈관 예방 및 치료용 조성물에 관한 것이다.
The present invention relates to a method for preventing cardiovascular diseases, including a peptide having an inhibitory activity by replacing the C-terminal residue of an angiotensin I-converting enzyme inhibitory peptide obtained from oyster hydrolyzate with a tryptophan And a therapeutic composition.

동맥경화증, 고혈압, 협심증, 심근경색, 허혈성 심장질환, 심부전, 경혈관 동맥 성형술 후 발생하는 합병증, 뇌경색, 뇌출혈, 및 뇌졸중을 포함하는 심혈관계 질환이 현재 증가하는 추세에 있다. 이 중 고혈압의 원인은 대부분 밝혀진 바 없으나, 가족력, 인종, 염분의 섭취량, 인슐린 저항성 및 비만과 같은 유전적 인자 또는 과도한 음주 및 노화와 같은 환경적 인자의 복합적인 산물로서 발생하는 것으로 알려져 있으며, 혈압 상승의 다양한 요인 가운데 레닌-안지오텐신-알도스테론(renin-angiotensin-aldosterone) 고리가 생체 내에서 혈압 및 체액량을 조절하는 데 중요한 역할을 하는 것으로 알려져 있다(Weiss, D. et. al (2001) Circulation 103: 448-454). Cardiovascular diseases, including arteriosclerosis, hypertension, angina pectoris, myocardial infarction, ischemic heart disease, heart failure, complications arising after cardiovascular arterioplasty, cerebral infarction, cerebral hemorrhage, and stroke are on the increase. The cause of hypertension has been largely unknown, but it is known to occur as a complex product of family factors, race, salt intake, genetic factors such as insulin resistance and obesity, or environmental factors such as excessive drinking and aging, Among the various factors of elevation, renin-angiotensin-aldosterone ring is known to play an important role in controlling blood pressure and body fluid volume in vivo (Weiss, D. et al (2001) Circulation 103: 448-454).

일반적인 생리활성으로 신장에서 혈류량, 나트륨 감소, 교감신경계 활성증가에 의해 레닌-안지오텐신계가 활성화되고, 신장동맥의 방사구체세포(juxtaglomerular cell)에서 분비된 레닌이 안지오텐신을 안지오텐신 Ⅰ으로 분해하며, 이는 다시 안지오텐신 전환효소(angiotensin converting enzyme, ACE)에 의해 혈관 수축작용을 하는 안지오텐신 Ⅱ로 전환되어 결과적으로 안지오텐신 Ⅱ가Renin-angiotensin system is activated by blood flow, sodium reduction and sympathetic activity increase in kidney, and renin secreted from juxtaglomerular cell of renal artery decomposes angiotensin into angiotensin I, The angiotensin converting enzyme (ACE) converts angiotensin II to vasoconstrictive angiotensin converting enzyme (ACE), resulting in angiotensin II

신경조절 및 알도스테론 합성 증가를 통하여 혈압을 조절한다. ACE는 또한 혈관이완작용을 나타내는 브래디키닌(bradykinin)을 분해하여 불활성화하는 역할을 한다.Controls blood pressure through increased nerve regeneration and aldosterone synthesis. ACE also plays a role in breaking down and inactivating bradykinin, which shows vasodilatory action.

따라서, 혈압의 상승에 큰 영향을 미치는 ACE를 저해하는 물질 또는 안지오텐신 전환효소 저해제(ACE inhibitor)는 고혈압, 심장병, 동맥경화 또는 뇌출혈 등의 심혈관계 질환 등을 치료 또는 예방할 수 있는 것으로 기대되어, 이에 대한 많은 연구가 진행되고 있어, 구체적으로 만성신장병, 동맥경화, 심장발작 및 이로 인한 사망 등을 효과적으로 감소시킬 수 있음을 확인하기 위한 다양한 임상 연구 및 실험의 결과가 보고되고 있다.
Therefore, a substance that inhibits ACE which greatly affects the rise of blood pressure, or an angiotensin converting enzyme inhibitor (ACE inhibitor) is expected to treat or prevent cardiovascular diseases such as hypertension, heart disease, arteriosclerosis or cerebral hemorrhage There have been reported various clinical studies and experiments to confirm that it is possible to effectively reduce chronic kidney disease, arteriosclerosis, heart attack and death due to such diseases.

안지오텐신 I-전환 효소(Angiotensin I-converting enzyme, ACE)는 안지오텐신 분자 I의 C-말단인 His-Leu의 디펩타이드(dipeptide)를 절단하여 혈관수축에 관여하는 octapeptide를 생성하여 혈압을 상승시킨다. 따라서, 안지오텐신 I-전환 효소는 심혈관 기능에 중요한 역할을 하고 안지오텐신 I-전환 효소를 억제시킴으로써 심혈관 질환을 치료할 수 있다.Angiotensin I-converting enzyme (ACE) cleaves the dipeptide of His-Leu, the C-terminal end of angiotensin molecule I, to produce an octapeptide involved in vasoconstriction, thereby raising blood pressure. Thus, angiotensin I-converting enzyme plays an important role in cardiovascular function and can inhibit angiotensin I-converting enzyme to treat cardiovascular disease.

안지오텐신 I-전환 효소 저해제는 혈관이나 심장에 직접 작용하지 않고 레닌-안지오텐신-알도스테론(renin-angiotensin--aldosterone)이라는 인체에서 혈압을 올리고 염분과 수분을 축적시키는 시스템을 억제하여 혈압을 낮추게 된다. Angiotensin I-converting enzyme inhibitors do not act directly on the blood vessels or the heart, but rather on the renin-angiotensin-aldosterone, which lowers blood pressure by boosting blood pressure and inhibiting the system of accumulating salt and water.

레닌 시스템 저해는 안지오텐신 I 전환 효소 저해제와 안지오텐신 II 수용체의 차단제를 포함한다(Matchar et al., 2008). 안지오텐신 I 전환 효소의 저해는 고혈압, 심장마비, 심근경색과 당뇨성 신중독의 치료에 가장 중요하다(Natesh et al., 2003; Acharya et al., 2003). 대부분의 안지오텐신 I 전환 효소의 저해제는 효소의 subsites S1, S2 및 S2' 수소결합 및 소수성 상호작용을 통해 촉매 부위에 있는 아연과 직접적으로 상호작용할 수 있다(Natesh et al., 2003; Schechter and Berger, 1968). Renin system inhibition includes an angiotensin I converting enzyme inhibitor and an angiotensin II receptor blocker (Matchar et al., 2008). Inhibition of angiotensin I converting enzyme is most important in the treatment of hypertension, heart attack, myocardial infarction and diabetic nephropathy (Natesh et al., 2003; Acharya et al., 2003). Most inhibitors of angiotensin I converting enzyme can directly interact with zinc in the catalytic region through enzyme subsites S1, S2 and S2 'hydrogen bonding and hydrophobic interactions (Natesh et al., 2003; Schechter and Berger, 1968).

약물과 약물관련 화합물의 개발을 위한 출발점으로서 생물활성을 가진 펩티드의 중요성은 증가하고 있다. 다양한 생물활성 펩티드 중에서 식품 기원의 안지오텐신 I 전환효소의 저해제가 널리 확인되고 있지만, 이들 효소를 저해하는 펩티드들의 구조-활성의 상관에 대한 이해는 연구자에 따라 차이가 있어 예측하기 어렵다(Wu et al., 2006). The importance of biologically active peptides as a starting point for the development of drug and drug related compounds is increasing. Among various bioactive peptides, food-origin inhibitors of angiotensin I converting enzyme have been widely known, but the understanding of the relationship between the structure-activity of peptides inhibiting these enzymes is difficult to predict due to differences among researchers (Wu et al. , 2006).

정량적인 구조-활성의 상관(QSAR)은 의약화학과 약물 활성과 관련한 정보를 제공할 때 컴퓨터 약물 설계에 있어 중요한 부분을 차지한다. 이들 상관은 화합물의 다양한 물리, 화학 및 생물학적 특성들에 화학구조를 관련시키는 수학식이다. 결과적으로 얻은 수식은 새로운 화합물의 특성을 예측할 수 있다. 따라서 최근에는 안지오텐신 전화 효소 저해 펩티드의 발견과 새로운 효소 저해제의 설계를 위한 도구로서 QSAR, 분자 docking와 분자동력학적 시뮬레이션 연구가 제안되고 있으며, 이를 통하여 저해제의 작용 기작과 저해 효능에 영향을 미치는 특성을 확인할 수 있다. Quantitative structure-activity correlation (QSAR) is an important part of computer drug design when providing information on medicinal chemistry and drug activity. These correlations are mathematical expressions that relate chemical structures to various physical, chemical, and biological properties of a compound. The resulting formula can predict the properties of the new compound. Recently, QSAR, molecular docking and molecular dynamics simulations have been proposed as a tool for the discovery of angiotensin converting enzyme inhibitor peptides and the design of new enzyme inhibitors. Can be confirmed.

안지오텐신 I-전환 효소의 펩티드 저해제의 아미노산 잔기 또는 기능기의 치환과 관련하여, 3차원 QSAR 분석은 ACE의 C-도메인을 향한 유력한 활성을 가진 ACE 저해제를 위한 유용한 정보를 제공하였다. captopril의 프로피오닐기와 설폰기에 페닐 고리와 탄소 사슬을 포함하는 기의 치환은 ACE 저해능 개선을 위해 필수적이다(San Juan and Cho, 2005). N-말단에서 소수성 측쇄를 가진 저분자량의 아미노산을 선호하는 반면, C-말단에는 bulky 측쇄를 가진 아미노산들은 선호한다(Undenigwe et al., 2012). C-말단에서 시작할 때, C-1위치는 펜타펩타이드 모델에서 가장 의미있는 위치이다. C-1에는 지방족과 작은 잔기를 선호하는 반면, 유력한 ACE 저해 펩타이드의 경우 C-4에 함황 아미노산과 bulky 소수성 아미노산을 분명히 선호한다(Sagardia et al., 2013). 트리펩타이드의 ACE 저해 활성은 디펩타이드보다 크고, N-말단에 leucine 잔기와 C-말단에 proline잔기를 가진다(Byun and Kim, 2002). ACE의 활성 부위는 저해제의 최적 카르복시-말단 아미노산 서열 혹은 효소에 대한 결합을 위한 기질이 Phe-Ala-Pro임을 가르킨다. 이들 3개의 아미노산 잔기들의 측쇄들은 각각 S1, S'2라 불리는 ACE의 활성 부위에 있는 subsite 혹은 포켓과 특이적으로 상호작용하는 것으로 추정된다(Cushman and Ondetti, 1999). Van der Waal's 부피, 유효하전 지표 및 측쇄의 소수성 지표는 펩타이드 QSAR 분석의 유용한 구조 특성의 지표이다(Long et al., 2010). Concerning the substitution of amino acid residues or functional groups of the peptide inhibitors of angiotensin I-converting enzyme, three-dimensional QSAR analysis provided useful information for ACE inhibitors with potent activity towards the C-domain of ACE. Substitution of groups containing phenyl rings and carbon chains in the propionyl and sulfone groups of captopril is essential for improving ACE inhibition (San Juan and Cho, 2005). While low molecular weight amino acids with hydrophobic side chains are preferred at the N-terminus, amino acids with bulky side chains at the C-terminus are preferred (Undenigwe et al., 2012). Starting at the C-terminus, the C-1 position is the most significant position in the pentapeptide model. While C-1 prefers aliphatic and small moieties, the potent ACE inhibitory peptide apparently favored sulfamic and bulky hydrophobic amino acids at C-4 (Sagardia et al., 2013). Tripeptide ACE inhibitory activity is greater than dipeptide, with leucine residues at the N-terminus and proline residues at the C-terminus (Byun and Kim, 2002). The active site of ACE indicates that the substrate for the binding of the inhibitor to the optimal carboxy-terminal amino acid sequence or enzyme is Phe-Ala-Pro. The side chains of these three amino acid residues are presumed to specifically interact with subsite or pocket in the active site of the ACE, called S1, S'2, respectively (Cushman and Ondetti, 1999). Van der Waal's volume, validated charge index and hydrophobic index of the side chain are indicators of the useful structural properties of the peptide QSAR assay (Long et al., 2010).

분자 Docking과 동력학적 시뮬레이션 연구는 ACE (저해펩타이드들) 이론적인 저해활성에 대한 펩타이드의 가시적 선별을 위한 분야로 유력하다(Jalkute et al., 2013). Norri et al(2012)은 유력한 ACE-저해 디펩타이드의 in silico 확인을 위해 작은 장내 안정성 모델과 함께 AutoDock Vina와 LIGPLOT 분석의 유효성을 시험하였다. Molecular docking and kinetic simulation studies are likely to be an area for the selective screening of peptides for ACE (inhibitory peptides) theoretical inhibitory activity (Jalkute et al., 2013). Norri et al (2012) tested the efficacy of AutoDock Vina and LIGPLOT assays with a small intestinal stability model for in silico identification of potent ACE-inhibiting peptides.

이에, 본 발명자들은 단백질 가수분해물에서 얻은 유력한 ACE 저해 펩타이드의 안지오텐신 I-전환효소에 대한 저해활성을 더욱 개선하기 위하여 노력한 결과, ACE 저해 펩타이드의 C-말단을 트립토판(tryptophan)으로 치환하여 시험관 내 실험을 통해 ACE 저해활성의 현저한 상승을 확인하였고, QSAR와 분자 도킹와 분자동력학적 시물레이션을 통하여 안지오텐신 I-전환효소와 저해 펩타이드의 상호작용을 조사하여 현저한 저해효과가 있음을 확인함으로써, 본 발명을 완성하였다.
Therefore, the present inventors have made efforts to further improve the inhibitory activity of the potent ACE inhibitory peptide obtained from the protein hydrolyzate against the angiotensin I-converting enzyme. As a result, it has been found that when the C-terminal of the ACE inhibitory peptide is replaced with tryptophan, , And the interaction between the angiotensin I-converting enzyme and the inhibitory peptide was investigated through QSAR, molecular docking and molecular dynamics simulation to confirm that the inhibitory effect was remarkable. Thus, the present invention was completed .

본 발명의 목적은 서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되고, 안지오텐신 I-전환효소(angiotensin I-converting enzyme; ACE) 저해능을 가지는 펩타이드를 제공하는 것이다.An object of the present invention is to provide a peptide having any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 and having an angiotensin I-converting enzyme (ACE) inhibiting ability.

또한, 본 발명의 목적은 서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 심혈관계 질환 예방 또는 치료용 약학적 조성물, 및 건강기능식품 또는 혈압저하제 또는 혈압저하용 건강기능식품을 제공하는 것이다. Also, the object of the present invention is to provide a pharmaceutical composition for preventing or treating cardiovascular diseases, which contains any one or two or more peptides composed of any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 as an active ingredient, A health functional food or a blood pressure lowering agent or a health functional food for lowering blood pressure.

아울러, 본 발명의 목적은 굴(oyster) 가수 분해물 유래 ACE 저해 활성을 갖는 펩타이드의 아미노산 서열에서 C-말단에 트립토판(tryptophan)을 첨가 또는 치환시키는 단계를 포함하는, 혈압저하용 펩타이드의 제조방법을 제공하는 것이다.
In addition, an object of the present invention is to provide a method for producing a peptide for lowering blood pressure, which comprises the step of adding or substituting tryptophan at the C-terminal in the amino acid sequence of a peptide having an ACE inhibitory activity derived from an oyster hydrolyzate .

상기 목적을 달성하기 위하여, 본 발명은 서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되고, 안지오텐신 I-전환효소(angiotensin I-converting enzyme; ACE) 저해능을 가지는 펩타이드를 제공한다.In order to achieve the above object, the present invention provides a peptide having any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 and having an angiotensin I-converting enzyme (ACE) inhibitory activity .

또한, 본 발명은 서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 심혈관계 질환 예방 또는 치료용 약학적 조성물, 및 건강기능식품을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating cardiovascular diseases, which contains any one or two or more peptides composed of any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 as an active ingredient, Provide food.

아울러, 본 발명은 서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 혈압저하제 또는 혈압저하용 건강기능식품을 제공한다.In addition, the present invention provides a blood pressure-lowering agent or a health functional food for lowering blood pressure, which contains any one or two or more peptides composed of any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 as an active ingredient.

또한, 본 발명은 굴(oyster) 가수 분해물 유래 ACE 저해 활성을 갖는 펩타이드의 아미노산 서열에서 C-말단에 트립토판(tryptophan)을 첨가 또는 치환시키는 단계를 포함하는, 혈압저하용 펩타이드의 제조방법을 제공한다.
Further, the present invention provides a method for producing a peptide for lowering blood pressure comprising the step of adding or replacing tryptophan at the C-terminus in the amino acid sequence of a peptide having an ACE inhibitory activity derived from oyster hydrolyzate .

본 발명의 안지오텐신 전환 효소(angiotensin converting enzyme; ACE)에 대해 저해능을 나타내는 펩타이드의 C-말단을 트립토판(tryptophan)으로 첨가 또는 치환한 펩타이드는 비첨가 또는 비치환된 펩타이드 보다 현저한 ACE 저해능을 가지며 세포독성을 나타내지 않음으로써 심혈관계 질환의 예방 또는 치료용 약학적 조성물의 유효 성분으로 유용하게 사용될 수 있다.
The peptide having the C-terminus of the peptide exhibiting an inhibitory effect on the angiotensin converting enzyme (ACE) of the present invention as a tryptophan has a remarkable ACE inhibitory effect than the non-added or unsubstituted peptide, It is useful as an active ingredient of a pharmaceutical composition for preventing or treating cardiovascular diseases.

도 1은 합성 펩타이드 (A, TAW; B, YAW; C, VKW; D, KYW; E, AFW)의 액체크로마토그래피에 의한 머무름 시간과 분리 형태를 나타낸 도이다.
도 2는 질량분석에 의한 합성 펩타이드(A, TAW; B, YAW; C, VKW; D, KYW; E, AFW)의 질량을 나타낸 도이다.
도 3은 C-말단에 트립토판을 추가하거나 치환한 펩타이드군(청색군)과 비치환 펩타이드(적색군)의 ACE 저해능(log IC50)에 따른 판별분석을 나타낸 도이다.
도 4는 ACE 저해능(log IC50)에 미치는 펩타이드의 주요 지표들의 주성분 분석을 나타낸 도이다.
도 5는 C-말단에 트립토판(tryptophan)을 추가하거나 치환한 펩타이드군(청색군)의 지표들의 PLC(Partial least square) 분석을 나타낸 도이다.
도 6은 ACE 저해제와 lisinopril의 분자도킹 모델을 나타낸 도이다.
도 7은 ACE 저해제와 VK의 분자도킹 모델을 나타낸 도이다.
도 8은 ACE 저해제와 VKW의 분자도킹 모델을 나타낸 도이다.
도 9는 ACE/VK/VKW(A)와 VK/VKW의 시뮬레이션 시간에 따른 RMSD의 변화를 나타낸 도이다.
Brief Description of Drawings Fig. 1 is a view showing a retention time and a separation form of synthetic peptides (A, TAW; B, YAW; C, VKW; D, KYW; E, AFW) by liquid chromatography.
FIG. 2 is a graph showing the masses of synthetic peptides (A, TAW; B, YAW; C, VKW; D, KYW; E, AFW) obtained by mass spectrometry.
FIG. 3 is a diagram showing discrimination analysis according to ACE inhibition (log IC 50 ) of peptide groups (blue group) and unsubstituted peptides (red group) added with tryptophan at the C-terminus or substituted.
Figure 4 shows a principal component analysis of the key indicators of the peptide on ACE inhibition (log IC 50 ).
FIG. 5 is a diagram showing a PLC (Partial Least Squares) analysis of indicators of a peptide group (blue group) to which tryptophan was added or substituted at the C-terminus.
Figure 6 shows a molecular docking model of an ACE inhibitor and lisinopril.
7 shows a molecular docking model of an ACE inhibitor and VK.
8 shows a molecular docking model of an ACE inhibitor and VKW.
9 is a diagram showing changes in RMSD according to simulation time of ACE / VK / VKW (A) and VK / VKW.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되고, 안지오텐신 I-전환효소(angiotensin I-converting enzyme; ACE) 저해능을 가지는 펩타이드를 제공한다.The present invention provides a peptide having any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 and having an angiotensin I-converting enzyme (ACE) inhibitory activity.

상기 펩타이드의 서열은 VKW(서열번호 1), TAW(서열번호 2), YAW(서열번호 3), KYW(서열번호 4) 및 AFW(서열번호 5)로 구성되는 군으로부터 어느 하나 또는 그 이상인 것을 특징으로 한다.The sequence of the peptide is any one or more from the group consisting of VKW (SEQ ID NO: 1), TAW (SEQ ID NO: 2), YAW (SEQ ID NO: 3), KYW (SEQ ID NO: 4) and AFW .

상기 펩타이드는 굴 효소 가수분해물로부터 분리된 것이 바람직하나, 이에 한정되지 않으며, 다른 물질로부터 유래한 것 또는 합성한 것 모두 사용할 수 있다.The peptide is preferably separated from the oyster hydrolyzate, but is not limited thereto, and any peptide derived from or synthesized from other substances may be used.

상기 분리를 위한 방법으로 한외여과(ultrafiltration), 크로마토그래피(chromatography)와 같은 당업계의 통상적인 분리 방법을 사용하는 것이 바람직하며, 구체적으로는 크로마토그래피 방법을 사용하는 것이 보다 바람직하고, 더욱 구체적으로는 음이온교환 크로마토그래피(anion exchange chromatography), 크기배제 크로마토그래피(size exclusion chromatography), 역상 크로마토그래피(reaverse-phase chromatography) 또는 고성능 액체 크로마토그래피(high performance liquid chromatography; HPLC) 방법을 사용하는 것이 가장 바람직하나, 이에 한정되지 않는다.As the separation method, it is preferable to use a separation method customary in the art such as ultrafiltration and chromatography. More specifically, it is preferable to use a chromatography method, more specifically, It is most preferable to use anion exchange chromatography, size exclusion chromatography, reaverse-phase chromatography, or high performance liquid chromatography (HPLC) But is not limited thereto.

상기 합성을 위한 방법으로 당업계의 통상적인 펩타이드의 화학적 합성 방법(W. H. Freeman and Co., Proteins; structures and molecular principles, 1983)으로 합성하는 것이 바람직하며, 구체적으로는 액상 펩타이드 합성법(Solution Phase Peptide synthesis), 고상 펩타이드 합성법(solid-phase peptide syntheses), 단편 응축법 및 F-moc 또는 T-BOC 화학법으로 합성하는 것이 보다 바람직하고, 더욱 구체적으로는 Fmoc 고상법으로 합성하는 것이 가장 바람직하나, 이에 한정되지 않는다. 합성 후 역상 칼럼 크로마토그래피로 순도 95% 이상으로 정제하는 것이 바람직하다.As a method for the above synthesis, it is preferable to synthesize by a method of chemical synthesis (WH Freeman and Co., Proteins, structures and molecular principles, 1983) of a conventional peptide in the art. Specifically, the peptide is synthesized by Solution Phase Peptide synthesis ), Solid-phase peptide syntheses, fractional condensation, and F-moc or T-BOC chemical methods are more preferable. More specifically, synthesis by Fmoc solid phase method is most preferable. However, It is not limited. After the synthesis, it is preferable to purify to a purity of 95% or more by reverse phase column chromatography.

상기 효소는 단백질 당업계의 통상적인 가수분해효소(protease)인 것이 바람직하고, 구체적으로 프로타멕스(protamex) 또는 뉴트라제(neutrase)인 것이 보다 바람직하나 이에 한정되지 않는다. 상기 효소의 첨가는 프로타멕스의 반응 후 불활성화한 다음 뉴트라제를 첨가하는 순차적 첨가인 것이 바람직하나 이에 한정되지 않으며, 프로타멕스 및 뉴트라제를 동시에 첨가할 수 있다. 상기 효소의 첨가량은 굴 효소 가수분해물의 단백질 농도의 0.1 내지 10%인 것이 바람직하고, 효소의 불활성화는 20 내지 100℃에서 10 내지 120 분간 반응하여 불활성화하는 것이 바람직하나 이에 한정되지 않으며, 처리하는 효소의 종류에 의해 적절하게 조절될 수 있다.The enzyme is preferably a conventional protease in the art per protein, and more preferably protamex or neutrase, but is not limited thereto. The addition of the enzyme is preferably a sequential addition in which the protease is inactivated after the reaction and then the Nutraceutical agent is added, but not limited thereto, and the protease and the Nutraceutical agent can be added at the same time. The addition amount of the enzyme is preferably 0.1-10% of the protein concentration of the enzyme, and the inactivation of the enzyme is preferably inactivated by reacting at 20-100 ° C for 10-120 minutes, but not limited thereto. And the like.

본 발명의 구체적인 실시예에 있어서, 본 발명자들은 합성된 펩타이드의 안지오텐신 I-전환효소(angiotensin converting enzyme; ACE)에 대한 저해활성의 측정한 결과, 트립토판 잔기를 첨가 또는 치환함에 따라 27-1450배 증가함을 확인하였다(표 1 참조). 합성된 펩타이드가 세포에 독성을 갖는지를 알아보기 위하여 실험을 수행한 결과, 정상 간세포인 Chang 세포에 대해 독성을 나타내지 않음을 확인하였다(표 2 및 도 4 침조). 합성된 펩타이드의 성분을 조사한 결과, 선형판별 함수는 0.3041 ×1 - 0.0852 ×2이고 오분류율은 0/10=0%이고, 적중율은 100%임을 확인하였고(도 3 참조), 펩타이드의 주성분 1 및 2가 log IC50 값에 기여하는 정도는 KYW>VKW>AFW>YAW>TAW로서 C-말단 잔기에 트립토판(tryptophan)을 가진 펩타이드가 비트립토판 잔기의 펩타이드에 비하여 ACE 저해능에 월등히 높은 것을 확인하였다(표3, 도 4 및 도 5 참조). 펩타이드의 분자도킹 여부를 확인한 결과, Captopril, enalaprilate 및 Phe-Ala-Pro 유사물인 3개의 ACE 저해제들은 ACE의 활성 부위 있는 촉매인 Zn2 +에 captopril은 티올(thiol)기, enalaprilate과 lisinopril은 카르복실기와 직접 상호작용하여 Zn2 +를 킬레이트함을 확인하였다(표 4, 도 6, 도 7 및 도 8 참조). 펩타이드의 분자동력학적 시뮬레이션을 수행한 결과, ACE와 저해제들 사이의 복합체에 대한 RMSD는 평행화된 복합 시스템의 구조를 나타냄을 확인하였다(도 9 참조). ACE와 저해제 사이의 에너지 측정을 확인한 결과, VK의 C-말단에 트립토판을 부가하였을 때 ACE와 VKW의 상호작용은 VK에 비하여 크게 변화하였고 Zn과 상호작용은 약화됨으로써 ACE의 아미노산 잔기들과 트립토판의 소수성 잔기의 상호작용은 전체 상호작용 에너지의 증가를 유도하여 ACE 저해활성의 개선에 기여함을 확인하였다(표 5 참조).
In a specific example of the present invention, the present inventors measured the inhibitory activity on the angiotensin converting enzyme (ACE) of the synthesized peptides, and found that when the tryptophan residue was added or substituted, (See Table 1). As a result, it was confirmed that the peptide synthesized did not show toxicity to the normal hepatocyte Chang cells (Table 2 and Fig. 4). As a result of examining the components of the synthesized peptides, it was confirmed that the linear discriminant function was 0.3041 × 1 - 0.0852 × 2, the misclassification ratio was 0/10 and the hit ratio was 100% (see FIG. 3) And 2 were found to contribute to the value of log IC 50 as KYW>VKW>AFW>YAW> TAW, in which the tryptophan-containing peptide at the C-terminal residue was significantly higher in ACE inhibition than the peptide of the non-tryptophan residue (See Table 3, Figs. 4 and 5). I checked whether the molecular docking of peptides, Captopril, enalaprilate and Phe-Ala-Pro similar is water three ACE inhibitors are captopril in the in the active site catalyst of ACE Zn 2 + is a thiol (thiol) groups, enalaprilate and lisinopril are the carboxyl group and direct interaction was confirmed that the chelate Zn + 2 (see Table 4, Figs. 6, 7 and 8). Molecular dynamics simulations of the peptides revealed that RMSD for the complex between the ACE and the inhibitors represents the structure of the paralleled complex system (see FIG. 9). When the tryptophan was added to the C-terminus of VK, the interaction between ACE and VKW was greatly changed compared with that of VK, and the interaction with Zn was weakened. As a result, the amino acid residues of ACE and tryptophan It was confirmed that the interaction of hydrophobic residues contributes to the improvement of ACE inhibitory activity by inducing an increase in total interaction energy (see Table 5).

또한, 본 발명의 펩타이드는 하기와 같은 유전공학적 방법에 의해 제조될 수 있다. 우선, 통상적인 방법에 따라 상기 펩타이드를 코딩하는 DNA 서열을 작제한다. DNA 서열은 적절한 프라이머를 사용하여 PCR 증폭함으로써 제작할 수 있다. 다른 방법으로 당업계에 공지된 표준 방법에 의해, 예컨대, 자동 DNA 합성기(예를 들면, Biosearch 또는 Applied iosystems사의 제품)를 사용하여 DNA 서열을 합성할 수도 있다. 상기 DNA 서열은 이에 작동가능하게 연결되어 DNA 서열의 발현을 조절하는 하나 또는 그 이상의 발현 조절 서열(예: 프로모터, 인핸서 등)을 포함하는 벡터에 삽입하고, 이로부터 형성된 재조합 발현 벡터로 숙주세포를 형질전환한 다음, 생성된 형질전환체를 상기 DNA 서열이 발현되도록 하기에 적절한 배지 및 조건 하에서 배양하여, 배양물로부터 상기 DNA 서열에 의해 코딩된 실질적으로 순수한 펩타이드를 당업계에 공지된 방법(예컨대, 크로마토그래피)을 이용하여 회수한다. 상기 '실질적으로 순수한 펩타이드'라 함은 본 발명에 따른 펩타이드가 숙주로부터 유래된 어떠한 다른 단백질도 실질적으로 포함하지 않는 것을 의미한다. 본 발명의 펩타이드 합성을 위한 유전공학적 방법은 다음의 문헌을 참고할 수 있다: Maniatis et al., MolecularCloning; A laboratory Manual, Cold Spring Harbor laboratory, 1982; Sambrook et al., Molecular Cloning: A Laboratory Manual, ColdSpring Harbor Press, N.Y., Second(1998) and Third(2000) Edition; Gene Expression Technology, Method in Enzymology, Genetics and Molecular Biology, Method in Enzymology, Guthrie & Fink (eds.), Academic Press, San Diego, Calif, 1991; 및 Hitzeman et al., J. Biol. Chem., 255:12073-12080, 1990.In addition, the peptides of the present invention can be produced by a genetic engineering method as described below. First, a DNA sequence encoding the peptide is constructed according to a conventional method. DNA sequences can be prepared by PCR amplification using appropriate primers. Alternatively, DNA sequences may be synthesized by standard methods known in the art, for example, using an automated DNA synthesizer (e.g., Biosearch or Applied iosystems). The DNA sequence is operatively linked to insert into a vector comprising one or more expression control sequences (e.g., promoters, enhancers, etc.) that regulate the expression of the DNA sequence, and the host cell is transformed with the recombinant expression vector formed therefrom Subsequently, the resulting transformant is cultured under conditions and under conditions suitable for expression of the DNA sequence, and the substantially pure peptide encoded by the DNA sequence is isolated from the culture by a method known in the art , Chromatography). By "substantially pure peptide" is meant that the peptide according to the invention is substantially free of any other proteins derived from the host. Genetic engineering methods for peptide synthesis of the present invention can be found in the following references: Maniatis et al., Molecular Cloning; A laboratory Manual, Cold Spring Harbor Laboratory, 1982; Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, N.Y., Second (1998) and Third (2000) Edition; Gene Expression Technology, Method in Enzymology, Genetics and Molecular Biology, Method in Enzymology, Guthrie & Fink (eds.), Academic Press, San Diego, Calif., 1991; And Hitzeman et al., J. Biol. Chem., 255: 12073-12080,1990.

본 발명의 펩타이드는 임상투여시 비경구로 투여가 가능하며 일반적인 의약품 제제의 형태로 사용될 수 있다. 비경구 투여는 직장, 정맥, 복막, 근육, 동맥, 경피, 비강(nasal), 흡입, 안구 및 피하와 같은 경구 이외의 투여경로를 통한 투여를 의미할 수 있다. 즉, 본 발명의 펩타이드는 실제로 비경구의 여러 가지 제형으로 투여될 수 있는데, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 비경구투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 리우린지, 글리세로제라틴 등이 사용될 수 있다.The peptide of the present invention can be administered parenterally at the time of clinical administration and can be used in the form of a general pharmaceutical preparation. Parenteral administration may mean administration through an administration route other than oral, such as rectal, intravenous, peritoneal, muscular, arterial, transdermal, nasal, inhalation, ocular and subcutaneous. That is, the peptide of the present invention can be administered in various forms of parenteral administration. In the case of formulation, the peptide is prepared using a diluent such as a filler, an extender, a binder, a wetting agent, a disintegrant, a surfactant and the like. Formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories. Propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used as the non-aqueous solvent and suspension agent. As a suppository base, witepsol, macrogol, tween 61, cacao paper, Liu ling, glycerogelatin and the like can be used.

또한, 본 발명의 펩타이드는 생리식염수 또는 유기용매와 같이 약제로 허용된 여러 전달체(carrier)와 혼합하여 사용될 수 있고, 안정성이나 흡수성을 증가시키기 위하여 글루코스, 수크로스 또는 덱스트란과 같은 카보하이드 레이트, 아스코르브 산(ascorbic acid) 또는 글루타치온과 같은 항산화제(antioxidants), 킬레이트화제(chelating agents), 저분자 단백질 또는 다른 안정화제(stabilizers)들이 약제로 사용될 수 있다. 본 발명의 펩타이드의 유효용량은 0.01 내지 100 ㎎/㎏이고, 바람직하게는 0.1 내지 10 ㎎/㎏ 이며, 하루 1회 내지 3회 투여될 수 있다.In addition, the peptide of the present invention can be used in combination with various carriers permitted as pharmaceutical agents, such as physiological saline or an organic solvent, and can be used in combination with a carbohydrate such as glucose, sucrose or dextran, Antioxidants such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers can be used as pharmaceuticals. The effective dose of the peptide of the present invention is 0.01 to 100 mg / kg, preferably 0.1 to 10 mg / kg, and can be administered once to three times a day.

본 발명의 펩타이드의 총 유효량은 볼루스(bolus) 형태 혹은 상대적으로 짧은 기간 동안 주입(infusion) 등에 의해 단일 투여량(single does)으로 환자에게 투여될 수 있으며, 다중 투여량(multiple does)이 장기간 투여되는 분할 치료 방법(fractionated treatment protocol)에 의해 투여될 수 있다. 상기 농도는 약의 투여 경로 및 치료 횟수뿐만 아니라 환자의 나이 및 건강상태 등 다양한 요인들을 고려하여 환자의 유효 투여량이 결정되는 것이므로 이러한 점을 고려할 때, 이 분야의 통상적인 지식을 가진 자라면 본 발명의 신규한 펩타이드의 약학적 조성물로서의 특정한 용도에 따른 적절한 유효 투여량을 결정할 수 있을 것이다.
The total effective amount of the peptides of the invention can be administered to a patient in a single dose, such as by bolus form or by infusion for a relatively short period of time, And administered by a fractionated treatment protocol. Since the concentration of the effective dose of the patient is determined in consideration of various factors such as the route of administration and the number of treatments as well as the age and health condition of the patient, in view of this point, Lt; RTI ID = 0.0 > of < / RTI > novel peptide as a pharmaceutical composition.

또한, 서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 심혈관계 질환 예방 또는 치료용 약학적 조성물, 또는 혈압저하제를 제공한다.Also provided is a pharmaceutical composition for preventing or treating cardiovascular diseases or a blood pressure lowering agent comprising any one or two or more peptides composed of any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 as an active ingredient .

상기 심혈관계 질환은 고혈압, 심장병, 뇌졸증, 혈전증, 협심증, 심부전, 심근경색, 뇌경색, 뇌출혈, 허혈성 심장질환, 경혈관 동맥 성형술 후 발생하는 합병증, 죽상경화증 및 동맥경화로 이루어진 군으로부터 선택된 하나 또는 그 이상인 것이 바람직하나, 이에 한정되지 않는다.Wherein the cardiovascular disease is selected from the group consisting of hypertension, heart disease, stroke, thrombosis, angina pectoris, heart failure, myocardial infarction, cerebral infarction, cerebral hemorrhage, ischemic heart disease, complications arising after perianal artery arteriopathy, atherosclerosis and arteriosclerosis But is not limited thereto.

따라서, 본 발명의 서열번호 1 내지 5로 기재되는 아미노산 서열로 구성되는 펩타이드는 심혈관계 질환의 예방 또는 치료용 약학적 조성물의 유효 성분으로 유용하게 사용될 수 있다.
Accordingly, the peptide comprising the amino acid sequence of SEQ ID NOS: 1 to 5 of the present invention can be effectively used as an active ingredient of a pharmaceutical composition for the prevention or treatment of cardiovascular diseases.

본 발명의 조성물은 비경구의 여러 가지 제형일 수 있다. 상기 조성물을 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다.The compositions of the present invention may be of various parenteral formulations. When the composition is formulated, it is prepared using a diluent such as a filler, an extender, a binder, a wetting agent, a disintegrant, a surfactant, or an excipient usually used.

보다 상세하게는 상기 약학 조성물은 상기 유효성분 외에 추가로 영양제, 비타민, 전해질, 풍미제, 착색제, 중진제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산 음료에 사용되는 탄산화제 등을 추가로 함유할 수 있다. 또한, 상기 담체, 부형제 또는 희석제는 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 자이리톨, 에리스리톨, 말티톨, 전분, 아카시아고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로오스, 미정질 셀루로오스, 폴리비닐 피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유, 덱스트린, 칼슘카보네이드, 프로필렌글리콜, 리퀴드 파라핀, 생리식염수로 이루어진 군에서 선택된 하나 또는 그 이상 일 수 있으나, 이에 한정되는 것은 아니며 통상의 담체, 부형제 또는 희석제 모두 사용가능하다. 상기 성분들은 본 발명의 펩타이드에 독립적으로 또는 조합하여 추가될 수 있다.More specifically, the pharmaceutical composition may further contain, in addition to the active ingredient, a nutritional agent, a vitamin, an electrolyte, a flavoring agent, a coloring agent, a stabilizer, a pectic acid and a salt thereof, an alginic acid and a salt thereof, an organic acid, a protective colloid thickening agent, A preservative, a glycerin, an alcohol, a carbonating agent used in a carbonated drink, and the like. The carrier, excipient or diluent may be selected from the group consisting of lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, Selected from the group consisting of water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, dextrin, calcium carbonate, propylene glycol, liquid paraffin, physiological saline One or more, but is not limited thereto, and any conventional carrier, excipient or diluent may be used. The components can be added to the peptides of the invention either independently or in combination.

더 나아가 본 발명의 약학 조성물은 당해 기술 분야의 공지된 적절한 방법을 사용하여 또는 레밍턴의 문헌(Remington's Pharmaceutical Science(최근판), Mack Publishing Company, Easton PA)에 개시되어 있는 방법을 이용하여 바람직하게 제형화될 수 있다.Further, the pharmaceutical compositions of the present invention may be formulated using any of the known methods known in the art or by methods disclosed in Remington ' s Pharmaceutical Science (recent edition), Mack Publishing Company, Easton PA) .

본 발명의 조성물은 약제학적으로 유효한 양으로 투여한다. 본 발명에 있어서, "약제학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The composition of the present invention is administered in a pharmaceutically effective amount. In the present invention, "pharmaceutically effective amount" means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level will depend on the type of disease, severity, , Sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including co-administered drugs, and other factors well known in the medical arts. The composition of the present invention can be administered as an individual therapeutic agent or in combination with other therapeutic agents, and can be administered sequentially or simultaneously with conventional therapeutic agents, and can be administered singly or in multiple doses. It is important to take into account all of the above factors and to administer the amount in which the maximum effect can be obtained in a minimal amount without side effects, which can be easily determined by those skilled in the art.

본 발명의 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도에 따라 그 범위가 다양하며, 일일 투여량은 삼백초 추출물의 양을 기준으로 0.01 내지 1000 ㎎/㎏이고, 바람직하게는 30 내지 500 ㎎/㎏이고, 더욱 바람직하게는 50 내지 300 ㎎/㎏이며, 하루 1 ~ 6 회 투여될 수 있다. 그러나 투여 경로, 비만의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.The dosage of the composition of the present invention varies depending on the patient's body weight, age, sex, health condition, diet, administration time, administration method, excretion rate and severity of disease, and the daily dose is the amount of Saururus chinensis extract The dose is 0.01 to 1000 mg / kg, preferably 30 to 500 mg / kg, more preferably 50 to 300 mg / kg, and can be administered 1 to 6 times a day. However, the dosage may be varied depending on the route of administration, the severity of obesity, sex, weight, age, etc. Therefore, the dosage is not limited to the scope of the present invention by any means.

본 발명의 조성물은 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.
The composition of the present invention may be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy, and biological response modifiers.

또한, 서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 심혈관계 질환 예방 또는 개선용, 또는 혈압저하용 건강기능식품을 제공한다.Also, the present invention provides a health functional food for prevention or improvement of cardiovascular diseases or a blood pressure lowering health food containing any one or two or more peptides composed of any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 as an active ingredient do.

상기 심혈관계 질환은 고혈압, 심장병, 뇌졸증, 혈전증, 협심증, 심부전, 심근경색, 뇌경색, 뇌출혈, 허혈성 심장질환, 경혈관 동맥 성형술 후 발생하는 합병증, 죽상경화증 및 동맥경화로 이루어진 군으로부터 선택된 하나 또는 그 이상인 것이 바람직하나, 이에 한정되지 않는다.Wherein the cardiovascular disease is selected from the group consisting of hypertension, heart disease, stroke, thrombosis, angina pectoris, heart failure, myocardial infarction, cerebral infarction, cerebral hemorrhage, ischemic heart disease, complications arising after perianal artery arteriopathy, atherosclerosis and arteriosclerosis But is not limited thereto.

따라서, 본 발명의 서열번호 1 내지 5로 기재되는 아미노산 서열로 구성되는 펩타이드는 심혈관계 질환의 예방 또는 개선용 건강기능식품의 유효 성분으로 유용하게 사용될 수 있다.
Therefore, the peptide consisting of the amino acid sequence of SEQ ID NOS: 1 to 5 of the present invention can be effectively used as an active ingredient of a health functional food for preventing or ameliorating cardiovascular diseases.

본 발명에서 “건강기능식품”이란 식품에 물리적, 생화학적 또는 생물공학적 수법 등을 이용하여 해당 식품의 기능을 특정 목적에 작용 및 발현하도록 부가가치를 부여한 식품군이나 식품 조성이 갖는 생체 방어 리듬 조절 또는 질병방지 및 회복 등에 관한 체조절기능을 생체에 대하여 충분히 발현하도록 설계하여 가공한 식품을 의미하며, 바람직하게는 본 발명의 건강기능식품은 심혈관계 질환의 예방 또는 개선에 관한 체조절기능을 생체에 대하여 충분히 발현할 수 있는 식품을 의미한다. 상기 건강기능식품에는 식품학적으로 허용 가능한 식품 보조 첨가제를 포함할 수 있으며, 건강기능식품의 제조에 통상적으로 사용되는 적절한 담체, 부형제 및 희석제를 더욱 포함할 수 있다.In the present invention, the term " health functional food " means a food group imparted with added value to function and express the function of the relevant food by physical, biochemical or biotechnological techniques, Prevention and recovery of the body. The health functional food of the present invention preferably has a function of controlling the body in preventing or improving cardiovascular diseases. Means foods that can be fully expressed. The health functional food may include food-acceptable food supplementary additives, and may further include suitable carriers, excipients and diluents conventionally used in the production of health functional foods.

본 발명의 펩타이드는 식품에 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효 성분의 혼합량은 그의 사용 목적(예방 또는 개선용)에 따라 적합하게 결정될 수 있다. 일반적으로, 건강식품 중의 상기 펩타이드의 양은 전체 식품 중량의 0.1 내지 90 중량부로 가할 수 있다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있으며, 안전성 면에서 아무런 문제가 없기 때문에 유효성분은 상기 범위 이상의 양으로도 사용될 수 있다.The peptides of the present invention can be added directly to the food or can be used together with other food or food ingredients, and can be suitably used according to conventional methods. The amount of the active ingredient to be mixed can be suitably determined according to the intended use (for prevention or improvement). Generally, the amount of the peptide in the health food may be 0.1 to 90 parts by weight of the total food. However, in the case of long-term ingestion intended for health and hygiene purposes or health control purposes, the amount may be less than the above range, and since there is no problem in terms of safety, the active ingredient may be used in an amount in the above range.

본 발명의 건강 기능성 음료 조성물은 지시된 비율로 필수 성분으로서 상기 펩타이드를 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제(사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 당 일반적으로 약 1 내지 20 g, 바람직하게는 약 5 내지 12 g이다.The health functional beverage composition of the present invention is not particularly limited to the other ingredients other than those containing the peptide as an essential ingredient in the indicated ratio, and may contain various flavors or natural carbohydrates as an additional ingredient such as ordinary beverages. Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose and the like; Disaccharides such as maltose, sucrose and the like; And polysaccharides, for example, conventional sugars such as dextrin, cyclodextrin and the like, and sugar alcohols such as xylitol, sorbitol and erythritol. Natural flavors (tau martin, stevia extracts (e.g., rebaudioside A, glycyrrhizin, etc.) and synthetic flavors (saccharin, aspartame, etc.) can be advantageously used as flavors other than those described above The ratio of the natural carbohydrate is generally about 1 to 20 g, preferably about 5 to 12 g per 100 of the composition of the present invention.

상기 외에 본 발명의 펩타이드는 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 펩타이드는 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 펩타이드 100 중량부 당 0.1 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다.
In addition to the above, the peptide of the present invention can be used as a flavoring agent such as various nutrients, vitamins, minerals (electrolytes), synthetic flavors and natural flavors, colorants and heavies (cheese, chocolate etc.), pectic acid and its salts, Salts, organic acids, protective colloid thickeners, pH adjusting agents, stabilizers, preservatives, glycerin, alcohols, carbonating agents used in carbonated beverages and the like. In addition, the peptides of the present invention may contain natural fruit juice and pulp for the production of fruit juice drinks and vegetable drinks. These components may be used independently or in combination. The proportion of such additives is not critical, but is generally selected in the range of 0.1 to about 20 parts by weight per 100 parts by weight of the peptide of the present invention.

아울러, 본 발명은 굴(oyster) 가수 분해물 유래 ACE 저해 활성을 갖는 펩타이드의 아미노산 서열에서 C-말단에 트립토판(tryptophan)을 첨가 또는 치환시키는 단계를 포함하는, 혈압저하용 펩타이드의 제조방법을 제공한다.In addition, the present invention provides a method for producing a peptide for lowering blood pressure comprising the step of adding or substituting tryptophan at the C-terminal in the amino acid sequence of a peptide having an ACE inhibitory activity derived from oyster hydrolyzate .

상기 ACE 저해 활성을 갖는 펩타이드는 TAY, VK, KY, YA 및 AFY인 것을 특징으로 한다.The peptide having ACE inhibitory activity is TAY, VK, KY, YA and AFY.

따라서, 본 발명은 C-말단을 트립토판(tryptophan)으로 첨가 또는 치환한 펩타이드 제조방법을 이용하여 심혈관계 질환의 예방 또는 치료에 유용하게 사용될 수 있다.
Therefore, the present invention can be effectively used for the prevention or treatment of cardiovascular diseases by using a peptide preparation method in which a C-terminal is added or substituted with tryptophan.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples.

단, 하기의 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예 및 실험예에 한정되는 것은 아니다.
It should be noted, however, that the following examples and experimental examples are illustrative of the present invention, and the present invention is not limited to the following examples and experimental examples.

<< 실시예Example 1>  1> 펩타이드Peptides 합성 및 순도 측정 확인 Confirmation of synthesis and purity measurement

안지오텐신 I-전환 효소를 저해하는 펩타이드(ACE 저해 펩타이드)의 C-말단을 트립토판(tryptophan)으로 치환하거나 치환하지 않은 10개의 펩타이드를 데이타로 사용하였다. 시험관 내(in vitro) 저해활성 IC50 값은 데이타의 이분산성을 감소시키기 위해 log로 치환하여 사용하였다(표 1). ACE(토끼의 폐(rabbit lung)으로부터 5 units), hippuryl-histidyl-leucine(HHL), captopril 및 lisinopril은 시그마사(St. Louis, MO, USA)에서 구입하였고, 펩타이드 TAY, VK, KY, YA, AFY, TAW, VKW, KYW, YAW, AFW는 GL Biochem사(Shanghai, China)에서 합성하였다. 아세토니트릴과 메탄올은 HPLC급을 사용하였고, 그 외의 시약은 모두 시약급을 사용하였다. 분석용으로서 Waterchers 120 ODS-AP(5 μm, 4.6×250 mm) C18 칼럼은 Daiso 사(Tokyo, Japan)에서 구입하였다. Ten peptides that did not replace the C-terminus of the peptide (ACE inhibitor) that inhibits angiotensin I-converting enzyme with tryptophan were used as data. The in vitro inhibition activity IC 50 values were used as log substitutions to reduce the heterosceductivity of the data (Table 1). ACE (5 units from rabbit lung), hippuryl-histidyl-leucine (HHL), captopril and lisinopril were purchased from Sigma (St. Louis, MO, USA) and the peptides TAY, VK, KY, YA , AFY, TAW, VKW, KYW, YAW and AFW were synthesized by GL Biochem (Shanghai, China). HPLC grade acetonitrile and methanol were used, and reagent grade was used for all other reagents. A Waterchers 120 ODS-AP (5 μm, 4.6 × 250 mm) C18 column was purchased from Daiso (Tokyo, Japan) for analysis.

합성 펩타이드는 Fmoc 고상법으로 합성하였으며, 합성 후 역상 칼럼 크로마토그래피로 순도 95% 이상으로 정제하였으며, 정제 펩타이드의 질량은 전자분무이온 질량분석기로 확인하였다The synthetic peptides were synthesized by Fmoc solid phase method and purified by reverse phase column chromatography to a purity of 95% or more. The mass of the purified peptide was confirmed by an electron spray ion mass spectrometer

펩타이드Peptides MFMF MWMW LogPLogP IPIP BPBP MPMP WSWS ICIC 5050 ,,
uMuM
LogICLogIC 5050
TAYTAY C16H23N3O6C16H23N3O6 353.38353.38 -0.58-0.58 6.026.02 676.71676.71 332.75332.75 28802880 16.716.7 1.2231.223 VKVK C11H23N3O3C11H23N3O3 245.32245.32 -0.43-0.43 9.699.69 471.14471.14 302.74302.74 24352435 29.029.0 1.4621.462 KYKY C15H23N3O4C15H23N3O4 309.37309.37 0.100.10 9.309.30 573.92573.92 317.74317.74 21312131 51.551.5 1.7121.712 YAYA C12H16N2O4C12H16N2O4 252.27252.27 0.330.33 6.026.02 508.34508.34 308.17308.17 45464546 93.993.9 1.9731.973 AFYAFY C21H25N3O5C21H25N3O5 399.45399.45 1.481.48 6.026.02 716.55716.55 338.56338.56 973.6973.6 75.675.6 1.8791.879 TAWTAW C18H24N4O5C18H24N4O5 376.41376.41 -0.52-0.52 6.026.02 724.66724.66 339.75339.75 188.9188.9 0.630.63 -0.201-0.201 VKWVKW C22H33N5O4C22H33N5O4 451.53451.53 0.490.49 9.699.69 762.14762.14 345.22345.22 266.6266.6 0.020.02 -1.699-1.699 KYWKYW C26H33N5O5C26H33N5O5 495.57495.57 1.021.02 9.309.30 864.92864.92 349.84349.84 212.5212.5 0.430.43 -0.367-0.367 YAWYAW C23H26N4O5C23H26N4O5 438.48438.48 1.251.25 6.026.02 799.34799.34 349.84349.84 491.9491.9 0.490.49 -0.310-0.310 AFWAFW C23H26N4O4C23H26N4O4 422.20422.20 1.531.53 6.026.02 764.50764.50 345.56345.56 63.4163.41 1.551.55 0.1900.190

MF, molecular formula; MW, molecular weight; IP, isoelectric point; BP, boiling point; WS, water solubility at 25℃ (mg/L), MP, melting pointMF, molecular formula; MW, molecular weight; IP, isoelectric point; BP, boiling point; WS, water solubility at 25 ° C (mg / L), MP, melting point

LogP는 Hyperchem s/w version 8.0에 의해 계산됨. LogP is calculated by Hyperchem version 8.0.

등전점(Isoelectric point)은 http://www.genscript.com/s니-bin2/peptide_calculation.cgi에서 계산됨.The isoelectric point is calculated at http://www.genscript.com/sni-bin2/peptide_calculation.cgi .

끓는 점(Boiling point), 녹는점(melting point) 및 용해도(solubility)는 EPI Suite에 의해 계산됨.
The boiling point, melting point and solubility are calculated by the EPI Suite.

그 결과, 도 1에 나타낸 바와 같이 굴 가수분해물에서 얻은 유효한 ACE 저해 활성을 가진 펩타이드 중에서 디펩타이드(dipeptide)는 C-말단 아미노산 잔기후, 그리고 트리펩타이드(tripeptide)인 경우는 C-말단의 마지막 잔기를 트립토판(tryptophan)으로 치환하여 합성한 트립토판(tryptophan) 함유 펩타이드들은 C18의 역상 칼럼에서 검출 시간에 다소 차이는 있으나, 뚜렷한 피크(peak)를 나타낸 반면, 불순물에서 기인하는 소수 피크(minor peak)는 미미하였다(도 1). 각각의 피크(peak) 면적으로 계산한 펩타이드의 순도는 95%를 상회하는 것으로 나타났다. 또한, 합성하여 정제한 각 펩타이드의 질량인 [M+H]+은 TAW, YAW, VKW, KYW 및 AFW가 각각 376.72, 438.96, 432.15, 496.15 및 422.94로서 이론적인 질량 376.41, 438.48, 432.15, 495.57 및 422.20과 1 Da의 범위 내에서 일치하였다(도 2). 특히 VKW에서 1 Da의 오차가 발생하였으나 HPLC 크로마토그램 상의 피크에 의한 정제도와 비교할 때 큰 문제는 없는 것으로 판단하였다.
As a result, as shown in Fig. 1, among the peptides having effective ACE inhibitory activity obtained from the oyster hydrolyzate, the dipeptide has the C-terminal amino acid residues and the last residue at the C-terminal in the case of the tripeptide The tryptophan-containing peptides synthesized by replacing tryptophan with a tryptophan showed a distinct peak but a minor peak due to the impurity in the reversed phase column of C18 (Fig. 1). The purity of the peptides calculated for each peak area was found to be greater than 95%. [M + H] +, which is the mass of each peptide synthesized and purified, was 376.72, 438.96, 432.15, 496.15 and 422.94, respectively, and the theoretical masses 376.41, 438.48, 432.15, 495.57, 422.20 and 1 Da (Fig. 2). Especially, 1 Da error occurred in VKW, but it was judged that there was no big problem when compared with the purification by peak on HPLC chromatogram.

<< 실험예Experimental Example 1>  1> 펩타이드의Of peptide 안지오텐신Angiotensin I-전환효소( I-converting enzyme ( angiotensinangiotensin converting enzyme; ACE)에 대한 저해활성의 측정 converting enzyme; ACE) &lt; / RTI &gt;

상기 <실시예 1>에서 합성된 펩타이드가 안지오텐신 I-전환효소에 대해 저해활성이 있는지를 알기 위하여, 하기와 같은 실험을 수행하였다.In order to determine whether the peptide synthesized in Example 1 had inhibitory activity against angiotensin I-converting enzyme, the following experiment was conducted.

구체적으로, ACE 저해활성은 Wanasundara 등의 방법(2002)에 따라 기질로 HHL을 사용하여 고속액체 크로마토그래피(HPLC system, Shimadzu, Kotyo, Japan)에서 분리된 히프르산(hippric acid(HA))의 함량을 측정하였다. 시약 조제를 위한 완충액은 50 mM tris-HCl(pH 8.3)을 사용하였다. 시험관에 3.0 mM HHL 50 ㎕, 효소 용액 50 ㎕(1.25 Units)와 시료 용액 50 ㎕를 가하여 37℃의 항온수조에서 30분 동안 정치하여 항온한 후, 흔들어 주면서 다시 30분 동안 반응시켰다. 150 ㎕의 빙초산(glacial acetic acid)를 가하여 반응을 중지시킨 다음 HPLC로 히프르산(hippuric acid)의 함량을 측정하였다. HA의 정량을 위해 Watchers C18 역상 칼럼을 장착한 반응용액 10 ㎕를 주입하고, 12.5%(v/v) 아세토니트릴(acetonitrile) 용액(pH 3.0)으로 용출하면서 228 nm에서 피크를 검출하였다. 대조구는 시료 대신 50 ㎕의 완충액을 사용하였으며 효소 활성의 저해는 다음 식으로 계산하였다. 시료 농도별로 ACE 저해 활성을 측정하여 농도별 저해 활성을 선형 회귀분석한 후 ACE 활성의 50%를 저해하는 데 필요한 시료 농도를 IC50으로 정의하였다.Specifically, the ACE inhibitory activity was determined by the method of Wanasundara et al. (2002) using HHL as a substrate and the content of hippuric acid (HA) isolated from high performance liquid chromatography (HPLC system, Shimadzu, Kotyo, Japan) Were measured. The buffer for reagent preparation was 50 mM tris-HCl (pH 8.3). 50 μl of 3.0 mM HHL, 50 μl of the enzyme solution (50 μl) and 50 μl of the sample solution were added to the test tube, allowed to stand in a constant temperature water bath at 37 ° C for 30 minutes, allowed to react, and reacted for 30 minutes while shaking. 150 μl of glacial acetic acid was added to stop the reaction, and the content of hippuric acid was measured by HPLC. For the quantification of HA, 10 μl of a reaction solution equipped with a Watchers C18 reversed phase column was injected and a peak was detected at 228 nm while eluting with 12.5% (v / v) acetonitrile solution (pH 3.0). As a control, 50 μl of buffer was used instead of the sample, and the inhibition of enzyme activity was calculated by the following equation. The ACE inhibitory activity of each sample was measured, and the IC 50 was defined as the concentration required to inhibit 50% of the ACE activity after linear regression analysis of inhibitory activity by concentration.

ACE 저해(%)=(대조구의 HA-시료의 HA)/대조구의 HA x 100     ACE inhibition (%) = (HA of the control HA sample) / HA x 100 of the control

그 결과, 표 1에 나타낸 바와 같이 트립토판(tryptophan)이 첨가되거나 치환된 트리펩타이드(tripeptide)의 물에 대한 옥탄올의 분배 계수의 log 값은 모두 증가하는 것으로 나타났으며, 이 같은 결과는 트립토판 잔기의 소수성에 기인하는 것으로 보인다. 한편 끊는 점은 크게 증가한 반면, 용융점은 다소 증가하는 것으로 나타났으며, 등전점에는 변화를 보이지 않았다. 시험관 내 ACE 저해능은 트립토판 잔기를 첨가 또는 치환함에 따라 27-1450배 증가하였다. 특히 VKW는 VK에 비하여 1450배 증가하여 고혈압 치료를 위한 신약으로 사용하고 있는 captopril의 IC50 값 0.0011 uM에 비하여 1/20에 해당하는 IC50 값 0.02 uM을 나타내었다. 이 같은 결과는 peptide의 ACE 저해능 향상을 위해 C-말단 잔기의 트립토판 부가 또는 치환이 효과적임을 시사한다.
As a result, as shown in Table 1, the logarithm of the partition coefficient of octanol to water of the tripeptide added or substituted with tryptophan was all increased, and the result showed that the tryptophan residue The hydrophobicity of the &lt; / RTI &gt; On the other hand, the melting point increased slightly while the breaking point increased, but the isoelectric point did not change. In vitro ACE inhibition increased 27-1450 fold with the addition or replacement of tryptophan residues. In particular VKW increases 1450-fold as compared to the VK exhibited IC 50 value of 0.02 uM corresponding to 1/20 compared to the IC50 value of 0.0011 uM captopril being used as new drugs for the treatment of hypertension. These results suggest that tryptophan addition or substitution of C-terminal residues is effective for improving ACE inhibition of peptides.

<< 실험예Experimental Example 2>  2> 펩타이드의Of peptide 세포독성 측정 Cytotoxicity measurement

상기 <실시예 1>에서 합성된 펩타이드가 세포에 독성을 갖는지를 알아보기 위하여 하기와 같은 실험을 수행하였다.The following experiment was conducted to examine whether the peptides synthesized in Example 1 were toxic to cells.

구체적으로, 세포를 10% FBS가 함유된 DMEM 배지를 사용하여 37℃, 5% CO2가 유지되도록 배양하였다. 이때 미생물의 오염이나 중식을 억제하기 위해 배지용 항생제를 사용하였다. 세포가 80% 정도 디쉬(dish)를 덮으면 phosphated-buffered saline-EDTA(PBS-EDTA)로 세척한 후 트립신 처리하여 계대배양 하였으며, 배지는 48시간마다 교환하여 세포를 배양하였다. 시료는 DMEM(FBS free)배지에 0.2% PBS 용액에 시료를 녹여 사용하였다. 시료의 최종농도는 1~200 ㎍/㎖의 농도 범위에서 실험하였다. MTT assay를 이용한 세포독성 측정은 HepG2를 96 웰 플레이트에 세포농도 1×105 cells/㎖로 100 ㎕씩을 분주한 후 세포 부착을 위해 24시간 배양하고 시료를 첨가한 FBS free 배지로 교환한 다음 24시간 동안 배양하였다. PBS 용액으로 2회 세척한 다음 MTT 시약으로 처리한 후 490 nm에서 microplate reader(VICTOR X multilabel plate readers, Perkin Elmer 1420, Waltham, MA, USA)로 흡광도를 측정하였다. Specifically, the cells were cultured in DMEM medium containing 10% FBS at 37 ° C to maintain 5% CO 2 . At this time, antibiotics for medium were used to suppress microbial contamination and lunch. After the cells were covered with 80% of the dish, they were washed with phosphated-buffered saline-EDTA (PBS-EDTA) and trypsinized to subculture. Cells were cultured by changing the medium every 48 hours. Samples were dissolved in DMEM (FBS free) medium in 0.2% PBS solution. The final concentration of the sample was tested in the concentration range of 1 ~ 200 ㎍ / ㎖. To determine the cytotoxicity using MTT assay, 100 μl of HepG2 was dispensed in a 96-well plate at a cell concentration of 1 × 10 5 cells / ml, cultured for 24 hours for cell attachment, replaced with FBS free medium supplemented with the sample, Lt; / RTI &gt; After washing twice with PBS, the plate was treated with MTT reagent and absorbance was measured with a microplate reader (VICTOR X multilabel plate readers, Perkin Elmer 1420, Waltham, MA, USA) at 490 nm.

그 결과, 표 2 및 도 4에 나타낸 바와 같이 정상 간세포인 Chang 세포에 대한 독성은 실험에 사용한 모든 ACE 저해 펩타이드에서 나타나지 않았으며, 펩타이드 KYW에서 농도 증가와 더불어 세포의 수가 다소 감소하는 것으로 나타났으나, 대조군과 유의적인 차이는 나타나지 않았다(표 2, p<0.5). 이 같은 결과는 트립토판(tryptophan) 잔기의 첨가 또는 치환이 세포독성을 유발하지 않음을 보여준다. 그러나 생체 내(in vivo)에서도 동일한 안전성을 확보할 수 있는 지는 확인할 필요가 있다. As a result, as shown in Table 2 and FIG. 4, toxicity to Chang cells, which is a normal hepatocyte, was not observed in all of the ACE inhibitory peptides used in the experiment, and the number of cells was slightly decreased along with the increase in the peptide KYW , And there was no significant difference from the control group (Table 2, p <0.5). These results show that the addition or replacement of tryptophan residues does not induce cytotoxicity. However, it is necessary to confirm in vivo (in viv o) which is capable of ensuring the safety of the same.

Figure 112015019812607-pat00001
Figure 112015019812607-pat00001

<< 실험예Experimental Example 3>  3> 펩타이드의Of peptide 판별, 주성분 및  Discrimination, principal component and PLSPLS 분석 analysis

상기 <실시예 1>에서 합성된 펩타이드의 성분을 조사하기 위하여 하기와 같은 실험을 수행하였다.In order to investigate the components of the peptides synthesized in Example 1, the following experiment was conducted.

구체적으로, 굴 가수분해물에서 얻은 유력한 ACE 저해 디펩타이드(dipeptide)인 경우 C-말단에 트립토판(tryptophan)의 부가와 트리펩타이드(tripeptide)인 경우, C-말단 아미노산에 트립토판(tryptophan)잔기의 치환이 시험관 내 ACE 저해활성에 미치는 영향을 판별하였다.Specifically, in the case of a potent ACE inhibitory dipeptide obtained from an oyster hydrolyzate, the addition of a tryptophan at the C-terminus and the substitution of a tryptophan residue at the C-terminal amino acid in the case of a tripeptide The effect on in vitro ACE inhibitory activity was determined.

SYBYL에 의한 각 펩타이드들과 ACE 간의 docking의 결과로 얻은 각 지표들 사이(표 3) 및 Hellberg et al. (1987)이 제시한 펩타이드 내 아미노산 서열의 변동을 다양한 아미노산 위치에 3가지 주성분 z1, z2 및 z3로 기술한 지표에 따라 주성분분석을 실시하였다. 판별분석과 주성분 분석은 JMP package(ver.10, SAS Institute, Cary, NC, USA)로 선형판별을 실시하였다. 트립토판(Tryptophan) 잔기의 첨가 또는 치환이 펩타이드의 ACE 저해능 향상에 기여하는 지를 확인하기 위해 정준 1(x1)을 log IC50값으로 하고, 정준 2(x2)를 Hellberg et al., (1987)이 제시한 트리펩타이드의 아미노산 위치에 따른 z2와 z3를 실험 대상 아미노산의 말단 잔기에 적용하여 판별분석을 수행하였다. 그룹 평균을 포함하는 정분 도표와 관측값들이 트립토판 잔기를 포함하는 그룹과 포함하지 않는 그룹으로 서로 반대되는 부분에 위치하여 실험 범위 내의 펩타이드를 정확히 구분하였다. Between each index obtained as a result of docking between each peptide and ACE by SYBYL (Table 3) and Hellberg et al. (1987) performed principal component analysis according to the indices describing the variation of the amino acid sequence in the peptide by three main components z1, z2 and z3 at various amino acid positions. The discriminant analysis and principal component analysis were linearly discriminated by the JMP package (ver. 10, SAS Institute, Cary, NC, USA). To determine whether the addition or substitution of tryptophan residues contributes to the enhancement of the ACE inhibition of the peptide, the canonical 1 (x1) was used as the log IC 50 value and the canonical 2 (x2) was used by Hellberg et al. The discrimination analysis was performed by applying z2 and z3 according to the amino acid position of the proposed tripeptide to the terminal residues of the amino acid to be tested. The regression tables and observations containing the group mean were located at the opposite sites to the group containing the tryptophan residues and the group not including the tryptophan residues to correctly discriminate the peptides within the experimental range.

그 결과, 도 3에 나타낸 바와 같이 선형판별 함수는 0.3041 ×1 - 0.0852 ×2로 나타났다. 오분류율은 0/10=0%였고, 적중율은 100%에 해당하였다. 그러나 이 같은 결과는 본 연구에 사용한 10개의 펩타이드에 관한 것으로서 더욱 정확한 판별함수를 얻기 위해서 다수의 데이타를 사용하여 오분류율을 검정할 필요가 있을 수 있다(도 3). As a result, as shown in FIG. 3, the linear discriminant function was 0.3041 × 1 - 0.0852 × 2. The false classification rate was 0/10 = 0% and the accuracy rate was 100%. However, this result is related to the 10 peptides used in this study, and it may be necessary to test the misclassification rate by using a large number of data to obtain a more accurate discriminant function (FIG. 3).

또한, log IC50 한편값에 기여하는 지표설정을 위하여 분자 도킹을 통하여 얻은 각 펩타이드 지표들을 표본상관계수행령을 이용하여 측정단위에 상관없이 주성분 분석을 수행하였다. Further, log IC 50 On the other hand, principal component analysis was performed regardless of the measurement unit by using the sample correlation correlation index for each peptide index obtained through molecular docking for the setting of the index contributing to the value.

그 결과, 표 3에 나타낸 바와 같이 LogIC50 값에 대하여 주성분 1과 2는 76.1%를 표현할 수 있으며, 주성분 1,2,3 및 4의 누적 기여율은 96.9%이었다. 제1주성분은 log IC50값을 의미하고 있기 때문에 주성분의 점수에 미루어 주성분 1은 과 2가 log IC50 값에 기여하는 정도는 KYW>VKW>AFW>YAW>TAW로서 IC50값의 순서와는 다소 차이가 있으나, C-말단 잔기로서 트립토판(tryptophan)을 가진 펩타이드가 비트립토판 잔기의 펩타이드에 비하여 월등히 높은 것에 미루어 C-말단의 트립토판 잔기가 ACE 저해능 향상에 크게 기여함을 확인하였다. 또한, PLS 분석에 의하면 log IC50 값에 가장 크게 기여하는 지표는 펩타이드의 C-말단 잔기, N-말단 잔기, 가운데 잔기로서 아미노산의 서열이 가장 큰 영향을 미치는 것으로 나타났고, 이어서 펩타이드의 D 스코어(score)> G 스코어> CHEM 스코어임을 확인하였다. 따라서 log IC50 = -0.1346(p3z3)+0.1179(p3z1)-0.1059(p3z2)+0.1068(D 스코어)로 97.8%를 표현할 수 있는 것으로 나타났다. As a result, as shown in Table 3, the main components 1 and 2 can represent 76.1% with respect to the LogIC 50 value, and the cumulative contribution ratio of the main components 1, 2, 3 and 4 was 96.9%. The first main component because it means a log IC 50 value is the degree of delayed in the principal component score of the main component 1 and 2 contribute to the log IC 50 value KYW>VKW>AFW>YAW> as TAW is the order of the IC 50 value The tryptophan residue at the C-terminus significantly contributes to the enhancement of ACE inhibition, as the peptide having tryptophan as the C-terminal residue is much higher than the peptide of the viptorptane residue. PLS analysis showed that the C-terminal residue, the N-terminal residue, and the amino acid sequence as the middle residue of the peptide had the greatest effect on the log IC 50 value, and the peptide D score (score)> G score> CHEM score. Therefore, log IC 50 = -0.1346 (p3z3) +0.1179 (p3z1) -0.1059 (p3z2) +0.1068 (D score) was 97.8%.

Figure 112015019812607-pat00002
Figure 112015019812607-pat00002

<< 실험예Experimental Example 4> 분자도킹 확인 4> Confirmation of molecular docking

본원발명의 펩타이드의 분자도킹 여부를 확인하기 위하여, 하기와 같은 실험을 수행하였다.In order to confirm whether or not the peptide of the present invention is docked, the following experiment was conducted.

구체적으로, 인간 ACE 구조는 단백질 데이타 은행(PDB Id, IO86)에서 얻었으며, SYBYL software package(Tripos International, St. Louis, MI, USA)로 모든 기질과 Cl이온을 제거하였으며, ACE 저해 펩티드들을 준비하고(도 1), SYBYL software로 0.05 kcal/mol의 수렴기준을 가진 Powell conjugate 균배 최적 알고리즘을 사용하여 Tripos force field로 각 분자에 대하여 에너지 최소화를 수행하였다. 동일한 프로그램의 도킹(docking) 프로그램을 사용하여 각 펩티드 분자들에 대한 surflex-dock을 수행하였다. 도킹 중 참고 분자로서 IO86 단백질 복합체에서 얻은 lisinopril을 리간드로 사용하였으며, 각 펩타이드에 대하여 dock 스코어 값(chem 스코어, C 스코어, D 스코어, G 스코어, PMF 스코어, 총 스코어)에 기반한 상위 20개의 구조를 생성하였다. 20개의 구조 중 가장 높은 dock 스코어 값을 선택하고 단백질 잔기와 펩타이드 사이의 상호작용을 Discovery Studio 3.5로 분석하였다. Specifically, the human ACE structure was obtained from a protein data bank (PDB Id, IO86), and all substrates and Cl ions were removed with the SYBYL software package (Tripos International, St. Louis, MI, USA) (Fig. 1), energy minimization was performed for each molecule with Tripos force field using Powell conjugate optimization algorithm with a convergence criterion of 0.05 kcal / mol with SYBYL software. A docking program of the same program was used to perform a surflex-dock for each peptide molecule. During docking, lisinopril obtained from the IO86 protein complex was used as a ligand and the top 20 structures based on the dock score values (chem score, C score, D score, G score, PMF score, total score) Respectively. The highest dock score among the 20 structures was selected and the interaction between the protein residues and the peptides was analyzed with Discovery Studio 3.5.

그 결과, 표 4 및 도 6 내지 도 8에 나타낸 바와 같이 Lisinopril은 극히 효율적인 ACE 저해제로서 captopril에 비하여 부가적인 lysine 및 phenyl 기를 포함하고 있었다. Lisinopril의 카르복실기는 ACE의 아연을 킬레이트한다(표 4, 도 6). 본 연구의 분자도킹 결과는 Captopril, enalaprilate 및 Phe-Ala-Pro 유사물인 3개의 ACE 저해제들은 ACE의 활성 부위 있는 촉매인 Zn2 +에 captopril은 티올(thiol)기, enalaprilate과 lisinopril은 카르복실기와 직접 상호작용하여 Zn2 +를 킬레이트한다는 보고와 일치하는 결과를 얻었다. As a result, as shown in Table 4 and FIG. 6 to FIG. 8, Lisinopril contained an additional lysine and phenyl group as compared with captopril as an extremely effective ACE inhibitor. The carboxyl group of the lisinopril chelates the zinc of the ACE (Table 4, Fig. 6). Molecular docking results of this study are mutually directly with Captopril, enalaprilate and Phe-Ala-Pro similar is water three ACE inhibitors are captopril in the in the active site catalyst of ACE Zn 2 + is a thiol (thiol) groups, enalaprilate and lisinopril is carboxyl And Zn 2 + was chelated by the action of Zn 2+ .

미묘한 차이는 결합 포켓의 다른 지역에서 관측된다. ACE-저해제 구조로 제공한 분자의 세부 묘사는 새로운 세대의 항고혈압 약물로 제공될 수 있는 상세한 새롭고 더욱 유력한 ACE의 도메인-특이적 저해제들의 결합과 설계를 개선할 것으로 예상된다(Natesh et al., 2004). C-ACE 복합체에서 두 번째 분자의 isoxazole pehnyl기는 'hand-shake'구조에서 이들을 도킹하는 첫 번째 분자의 아미노벤질기와 강한 pi-pi stacking 상호작용을 만든다. C-ACE 활성부위의 비정상적인 구조(architecture)와 유연성은 새로운 C-ACE 혹은 vasopeptidase 저해제들의 구조 기반 설계에 이용될 수 있다(Schwager et al., 2011). ACE 저해 펩타이드 VK에 비하여 C-말단에 트립토판을 첨가한 VKW는 ACE와 저해제 VKW 사이에 GLN 281 및 Tyr523와의 부가적인 수소결합, LYS 454 및 GLY 2000 와의 pi-pi 상호작용과 더 많은 이온과 van der Waals 상호작용에 의해 더욱 긴밀하게 결합되어 ACE 저해활성(IC50값)이 1450배 증가하는 것으로 추정된다(표 4 및 도 8). Subtle differences are observed in other areas of the bond pocket. The detailed description of the molecule provided by the ACE-inhibitor structure is expected to improve the combination and design of detailed new and more potent ACE domain-specific inhibitors that can be provided as a new generation of antihypertensive drugs (Natesh et al. 2004). In the C-ACE complex, the second molecule, the isoxazole pehnyl group, produces a strong pi-pi stacking interaction with the aminobenzyl group of the first molecule that docked them in the 'hand-shake' structure. The abnormal architecture and flexibility of the C-ACE active site can be used in the structural-based design of novel C-ACE or vasopeptidase inhibitors (Schwager et al., 2011). VKW with tryptophan at the C-terminal compared to the ACE inhibitory peptide VK has an additional hydrogen bond with GLN 281 and Tyr 523 between the ACE and the inhibitor VKW, a pi-pi interaction with LYS 454 and GLY 2000, It is estimated that the ACE inhibitory activity (IC 50 value) is increased by 1450 times (Table 4 and FIG. 8 ) by more tightly binding by Waals interaction.

ACE 저해제는 이온 및 수소결합 상호작용을 통해 AnCE의 S1과 S2 결합 포켓에 배타적으로 결합한다(Akif et al., 2010). lisW-S은 기원 화합물인 lisinopril에 비슷한 결합 양상을 갖는 것으로 보이나, P2'트립토판은 이 위치에 트립토판 잔기를 가지는 다른 저해제들에서 불 수 있는 것과는 다른 구조를 취한다. 키네틱(Kinetic) 분석은 S2' subsite에 있는 C-도메인 특이적 잔기들의 협동효과 때문인 258배의 도메인 선택성을 보인다. 이 저해제의 높은 친화성과 선택성은 이들을 심혈관 약물 개발을 위한 좋은 약물의 선도 화합물이 되도록 한다(Watermeyer et al., 2010).ACE inhibitors exclusively bind to the S1 and S2 binding pockets of AnCE through ionic and hydrogen bonding interactions (Akif et al., 2010). Although lisW-S appears to have a similar binding pattern to the parent compound lisinopril, P2 'tryptophan takes a different structure from that which can be exerted by other inhibitors with tryptophan residues at this position. Kinetic analysis shows a 258-fold domain selectivity due to the cooperative effect of C-domain specific residues at S2 'subsite. The high affinity and selectivity of these inhibitors make them the leading compounds of good drugs for cardiovascular drug development (Watermeyer et al., 2010).

Figure 112015019812607-pat00003
Figure 112015019812607-pat00003

<< 실험예Experimental Example 5> 분자 동력학적 시뮬레이션 측정 5> Molecular dynamic simulation measurement

분자동력학적 시뮬레이션은 분자도킹에 통해 얻은 복합체 구조에 대해 더 정확한 배열을 얻기 위해 측쇄 배열은 물론 ACE-리간드 복합 구조를 상세히 보기 위해 분자동력학적 시뮬레이션을 수행하였다. ACE 저해제에 대하여 MD 시뮬레이션을 시험하였으며, 궤도에 걸쳐 결정 구조를 시작하여 골격 RMSD를 분석하여 ACE 구조를 점검하였다Molecular dynamics simulations were performed to obtain a more precise alignment of the complex structure obtained through molecular docking, in order to elucidate the ACE-ligand complex structure as well as the side chain sequences. The ACE inhibitor was tested for MD simulation, the crystal structure was started over the orbit and the skeletal RMSD was analyzed to check the ACE structure

구체적으로, Docking 연구에서 얻은 복합체는 고속의 수행능을 가진 리눅스 클라스터 컴퓨터상에서 수행할 수 있는 AMBER03 force field를 갖춘 GROMACS 4.5.3 package를 사용하여 10 ns로 분자동력학 시뮬레이션을 수행하였다(Hess et al., 2008). 저해제들에 대한 위상 파일은 ACPYPE (AnteChamber Python Parser interface)를 사용하여 생성시켰다(Sousa da Silva and Vranken, 2012). 구조는 길이 1 nm의 12면체에서 용매화하고 수용성 환경에서 시뮬레이션을 수행하기 위해 TIP3P water 모델을 발생시켰다(Berrendesen et al., 1981; Jorgensen et al., 1983). 시뮬레이션 시스템의 전체적인 중성을 보장하기 위해 10개의 Na+ 이온을 첨가하여 물분자들을 대체하였다. 1000 KJ/mol의 한계까지 단계적으로 에너지 최소화 과정을 수행하였다. 평행 상태에서 100 ps에 대하여 에너지 최소화된 시스템을 처리하였다. 300 K와 1 bar의 정온 및 정압은 V-rescale thermostat와 Parrinello-Rahman barostat를 달성하였다(Bussi et al., 2007; Parrinello and Rahman, 1981). Long-range 정전기적 상호작용을 정확하게 측정하기 위해 particle mesh Ewald(PME) 법(Essmann et al., 1995)을 적용하였다. 중금속과 해당하는 수소원자들의 결합은 LINC21 알고리즘을 사용하여 이들의 평행결합 길이로 속박하였다(Hess et al., 1997). 시뮬레이션을 위한 시간은 2 fs로 설정하였으며, production phase 중 데이타는 ps 단위로 작성하였다. Specifically, the complexes obtained from the Docking study were subjected to molecular dynamics simulations at 10 ns using the GROMACS 4.5.3 package with the AMBER03 force field, which can be run on a Linux cluster computer with high performance (Hess et al ., 2008). Phase files for the inhibitors were generated using ACPYPE (AnteChamber Python Parser interface) (Sousa da Silva and Vranken, 2012). The structure was solvated in a dodecahedron of 1 nm in length and generated a TIP3P water model to simulate in an aqueous environment (Berrendesen et al., 1981; Jorgensen et al., 1983). To ensure the overall neutrality of the simulation system, 10 Na + ions were added to replace the water molecules. The energy minimization process was performed stepwise to the limit of 1000 KJ / mol. Energy-minimized systems were processed for 100 ps in parallel. (Bussi et al., 2007; Parrinello and Rahman, 1981) achieved a V-rescale thermostat and a Parrinello-Rahman barostat at 300 K and 1 bar. Particle mesh Ewald (PME) method (Essmann et al., 1995) was applied to accurately measure long-range electrostatic interactions. The combination of heavy metals and corresponding hydrogen atoms was constrained to their parallel bond length using the LINC21 algorithm (Hess et al., 1997). The time for the simulation was set to 2 fs, and the data in the production phase was written in ps.

그 결과, 도 9에 나타낸 바와 같이 ACE/저해제들 복합체에 대한 RMSD는 MD 시뮬레이션의 5 ns 후의 잘 평행화된 복합 시스템의 구조를 나타냈다. 대표적으로 나타낸 ACE/VKW에 대한 RMSD는 ACE/VK에 비하여 낮으며, 이는 10 ns md 시뮬레이션 동안 ACE/VKW가 ACE/VK보다 안정함을 나타낸다(도 9A). 반대로 VKW에 대한 RMSD가 VK에 비하여 큰 것은 VKW의 구조가 VK의 구조에 비하여 훨씬 크게 변함을 뜻한다(도 9B).
As a result, RMSD for the ACE / inhibitor complex showed the structure of a well paralleled composite system after 5 ns of MD simulation, as shown in Fig. The RMSD for the representative ACE / VKW is lower than the ACE / VK, which indicates that the ACE / VKW is more stable than the ACE / VK during the 10 ns md simulation (FIG. 9A). Conversely, the RMSD for VKW is larger than VK, which means that the structure of VKW is much larger than the structure of VK (FIG. 9B).

<< 실험예Experimental Example 6> ACE와 저해제 사이의 에너지 측정 확인 6> Confirmation of energy measurement between ACE and inhibitor

ACE와 저해제 사이의 상호작용 에너지를 측정하기 위하여, 하기와 같은 실험을 수행하였다.In order to measure the interaction energy between the ACE and the inhibitor, the following experiment was conducted.

구체적으로, 공유결합과 다른 비공유 상호작용은 전자의 공유는 포함하지 않으나, 분자 사이분자 내 전자기적 상호작용의 더욱 분산된 변동을 포함한다. 비공유 상호작용들은 큰 분자들의 3차원 구조를 유지하는 데 중요할 뿐 아니라 큰 분자들이 특이적으로 결합하는 수많은 생물학적 과정에 관여한다. 비공유 상호작용은 일반적으로 4개의 범주, 즉 정전기, π-효과, 반데르발스력 및 소수성 효과로 분류할 수 있다. Gromacs에서 쿨롱 유효에너지(정전기 작용)와 Lennard-Jones(LJ) 유효에너지van der Waals 작용)로 비공유 상호작용을 평가한다. ACE와 저해제들 사이의 전체 비공유상호작용 에너지(Etotal)은 3 부분, 즉 쿨롱을 제외한 ACE와 저해제 사이의 쿨롱유효에너지(Ecoul), Zn을 배제한 ACE와 저해제 사이의 LJ 유효에너지(ELJ)와 Zn과 저해제(EZn)사이의 쿨롱 유효에너지로 나누어진다. Specifically, covalent bonds and other noncovalent interactions do not involve electron sharing, but involve more dispersed variation of electromagnetic interactions within molecules. Non-covalent interactions are not only important in maintaining the three-dimensional structure of large molecules, but they are also involved in numerous biological processes in which large molecules specifically bind. Non-covalent interactions can be generally categorized into four categories: static, π-effect, van der Waals force, and hydrophobic effect. Coulomb effective energy (electrostatic action) and Lennard-Jones (LJ) effective energy van der Waals action in Gromacs. ACE and a total non-covalent interaction energy (E total) between the inhibitor is between the third section, that is, the Coulomb effective energy between ACE with inhibitors other than the Coulomb (E coul), ACE with inhibitors excluding Zn LJ effective energy (E LJ ) And the coulombic energies between Zn and the inhibitor (E Zn ).

그 결과, 표 5에 나타낸 바와 같이 ACE/VKW의 Etotal은 5ns 시뮬레이션에 걸쳐 ACE/VK에 비하여 크다. Dl과 같은 결과는 ACE와 VKW의 상호작용이 VK보다 강하고, 복합체의 안정성에 기여함을 뜻한다. 전체 에너지 성분에 의하면 ACE/VKW에 비하여 ACE/VK의 EZn은 크지만 Ecoul과 ELJ는 적다. 상기와 같은 결과는 ACE와 VK사이의 상호작용은 우선적으로 EZn이고 전체 에너지에 대한 Ecoul, ELJ 및 EZn의 기여가 비슷함을 뜻한다. VK의 C-말단에 트립토판을 부가한 후 ACE와 VKW의 상호작용은 VK에 비하여 크게 변화하였으며, Zn과 상호작용은 약화되었으나, 소수성 효과와 수소결합같은 ACE의 아미노산 잔기들과 트립토판의 소수성 잔기의 상호작용은 전체 상호작용 에너지의 증가를 유도하였고 ACE 저해활성의 개선에 기여할 수 있다(표 5). As a result, as shown in Table 5, E total of ACE / VKW is larger than ACE / VK over 5 ns simulation. The results like Dl indicate that the interaction of ACE and VKW is stronger than VK, contributing to the stability of the complex. According to the total energy composition, the E Zn of ACE / VK is larger than that of ACE / VKW, but E coul and E LJ are smaller. The above results indicate that the interaction between ACE and VK is preferentially E Zn and the contribution of E coul , E LJ and E Zn to total energy is similar. The addition of tryptophan to the C-terminus of VK significantly altered the interaction between ACE and VKW compared to VK, but the interaction with Zn was weakened, but the hydrophobic effect and the hydrophobic effect of ACE and the hydrophobic residues of tryptophan, Interactions can induce an increase in total interaction energy and contribute to the improvement of ACE inhibitory activity (Table 5).

Figure 112015019812607-pat00004
Figure 112015019812607-pat00004

Claims (10)

서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 것을 특징으로 하는 심혈관계 질환 예방 또는 치료용 약학적 조성물.
A peptide consisting of any one of the amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5, as an active ingredient.
제 1항에 있어서, 상기 심혈관계 질환은 동맥경화증, 고혈압, 협심증, 심근경색, 허혈성 심장질환, 심부전, 경혈관 동맥 성형술 후 발생하는 합병증, 뇌경색, 뇌출혈, 및 뇌졸중으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 심혈관계 질환 예방 또는 치료용 약학적 조성물.
The method according to claim 1, wherein the cardiovascular disease is selected from the group consisting of arteriosclerosis, hypertension, angina pectoris, myocardial infarction, ischemic heart disease, heart failure, complications arising after cardiovascular artery arthroplasty, cerebral infarction, cerebral hemorrhage, and stroke Or a pharmaceutically acceptable salt thereof.
제1항에 있어서, 상기 펩타이드는 굴 효소 가수분해물로부터 분리된 것을 특징으로 하는 심혈관계 질환 예방 또는 치료용 약학적 조성물.
The pharmaceutical composition for preventing or treating cardiovascular diseases according to claim 1, wherein the peptide is isolated from oyster hydrolyzate.
서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 심혈관계 질환 예방 또는 개선용 건강기능식품.
A health functional food for preventing or ameliorating cardiovascular diseases, which contains, as an active ingredient, any one or two or more peptides consisting of any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5.
제 4항에 있어서, 상기 심혈관계 질환은 동맥경화증, 고혈압, 협심증, 심근경색, 허혈성 심장질환, 심부전, 경혈관 동맥 성형술 후 발생하는 합병증, 뇌경색, 뇌출혈, 및 뇌졸중으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 심혈관계 질환 예방 또는 개선용 건강기능식품.
5. The method of claim 4, wherein the cardiovascular disease is selected from the group consisting of arteriosclerosis, hypertension, angina pectoris, myocardial infarction, ischemic heart disease, heart failure, complications arising after cardiovascular artery arthroplasty, cerebral infarction, cerebral hemorrhage, and stroke A health functional food for prevention or improvement of cardiovascular diseases.
제4항에 있어서, 상기 펩타이드는 굴 효소 가수분해물로부터 분리된 것을 특징으로 하는 심혈관계 질환 예방 또는 개선용 건강기능식품.
5. The health functional food for preventing or improving cardiovascular diseases according to claim 4, wherein the peptide is isolated from an oyster hydrolyzate.
서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 혈압저하제.
A peptide consisting of any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 as an active ingredient.
서열번호 1 내지 5로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열로 구성되는 펩타이드 중 어느 하나 또는 둘 이상을 유효성분으로 함유하는 혈압저하용 건강기능식품.
A health functional food for lowering blood pressure comprising any one or two or more peptides composed of any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 5 as an active ingredient.
굴(oyster) 가수 분해물 유래 안지오텐신 I-전환효소(angiotensin I-converting enzyme; ACE) 저해 활성을 갖는 펩타이드의 아미노산 서열에서 디펩타이드 VK, KY 또는 YA의 C-말단에 트립토판을 첨가하거나, 트리펩타이드 TAY 또는 AFY의 C-말단 티로신을 트립토판으로 치환시키는 단계를 포함하는, 심혈관계 질환 예방 또는 치료용 펩타이드의 제조방법.
A tryptophan may be added to the C-terminus of the dipeptide VK, KY or YA in the amino acid sequence of the peptide having an angiotensin I-converting enzyme (ACE) inhibitory activity derived from an oyster hydrolyzate, or a tripeptide TAY Or replacing the C-terminal tyrosine of AFY with tryptophan.
삭제delete
KR1020150028145A 2015-02-27 2015-02-27 Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension, and use thereof KR101701179B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150028145A KR101701179B1 (en) 2015-02-27 2015-02-27 Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150028145A KR101701179B1 (en) 2015-02-27 2015-02-27 Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension, and use thereof

Publications (2)

Publication Number Publication Date
KR20160105022A KR20160105022A (en) 2016-09-06
KR101701179B1 true KR101701179B1 (en) 2017-02-01

Family

ID=56945933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150028145A KR101701179B1 (en) 2015-02-27 2015-02-27 Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension, and use thereof

Country Status (1)

Country Link
KR (1) KR101701179B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107997184A (en) * 2017-12-13 2018-05-08 国药肽谷有限公司 The preparation method of one seed oyster oligopeptide product
WO2019216650A1 (en) * 2018-05-08 2019-11-14 경상대학교산학협력단 Peptide having liver protection, hangover-relieving, antioxidant, and anti-inflammatory effects

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046450A (en) 2010-08-27 2012-03-08 Unitika Ltd Angiotensin-converting enzyme inhibitory peptide, and method for producing the peptide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449098B1 (en) * 2012-04-06 2014-10-13 경남과학기술대학교 산학협력단 Angiotensin Converting Enzyme inhibitor peptide and use thereof
KR101533308B1 (en) * 2012-08-24 2015-07-03 경희대학교 산학협력단 Pharmaceutical composition containing Peptide with angiotensin-I Converting Enzyme inhibitory activity for preventing or treating cardiovascular disease

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046450A (en) 2010-08-27 2012-03-08 Unitika Ltd Angiotensin-converting enzyme inhibitory peptide, and method for producing the peptide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PubChem Substance ID(SID) 29882839, 29874025, 29882249, 29872453, 29868226 (2007.12.04.)

Also Published As

Publication number Publication date
KR20160105022A (en) 2016-09-06

Similar Documents

Publication Publication Date Title
Liu et al. Exploration of the molecular interactions between angiotensin-I-converting enzyme (ACE) and the inhibitory peptides derived from hazelnut (Corylus heterophylla Fisch.)
Li et al. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity
Li et al. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides
Wang et al. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study
US10308681B2 (en) Pharmaceutical composition for the prevention and treatment of cardiovascular disease comprising the peptide having the ability to inhibit angiotensin-1 converting enzyme as an active ingredient
Gallego et al. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham
Zhang et al. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa
JP5176964B2 (en) Dipeptidyl peptidase IV inhibitor
O'Keeffe et al. Identification of angiotensin converting enzyme inhibitory and antioxidant peptides in a whey protein concentrate hydrolysate produced at semi‐pilot scale
JP5612131B2 (en) Diabetes treatment or prevention
US8815806B2 (en) Yellow pea seed protein-derived peptides
EP2380901B1 (en) Angiotensin converting enzyme inhibitory peptide
Asoodeh et al. Potential angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate: biochemical characterization and molecular docking study
EP1930017B1 (en) Composition effective for prevention and treatment of adult disease
Zhao et al. Exploration, sequence optimization and mechanism analysis of novel xanthine oxidase inhibitory peptide from Ostrea rivularis Gould
Zhang et al. Two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from rice (Oryza sativa L.) bran protein
WO2017010537A1 (en) Composition that contains ring-shaped dipeptide and inhibits serum carnosinase
KR101701179B1 (en) Angiotesin I-converting enzyme inhibitory C-terminal tryptophan peptides for treatment of hypertension, and use thereof
KR101530125B1 (en) Novel Peptide derived from oyster hydrolysate with collagenase inhibitory activity and their application
Liu et al. Identification and mechanistic study of four novel ACE inhibitory peptides from maize germ protein hydrolysates
Zhan et al. Identification of a novel hypotensive peptide from porcine plasma hydrolysate by in vitro digestion and rat model
JP5872725B1 (en) Dipeptidyl peptidase IV inhibitory composition derived from bonito
JP7097084B2 (en) A novel fragment of AIMP1 protein and a skin protection composition containing it as an active ingredient.
JP5456100B2 (en) Angiotensin converting enzyme inhibitory dipeptide
KR101449098B1 (en) Angiotensin Converting Enzyme inhibitor peptide and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191223

Year of fee payment: 4