KR101700596B1 - Qtl analysis of stem diameter and caps marker therefor - Google Patents

Qtl analysis of stem diameter and caps marker therefor Download PDF

Info

Publication number
KR101700596B1
KR101700596B1 KR1020140150002A KR20140150002A KR101700596B1 KR 101700596 B1 KR101700596 B1 KR 101700596B1 KR 1020140150002 A KR1020140150002 A KR 1020140150002A KR 20140150002 A KR20140150002 A KR 20140150002A KR 101700596 B1 KR101700596 B1 KR 101700596B1
Authority
KR
South Korea
Prior art keywords
seq
pair
nos
primers represented
primer
Prior art date
Application number
KR1020140150002A
Other languages
Korean (ko)
Other versions
KR20160053150A (en
Inventor
김태호
윤웅한
이강섭
지현소
설영주
정인선
이현주
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020140150002A priority Critical patent/KR101700596B1/en
Publication of KR20160053150A publication Critical patent/KR20160053150A/en
Application granted granted Critical
Publication of KR101700596B1 publication Critical patent/KR101700596B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 밀양23호 및 기호벼에 특이적인 단일염기 다형성 (SNPs)을 결정하는 단계; 상기 단일염기 다형성 중 EcoRⅠ, HindⅢ, PstⅠ 및 XhoⅠ을 포함하는 제한효소자리에 위치한 SNP를 CAPS 마커로 선별하는 단계; 상기 CAPS 마커에 특이적인 프라이머를 이용해 PCR을 수행하는 단계; 상기 PCR로 분리된 CAPS 마커를 이용해 도 3으로 표시되는 유전지도를 제작하는 단계; 및 상기 유전지도를 기초로 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌(QTL)를 분석하는 단계; 를 포함하는 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌를 결정하는 방법에 관한 것이다. The present invention relates to a method for identifying single nucleotide polymorphisms (SNPs) specific to Milyang 23 and a preferred rice plant; Selecting a SNP located in a restriction enzyme site containing EcoR I, HindIII, Pst I and Xho I among the single nucleotide polymorphisms with a CAPS marker; Performing PCR using a primer specific to the CAPS marker; Preparing a genetic map shown in FIG. 3 using the PCR-separated CAPS marker; And analyzing a quantitative trait locus (QTL) related to the stem diameter of a recombinant subpopulation of Milyang 23 and a representative rice paddy on the basis of the genetic map; And a method for determining quantitative trait loci related to the stem diameter of a recombinant subpopulation of a representative rice paddy.

Description

벼의 줄기굵기 관련 양적형질 유전자좌 결정 및 이를 위한 CAPS 마커 {QTL ANALYSIS OF STEM DIAMETER AND CAPS MARKER THEREFOR} {QTL ANALYSIS OF STEM DIAMETER AND CAPS MARKER THEREFOR}

본 발명은 벼의 줄기굵기와 관련된 양적형질 유전자좌(QTL)를 결정하기 위한 조성물에 관한 것이다.
The present invention relates to a composition for determining quantitative trait loci (QTL) associated with the stem thickness of rice.

최근 차세대 염기서열 분석기술(Next Generation Sequencing)이 발달하면서 대용량의 염기서열 분석 비용이 감소하고, 속도가 가속화되었다. 또한, 벼 유전체 해독이 완료됨으로써 표준유전체(reference sequence)를 기반으로 전장 유전체 재염기서열 분석(whole genome re-sequencing)을 수행하여 SNP, 삽입(insertion) 그리고 결실(deletion) 등 다양한 마커들을 대량으로 단기간 안에 개발할 수 있게 되었다. 중국에서는 재래종 벼에 대한 재염기서열 분석을 통해 대량의 SNP를 탐색하여 고밀도의 분자 유전지도를 작성하였고, 14개의 주요 농업형질에 대한 관련 유전자를 보고한 바 있다(비특허문헌 2).Recently, the development of Next Generation Sequencing has resulted in a decrease in the cost of large-scale sequencing and acceleration of speed. In addition, when the rice genome is decoded, whole genome re-sequencing is performed based on a standard genome (reference sequence), and various markers such as SNP, insertion and deletion are mass- It can be developed in a short time. In China, a large number of SNPs were searched for by reabsence sequence analysis for native rice, and a high-density molecular genetic map was created and related genes for 14 major agricultural traits were reported (Non-Patent Document 2).

작물 육종에 있어서 농업적으로 중요한 형질들은 독립적인 단일 유전자가 아니라 전체 염색체 상에 존재하는 수많은 유전자들에 의해서 조절되는 양적형질이다. 양적 형질은 일반적으로 많은 수의 유전자에 의하여 영향을 받을 뿐만 아니라 여러 가지 환경요인에 의해서도 상당히 영향을 받는다. 따라서 양적 형질에 있어서는 이에 영향하는 개별적인 유전자 작용이나 특성과 같은 것을 구명하는 것이 질적 형질(qualitative trait)보다 극히 곤란하다. 때문에, 양적 형질의 유전을 연구하는데 통계적 방법이 강력한 수단으로 사용되고 있으며 양적 형질에 영향하는 유전적 요인을 여러 환경 요인으로부터 분리하여 효과적으로 추정하고자 하는 연구가 여러 학자들에 의해 수행되어 왔다. 품종 개량을 위한 분자 유전학적 기법의 이용은 DNA 수준에서의 개체의 유전적 소질에 대한 연구를 가능토록 할 수 있을 것이며, 개량 대상형질에 관련된 유전자, 즉 주유전자(major gene) 혹은 양적 형질 유전자좌위(QTL: Quantitative Trait Loci)에 대한 직접적인 선발 혹은 양적 형질 유전자좌위(QTL)에 연관되어 있는 유전적 표지(genetic marker)에 대한 선발을 통해 유전적 소질을 실현시킬 수 있는 도구를 제공할 수 있다. 표현형 정보에만 의존하는 것이 아니라 분자 유전학적인 정보의 추가적인 이용을 통해 유전적 개량을 보다 가속화할 수 있을 것이다. 따라서 오늘날은 이러한 양적형질 유전자좌를 연구하기 위해서 고밀도 분자 유전지도 작성을 통해 유전자를 찾고, 그 기능을 밝히는 등의 접근이 많이 이루어지고 있다. 현재까지 고밀도 분자 유전지도를 작성하기 위해 RFLP(restriction fragment-length polymorphism), RAPD (randomly amplified polymorphism) 및 AFLP (amplified fragment length polymorphism) 등 다양한 DNA 마커가 개발되었다. 벼에서는 자포니카 품종인 Nipponbare와 인디카 품종인 Kasalath 교배 후대 F2집단을 활용하여 2,275개 RFLP 마커들로 구성된 고밀도 분자 유전지도를 작성한 바가 있고(비특허문헌 3), 이는 벼 유전체 해독 프로젝트에 활용되기도 하였다.Agronomically important traits in crop breeding are not independent single genes but quantitative traits that are controlled by numerous genes on the entire chromosome. Quantitative traits are generally affected not only by a large number of genes but also by various environmental factors. Thus, in quantitative traits, it is extremely difficult to qualify traits such as individual gene actions or traits that affect them. Therefore, statistical methods have been used as a powerful tool for studying quantitative traits, and studies have been conducted by several scholars to effectively isolate genetic factors affecting quantitative traits from various environmental factors. The use of molecular genetic techniques for breed improvement will enable the study of the genetic predisposition of individuals at the DNA level, and it will be possible to identify genes related to the target traits to be improved, that is, major genes or loci of quantitative traits (QTL), or selection of genetic markers associated with quantitative trait loci (QTLs) can provide a tool for realizing a genetic locus. By using molecular genetic information rather than relying solely on phenotypic information, genetic improvement can be accelerated. Therefore, in order to study such a quantitative trait locus today, many approaches such as finding a gene through high density molecular genetic mapping and revealing its function are being performed. To date, various DNA markers have been developed, including restriction fragment-length polymorphism (RFLP), randomly amplified polymorphism (RAPD) and amplified fragment length polymorphism (AFLP) to generate high-density molecular genetic maps. In the rice, a high-density molecular genetic map consisting of 2,275 RFLP markers was prepared using Nipponbare, a Japonica variety and Kasalath mating F2 group, an Indica variety (Non-Patent Document 3), which was used for a rice genome decryption project.

기존의 DNA 마커들은 식별방법이 간편하지 못하고, 고비용과 많은 소요시간이 걸린다. 게다가 출현빈도가 낮다는 한계를 가지고 있다. 최근에 개발된 SSR (simple sequence repeat)과 SNP (single nucleotide phymorphism)는 품종 또는 개체간에 훨씬 높은 다형성을 보여주며, 골고루 분포하기 때문에 이용가치가 높아 표지인자로 많은 연구가 이루어지고 있다. 하지만 SSR은 PCR 산물의 크기가 작아 최종 판별 시 복잡하고 어려우며, 유전자칩(microarray)을 이용한 SNP은 다량의 시료를 빠르게 분석하는데 장점을 가지고 있지만 개발에 많은 시간과 노력이 필요한 실정이다.Conventional DNA markers are not easy to identify, costly and take a long time. Moreover, the frequency of appearance is low. Recently developed SSR (Simple Sequence Repeat) and SNP (single nucleotide phymorphism) show much higher polymorphism among varieties or individuals, and they are widely used as markers because of their high utilization value because they are distributed evenly. However, SSRs are complex and difficult to identify because of small size of PCR products. SNPs using microarrays have the advantage of rapidly analyzing a large amount of samples, but development time and effort are needed.

이에 본 발명자들은 차세대 염기서열분석 장비를 활용해 새로운 CAPS 마커를 개발하여 유전 및 분자지도 작성에 활용하는 한편, 벼의 줄기 굵기 형질과 관련한 QTL 마커를 개발하기에 이르렀다.
Therefore, the present inventors developed a new CAPS marker using the next generation nucleotide sequence analyzing apparatus and used it for genetic and molecular mapping, and developed a QTL marker related to the stem size of rice.

1. Ji H et al. 2012. Development of rice molecular genetic and physical map using PCR-based DNA markers with the recombinant inbred population derived from Milyang23/Gihobyeo cross. Korean J. Breed. Sci. 44: 273-281. 1. Ji H et al. 2012. Development of rice genomic and physical maps using PCR-based DNA markers with the recombinant inbred population derived from Milyang23 / Gihobyeo cross. Korean J. Breed. Sci. 44: 273-281. 2. Huang X et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genet. 42: 961-9672. Huang X et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genet. 42: 961-967 3. Harushima Y et al. 1998. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148: 479-4943. Harushima Y et al. 1998. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148: 479-494 4. Chen M et al. 2002. An integrated physical and genetic map of the rice genome. Plant Cell 14: 537-5454. Chen M et al. 2002. An integrated physical and genetic map of the rice genome. Plant Cell 14: 537-545 5. Cho YG et al. 2007. Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Sci. 47: 2403-24175. Cho YG et al. 2007. Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Sci. 47: 2403-2417 6. Ashikari M et al. 2002. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice 'green revolution'. Korean J. Breed. Sci. 52: 143-150.6. Ashikari M et al. 2002. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice 'green revolution'. Korean J. Breed. Sci. 52: 143-150.

본 발명의 목적은 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌(QTL)를 결정하기 위한 CAPS 마커 조성물을 제공하는 것이다.It is an object of the present invention to provide a CAPS marker composition for determining quantitative trait loci (QTL) related to the stem diameter of a recombinant subpopulation of Milyang 23 and a representative rice paddy.

본 발명의 다른 목적은 상기 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌(QTL)를 결정하기 위한 유전지도를 제공하는 것이다.Another object of the present invention is to provide a genetic map for determining the Quantitative Trait Locus (QTL) associated with the stem thickness of the recombinant subpopulations of Miryang No.23 and Rice.

본 발명의 또 다른 목적은 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌(QTL)를 결정하기 위한 방법을 제공하는 것이다.It is another object of the present invention to provide a method for determining quantitative trait loci (QTL) related to the stem diameter of a recombinant subpopulation of Milyang 23 and a representative rice paddy.

본 발명의 또 다른 목적은 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌를 결정하기 위한 키트를 제공하는 것이다.Another object of the present invention is to provide a kit for determining the quantitative trait locus related to the stem diameter of the recombinant subpopulations of Milyang 23 and the representative rice paddy.

본 발명의 또 다른 목적은 상기 방법으로 결정된 줄기굵기와 관련된 양적형질 유전자좌(QTL)를 제공하는 것이다.
It is yet another object of the present invention to provide quantitative trait loci (QTL) associated with stem diameters determined by the method.

상기 목적을 달성하기 위하여, 본 발명은 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌를 결정하기 위한 유전지도를 제공한다.In order to achieve the above object, the present invention provides a genetic map for determining quantitative trait loci related to the stem thickness of the recombinant subpopulations of Milyang No. 23 and Tong Rice.

본 명세서에서 사용되는 용어, "벼의 밀양23호 및 기호벼 재조합자식 집단”은 본 명세서에서 ”벼의 밀양23호/기호벼 재조합자식 집단” 또는 “MGRIL(Milyang23/Gihobyeo cross)”로 혼용되어 사용된다. 상기 ”벼의 밀양23호 및 기호벼 재조합자식 집단”은 20세대 이상 진전되면서 고정된 162개의 자식계통으로 이루어진 집단으로서, DNA 추출에 제한이 없고 다양한 환경과 시기별로 반복실험이 가능한 장점을 가지고 있다. As used herein, the term " rice silage 23 " is used interchangeably herein as " rice silicate 23 / The above-mentioned " rice silage No. 23 " is a group of 162 child strains fixed by progressing over 20 generations. There is no restriction on the extraction of DNA and it is possible to repeatedly experiment by various environments and periods Lt; / RTI >

본 명세서에서 사용되는 용어, “양적형질 유전자좌 (quantitative trait loci; QTL)”는 줄기굵기와 같이 다수의 유전자좌에 존재하는 대립형질들의 변이에 의하여 발현되는 형질을 말한다. As used herein, the term " quantitative trait loci (QTL) " refers to a trait that is expressed by variation of alleles present in a plurality of loci, such as stem thickness.

본 명세서에서 사용되는 용어, “양적형질 유전자좌 분석”은 특정 형질에 대하여 대비되는 특성을 나타내는 집단 간에 표현형과 연관된 마커를 탐색하는 것을 기본으로 하여 진행될 수 있다. QTL 분석을 통하여 각 유전좌자가 형질 발현에 미치는 정도, 유전자좌 간의 interaction, 환경에 의한 유전좌형 탐색 등이 가능하다. As used herein, the term " quantitative trait locus analysis " may be based on searching for markers associated with a phenotype between groups that exhibit characteristics that are contrasted for a particular trait. Through the QTL analysis, it is possible to investigate the degree of each gene locus expression, interaction between loci, and genetic loci by environment.

본 명세서에서 사용되는 용어, “CAPS (cleaved amplified polymorphic sequence) 마커”는 단일염기 다형성 (SNPs) 중 제한효소 자리에 위치한 SNP를 일컫는다. 본 발명의 구체예에서, CAPS 마커는 coding region sequence (CDS)에 존재하는 두 밀양23호, 기호벼 모본 간의 특이적인 SNP 중 제한효소(EcoRⅠ, HindⅢ, PstⅠ, XhoⅠ)자리에 위치한 SNP를 선정하여 후보 CAPS 마커로 개발할 수 있다.
As used herein, the term " cleaved amplified polymorphic sequence (CAPS) marker " refers to a SNP located in a restriction enzyme site among single nucleotide polymorphisms (SNPs). In the embodiment of the present invention, the CAPS markers are selected from SNPs located in the restriction enzyme sites (EcoRI, HindIII, PstI, XhoI) among the SNPs specific to the two rice varieties 23 and the representative rice species present in the coding region sequence (CDS) It can be developed as a candidate CAPS marker.

벼의 다양한 주요 형질 중에 하나인 줅기굵기는 벼의 생산성 향상과 관련되어 있다. 줄기굵기가 가늘수록 이삭 자체의 무게와 비바람 등 환경요인에 대한 견딤력이 약해져 쓰러지기 쉽다. 이로 인해 줄기가 쓰러지면 동화작용의 장애와 양분이동이 억제되어 수량이 감소하거나 쌀의 품질이 떨어지게 된다. 이에 본 발명에서는 줄기 굵기 형질 관련 QTL 연구를 수행하기 위해 차세대 대량 염기서열 분석을 통해 밀양23호 및 기호벼 사이의 특이적인 SNP를 CAPS(cleaved amplified polymorphic sequences) 마커로 개발한 후, PCR 기반 마커로 구성된 MGRIL 유전지도(비특허문헌 1)와 통합하여 분석이 용이하면서 마커 간에 균등한 발생 분포를 갖도록 하는 지도를 제공한다.One of the major traits of rice is the thickness of the rice, which is related to the productivity improvement of rice. The smaller the thickness of the stem, the weaker the resistance to environmental factors such as the weight of the grain itself and the wind and rain, and it is easy to collapse. As a result, if the stem is fallen, the anabolic dysfunction and nutrient migration are inhibited, resulting in reduced yield and poor quality of rice. Thus, in order to carry out the QTL study on the stem-thickness trait, the present invention was developed to develop cleaved amplified polymorphic sequences (CAPS) markers for specific SNPs between Milyang 23 and rice paddies through a next-generation mass sequencing analysis, This map is integrated with the constructed MGRIL genetic map (non-patent document 1), and provides a map that allows the analysis to be easily and uniformly distributed among the markers.

본 발명의 구체예에서, 상기 지도는 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌를 결정하기 위한 도 3으로 표시되는 유전지도일 수 있다. In an embodiment of the present invention, the map may be a genetic map as shown in Fig. 3 for determining the quantitative trait locus associated with the stem thickness of the recombinant subpopulation of Milyang No. 23 and a representative rice paddy.

본 발명의 구체예에서, 상기 지도는 도 2로 표시되는 물리지도일 수 있다. 상기물리지도는, DNA 마커간의 벼 유전체 상에서의 물리적인 위치를 파악하여 작성할 수 있다.In an embodiment of the present invention, the map may be the physical map shown in Fig. The physical map can be created by grasping the physical position of the rice marker between the DNA markers on the rice rice genome.

본 발명의 구체예에서, 상기 유전지도는 줄기굵기 관련 QTL 연구를 수행하기 위해 차세대 대량 염기서열 분석을 통해 밀양23호/기호벼 사이의 특이적인 SNP를 CAPS(cleaved amplified polymorphic sequences) 마커로 개발한 후, PCR 기반 마커로 구성된 MGRIL 유전지도(비특허문헌 1)와 통합함으로써 분석이 용이하면서 마커 간에 균등한 발생 분포를 갖도록 작성할 수 있다.
In the embodiment of the present invention, the genetic map was developed as a cleaved amplified polymorphic sequences (CAPS) markers for specific SNPs between Milyang No. 23 and representative rice paddies through a next-generation mass sequencing analysis in order to carry out a QTL study on stem diameter And then integrated with the MGRIL genetic map consisting of PCR-based markers (Non-Patent Document 1), so that the analysis can be easily made and can have an even distribution among the markers.

본 발명은 또한 1) 밀양23호 및 기호벼에 특이적인 단일염기 다형성 (SNPs)을 결정하는 단계; 2) 상기 단일염기 다형성 중 EcoRⅠ, HindⅢ, PstⅠ 및 XhoⅠ을 포함하는 제한효소자리에 위치한 SNP를 CAPS 마커로 선별하는 단계; 3) 상기 CAPS 마커에 특이적인 프라이머를 이용해 PCR을 수행하는 단계; 및 4) 상기 유전지도를 기초로 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌(QTL)를 분석하는 단계;를 포함하는 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌를 결정하는 방법을 제공한다.The present invention also relates to a method for the detection of single nucleotide polymorphisms (SNPs) in a mammal, 2) selecting a SNP located in a restriction enzyme site containing EcoR I, HindIII, Pst I and Xho I among the above single nucleotide polymorphisms with a CAPS marker; 3) performing PCR using a primer specific to the CAPS marker; And 4) analyzing the quantitative trait loci (QTL) related to the stem diameter of the recombinant subspecies of Milyang 23 and the rice paddy on the basis of the genetic map, and the stem of the recombinant subpopulation of the rice paddy Provides a method to determine quantitative trait loci related to thickness.

본 발명의 구체예에서, 상기 1) 단계는 최근 급속하게 발달한 차세대 유전체분석기술(next generation sequencing, NGS)을 기반으로 밀양23호와 기호벼의 유전체 서열을 분석함으로써 개발할 수 있으나 이에 제한되는 것은 아니다. 본 발명의 구체예에서, 상기 1) 및 2)단계는 NGS를 통해 Nipponbare 유전체 길이의 60 배수만큼 염기서열을 결정하였고, CDS 안에서 두 품종간 특이적으로 나타나는 SNP를 CAPS 마커로 이용할 수 있다. 상기 3) 단계는 바람직하게 본 발명의 표 4에 표시된 프라이머 서열을 사용해 PCR을 수행할 수 있다. 본 발명의 구체예에서, 상기 4) 단계에는 본 발명에서 새롭게 개발된 146개 CAPS 마커와 기존의 보고된 219개 마커를 통합하여 총 365개의 마커로 밀양23호 및 기호벼의 재조합자식 유전집단에 대해 분자 유전지도를 작성할 수 있다. 본 발명의 구체예에서, 상기 4) 단계는 벼의 줄기굵기에 관한 QTL을 탐색하여 결정할 수 있다.
In the embodiment of the present invention, step 1) can be developed by analyzing the genomic sequence of Milyang 23 and the rice seedlings based on the recently developed next generation sequencing (NGS) no. In the embodiment of the present invention, the above steps 1) and 2) determine the nucleotide sequence of the Nipponbare genome by NGS at a multiple of 60 times the length of the Nipponbare genome, and SNPs that are specifically expressed between the two cultivars in the CDS can be used as CAPS markers. The step 3) can preferably perform PCR using the primer sequences shown in Table 4 of the present invention. In the embodiment of the present invention, in step 4), 146 CAPS markers newly developed in the present invention and 219 previously reported markers are integrated into a total of 365 markers, Molecular genetic map can be created for. In an embodiment of the present invention, step 4) can be determined by searching for QTL regarding the stem thickness of rice.

본 발명은 또한 5) 줄기굵기 관련 양적형질 유전자좌(QTL)인 qI1D1, qI1D5, qI3D1 및 qI4D1를 결정하는 단계; 를 추가로 포함하는 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌를 결정하는 방법을 제공한다.The present invention also provides a method for determining stem diameter, said method comprising the steps of: 5) determining stem diameter related quantitative trait loci (QTL) qI1D1, qI1D5, qI3D1 and qI4D1; And a method for determining a quantitative trait locus related to the stem diameter of a recombinant subpopulation of a representative rice paddy.

본 발명은 또한 상기한 방법으로 결정된 줄기굵기 관련 양적형질 유전자좌(QTL)인 qI1D1, qI1D5, qI3D1 및 qI4D1를 제공한다. The present invention also provides qI1D1, qI1D5, qI3D1 and qI4D1, which are the stem-related quantitative trait loci (QTL) determined by the method described above.

본 발명의 구체예에서 QTL 분석 결과, 총 19개의 유의성이 있는 QTL을 찾을 수 있었다. 이 중에 4개 줄기굵기 형질 관련 QTL은 기존에 보고되지 않은 새로운 QTL이었다. 그 줄기굵기 QTL 중 가장 큰 LOD값을 갖는 qI1D5는 5번 염색체에서 탐색되었으며, 1절 굵기 표현형 변이는 8.99%였다. 재염기서열을 통해 밝혀진 SNP 중 소수만이 본 연구에 사용되었다. 향후 본 연구에서 밝혀진 SNP 정보를 이용한다면 더 많은 마커를 개발하여, 고밀도 유전지도 작성이 가능할 수 있다. 더 나아가 MGRIL을 이용하여 농업적으로 유용한 형질에 대해 더 정확한 QTL 분석과 유용유전자의 개발이 가능하게 될 수 있다.
As a result of the QTL analysis in the embodiment of the present invention, a total of 19 significant QTLs were found. Among these, QTLs related to four stem thickness traits were new QTLs that were not previously reported. QI1D5, which has the largest LOD value of the stem length QTL, was found on chromosome 5, and the variation in the one - fold thickness phenotype was 8.99%. Only a small number of SNPs identified through the recombinant sequence were used in this study. If SNP information revealed in this study is used in future, more marker can be developed and high density genetic mapping can be made. Furthermore, MGRIL can be used to enable more accurate QTL analysis and development of useful genes for agriculturally useful traits.

본 발명은 또한 상기 CAPS 마커를 포함하는 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌를 결정하기 위한 키트를 제공한다.
The present invention also provides a kit for determining a quantitative trait locus related to the stem diameter of a recombinant subpopulation of Milyang 23 and the rice paddy including the CAPS marker.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명의 SNP 정보 및 CAPS 마커를 이용하면 더 많은 마커 개발이 가능하여, 향후 고밀도 유전지도 작성이 가능할 수 있다. 또한 본 발명에서 개발된 줄기굵기 형질 관련 QTL 마커는 분자육종에 활용할 수 있어 효과적이다.
By using the SNP information and the CAPS marker of the present invention, more markers can be developed, and high density genetic mapping can be made in the future. In addition, the QTL markers related to the stem-like traits developed in the present invention are effective for molecular breeding.

도 1 은 본 발명의 구체예에 따른 Nipponbare 서열과 밀양23호와 기호벼 두 모본 간의 변이(SNP, Insertion, Deletion)를 분석한 결과이다. PCR 산물 크기는 585 bp이고, 밀양23호와 기호벼의 대립 형질은 제한 효소 절단 후 230 bp 및 350 bp 로 각각 분해되었다 (MY: 밀양23호, GH: 기호벼).
도 2는 본 발명의 구체예에 따른 마커의 물리적 위치를 나타낸 물리지도를 나타낸다. 염색체 숫자는 각 지도 위에 표기되어 있다. 각 마커의 이름은 염색체 오른쪽에 표시되어 있으며, 각 염색체의 맨 위에서부터 첫번째 마커로부터의 물리적 거리가 왼편에 표시되어 있다. 물리적 거리 단위는 Mbp(Megabase pair)이다.
도 3은 본 발명의 구체예에 따른 밀양23호 및 기호벼의 재조합자식 집단의 유전지도를 나타낸다. 염색체 숫자는 각 지도 위에 표기되어 있다. 각 마커의 이름은 염색체 오른쪽에 표시되어 있으며, 각 염색체의 맨 위에서부터 첫번째 마커로부터의 유전적 거리가 왼편에 표시되어 있다. 유전적 거리 단위는 cM(centimorgan)이며, Kosambi function 으로 계산하였다.
도 4는 본 발명의 구체예에 따른 밀양23호와 기호벼 그리고 밀양23호 및 기호벼의 재조합자식(MGRIL) 집단에 대해 1절굵기(I1D), 2절굵기(I2D), 3절굵기(I3D), 4절굵기(I4D), 간장(CL), 그리고 수장(PL)의 표현형을 조사하여 나타난 형질 변이 분포를 나타낸다. 기호벼 및 밀양23호는 각각 그래프상에 표시하였다.
도 5는 본 발명의 구체예에 따른 밀양23호 및 기호벼의 재조합자식 집단에서 측정된 줄기굵기 및 간장 형질 관련 QTL의 위치를 나타낸다. 1절굵기(I1D), 3절굵기(I3D), 4절굵기(I4D), 및 간장(CL)에 대한 QTL 위치가 유전 지도에 표기되어 있다.
FIG. 1 shows the results of analysis of SNP, insertion, and deletion between the Nipponbare sequence according to the embodiment of the present invention, the Milyang 23 and two representative rice paddies. PCR product size was 585 bp, and alleles of Milyang 23 and rice paddy rice were digested with restriction enzymes 230 bp and 350 bp, respectively (MY: Milyang 23, GH: rice paddy).
Figure 2 shows a physical map depicting the physical location of a marker in accordance with embodiments of the present invention. Chromosome numbers are indicated on each map. The name of each marker is shown on the right side of the chromosome, and the physical distance from the top of each chromosome to the first marker is shown on the left. The physical distance unit is Mbp (Megabase pair).
Figure 3 shows the genetic map of a recombinant subpopulation of Milyang 23 and a representative rice paddy according to an embodiment of the present invention. Chromosome numbers are indicated on each map. The name of each marker is shown on the right side of the chromosome, and the genetic distance from the first marker from the top of each chromosome is shown on the left. The genetic distance unit is cM (centimorgan), which is calculated by the Kosambi function.
FIG. 4 is a graph showing the relationship between the 1 st thickness (I1D), the 2 st thickness (I2D), the 3 st thickness (I2D), and the 3 rd thickness of the Milyang 23, I3D), 4th section (I4D), liver (CL), and shoot (PL) phenotypes. Rice seeds and Milyang No. 23 are shown on the graph.
Figure 5 shows the stem thickness and the location of the QTL associated with liver traits measured in a recombinant control group of Milyang No. 23 and a representative rice paddy according to an embodiment of the present invention. The QTL location for the first section thickness (I1D), third section thickness (I3D), fourth section thickness (I4D), and liver (CL)

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 이 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

재료 및 방법Materials and methods

1. 유전분석 집단 및 1. Genetic analysis group and GenomicGenomic DNADNA 추출 extraction

본 연구에서 사용된 유전분석 집단은 통일형인 밀양23호와 자포니카인 기호벼를 각각 모본과 부본으로 하여 교배된 162계통의 재조합 자식계통(RILs, Recombinant Inbred Lines)으로 구성되어있다. 이 집단은 1988년도에 교배되어 F2를 SSD (single seed descent)법으로 F6세대에 걸쳐 양성하였고, 그 후 F7세대부터는 계통당 일렬 재배하여 일계통 일종자법을 통해 20세대 이상 세대진전하면서 형질을 고정하였다. 각 계통의 어린 잎 조직을 채취하여 Genomic DNA를 추출하였으며, 그 방법은 비특허문헌 1에서 이미 보고한 바와 같다.
The genetic analysis group used in this study consisted of 162 recombinant lines (Recombinant Inbred Lines), which were mated with Milyang 23 and Japonica, respectively. This group was crossed in 1988 and F2 was fused to F6 generation by single seed descent (SSD) method. Then, F7 generation was used to grow F10 seedlings per line, Respectively. The young leaf tissue of each strain was sampled to extract genomic DNA. The method was as previously reported in Non-Patent Document 1.

2. 2. NGSNGS 대량 염기서열 분석 Mass sequencing

밀양23호와 기호벼의 잎을 채취하여 DNeasy Plant Maxi Kit (Qiagen)를 사용하여 제공된 매뉴얼에 따라 DNA를 추출하였으며, 추출된 DNA는 차세대 염기서열 분석에 사용하였다. 두 모본의 벼 재염기서열 분석을 위해 Illumina Hiseq 2000을 이용하여 paired-end sequencing을 수행하였으며, 생성된 리드의 길이는 101 bp이다. 리드는 1% 미만의 오류율을 갖는 Phred Quality Value ≥ Q20을 사용하였다. 두 모본의 염기서열은 CLC Assembly Cell (ver. 3.3.2, http://www.clcbio. com)를 이용하여 표준유전체(Nipponbare)에 조립한 후, 변이 분석을 하였다.Milyang 23 and the leaves of the seed rice were harvested and DNA was extracted according to the manual provided by DNeasy Plant Maxi Kit (Qiagen). The extracted DNA was used for the next generation sequencing. Paired-end sequencing was performed using Illumina Hiseq 2000 for the sequencing of the rice samples. The length of the generated leads was 101 bp. The lead used a Phred Quality Value ≥ Q20 with an error rate of less than 1%. The nucleotide sequences of the two samples were assembled on a standard dielectric (Nipponbare) using a CLC Assembly Cell (ver. 3.3.2, http: //www.clcbio.com) and analyzed for mutation.

표준유전체는 전체 염기서열이 밝혀져 있는 Oryza sativa L. cv. Nipponbare (MSU Rice Genome Annotation Project, Pseudomolecules Build 7.0) 이며, 유전체 구조를 분석하기 위한 annotation 정보는 RAP-DB (http://rapdb.dna.affrc.go.jp/)을 이용하였다.
The standard genome is Oryza sativa L. cv. Nipponbare (MSU Rice Genome Annotation Project, Pseudomolecules Build 7.0), and annotation information for analyzing the genome structure was RAP-DB (http://rapdb.dna.affrc.go.jp/).

3. 3. SNPSNP 프라이머primer 제작 및  Production and PCRPCR 수행 Perform

차세대 염기서열 분석방법으로 해독된 양친의 유전체 염기서열에서 CDS (coding sequence)에 존재하고, 두 품종 사이에서 특이적으로 나타나는 SNP 중 4개(EcoRⅠ, HindⅢ, PstⅠ, XhoⅠ) 제한효소자리에 위치한 SNP를 후보 CAPS 마커로 개발하였다. 이 후, 선별한 SNP를 기준으로 Vector NTI 9.0.0 프로그램을 활용하여 프라이머를 제작하였다(표 4)..SNPs (EcoRI, HindIII, PstI, XhoI) located in the CDS (coding sequence) in the genomic DNA sequence of the decoded parents by the next-generation sequencing method and four As a candidate CAPS marker. After that, the primers were prepared using the Vector NTI 9.0.0 program based on the selected SNPs (Table 4).

PCR 반응을 위해서 반응액의 총 부피는 20 ㎕로 하였으며, 10X Buffer 2 ㎕, dNTP 10 mM 0.4 ㎕와 Taq polymerase 0.5 unit을 사용하였고, PCR 증폭조건은 95℃에서 5분간 denaturation 후, 95℃ 30초, 58℃~62℃ 30초, 72℃ 1분30초로 총 35cycle을 실행하고, 72℃ 10분으로 마지막 extension을 하였다.
For the PCR reaction, the total volume of the reaction solution was adjusted to 20 μl, and 2 μl of 10 × Buffer, 0.4 μl of dNTP and 0.5 μl of Taq polymerase were used. The PCR amplification conditions were denaturation at 95 ° C. for 5 minutes, , 58 ° C to 62 ° C for 30 seconds, and 72 ° C for 1 minute and 30 seconds, and the final extension was performed at 72 ° C for 10 minutes.

4. 4. CAPSCAPS 마커Marker 개발 및 유전자형 분석 Development and Genotype Analysis

밀양23호와 기호벼의 gDNA를 주형으로 앞서 개발한 SNP 프라이머로 PCR을 수행한 뒤, 5 ㎕의 PCR product, 1 ㎕의 10X buffer, 5U의 제한효소 총 10 ㎕ 반응액으로 37℃에서 2시간 동안 제한 효소를 처리하였다. 제한효소 처리 후 1.2% 아가로스 젤에 전기영동 한 뒤, 모본간 다형성을 검정하였다. 다형성을 보인 마커들로 MGRIL 집단의 유전분석을 행하였다.
PCR was performed with the SNP primer previously developed with Milyang No. 23 and gDNA of rice paddy rice, followed by 5 μl of PCR product, 1 μl of 10 × buffer, and 5 μ of restriction enzyme. Lt; / RTI > After restriction enzyme treatment, the cells were electrophoresed on 1.2% agarose gel, and polymorphism was determined. Genetic analysis of the MGRIL population was performed with the polymorphic markers.

5. 물리 및 유전지도 작성5. Physical and Genetic Mapping

이 집단의 물리지도 작성을 위하여 기존에 보고된 219개의 PCR을 기반으로 한 STS, InDel, SSR 마커(비특허문헌 1)를 개발한 CAPS 마커와 통합하였다. DNA 마커들의 프라이머 시퀀스 정보와 위치정보를 이용하여 벼 유전체상에서의 위치를 파악하여 물리지도를 작성하였다. 이를 위해 표준유전체인 Nipponbare (build 7.0)의 위치정보를 사용하였다.In order to make physical mapping of this group, 219 PCR-based STS, InDel and SSR markers (non-patent document 1) were integrated with the CAPS markers developed. Using the primer sequence information and position information of DNA markers, the position on the rice genome was determined and physical map was created. For this, the location information of the standard dielectric Nipponbare (build 7.0) was used.

유전지도 작성을 위하여 MapDisto 프로그램(Mathias 2012)을 이용하여 유전자형 데이터를 분석하였다. MGRIL 집단의 유전형을 입력한 후, “Draw all sequence” 메뉴로 각 연관군의 마커들간의 유전적거리를 산출하여 유전지도를 작성하였는데, 그 때 Kosambi 함수식을 적용하였다. 최종 유전지도는 MapChart 프로그램(Voorrips 2002)을 이용하였다.
Genotype data were analyzed using the MapDisto program (Mathias 2012) for genetic mapping. After entering the genotype of the MGRIL population, the genetic distance between the markers of each association group was calculated using the "Draw all sequence" menu, and the genetic map was created. At that time, the Kosambi function formula was applied. The final genetic map was used by the MapChart program (Voorrips 2002).

6. 표현형 조사 및 6. phenotype investigation and QTLQTL 분석 analysis

QTL 분석을 위하여 공시재료에 대한 줄기굵기, 간장(Culm length) 그리고 수장(Panicle length)을 조사하였다. 줄기굵기형질은 1절굵기(First internode), 2절굵기(Second internode), 3절굵기(Third internode) 그리고 4절굵기(Fourth internode)로 총 4마디를 버니어캘리퍼스를 이용하여 계통당 5개체씩 조사하였다. 이삭목과 첫 번째 마디 사이를 1절로 정하고, 그 아래 마디를 따라 마디 사이를 각각 2절, 3절 그리고 4절로 정하였다. 줄기굵기는 마디 사이 중앙에서 가장 두꺼운 부분을 측정하였다. QTL 분석은 Windows QTL Cartographer V2.5를 이용하였으며, 분석 시 composite interval mapping(CIM)을 이용하였다. 각 형질 별로 95% 유의수준으로 1,000회의 치환을 실시하여 유의성 있는 LOD (logarithm of the odds) 값을 채택하였다.
For the QTL analysis, stem diameter, culm length and panicle length of the test materials were investigated. Stem thickness was determined by dividing a total of 4 segments into 5 segments per line using vernier calipers with a first internode, a second internode, a third internode, and a fourth internode. Respectively. The distance between the head of the ears and the first node is 1, and the distance between the nodes is 2, 3 and 4, respectively. The thickness of the stem was measured at the center between the nodes. QTL analysis was performed using Windows QTL Cartographer V2.5, and composite interval mapping (CIM) was used for analysis. Significant LOD (logarithm of the odds) value was adopted by performing 1,000 replications at 95% significance level for each trait.

실시예Example 1.  One. NGSNGS 대량 염기서열 및  The mass sequence and / mappingmapping

재조합자식 유전집단의 모본인 밀양23호와 기호벼를 Nipponbare 서열(373Mbp)을 기준으로 재염기서열 분석을 실시하였다. 그 결과, 밀양23호는 Nipponbare 서열대비 69.6x, 기호벼는 68.5x의 염기서열을 결정하였다(표 1). 두 모본의 결정된 염기서열을 이용하여 미alignment를 수행한 결과, 표준유전체인 Nipponbare 서열에 mapping된 read들의 평균 depth는 밀양23호 55.7x, 기호벼 63.3x이며, 두 모본과 Nipponbare사이의 mapping 영역의 비율(coverage)은 각각 밀양23호 78.3%, 기호벼 90.5%를 보였다(표 2).
Repeated sequence analysis was performed on the Milyang 23 and the Nipponbare sequence (373 Mbp) of the recombinant genetic group. As a result, the sequence of Milyang 23 was determined to be 69.6x compared to the Nipponbare sequence and 68.5x for the representative rice (Table 1). The average depth of the readings mapped to the Nipponbare sequence, which is a standard genome, was 55.7x for Milyang 23 and 63.3x for pseudomonas, and the mapping area between the two samples and Nipponbare The coverage was 78.3% for Milyang 23 and 90.5% for rice, respectively (Table 2).

밀양23호와 기호벼의 재염기서열 분석 결과Sequence analysis of Milyang 23 and rice seedlings VarietyVariety TotalTotal BasesBases
(( bpbp ))
DepthDepth (X)  (X) ReadRead CountCount GCGC (%) (%) Q20Q20 zz (%) (%) Q30Q30 yy (%) (%)
Milyang23Milyang23 26,590,233,03426,590,233,034 69.669.6 263,269,634263,269,634 44.9244.92 93.2693.26 86.2786.27 GihobyeoGihobyeo 26,150,864,14726,150,864,147 68.568.5 258,919,447258,919,447 43.8243.82 93.4593.45 86.5186.51

z : A quality score of 20 represents an error rate of 1 in 100, with a corresponding call accuracy of 99%. z : A quality score of 20 represents an error rate of 1 in 100, with a corresponding call accuracy of 99%.

y : A quality score of 30 represents an error rate of 1 in 1000, with a corresponding call accuracy of 99.9%
y : A quality score of 30 represents an error rate of 1 in 1000, with a corresponding call accuracy of 99.9%

Nipponbare 표준 유전체에 read mapping 및 assembly 수행 결과Read mapping and assembly results on Nipponbare standard dielectric VarietyVariety MappedMapped readsreads
(#) (#)
MappedMapped readsreads
(%) (%)
DepthDepth
(X)(X)
AllAll mappedmapped nucleotidenucleotide
(( bpbp ) )
CoverageCoverage
(%) (%)
Milyang23 Milyang23 205,997,634205,997,634 78.2578.25 55.755.7 344,161,476344,161,476 92.0592.05 Gihobyeo Gihobyeo 234,289,038234,289,038 90.4990.49 63.363.3 365,807,427365,807,427 97.8497.84

실시예Example 2. 변이 탐색 및 후보  2. Mutation search and candidates CAPSCAPS 마커Marker 개발 Development

Nipponbare 서열과 두 모본 간의 변이(SNP, Insertion, Deletion)를 분석하였다. 밀양23호와 기호벼의 탐색된 변이는 각각 1,564,167개와 162,631개였으며, 이 중 두 모본 사이의 특이적으로 나타나는 변이는 밀양23호 1,237,160개, 기호벼 87,271개였다. 이러한 변이의 차이는 자포니카 품종인 기호벼와는 다르게 자포니카와 인디카 통일형 품종인 밀양23호와 자포니카 품종인 Nipponbare의 염기서열 차이로 여겨진다. 이 변이들을 RAP-DB에서 제공하는 유전체 구조 정보에 따라 un-translated region (UTR), intron, Inter-region 및 coding region sequence (CDS)로 구분하였다. CDS에 존재하는 두 모본 간의 특이적인 SNP 중 제한효소(EcoRⅠ, Hind Ⅲ, PstⅠ, XhoⅠ)자리에 위치한 SNP를 선정하여 후보 CAPS 마커로 개발하였다(표 3, 표 4). 최종적으로 146개 SNP를 분자표지 개발에 사용하였다(도 1).
(SNP, Insertion, Deletion) between the Nipponbare sequence and the two samples. There were 1,564,167 and 162,631 varieties detected in Milyang 23 and Rice, respectively. Among them, the specific variation between two varieties were Milyang 23, 1,237,160, and Rice 87,271. The difference of these mutations is considered to be the difference in the nucleotide sequence of Japonica and Nipponbare, a varieties of Japonica and Indica, and Miryang 23, a varieties of Japonica, unlike those of Japonica. These mutations are classified into un-translated region (UTR), intron, inter-region and coding region sequence (CDS) according to the genome structure information provided by RAP-DB. The SNPs located in the restriction sites (EcoRI, HindIII, PstI, XhoI) of the two SNPs in the CDS were selected as candidate CAPS markers (Table 3, Table 4). Finally, 146 SNPs were used for molecular label development (Figure 1).

밀얄23호 및 기호벼 특이적 CAPS 마커 서열 정보Milil 23 and the rice seed specific CAPS marker sequence information CC hrhr PP osos markermarker __ namename MM ilyang23ilyang23 GG ihoiHO GeneGene __ IDID rr egionegion ee nzymenzyme Chr1Chr1 16018501601850 RS011RS011 GG AA LOC_Os01g03820.1LOC_Os01g03820.1 CDSCDS Hind3Hind3 Chr1Chr1 2476616024766160 RS0110RS0110 CC TT LOC_Os01g43330.1LOC_Os01g43330.1 CDSCDS Hind3Hind3 Chr1Chr1 2537078025370780 RS0111RS0111 GG CC LOC_Os01g44250.1LOC_Os01g44250.1 CDSCDS Pst1Pst1 Chr1Chr1 2794146127941461 RS0112RS0112 GG CC LOC_Os01g48720.1LOC_Os01g48720.1 CDSCDS Pst1Pst1 Chr1Chr1 2945998929459989 RS0113RS0113 GG AA LOC_Os01g51250.1LOC_Os01g51250.1 CDSCDS EcoR1EcoR1 Chr1Chr1 2961720929617209 RS0114RS0114 TT CC LOC_Os01g51560.1LOC_Os01g51560.1 CDSCDS Xho1Xho1 Chr1Chr1 3078180330781803 RS0115RS0115 CC TT LOC_Os01g53610.1LOC_Os01g53610.1 CDSCDS Hind3Hind3 Chr1Chr1 3135821631358216 RS0116RS0116 AA CC LOC_Os01g54515.1LOC_Os01g54515.1 CDSCDS Pst1Pst1 Chr1Chr1 3310157133101571 RS0117RS0117 CC GG LOC_Os01g57280.1LOC_Os01g57280.1 CDSCDS Hind3Hind3 Chr1Chr1 3648666936486669 RS0118RS0118 AA CC LOC_Os01g62990.1LOC_Os01g62990.1 CDSCDS Pst1Pst1 Chr1Chr1 3806604838066048 RS0119RS0119 GG AA LOC_Os01g65580.1LOC_Os01g65580.1 CDSCDS Hind3Hind3 Chr1Chr1 19592531959253 RS012RS012 GG CC LOC_Os01g04409.1LOC_Os01g04409.1 CDSCDS Xho1Xho1 Chr1Chr1 3938988339389883 RS0120RS0120 TT CC LOC_Os01g67770.1LOC_Os01g67770.1 CDSCDS Hind3Hind3 Chr1Chr1 3959692139596921 RS0121RS0121 AA GG LOC_Os01g68120.1LOC_Os01g68120.1 CDSCDS Xho1Xho1 Chr1Chr1 4059647840596478 RS0122RS0122 CC TT LOC_Os01g70140.1LOC_Os01g70140.1 CDSCDS EcoR1EcoR1 Chr1Chr1 4098683840986838 RS0123RS0123 CC TT LOC_Os01g70810.1LOC_Os01g70810.1 CDSCDS Pst1Pst1 Chr1Chr1 4232837242328372 RS0124RS0124 GG TT LOC_Os01g72970.1LOC_Os01g72970.1 CDSCDS Pst1Pst1 Chr1Chr1 4255200242552002 RS0125RS0125 TT CC LOC_Os01g73430.1LOC_Os01g73430.1 CDSCDS Xho1Xho1 Chr1Chr1 32252143225214 RS013RS013 TT CC LOC_Os01g06790.1LOC_Os01g06790.1 CDSCDS Xho1Xho1 Chr1Chr1 44871644487164 RS014RS014 TT GG LOC_Os01g08930.1LOC_Os01g08930.1 CDSCDS Xho1Xho1 Chr1Chr1 70166707016670 RS015RS015 AA CC LOC_Os01g12700.1LOC_Os01g12700.1 CDSCDS Hind3Hind3 Chr1Chr1 1109014311090143 RS016RS016 TT CC LOC_Os01g19548.1LOC_Os01g19548.1 CDSCDS EcoR1EcoR1 Chr1Chr1 1481283814812838 RS017RS017 GG AA LOC_Os01g26160.1LOC_Os01g26160.1 CDSCDS EcoR1EcoR1 Chr1Chr1 2203756722037567 RS018RS018 GG AA LOC_Os01g39150.1LOC_Os01g39150.1 CDSCDS Hind3Hind3 Chr1Chr1 2204495922044959 RS019RS019 CC TT LOC_Os01g39180.1LOC_Os01g39180.1 CDSCDS Xho1Xho1 Chr2Chr2 29600722960072 RS0226RS0226 TT GG LOC_Os02g05950.1LOC_Os02g05950.1 CDSCDS Pst1Pst1 Chr2Chr2 39530693953069 RS0227RS0227 CC TT LOC_Os02g07630.1LOC_Os02g07630.1 CDSCDS Pst1Pst1 Chr2Chr2 64725616472561 RS0228RS0228 AA GG LOC_Os02g12400.1LOC_Os02g12400.1 CDSCDS Pst1Pst1 Chr2Chr2 73177087317708 RS0229RS0229 AA GG LOC_Os02g13640.1LOC_Os02g13640.1 CDSCDS Pst1Pst1 Chr2Chr2 88672518867251 RS0230RS0230 CC GG LOC_Os02g15730.1LOC_Os02g15730.1 CDSCDS Pst1Pst1 Chr2Chr2 95636279563627 RS0231RS0231 CC AA LOC_Os02g16760.1LOC_Os02g16760.1 CDSCDS Hind3Hind3 Chr2Chr2 1055586210555862 RS0232RS0232 TT CC LOC_Os02g18180.1LOC_Os02g18180.1 CDSCDS Xho1Xho1 Chr2Chr2 1240207812402078 RS0233RS0233 CC TT LOC_Os02g20970.1LOC_Os02g20970.1 CDSCDS Pst1Pst1 Chr2Chr2 1641496216414962 RS0234RS0234 GG AA LOC_Os02g27710.1LOC_Os02g27710.1 CDSCDS Pst1Pst1 Chr2Chr2 1788609717886097 RS0235RS0235 TT AA LOC_Os02g30110.1LOC_Os02g30110.1 CDSCDS Xho1Xho1 Chr2Chr2 1822868418228684 RS0236RS0236 TT CC LOC_Os02g30620.1LOC_Os02g30620.1 CDSCDS Hind3Hind3 Chr2Chr2 1823793118237931 RS0237RS0237 TT GG LOC_Os02g30630.1LOC_Os02g30630.1 CDSCDS Xho1Xho1 Chr2Chr2 1979025119790251 RS0238RS0238 TT CC LOC_Os02g33310.1LOC_Os02g33310.1 CDSCDS Hind3Hind3 Chr2Chr2 2110199221101992 RS0239RS0239 GG AA LOC_Os02g35140.1LOC_Os02g35140.1 CDSCDS EcoR1EcoR1 Chr2Chr2 2343625523436255 RS0240RS0240 GG CC LOC_Os02g38780.1LOC_Os02g38780.1 CDSCDS Xho1Xho1 Chr2Chr2 2365802123658021 RS0241RS0241 CC GG LOC_Os02g39160.1LOC_Os02g39160.1 CDSCDS Xho1Xho1 Chr2Chr2 2532074925320749 RS0242RS0242 AA GG LOC_Os02g42110.1LOC_Os02g42110.1 CDSCDS Pst1Pst1 Chr2Chr2 3218626032186260 RS0243RS0243 AA TT LOC_Os02g52610.1LOC_Os02g52610.1 CDSCDS Pst1Pst1 Chr2Chr2 3319419633194196 RS0244RS0244 AA GG LOC_Os02g54150.1LOC_Os02g54150.1 CDSCDS Xho1Xho1 Chr2Chr2 3363029733630297 RS0245RS0245 GG AA LOC_Os02g54910.1LOC_Os02g54910.1 CDSCDS Pst1Pst1 Chr2Chr2 3476619134766191 RS0246RS0246 AA GG LOC_Os02g56700.1LOC_Os02g56700.1 CDSCDS Pst1Pst1 Chr3Chr3 44366564436656 RS0347RS0347 CC TT LOC_Os03g08610.1LOC_Os03g08610.1 CDSCDS EcoR1EcoR1 Chr3Chr3 49420684942068 RS0348RS0348 GG AA LOC_Os03g09920.1LOC_Os03g09920.1 CDSCDS EcoR1EcoR1 Chr3Chr3 58189435818943 RS0349RS0349 TT GG LOC_Os03g11310.1LOC_Os03g11310.1 CDSCDS EcoR1EcoR1 Chr3Chr3 1030078510300785 RS0350RS0350 CC TT LOC_Os03g18380.1LOC_Os03g18380.1 CDSCDS EcoR1EcoR1 Chr3Chr3 1075830410758304 RS0351RS0351 TT AA LOC_Os03g19190.1LOC_Os03g19190.1 CDSCDS EcoR1EcoR1 Chr3Chr3 1618496716184967 RS0352RS0352 TT CC LOC_Os03g28140.1LOC_Os03g28140.1 CDSCDS Xho1Xho1 Chr3Chr3 2443164924431649 RS0353RS0353 TT CC LOC_Os03g43684.1LOC_Os03g43684.1 CDSCDS Pst1Pst1 Chr3Chr3 2699209626992096 RS0354RS0354 GG AA LOC_Os03g47650.1LOC_Os03g47650.1 CDSCDS Hind3Hind3 Chr3Chr3 3368981633689816 RS0355RS0355 TT CC LOC_Os03g59160.1LOC_Os03g59160.1 CDSCDS Pst1Pst1 Chr3Chr3 3611911936119119 RS0356RS0356 TT AA LOC_Os03g63920.1LOC_Os03g63920.1 CDSCDS Hind3Hind3 Chr4Chr4 66384646638464 RS0457RS0457 CC AA LOC_Os04g12080.1LOC_Os04g12080.1 CDSCDS Hind3Hind3 Chr4Chr4 1260207712602077 RS0458RS0458 GG AA LOC_Os04g22240.1LOC_Os04g22240.1 CDSCDS EcoR1EcoR1 Chr4Chr4 1351251913512519 RS0459RS0459 AA GG LOC_Os04g23600.1LOC_Os04g23600.1 CDSCDS EcoR1EcoR1 Chr4Chr4 1787646217876462 RS0460RS0460 GG AA LOC_Os04g29960.1LOC_Os04g29960.1 CDSCDS EcoR1EcoR1 Chr4Chr4 1788856917888569 RS0461RS0461 GG AA LOC_Os04g29990.1LOC_Os04g29990.1 CDSCDS Xho1Xho1 Chr4Chr4 2058961220589612 RS0462RS0462 GG AA LOC_Os04g34000.1LOC_Os04g34000.1 CDSCDS Xho1Xho1 Chr4Chr4 2155243021552430 RS0463RS0463 AA GG LOC_Os04g35420.1LOC_Os04g35420.1 CDSCDS Xho1Xho1 Chr4Chr4 2377207423772074 RS0464RS0464 AA GG LOC_Os04g39910.1LOC_Os04g39910.1 CDSCDS Xho1Xho1 Chr4Chr4 2778487527784875 RS0465RS0465 CC TT LOC_Os04g46880.1LOC_Os04g46880.1 CDSCDS EcoR1EcoR1 Chr4Chr4 3072643230726432 RS0466RS0466 GG AA LOC_Os04g51820.1LOC_Os04g51820.1 CDSCDS EcoR1EcoR1 Chr4Chr4 3155499931554999 RS0467RS0467 GG TT LOC_Os04g52970.1LOC_Os04g52970.1 CDSCDS EcoR1EcoR1 Chr4Chr4 3183317831833178 RS0468RS0468 CC AA LOC_Os04g53460.1LOC_Os04g53460.1 CDSCDS Hind3Hind3 Chr4Chr4 3282439032824390 RS0469RS0469 CC GG LOC_Os04g55210.1LOC_Os04g55210.1 CDSCDS EcoR1EcoR1 Chr4Chr4 3427355034273550 RS0470RS0470 AA GG LOC_Os04g57600.1LOC_Os04g57600.1 CDSCDS Xho1Xho1 Chr4Chr4 3445148834451488 RS0471RS0471 CC TT LOC_Os04g57860.1LOC_Os04g57860.1 CDSCDS Hind3Hind3 Chr5Chr5 43094614309461 RS0572RS0572 AA CC LOC_Os05g07950.1LOC_Os05g07950.1 CDSCDS Pst1Pst1 Chr5Chr5 68846806884680 RS0573RS0573 GG TT LOC_Os05g12040.1LOC_Os05g12040.1 CDSCDS EcoR1EcoR1 Chr5Chr5 69386926938692 RS0574RS0574 AA GG LOC_Os05g12140.1LOC_Os05g12140.1 CDSCDS Xho1Xho1 Chr5Chr5 1856458418564584 RS0575RS0575 AA GG LOC_Os05g31890.1LOC_Os05g31890.1 CDSCDS Xho1Xho1 Chr5Chr5 1944962819449628 RS0576RS0576 GG CC LOC_Os05g33160.1LOC_Os05g33160.1 CDSCDS Xho1Xho1 Chr5Chr5 2170625721706257 RS0577RS0577 CC GG LOC_Os05g37140.1LOC_Os05g37140.1 CDSCDS Xho1Xho1 Chr5Chr5 2284094422840944 RS0578RS0578 CC TT LOC_Os05g38950.1LOC_Os05g38950.1 CDSCDS Pst1Pst1 Chr5Chr5 2407669724076697 RS0579RS0579 GG AA LOC_Os05g41100.1LOC_Os05g41100.1 CDSCDS Hind3Hind3 Chr6Chr6 43337514333751 RS0680RS0680 AA GG LOC_Os06g08690.1LOC_Os06g08690.1 CDSCDS Xho1Xho1 Chr6Chr6 74078887407888 RS0681RS0681 TT CC LOC_Os06g13460.1LOC_Os06g13460.1 CDSCDS Pst1Pst1 Chr6Chr6 1101579011015790 RS0682RS0682 CC TT LOC_Os06g19360.1LOC_Os06g19360.1 CDSCDS Xho1Xho1 Chr6Chr6 1108970011089700 RS0683RS0683 AA GG LOC_Os06g19470.1LOC_Os06g19470.1 CDSCDS EcoR1EcoR1 Chr6Chr6 1279699612796996 RS0684RS0684 TT GG LOC_Os06g22060.1LOC_Os06g22060.1 CDSCDS EcoR1EcoR1 Chr6Chr6 1626544916265449 RS0685RS0685 TT CC LOC_Os06g28590.1LOC_Os06g28590.1 CDSCDS EcoR1EcoR1 Chr6Chr6 1893134118931341 RS0686RS0686 AA GG LOC_Os06g32550.1LOC_Os06g32550.1 CDSCDS Pst1Pst1 Chr6Chr6 2058280020582800 RS0687RS0687 TT AA LOC_Os06g35300.1LOC_Os06g35300.1 CDSCDS EcoR1EcoR1 Chr6Chr6 2237550722375507 RS0688RS0688 AA GG LOC_Os06g37810.1LOC_Os06g37810.1 CDSCDS Pst1Pst1 Chr6Chr6 2313924523139245 RS0689RS0689 CC TT LOC_Os06g38980.1LOC_Os06g38980.1 CDSCDS Hind3Hind3 Chr6Chr6 2573080325730803 RS0690RS0690 AA TT LOC_Os06g42800.1LOC_Os06g42800.1 CDSCDS EcoR1EcoR1 Chr6Chr6 2723202127232021 RS0691RS0691 CC TT LOC_Os06g45020.1LOC_Os06g45020.1 CDSCDS EcoR1EcoR1 Chr6Chr6 2883253528832535 RS0692RS0692 CC TT LOC_Os06g47620.1LOC_Os06g47620.1 CDSCDS Hind3Hind3 Chr6Chr6 2973420629734206 RS0693RS0693 TT GG LOC_Os06g49060.1LOC_Os06g49060.1 CDSCDS Xho1Xho1 Chr7Chr7 1632684116326841 RS07100RS07100 CC TT LOC_Os07g27980.1LOC_Os07g27980.1 CDSCDS Pst1Pst1 Chr7Chr7 2568778325687783 RS07101RS07101 TT CC LOC_Os07g42900.1LOC_Os07g42900.1 CDSCDS Hind3Hind3 Chr7Chr7 2912441229124412 RS07102RS07102 GG TT LOC_Os07g48640.1LOC_Os07g48640.1 CDSCDS EcoR1EcoR1 Chr7Chr7 945242945242 RS0794RS0794 CC AA LOC_Os07g02620.1LOC_Os07g02620.1 CDSCDS Pst1Pst1 Chr7Chr7 35614933561493 RS0795RS0795 TT CC LOC_Os07g07194.1LOC_Os07g07194.1 CDSCDS Xho1Xho1 Chr7Chr7 38662573866257 RS0796RS0796 AA GG LOC_Os07g07690.1LOC_Os07g07690.1 CDSCDS Pst1Pst1 Chr7Chr7 60193466019346 RS0797RS0797 TT CC LOC_Os07g10970.1LOC_Os07g10970.1 CDSCDS Xho1Xho1 Chr7Chr7 92526079252607 RS0798RS0798 AA GG LOC_Os07g15930.1LOC_Os07g15930.1 CDSCDS Pst1Pst1 Chr7Chr7 1453988814539888 RS0799RS0799 TT CC LOC_Os07g25440.1LOC_Os07g25440.1 CDSCDS Xho1Xho1 Chr8Chr8 11980551198055 RS08103RS08103 TT CC LOC_Os08g02850.1LOC_Os08g02850.1 CDSCDS Xho1Xho1 Chr8Chr8 20240652024065 RS08104RS08104 TT CC LOC_Os08g04170.1LOC_Os08g04170.1 CDSCDS Xho1Xho1 Chr8Chr8 87887088788708 RS08105RS08105 CC GG LOC_Os08g14610.1LOC_Os08g14610.1 CDSCDS Hind3Hind3 Chr8Chr8 1208105712081057 RS08106RS08106 TT CC LOC_Os08g20160.1LOC_Os08g20160.1 CDSCDS Hind3Hind3 Chr8Chr8 1347358113473581 RS08107RS08107 CC TT LOC_Os08g22354.1LOC_Os08g22354.1 CDSCDS Xho1Xho1 Chr8Chr8 1745267717452677 RS08108RS08108 AA GG LOC_Os08g28570.1LOC_Os08g28570.1 CDSCDS EcoR1EcoR1 Chr8Chr8 2183932821839328 RS08109RS08109 TT CC LOC_Os08g34740.1LOC_Os08g34740.1 CDSCDS Xho1Xho1 Chr8Chr8 2702591527025915 RS08110RS08110 AA GG LOC_Os08g42710.1LOC_Os08g42710.1 CDSCDS Xho1Xho1 Chr8Chr8 2769448627694486 RS08111RS08111 TT CC LOC_Os08g43980.1LOC_Os08g43980.1 CDSCDS Xho1Xho1 Chr8Chr8 2790269127902691 RS08112RS08112 AA GG LOC_Os08g44340.1LOC_Os08g44340.1 CDSCDS Xho1Xho1 Chr9Chr9 415553415553 RS09113RS09113 GG TT LOC_Os09g01590.1LOC_Os09g01590.1 CDSCDS Pst1Pst1 Chr9Chr9 62483466248346 RS09114RS09114 CC AA LOC_Os09g11250.1LOC_Os09g11250.1 CDSCDS EcoR1EcoR1 Chr9Chr9 1015434110154341 RS09115RS09115 CC TT LOC_Os09g16540.1LOC_Os09g16540.1 CDSCDS Pst1Pst1 Chr9Chr9 1647908816479088 RS09116RS09116 CC TT LOC_Os09g27080.1LOC_Os09g27080.1 CDSCDS EcoR1EcoR1 Chr9Chr9 1798820117988201 RS09117RS09117 CC TT LOC_Os09g29584.1LOC_Os09g29584.1 CDSCDS EcoR1EcoR1 Chr10Chr10 17462301746230 RS10118RS10118 AA TT LOC_Os10g03850.1LOC_Os10g03850.1 CDSCDS EcoR1EcoR1 Chr10Chr10 26623402662340 RS10119RS10119 AA GG LOC_Os10g05400.1LOC_Os10g05400.1 CDSCDS EcoR1EcoR1 Chr10Chr10 34749383474938 RS10120RS10120 GG CC LOC_Os10g06710.1LOC_Os10g06710.1 CDSCDS Xho1Xho1 Chr10Chr10 1170065511700655 RS10121RS10121 TT CC LOC_Os10g22570.1LOC_Os10g22570.1 CDSCDS EcoR1EcoR1 Chr10Chr10 1603800316038003 RS10122RS10122 TT CC LOC_Os10g30790.1LOC_Os10g30790.1 CDSCDS Pst1Pst1 Chr10Chr10 1685325416853254 RS10123RS10123 GG TT LOC_Os10g32080.1LOC_Os10g32080.1 CDSCDS Pst1Pst1 Chr10Chr10 1941785619417856 RS10124RS10124 CC AA LOC_Os10g36350.1LOC_Os10g36350.1 CDSCDS Hind3Hind3 Chr10Chr10 2028441620284416 RS10125RS10125 TT CC LOC_Os10g37880.1LOC_Os10g37880.1 CDSCDS Pst1Pst1 Chr11Chr11 19957141995714 RS11126RS11126 AA GG LOC_Os11g04680.1LOC_Os11g04680.1 CDSCDS Hind3Hind3 Chr11Chr11 21261112126111 RS11127RS11127 CC GG LOC_Os11g04960.1LOC_Os11g04960.1 CDSCDS Hind3Hind3 Chr11Chr11 35909803590980 RS11128RS11128 CC AA LOC_Os11g07180.1LOC_Os11g07180.1 CDSCDS Hind3Hind3 Chr11Chr11 50882405088240 RS11129RS11129 CC TT LOC_Os11g09474.1LOC_Os11g09474.1 CDSCDS Hind3Hind3 Chr11Chr11 56020095602009 RS11130RS11130 GG CC LOC_Os11g10310.1LOC_Os11g10310.1 CDSCDS Hind3Hind3 Chr11Chr11 76039357603935 RS11131RS11131 TT CC LOC_Os11g13810.1LOC_Os11g13810.1 CDSCDS Hind3Hind3 Chr11Chr11 1569435515694355 RS11132RS11132 AA TT LOC_Os11g27264.1LOC_Os11g27264.1 CDSCDS Hind3Hind3 Chr11Chr11 1579108415791084 RS11133RS11133 CC GG LOC_Os11g27430.1LOC_Os11g27430.1 CDSCDS Pst1Pst1 Chr11Chr11 2117696921176969 RS11134RS11134 AA TT LOC_Os11g36020.1LOC_Os11g36020.1 CDSCDS Hind3Hind3 Chr11Chr11 2543320925433209 RS11135RS11135 AA GG LOC_Os11g42220.1LOC_Os11g42220.1 CDSCDS Hind3Hind3 Chr11Chr11 2621425926214259 RS11136RS11136 AA GG LOC_Os11g43410.1LOC_Os11g43410.1 CDSCDS Pst1Pst1 Chr11Chr11 2695460526954605 RS11137RS11137 TT AA LOC_Os11g44580.1LOC_Os11g44580.1 CDSCDS Pst1Pst1 Chr12Chr12 15610081561008 RS12138RS12138 GG AA LOC_Os12g03816.1LOC_Os12g03816.1 CDSCDS Hind3Hind3 Chr12Chr12 18043451804345 RS12139RS12139 TT GG LOC_Os12g04260.1LOC_Os12g04260.1 CDSCDS Pst1Pst1 Chr12Chr12 42174584217458 RS12140RS12140 TT AA LOC_Os12g08280.1LOC_Os12g08280.1 CDSCDS Hind3Hind3 Chr12Chr12 1847070318470703 RS12141RS12141 TT GG LOC_Os12g30760.1LOC_Os12g30760.1 CDSCDS Pst1Pst1 Chr12Chr12 1975560219755602 RS12142RS12142 TT CC LOC_Os12g32710.1LOC_Os12g32710.1 CDSCDS EcoR1EcoR1 Chr12Chr12 2471422624714226 RS12143RS12143 TT GG LOC_Os12g39980.1LOC_Os12g39980.1 CDSCDS Pst1Pst1 Chr12Chr12 2600543526005435 RS12144RS12144 GG AA LOC_Os12g41950.1LOC_Os12g41950.1 CDSCDS Pst1Pst1 Chr12Chr12 2740106127401061 RS12145RS12145 GG AA LOC_Os12g44170.1LOC_Os12g44170.1 CDSCDS Hind3Hind3 Chr12Chr12 2709571327095713 RS12146RS12146 GG AA LOC_Os12g43630.1LOC_Os12g43630.1 CDSCDS EcoR1EcoR1

* reference : Nipponbare genome (IRGSP build 7.0)
* reference: Nipponbare genome (IRGSP build 7.0)

본 발명의 CAPS 마커 검출용 프라이머 서열 및 PCR 정보The primer sequence for detecting the CAPS marker of the present invention and the PCR information markermarker __ namename ForwardForward __ primerprimer (5'-3') (5'-3 ') ReverseReverse __ primerprimer (3'-5') (3'-5 ') Pro.len (Pro.len ( bpbp )) annealingannealing tmptmp (℃)(° C) RS011RS011 TCCAGAAGTCAGGATAGGAGTGGCATCCAGAAGTCAGGATAGGAGTGGCA TGGAAGAACCACAACTGCATCATGTGGAAGAACCACAACTGCATCATG 683683 5959 RS0110RS0110 TGAAACCCTTCTTCAGGAAACCAGCTGAAACCCTTCTTCAGGAAACCAGC CATTGTGCAGCCAGGAAAAGGATAACATTGTGCAGCCAGGAAAAGGATAA 747747 5858 RS0111RS0111 CAGTGCAGCGATCTTTATCAGCTTCCAGTGCAGCGATCTTTATCAGCTTC TCGATCCTCGAGTCCATGCATGTCGATCCTCGAGTCCATGCATG 444444 5858 RS0112RS0112 TCCTGCTTTTATGTTGGCTGTCACTTCCTGCTTTTATGTTGGCTGTCACT GGCTGCTGCTTCAAAATTCCCTTTGGCTGCTGCTTCAAAATTCCCTTT 783783 5858 RS0113RS0113 TGCATTTTGGAGCATTGTAGACGCTGCATTTTGGAGCATTGTAGACGC TGCAAGCACAGAAGTGGGCAGTTGCAAGCACAGAAGTGGGCAGT 679679 5858 RS0114RS0114 CACACGCAGCGCAGAAACTAAAACACACGCAGCGCAGAAACTAAAA CCATCGAAAATCCACTGCAACATTCCATCGAAAATCCACTGCAACATT 711711 5858 RS0115RS0115 AATGGTCTTGGTGACGAAGCAACTGAATGGTCTTGGTGACGAAGCAACTG CGAATAGGTGACCGAGCAGCACTCGAATAGGTGACCGAGCAGCACT 701701 5858 RS0116RS0116 TGCAGCGCCATCATCATGAGCTGCAGCGCCATCATCATGAGC AGTTGAGGAAGCTGAGCACGGCAGTTGAGGAAGCTGAGCACGGC 658658 5858 RS0117RS0117 AGGGATTAATTGATTCACACAGCCCAGGGATTAATTGATTCACACAGCCC CCCAGTTGATGCAACTCATATCCCTCCCAGTTGATGCAACTCATATCCCT 730730 5858 RS0118RS0118 ATATGATGTCACCCAAAGTTGCCCTATATGATGTCACCCAAAGTTGCCCT GTGTTCCGTGTTCTTGATTTCGTGTGTGTTCCGTGTTCTTGATTTCGTGT 696696 5858 RS0119RS0119 GGGACATTGGCTTGACACATAAGTGGGGACATTGGCTTGACACATAAGTG ACGAACACTCTGGCAAGGACCAACGAACACTCTGGCAAGGACCA 682682 5858 RS012RS012 TTGTTCTTGTAAAGGCGCTTCACTGTTGTTCTTGTAAAGGCGCTTCACTG ACTGTCCTTCGTTTCAACAGGGGACTGTCCTTCGTTTCAACAGGGG 753753 5858 RS0120RS0120 ACACGTGCTGCCAAATATTGCGACACGTGCTGCCAAATATTGCG TTTTGCAGTCCTGCAGACCATTTAATTTTGCAGTCCTGCAGACCATTTAA 731731 5858 RS0121RS0121 TTTACCAAGCAGGGGATCAGAAATGTTTACCAAGCAGGGGATCAGAAATG TGCATTGCATTACCTGTGTCCTTTTTGCATTGCATTACCTGTGTCCTTTT 716716 5858 RS0122RS0122 GGCAGAACAGGAGCATTAGCAAGCGGCAGAACAGGAGCATTAGCAAGC CCTGGACTGGACTGGAGTATAGGGACCTGGACTGGACTGGAGTATAGGGA 800800 6161 RS0123RS0123 CTGCAACTCAATGGCTCCTAGGTGCTGCAACTCAATGGCTCCTAGGTG GCTGGCAGAGCTTTATGTAATGGGAGCTGGCAGAGCTTTATGTAATGGGA 804804 5858 RS0124RS0124 CAGGAGGAAAACACACCGGATGGCAGGAGGAAAACACACCGGATGG CCGTCCACTGTAAGAACTGAATGCCCCGTCCACTGTAAGAACTGAATGCC 708708 5959 RS0125RS0125 ATGCGGAGGAAATGCCAAACAATGCGGAGGAAATGCCAAACA GGATCGATGCGTGAAATATTGAAGAGGATCGATGCGTGAAATATTGAAGA 848848 5555 RS013RS013 ATCAGGGAGTTTGCAATCAAAATGGATCAGGGAGTTTGCAATCAAAATGG CCCTTGTGGTATCTGTCCAGTCAAACCCTTGTGGTATCTGTCCAGTCAAA 439439 5858 RS014RS014 TCAGAAGATTGTACCTTTGGCTCCCTCAGAAGATTGTACCTTTGGCTCCC GGGAAGTTCCTGCTGAAGAGAGGTAGGGAAGTTCCTGCTGAAGAGAGGTA 723723 5858 RS015RS015 TGTGTTCGTGATAGGATGCACAGGTGTGTTCGTGATAGGATGCACAGG CGCACCTCCCCTCCATGTAAACGCACCTCCCCTCCATGTAAA 527527 5858 RS016RS016 ATCCCATCCACATCCTTTGAATCCATCCCATCCACATCCTTTGAATCC CGAGGTCAAGAGAATCTGGGAGTCTCGAGGTCAAGAGAATCTGGGAGTCT 432432 6262 RS017RS017 TCAGCAAATGGAGTTGGCTAAACAATCAGCAAATGGAGTTGGCTAAACAA AGTGATGGAGAGGCCAAAATGTCTTAGTGATGGAGAGGCCAAAATGTCTT 762762 5858 RS018RS018 TGAAGGGGCTGATCGAGCTCCATGAAGGGGCTGATCGAGCTCCA TGGATCCGGCGACGACTACTTATTTGGATCCGGCGACGACTACTTATT 502502 5858 RS019RS019 ACTTCATGGGGACGAGAAGGTACGACTTCATGGGGACGAGAAGGTACG CATAGGTAGGAGGCACACATCCGTCATAGGTAGGAGGCACACATCCGT 703703 5555 RS0226RS0226 TGAAGCTGCTTCTAAATCACCATCGTGAAGCTGCTTCTAAATCACCATCG CTCACAGGACCAATACCAAGATGGACTCACAGGACCAATACCAAGATGGA 753753 5858 RS0227RS0227 ATCTGGCTCAAGACTGTCCCTGATCATCTGGCTCAAGACTGTCCCTGATC GGCACCACTGCATCATACGTCTACTGGCACCACTGCATCATACGTCTACT 685685 6262 RS0228RS0228 GAGATGTTTAGCGGGAAGAGACCAAGAGATGTTTAGCGGGAAGAGACCAA GGATGGAATCCTGCGGGTAGTTAAGGATGGAATCCTGCGGGTAGTTAA 703703 6262 RS0229RS0229 GAAGTTGCAAAGATGGAGGAACTCGGAAGTTGCAAAGATGGAGGAACTCG TGCATGGCCAGTGAGGATGGTTGCATGGCCAGTGAGGATGGT 678678 6262 RS0230RS0230 AAATAAAAGACAAACGGGGAGCACAAAATAAAAGACAAACGGGGAGCACA CAAAACCGAATCGCCCCTATAAATTCAAAACCGAATCGCCCCTATAAATT 707707 5858 RS0231RS0231 CTGCTGGCCAGCGTTCTACAAGCTGCTGGCCAGCGTTCTACAAG CCAACCGCAAATCAGCCTACAACCAACCGCAAATCAGCCTACAA 690690 5858 RS0232RS0232 TTGGGCTGAAGCAAAGAGCGATTGGGCTGAAGCAAAGAGCGA CGTCTGCTGGAAGACAAAATGAAGGCGTCTGCTGGAAGACAAAATGAAGG 761761 5858 RS0233RS0233 TGTCATCTGGAAGTATGGAGGCTCATGTCATCTGGAAGTATGGAGGCTCA TGTTGCTCTAGCTGGGGCATTAAATTGTTGCTCTAGCTGGGGCATTAAAT 814814 6262 RS0234RS0234 AAAATGGTGCACGAAGCAATTGATGAAAATGGTGCACGAAGCAATTGATG CCCCTGCTGAAAAAGGAAAATGAGCCCCTGCTGAAAAAGGAAAATGAG 684684 5858 RS0235RS0235 AGCATCTTAATAGGTTTGCGGATGGAGCATCTTAATAGGTTTGCGGATGG CAAACACGGGAGCTCTCCATACATTCAAACACGGGAGCTCTCCATACATT 748748 5555 RS0236RS0236 TACCTGAATCACAACCTTCTGTGCCTACCTGAATCACAACCTTCTGTGCC CCTTTGGCTGCAATATGTCTTGTTGCCTTTGGCTGCAATATGTCTTGTTG 692692 5858 RS0237RS0237 CTGGCATTGATCCGCATTGAGACTGGCATTGATCCGCATTGAGA TCGTGTGATGACAGTTGAGCAAACATCGTGTGATGACAGTTGAGCAAACA 739739 5858 RS0238RS0238 CGCTGACATAGCAAATCTGATCTCCCGCTGACATAGCAAATCTGATCTCC CCGGTCGAGAGAAGCTCTGTAGAAGCCGGTCGAGAGAAGCTCTGTAGAAG 689689 5858 RS0239RS0239 AGAAAATGCCTGCAGTTGTGTTGTCAGAAAATGCCTGCAGTTGTGTTGTC TTCCAAACAATCTGCAGCCAGCTTCCAAACAATCTGCAGCCAGC 680680 5858 RS0240RS0240 GGAAGTCATCCTGATCCAGCTTGTGGGAAGTCATCCTGATCCAGCTTGTG ACGCCTCCAGATTCAAGCAAGAGACGCCTCCAGATTCAAGCAAGAG 702702 5858 RS0241RS0241 GCCAAGTGGCACATTCCCAACGCCAAGTGGCACATTCCCAAC AGCCGGAAGGATACACGAATCAGAGCCGGAAGGATACACGAATCAG 876876 5858 RS0242RS0242 TGTTAATGAGGTTGCCATCTTGTCGTGTTAATGAGGTTGCCATCTTGTCG CCATTACAGAAATGGGTTGGCACTTCCATTACAGAAATGGGTTGGCACTT 743743 6262 RS0243RS0243 TTGACAGTACATGCTGGGTTAGGGATTGACAGTACATGCTGGGTTAGGGA GCAGCTTTTCATTCTGAGCGCAGCAGCTTTTCATTCTGAGCGCA 679679 5959 RS0244RS0244 TTCCAGAGTAGCAGCATCTTGTGCATTCCAGAGTAGCAGCATCTTGTGCA TGGTTTTAGTGGAGGTGATTCGTTGTGGTTTTAGTGGAGGTGATTCGTTG 719719 5858 RS0245RS0245 TGTACGGCTACACAGCTGAAATTCCTGTACGGCTACACAGCTGAAATTCC ACCATTTTCCGAACTGCTTTCTTTCACCATTTTCCGAACTGCTTTCTTTC 763763 5959 RS0246RS0246 ACGATTATTGCCATGACAAGATCGAACGATTATTGCCATGACAAGATCGA GGTTTGTGTTCTCCCACTCTCCAAGGTTTGTGTTCTCCCACTCTCCAA 729729 5959 RS0347RS0347 TTCGAAAATAAAAACCCTGCTCCAGTTCGAAAATAAAAACCCTGCTCCAG CCTCAAAATGCCTTTCCAAATTCAGCCTCAAAATGCCTTTCCAAATTCAG 770770 5858 RS0348RS0348 TTCACTTTCCTCCTCACTTTCGTCATTCACTTTCCTCCTCACTTTCGTCA GGCAGTGCATTTTGGACACACAGTAGGCAGTGCATTTTGGACACACAGTA 758758 5858 RS0349RS0349 TGGCTTGTTTTGTGCGAAGGGTGGCTTGTTTTGTGCGAAGGG CCCATTGACCAAGTCTTTCACAAGACCCATTGACCAAGTCTTTCACAAGA 768768 5858 RS0350RS0350 TCTCAATCTTAACCCCACTCTTCGGTCTCAATCTTAACCCCACTCTTCGG TGACCACTGTCTGACATGGGCTCTGACCACTGTCTGACATGGGTC 682682 5858 RS0351RS0351 TCAAAATTCTGTGAAGACCGATGGATCAAAATTCTGTGAAGACCGATGGA CAACAATTTGCCAACCTCATTGCCAACAATTTGCCAACCTCATTGC 713713 5858 RS0352RS0352 TTTCGCAATACAAGTAGGACTGCCATTTCGCAATACAAGTAGGACTGCCA GTGGTGTCGCTCAAACAGGTTTGGTGGTGTCGCTCAAACAGGTTTG 724724 5858 RS0353RS0353 ATCTAGCAGTCGATTGTTGGCATTGATCTAGCAGTCGATTGTTGGCATTG TGGTGCTGTAATTCCATTTCCATCATGGTGCTGTAATTCCATTTCCATCA 720720 5959 RS0354RS0354 TTGCTGCCTCCAGTTGGAAGTCTTTGCTGCCTCCAGTTGGAAGTCT CCCAACAGCAAGCATACACACACTCCCCAACAGCAAGCATACACACACTC 607607 5858 RS0355RS0355 TGACCAGCATCAGCATATCAAAACATGACCAGCATCAGCATATCAAAACA GCAGCAAGGTCATGATGACCATATTGCAGCAAGGTCATGATGACCATATT 603603 5959 RS0356RS0356 ATGTAATCCATGCCCCTTATTTTGCATGTAATCCATGCCCCTTATTTTGC TCAGAGCTTCTGGAGGTGAGGAATTTCAGAGCTTCTGGAGGTGAGGAATT 674674 5858 RS0457RS0457 CATCATTGTGCAGGTATGGGAGAAACATCATTGTGCAGGTATGGGAGAAA CCCGCTTAAATCGTCCCTTTTGTACCCGCTTAAATCGTCCCTTTTGTA 851851 5858 RS0458RS0458 GATGATGAAAATGACACTGCTTGGGGATGATGAAAATGACACTGCTTGGG GCAAAGTAAACAGGGCAAGCAAAAGCAAAGTAAACAGGGCAAGCAAAA 724724 5858 RS0459RS0459 AGCAATTTTTCGCCTGCATTCCAGCAATTTTTCGCCTGCATTCC TGGAACATGCCATTCATTGACAGAGTGGAACATGCCATTCATTGACAGAG 678678 5858 RS0460RS0460 ATAGGAAAATTCACCTCGACAGCCGATAGGAAAATTCACCTCGACAGCCG TGGCAGCTCAACATGACTGGCTGGCAGCTCAACATGACTGGC 585585 5959 RS0461RS0461 CCTGGAACAACCAAACACTGACTTGCCTGGAACAACCAAACACTGACTTG CGCCGTCGCAATTAAAATGTGCCGCCGTCGCAATTAAAATGTGC 678678 5959 RS0462RS0462 GGAACTGGCTACAGGAAAGACTTGGGGAACTGGCTACAGGAAAGACTTGG AGCCCTCCAAGTCACTTTTGTGTTTAGCCCTCCAAGTCACTTTTGTGTTT 727727 5858 RS0463RS0463 TTAGCAGCCACTTTCTCACAATCCATTAGCAGCCACTTTCTCACAATCCA GCAGTTCGCATTTCCAGATCACTAGGCAGTTCGCATTTCCAGATCACTAG 726726 5858 RS0464RS0464 GGGGTTCTGCAATGAAGGTGCGGGGTTCTGCAATGAAGGTGC GCGCTGAAGCATTAGCAGTAGATGTGCGCTGAAGCATTAGCAGTAGATGT 843843 5858 RS0465RS0465 TTGAAATTGCACACAAGACTAGGGGTTGAAATTGCACACAAGACTAGGGG TTTCTCGGAGTATATGCAATCGGCTTTCTCGGAGTATATGCAATCGGC 698698 5858 RS0466RS0466 AACCTGTCACTATGCGAACCAACACAACCTGTCACTATGCGAACCAACAC CATTTCCAGAGCCAGATGTGTGGCATTTCCAGAGCCAGATGTGTGG 533533 5858 RS0467RS0467 ATGAAGAAACTTTGGTCCAGGCTTGATGAAGAAACTTTGGTCCAGGCTTG TTGCCAACACCAGCTATCGCATTGCCAACACCAGCTATCGCA 697697 5858 RS0468RS0468 GGTACCACAGCAGATAACGGTTGTGGGTACCACAGCAGATAACGGTTGTG GCACACAAGATAGCTCAAACATCCGGCACACAAGATAGCTCAAACATCCG 682682 5858 RS0469RS0469 ATGGTTTTCCTGTTGTTGATGAGCCATGGTTTTCCTGTTGTTGATGAGCC TCATGAGCAATGAAAGCGATAATGCTCATGAGCAATGAAAGCGATAATGC 689689 5858 RS0470RS0470 CTTCAGCCTCAAGTTTGTCACCATGCTTCAGCCTCAAGTTTGTCACCATG AGCGGAGATCAAGTGAACTTGCTTTAGCGGAGATCAAGTGAACTTGCTTT 432432 5858 RS0471RS0471 ATTAATTACCATTTGATGGCGAGGGATTAATTACCATTTGATGGCGAGGG GGATTGGTTATCCAGGTGGTCTCATGGATTGGTTATCCAGGTGGTCTCAT 597597 5858 RS0572RS0572 ACAAAAAGCTGAGATACGATTGGCAACAAAAAGCTGAGATACGATTGGCA GGGGATGTTGATGATTGGAAGAAAAGGGGATGTTGATGATTGGAAGAAAAA 415415 5959 RS0573RS0573 GCCGGCTTCATGATATCACCAAGCCGGCTTCATGATATCACCAA GAGGGGGCCCAAAAATATCTTTAATGAGGGGGCCCAAAAATATCTTTAAT 846846 5858 RS0574RS0574 ATCAATGTTGCCAAATGATGCTGCATCAATGTTGCCAAATGATGCTGC TGGAGACCTCGATCGAACTAGCTTTTGGAGACCTCGATCGAACTAGCTTT 716716 5858 RS0575RS0575 TCGGCAGTATCGTCAGGCACTCTCGGCAGTATCGTCAGGCACTC GGCCCATGCAAATACACCTGCGGCCCATGCAAATACACCTGC 712712 5858 RS0576RS0576 TGACGACGAAAGGGAGCCAGTTGACGACGAAAGGGAGCCAGT GCAGTATCCCCAGTTCCCCACTAATGCAGTATCCCCAGTTCCCCACTAAT 719719 5858 RS0577RS0577 AGAGTTCTTCCTCCTTGTGGGTGTGAGAGTTCTTCCTCCTTGTGGGTGTG TTAGTTGCGGATCTTCCATCAGCTATTAGTTGCGGATCTTCCATCAGCTA 683683 5858 RS0578RS0578 ACACTCCAACTCTTCCATCGAAGGAACACTCCAACTCTTCCATCGAAGGA TCCACTGTTGATTCAGGCATTGAGTTCCACTGTTGATTCAGGCATTGAGT 757757 5959 RS0579RS0579 GCAGACGATCCATCTTGCCCAGCAGACGATCCATCTTGCCCA CGAGGAGAAGAAGGAGACTGAGCAGCGAGGAGAAGAAGGAGACTGAGCAG 696696 5858 RS0680RS0680 TCGCCGGAGAGCATGTTGTCTCGCCGGAGAGCATGTTGTC CCTTGGTAACAATCTCCTGGAGGGCCTTGGTAACAATCTCCTGGAGGG 708708 6060 RS0681RS0681 TATCAATAATCGTACCTGGGAGCGCTATCAATAATCGTACCTGGGAGCGC CCAGGCGTCAGGTGATTATATTGCTCCAGGCGTCAGGTGATTATATTGCT 896896 5959 RS0682RS0682 CAGGGAAACGATGGTGACAACGCAGGGAAACGATGGTGACAACG TGAAGCCCATGCGAATCCATTTGAAGCCCATGCGAATCCATT 706706 6060 RS0683RS0683 AATGAAGCTGAAGTGATGATGCCACAATGAAGCTGAAGTGATGATGCCAC TGGCAGCCATAGTGACTGAAGGATATGGCAGCCATAGTGACTGAAGGATA 709709 5858 RS0684RS0684 AACAAGCATTTTCCCTATGCCACAAACAAGCATTTTCCCTATGCCACA AGATTTCCCAAGATGGACCAAGTTGAGATTTCCCAAGATGGACCAAGTTG 706706 5858 RS0685RS0685 TTTGAATGAAAGCTCGCAGATGATCTTTGAATGAAAGCTCGCAGATGATC TGGAACTTCAAGTGAAGGCTGTCAGTGGAACTTCAAGTGAAGGCTGTCAG 743743 5858 RS0686RS0686 TTGAGCTTATGAAACCAACAGCCAATTGAGCTTATGAAACCAACAGCCAA TGAAATGGCCGGGAGTTACAATTATGAAATGGCCGGGAGTTACAATTA 656656 5959 RS0687RS0687 GAACTTGGGGTTCACCAGAGAGATGGAACTTGGGGTTCACCAGAGAGATG GGAAATGACCCCTTGATCATGTGAGGGAAATGACCCCTTGATCATGTGAG 760760 5858 RS0688RS0688 AGGAAGTGAACAACAGCACTCGTGTAGGAAGTGAACAACAGCACTCGTGT TTTATTCGAGTTGCGGGAGACGTTTTATTCGAGTTGCGGGAGACGT 865865 5959 RS0689RS0689 CACAACCCTTGCTCCTTCCATGCACAACCCTTGCTCCTTCCATG CCTCTCCAGTAAGGTTGCCACAGATCCTCTCCAGTAAGGTTGCCACAGAT 740740 5858 RS0690RS0690 AGGAATCTCAGGGATATTTGGAGCAAGGAATCTCAGGGATATTTGGAGCA TGGAAACCTCACTGCACTTTCTGAATGGAAACCTCACTGCACTTTCTGAA 724724 5858 RS0691RS0691 GCTGCTAGACTAGTTGATGCCATGCGCTGCTAGACTAGTTGATGCCATGC GAATTGTGGTTCCTGCTCCATTAGGGAATTGTGGTTCCTGCTCCATTAGG 765765 5858 RS0692RS0692 GCACGCCGATGTAGTAGAATCCGGCACGCCGATGTAGTAGAATCCG GGAAGTTCTATGCCGCGTGAATTGGGAAGTTCTATGCCGCGTGAATTG 906906 5858 RS0693RS0693 ACTTCCCTTCCTACCCTCGTTTTCAACTTCCCTTCCTACCCTCGTTTTCA AACCATAGGAGCCAATTCTTGGAAAAACCATAGGAGCCAATTCTTGGAAA 702702 6060 RS07100RS07100 GAGCACCTGGCCAAGCAAATCTAGAGCACCTGGCCAAGCAAATCTA CTGTACCGGGAGGTCAGAGGTGACTGTACCGGGAGGTCAGAGGTGA 690690 5959 RS07101RS07101 ACATTGAGACCACTGCTAGGCACAAACATTGAGACCACTGCTAGGCACAA GCCGATGCTAATAGACTCGCTGAATGCCGATGCTAATAGACTCGCTGAAT 485485 5858 RS07102RS07102 GGCAGTAAAATGCCTCAACACCAAGGCAGTAAAATGCCTCAACACCAA CCATGCAAAACGATTCAAAAGTGGCCATGCAAAACGATTCAAAAGTGG 777777 5858 RS0794RS0794 TGGAATCGAGTTTCCCGTTATTCATTGGAATCGAGTTTCCCGTTATTCAT TCGGTATCAATGGCGATGTTTAATGTCGGTATCAATGGCGATGTTTAATG 803803 5959 RS0795RS0795 CGTCATCCAAGCCAGAGACCGTCGTCATCCAAGCCAGAGACCGT TGGAAGCGTTTCTCCCATGTCTGTGGAAGCGTTTCTCCCATGTCTG 711711 6060 RS0796RS0796 CTTCTAGAGAAGCGGTTGCTTGCACTTCTAGAGAAGCGGTTGCTTGCA GCGATAACCTCATCCTTCTGCTGAGCGATAACCTCATCCTTCTGCTGA 902902 5959 RS0797RS0797 CATTGAGTGACTCGGGATGATATGGCATTGAGTGACTCGGGATGATATGG GATCTGCTCCCTGCTATTTTGCGGATCTGCTCCCTGCTATTTTGCG 710710 6060 RS0798RS0798 ATACGACCATGAAGCCTGCGTTCTATACGACCATGAAGCCTGCGTTCT TACTTAGCGGAAACAAGCGGCTTCTACTTAGCGGAAACAAGCGGCTTC 700700 5959 RS0799RS0799 TTTGTAACCTGCCAGCATTCATTTCTTTGTAACCTGCCAGCATTCATTTC GGGGCAATGTTGTCTTAATGGGTATGGGGCAATGTTGTCTTAATGGGTAT 700700 6060 RS08103RS08103 TCAATGCGTCTGGCCTGACAATCAATGCGTCTGGCCTGACAA GAGATATTCCGGTGTGTGACACCAGGAGATATTCCGGTGTGTGACACCAG 682682 6060 RS08104RS08104 TCAGTGACCGTGGATCTGAATGGTCAGTGACCGTGGATCTGAATGG CATGAGAACTTGCCTGCACAGAATTCATGAGAACTTGCCTGCACAGAATT 684684 6060 RS08105RS08105 TGATTACTACCCAGTCGGCTTCAGCTGATTACTACCCAGTCGGCTTCAGC TGCTTCTGCCCTTGTCTATGATTCATGCTTCTGCCCTTGTCTATGATTCA 723723 5858 RS08106RS08106 TCAAGTTACCGTAGGCCAGTGTGTGTCAAGTTACCGTAGGCCAGTGTGTG GCCTCTCCCCACAGAATGATCAGGCCTCTCCCCACAGAATGATCAG 680680 5858 RS08107RS08107 AGGTGTATGTAGGGCCTTTTGTTCGAGGTGTATGTAGGGCCTTTTGTTCG TGGTTTTCAAATATGATGCCCAGAGTGGTTTTCAAATATGATGCCCAGAG 696696 6060 RS08108RS08108 AATGATGGGTGTGAATCTATGCAGCAATGATGGGTGTGAATCTATGCAGC GCCCTCTCCTCTCATCTCTCCATTAGCCCTCTCCTCTCATCTCTCCATTA 815815 5858 RS08109RS08109 CAATCATCCCTAATGGTGAGCAGGCAATCATCCCTAATGGTGAGCAGG ACACCGTGCGCGTCATTGTCACACCGTGCGCGTCATTGTC 744744 6060 RS08110RS08110 AGGTATGGACGGTTATTGAGGCGAGGTATGGACGGTTATTGAGGCG CAGCTTCTGGTGTCATCCTCATCATCAGCTTCTGGTGTCATCCTCATCAT 683683 6060 RS08111RS08111 CTAGACCTCTGCAACGCCATTCACTAGACCTCTGCAACGCCATTCA CATCTGAATAGCGAGGCCGTATCACATCTGAATAGCGAGGCCGTATCA 774774 6060 RS08112RS08112 TCACTGGCTTCAATGAACTTGCAGTCACTGGCTTCAATGAACTTGCAG TCCAAACACGGCTCTTGAAGTTAAATCCAAACACGGCTCTTGAAGTTAAA 745745 6060 RS09113RS09113 GCATGCAGTGCTTTCTAACAAATCCGCATGCAGTGCTTTCTAACAAATCC TGCATGTTTGGTCTGTACACCTCAATGCATGTTTGGTCTGTACACCTCAA 848848 5959 RS09114RS09114 TCCTTCTCAAGAACTAGCTGCACCATCCTTCTCAAGAACTAGCTGCACCA CAAATACCGGCGCATCTTTGAGCAAATACCGGCGCATCTTTGAG 680680 5858 RS09115RS09115 AATGCTAATAGTCCGCCATTTGGAAAATGCTAATAGTCCGCCATTTGGAA TTGATCCAGAAGGTGACTGCCAGTATTGATCCAGAAGGTGACTGCCAGTA 779779 5959 RS09116RS09116 TTGATAGCCACTTTGGACATGTTGGTTGATAGCCACTTTGGACATGTTGG GCATTATGGCCACACATTGATTGAAGCATTATGGCCACACATTGATTGAA 691691 5858 RS09117RS09117 AATTGCGTCTCATCTGTTGGAGCTAATTGCGTCTCATCTGTTGGAGCT TTGGGTTGGGACTGGCCTTACTATTGGGTTGGGACTGGCCTTACTA 727727 5858 RS10118RS10118 GGAGATTTCGTCATCGTGAACGCGGAGATTTCGTCATCGTGAACGC TGGAGTTGAGAGCTGGGGATTCATGGAGTTGAGAGCTGGGGATTCA 680680 5858 RS10119RS10119 TGTGCATCTGTACACCTCTTGTCCCTGTGCATCTGTACACCTCTTGTCCC GACGCCCCTCCTGGTAATACAGAGGACGCCCCTCCTGGTAATACAGAG 773773 5959 RS10120RS10120 ATTGATTTCAACAACAAGCATCCGGATTGATTTCAACAACAAGCATCCGG TGATGCAATGTCATGTTGGAAGTGATGATGCAATGTCATGTTGGAAGTGA 811811 6060 RS10121RS10121 TTATATTTCTTCACCCGACATGGCCTTATATTTCTTCACCCGACATGGCC TTGTGTTGCCCTTAAAACCTAAGCATTGTGTTGCCCTTAAAACCTAAGCA 781781 5858 RS10122RS10122 ATGGAGCAGATGACCATCATCAGCATGGAGCAGATGACCATCATCAGC CGTTCACTCGGGAGATTAAAATCCACGTTCACTCGGGAGATTAAAATCCA 773773 5959 RS10123RS10123 GTGGTAGATCAGCGCCAGCATGTGTGGTAGATCAGCGCCAGCATGT CCCTAGCTTGGTCATTGCACAACACCCTAGCTTGGTCATTGCACAACA 724724 5959 RS10124RS10124 TCAGTGCACTTACTGTCCCCATCTCTCAGTGCACTTACTGTCCCCATCTC TTGGTGTTTGAGGAATTGTCTCGCTTGGTGTTTGAGGAATTGTCTCGC 681681 5858 RS10125RS10125 TTGTAGGTCTACACTGCATCGCGTTTTGTAGGTCTACACTGCATCGCGTT TTGGCAACAGAAAATACAGTGGAGGTTGGCAACAGAAAATACAGTGGAGG 814814 5959 RS11126RS11126 CGAGCTGTGTTTTGCTTGACATTGCGAGCTGTGTTTTGCTTGACATTG CCTTCATGAAAGATGCACGGTGAACCTTCATGAAAGATGCACGGTGAA 739739 5858 RS11127RS11127 ATCGATCAATGTACTTGCAGATGGGATCGATCAATGTACTTGCAGATGGG AAAGCCTGACGCATCATCGCTAAAAGCCTGACGCATCATCGCTA 758758 5858 RS11128RS11128 GGTAGCATCCCAAGAGAGCTCTTCAGGTAGCATCCCAAGAGAGCTCTTCA GCTCTGGAAAGATCGTCGAATGAAAGCTCTGGAAAGATCGTCGAATGAAA 665665 5858 RS11129RS11129 TGCATTTGGTCATCTTCAGCTCTTCTGCATTTGGTCATCTTCAGCTCTTC TCATGCCTATCTAGGTTCCTCCACCTCATGCCTATCTAGGTTCCTCCACC 714714 5959 RS11130RS11130 GAGATGACAAGAAGCCCATATTCCCGAGATGACAAGAAGCCCATATTCCC GGCAGATCCCGTCTTTTCTATTCAAGGCAGATCCCGTCTTTTCTATTCAA 684684 5858 RS11131RS11131 CCTTTATACCACAGGTACCCGGTCACCTTTATACCACAGGTACCCGGTCA TGGGTTCAAGTCCTTCCATCGATTGGGTTCAAGTCCTTCCATCGAT 680680 5858 RS11132RS11132 CTAACTCATCAATGAAGGCCTGCTGCTAACTCATCAATGAAGGCCTGCTG GGACAAGGGCACAGTCTCCAAAAGGACAAGGGCACAGTCTCCAAAA 808808 5858 RS11133RS11133 GTGCTTGCTTGGCAATCACCATTGTGCTTGCTTGGCAATCACCATT CTCCACAGTTCATCTATCACCCGAACTCCACAGTTCATCTATCACCCGAA 629629 5959 RS11134RS11134 GCTTCTCGATAGTTTGATGCATTGCGCTTCTCGATAGTTTGATGCATTGC GCAACTCGCAGATAGAACCTGGAATGCAACTCGCAGATAGAACCTGGAAT 752752 5858 RS11135RS11135 AGGTAACGGACAGTCCTGATTGACCAGGTAACGGACAGTCCTGATTGACC GATGCATGAGGCCAGTAAGATTGGGATGCATGAGGCCAGTAAGATTGG 684684 5858 RS11136RS11136 TGGCCGAGTCTTTCTCTGCGTATATGGCCGAGTCTTTCTCTGCGTATA CGAGATGATGAATGCAAGGACTTGACGAGATGATGAATGCAAGGACTTGA 693693 5959 RS11137RS11137 AAATCGTGAAGCAGATCATGAACCGAAATCGTGAAGCAGATCATGAACCG GCATTGAGTCGAAAACGGTTCCTTTGCATTGAGTCGAAAACGGTTCCTTT 704704 61.861.8 RS12138RS12138 GACTGACTTTGCCATCATGACCTTGGACTGACTTTGCCATCATGACCTTG CCAACAGCAAGAGCAAGGCAGATACCAACAGCAAGAGCAAGGCAGATA 685685 6262 RS12139RS12139 TCTTCTTTTGGAACAGTGATGGCTGTCTTCTTTTGGAACAGTGATGGCTG GCACCGGTTGTGTCTGAAAGAAGTAGCACCGGTTGTGTCTGAAAGAAGTA 755755 5959 RS12140RS12140 CCTTTGTGTGGAAAACGCAAGTAAACCTTTGTGTGGAAAACGCAAGTAAA GCCATGTAAAAGGCATCCTGTCAAAGCCATGTAAAAGGCATCCTGTCAAA 688688 5959 RS12141RS12141 ACTCCAGCTTAAAAAGGGATCCGAGACTCCAGCTTAAAAAAGGGATCCGAG TATTGTAGTTGGCAGGGCCATGTCTATTGTAGTTGGCAGGGCCATGTC 755755 5959 RS12142RS12142 GAGGCAATCCATCACCATCAGGTGAGGCAATCCATCACCATCAGGT GCGGCTCTTAAAGTTTGATGGACATGCGGCTCTTAAAGTTTGATGGACAT 734734 5858 RS12143RS12143 TTTTGAGTTCCCACCAAGAGAATCCTTTTGAGTTCCCACCAAGAGAATCC GCGAGAAGATATACGGAACGGTGTTGCGAGAAGATATACGGAACGGTGTT 799799 5959 RS12144RS12144 TAATGGAGCTTTCACGGTTCATGCTAATGGAGCTTTCACGGTTCATGC TCGTGGTATGTAACTATGGCCGACATCGTGGTATGTAACTATGGCCGACA 929929 5959 RS12145RS12145 AGAATGATAATTTGTGTGGCGCTGAAGAATGATAATTTGTGTGGCGCTGA TGCACGGTCCTTCTACGTTAATGGTGCACGGTCCTTCTACGTTAATGG 703703 5858 RS12146RS12146 TGATCTGGCAATCAAGTCATGAAGGTGATCTGGCAATCAAGTCATGAAGG GGCGATTCCTGTGTACTGTTGGTTTGGCGATTCCTGTGTACTGTTGGTTT 688688 5959

실시예Example 3. 유전지도 및 물리지도 작성 3. Genetic and physical mapping

앞서 개발된 146개의 CAPS 마커를 이용하여 MGRIL의 유전자형을 검정하였다. 이 집단의 유전지도 작성을 위해서 기존에 PCR을 기반으로 개발된 219개의 DNA 마커와 통합하였다(비특허문헌 1)(표 5). 146개의 CAPS 마커를 포함하여 총 365개의 DNA 마커를 이용하여 유전지도를 작성하였다. 총 유전거리는 1,572 cM이었으며, 마커 간의 평균 거리는 4.6 cM이었다(도 3). 본 발명의 NGS로 분석된 SNP를 기반으로 개발된 CAPS 마커는 빠른 시간에 효율적인 분석이 가능하며, 분석이 용이한 PCR 기반 마커들로 구성되었다는 장점을 가지고 있다. 유전지도 분석에 통합한 DNA 마커의 primer 서열을 표준유전체로 사용한 nipponbare genome (build7.0)에 mapping하여 각 마커들의 벼 유전체상에서의 물리적인 위치를 파악한 후, 물리지도를 작성하였다. 이 물리지도에서 마커 간의 물리적 거리의 합은 361 Mbp이었으며, 이를 총 유전거리로 나누어 구한 1 cM당 평균 물리적거리는 230 kbp이었다. 기존의 보고된 벼 물리지도와 유전지도의 통합분석연구 결과에서 1 cM당 244 kbp이었음을 미루어 볼 때(비특허문헌 4), 이번에 작성된 MGRIL 유전지도와 물리지도에 근거하여 특정한 1 cM당 평균 물리적 거리가 정확도가 높은 수치라고 할 수 있다(도 2).
The genotypes of MGRIL were tested using the 146 CAPS markers developed previously. For genetic mapping of this population, 219 DNA markers developed based on PCR were integrated (Non-Patent Document 1) (Table 5). Genetic maps were generated using a total of 365 DNA markers including 146 CAPS markers. The total genetic distance was 1,572 cM and the mean distance between markers was 4.6 cM (Fig. 3). The CAPS marker developed on the basis of the SNP analyzed by the NGS of the present invention is advantageous in that it can be analyzed quickly and efficiently and is composed of PCR-based markers that are easy to analyze. Mapping to the nipponbare genome (build7.0) using the primer sequence of the DNA marker integrated in the genetic map analysis as the standard genome, the physical location of each marker on the rice genome was determined and the physical map was created. In this physical map, the sum of physical distances between markers was 361 Mbp, and the average physical distance per cM was 230 kbp. Based on the results of an integrated analysis of the reported physical and geographical maps of rice, 244 kbp per 1 cM (Non-Patent Document 4), based on the MGRIL hereditary map and physical map created at this time, The distance can be said to be a highly accurate figure (Fig. 2).

본 발명의 유전지도 및 물리지도에 포함된 DNA 마커 정보The DNA marker information included in the genetic map and physical map of the present invention MM arkerarker typetype nono . of . of markersmarkers MarkerMarker listlist InDelInDel zz 3636 R1M7, R1M30, R1M37, R1M47, R2M10, R2M37, R2M50, R3M10, R3M23, R3M37, R4M17, R4M43, R4M50, R5M13, R5M20, R5M30, R6M14, R6M30, R6M44, R7M7, R7M20, R7M37, R8M23, R8M33, R8M46, R9M10, R9M20, R9M30, R9M42, R10M10, R10M17, R10M30, R10M40, R11M17, R11M40, R12M43R1M7, R1M3, R1M37, R1M47, R2M10, R2M37, R2M50, R3M10, R3M23, R3M37, R4M17, R4M43, R4M50, R5M13, R5M20, R5M30, R6M14, R6M30, R6M44, R7M7, R7M20, R7M37, R8M23, R8M33, R8M46, R9M10, R9M20, R9M30, R9M42, R10M10, R10M17, R10M30, R10M40, R11M17, R11M40, R12M43 RTMRTM zz 88 RTM4211 , RTM10147, RTM3211, RTM5697, RTM3550, RTM10742, RTM9188, RTM5516RTM4211, RTM10147, RTM3211, RTM5697, RTM3550, RTM10742, RTM9188, RTM5516 STSSTS zz 8888 STS01007, STS01009, STS01017, STS01021, STS01031, STS01039, STS01043, STS02012, STS02017, STS02025, STS02027, STS02030, STS02033, STS02036, STS02038, STS03009, STS03020, STS03025, STS03032, STS03036, STS03040, STS04001, STS04007, STS04009, STS04017, STS04024, STS04037, STS04042, STS05018, STS05020, STS05025, STS05027, STS05028, STS05037, STS05043, STS05045, STS05048, STS06013, STS06019, STS06023, STS06037, STS06040, STS07005, STS07010, STS07015, STS07021, STS07023, STS07025, STS07029, STS07036, STS07040, STS08001, STS08003, STS08005, STS08008, STS08019, STS08021, STS08023, STS08029, STS08033, STS08035, STS08038, STS08043, STS09003, STS09004, STS09007, STS09011, STS09031, STS09033, STS09035, STS09036, STS09048, STS10003, STS10005, STS10010, STS10014, STS10017, STS10037, STS11016, STS11019, STS11025, STS11039, STS12008, STS12011, STS12012, STS12019, STS12023, STS12030STS01007, STS01009, STS01017, STS01021, STS01031, STS01039, STS01043, STS02012, STS02017, STS02025, STS02027, STS02030, STS02033, STS02036, STS02038, STS03009, STS03020, STS03025, STS03032, STS03036, STS03040, STS04001, STS04007, STS04009, STS04017, STS04024, STS04037, STS04042, STS05018, STS05020, STS05025, STS05027, STS05028, STS05037, STS05043, STS05045, STS05048, STS06013, STS06019, STS06023, STS06037, STS06040, STS07005, STS07010, STS07015, STS07021, STS07023, STS07025, STS07029, STS07036, STS07040, STS08001, STS08003, STS08005, STS08008, STS08019, STS08021, STS08023, STS08029, STS08033, STS08035, STS08038, STS08043, STS09003, STS09004, STS09007, STS09011, STS09031, STS09033, STS09035, STS09036, STS09048, STS10003, STS10005, STS10010, STS10014, STS10017, STS10037, STS11016, STS11019, STS11025, STS11039, STS12008, STS12011, STS12012, STS12019, STS12023, STS12030 SSRSSR zz 8787 RM1 , RM10, RM101, RM1036, RM11, RM1155, RM1227, RM12368, RM1247, RM1300, RM1370, RM1375, RM167, RM16789, RM17, RM17303, RM17377, RM17960, RM17962, RM1880, RM19218, RM19620, RM201, RM205, RM20882, RM212, RM2136, RM214, RM224, RM226, RM22608, RM22630, RM22694, RM234, RM23736, RM23779, RM240, RM242, RM246, RM247, RM253, RM25366, RM257, RM26062, RM276, RM277, RM27970, RM28400, RM286, RM287, RM3, RM3170, RM3199, RM3252, RM332, RM3394, RM3472, RM3481, RM349,RM3664, RM3765, RM401, RM408, RM420, RM4355, RM44, RM4771, RM5055, RM5349, RM536, RM5526, RM5608, RM5633, RM5753, RM5807, RM5814, RM5907, RM6367, RM6467, RM6775, RM6840, RM6841, RM6842, RM7000, RM7389, RM7492, RM7631RM110, RM1036, RM11, RM1155, RM1227, RM12368, RM1247, RM1300, RM1370, RM1375, RM167, RM16789, RM17, RM17303, RM17377, RM17960, RM17962, RM1880, RM19218, RM19620, RM201, RM205, RM20882, RM212, RM2136, RM214, RM224, RM226, RM22608, RM22630, RM22694, RM234, RM23736, RM23779, RM240, RM242, RM246, RM247, RM253, RM25366, RM257, RM26062, RM276, RM277, RM27970, RM28400, RM370, RM3199, RM3252, RM332, RM3394, RM3472, RM3481, RM349, RM3664, RM3765, RM401, RM408, RM420, RM4355, RM44, RM4771, RM5055, RM5349, RM536, RM5526, RM5608, RM5633, RM5753, RM5807, RM5814, RM5907, RM6367, RM6467, RM6775, RM6840, RM6841, RM6842, RM7000, RM7389, RM7492, RM7631 SNPSNP 146146 RS011, RS012, RS013, RS014, RS015, RS016, RS017, RS018, RS019, RS0110, RS0111, RS0112, RS0113, RS0114, RS0115, RS0116, RS0117, RS0118, RS0119, RS0120, RS0121, RS0122, RS0123, RS0124, RS0125, RS0226, RS0227, RS0228, RS0229, RS0230, RS0231, RS0232, RS0233, RS0234, RS0235, RS0236, RS0237, RS0238, RS0239, RS0240, RS0241, RS0242, RS0243, RS0244, RS0245, RS0246, RS0347, RS0348, RS0349, RS0350, RS0351, RS0352, RS0353, RS0354, RS0355, RS0356, RS0457, RS0458, RS0459, RS0460, RS0461, RS0462, RS0463, RS0464, RS0465, RS0466, RS0467, RS0468, RS0469, RS0470, RS0471, RS0572, RS0573, RS0574, RS0575, RS0576, RS0577, RS0578, RS0579, RS0680, RS0681, RS0682, RS0683, RS0684, RS0685, RS0686, RS0687, RS0688, RS0689, RS0690, RS0691, RS0692, RS0693, RS0794, RS0795, RS0796, RS0797, RS0798, RS0799, RS07100, RS07101, RS07102, RS08103, RS08104, RS08105, RS08106, RS08107, RS08108, RS08109, RS08110, RS08111, RS08112, RS09113, RS09114, RS09115, RS09116, RS09117, RS10118, RS10119, RS10120, RS10121, RS10122, RS10123, RS10124, RS10125, RS11126, RS11127, RS11128, RS11129, RS11130, RS11131, RS11132, RS11133, RS11134, RS11135, RS11136, RS11137, RS12138, RS12139, RS12140, RS12141, RS12142, RS12143, RS12144, RS12145, RS12146Wherein R is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, arylalkynyl, arylalkynyl, arylalkynyl, arylalkynyl, arylalkynyl, arylalkynyl, Wherein the at least one amino acid is selected from the group consisting of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 19, The present invention also relates to the use of a polynucleotide encoding a polynucleotide selected from the group consisting of: RS0576, RS0577, RS0578, RS0579, RS0680, RS0681, RS0682, RS0683, RS0684, RS0685, RS0686, RS0687, RS0688, RS0689, RS0690, RS0691, RS0692, RS0693, RS0794, RS0795, RS0796, RS0797, RS0798, RS07101, RS07102, RS08103, RS08104, RS08105, RS08106, RS08107, RS08108, RS08109, RS08110, RS08111, RS08112, RS09113, RS09114, RS09115, RS09116, RS09117, RS10118, RS10119, RS10120, RS10121, RS10122, RS12144, RS12145, RS12144, RS12145, RS12144, RS12145, RS12144, RS12145, RS12144, RS12145, RS12144, RS12144, RS12144, RS12144, RS12145, RS11125, RS11126, RS11127, RS11128, RS11129, RS11130, RS11131, RS11132, RS11133, RS11134, RS11135,

zJi et al. (2012)
z Ji et al. (2012)

실시예Example 4.  4. MGRILMGRIL 표현형 상관관계 및  Phenotypic correlations and QTLQTL 분석  analysis

밀양23호와 기호벼 그리고 MGRIL에 대해 1절굵기(I1D), 2절굵기(I2D), 3절굵기(I3D), 4절굵기(I4D), 간장(CL), 그리고 수장(PL)의 표현형을 조사하였다(도 4). 조사된 형질의 변이 분포는 연속적인 정규분포를 보였으며, 모본의 범위를 벗어나는 초월분리현상을 나타냈다. 6가지 형질간의 상관관계 분석한 결과, 수장과 4개의 줄기굵기에 대해 유의성 있는 상관관계를 확인할 수 있었고, 줄기의 굵기가 굵을수록 수장의 길이가 길어지는 경향을 나타내었다. 간장과 줄기굵기는 유의성이 낮은 상관관계를 갖거나 나타나지 않는 것을 확인할 수 있었다(표 6). (I1D), 2 section thickness (I2D), 3 section thickness (I3D), 4 section thickness (I4D), liver (CL), and shoot (PL) phenotype for Milyang 23, (Fig. 4). Variation distributions of irradiated traits showed continuous normal distribution and showed transcendental separation beyond the range of the sample. As a result of correlation analysis between six traits, it was found that there was a significant correlation between length and length of four stems, and length of length of stem increased with thickening of stems. (Table 6). It was confirmed that the liver and stem thickness had a low correlation or no correlation.

밀양23호 및 기호벼의 재조합자식 유전집단에 대한 줄기굵기 QTL 연구는 아직 보고된 바가 없으며, 본 연구를 통해서 총 4개 줄기굵기 관련 QTL이 새롭게 탐색되었다(표 7). 이 중 1절굵기 형질 관련 QTL이 두 개 나타나 각각 qI1D1과 qI1D5로 명명하였다. qI1D1은 1번 염색체의 RS0124-RS0125사이에서 탐색되었고, 이 QTL의 1절굵기 표현형 변이는 5.02%였다. 기호벼의 allele가 1절굵기를 0.07cm 증가시키고, LOD값은 3.26이었다(표 7). qI1D5는 5번 염색체의 RM6841-RS0578사이에서 탐색되었고, 이 QTL의 1절굵기 표현형 변이는 8.99%였다. 밀양23호의 allele가 1절굵기를 0.10cm 증가시키고, LOD 값은 새롭게 찾아진 QTL 중 가장 높은 값인 6.09였다(표 7). 또한, 3절굵기 관련 형질에 대해 1개 QTL이 확인되었고, 이를 qI3D1로 명명하였다. 이 QTL은 3번 염색체의 STS01039-RS0124사이에서 탐색되었고, 3절굵기의 표현형 변이는 6.53%였다. 이 QTL의 LOD 값은 3.17이며, 기호벼의 allele가 3절굵기를 0.18cm 증가시켰다(표 7). 4절굵기 형질에 대한 1개 QTL이 탐색되었고, 이를 qI4D1로 명명하였다. 이 QTL은 1번 염색체의 STS01039-RS0124사이에서 탐색되었고, 4절굵기 표현형 변이는 9.97% 였다. 이 QTL의 LOD 값은 4.61이며, 기호벼의 allele가 4절굵기를 0.25cm증가시켰다(표 7). qI1D1, qI3D1, qI4D1은 1번 염색체의 유사한 지역에서 탐색되었다. 특히, 3절과 4절굵기 관련 QTL은 동일한 마커 사이에서 탐색되었다. 하지만 줄기굵기 측정과 QTL 분석이 독립적으로 이루어졌으며, 여러 형질이 하나의 유전자에 의해 지배 될 수도 있지만, 서로 다른 유전자에 의해 지배될 수도 있기 때문에 서로 다른 QTL로 임의 명명하였다. 각각의 형질이 실제 다른 유전자에 의한 것인지 추후 연구가 요구된다. There are no reports on stem diameter QTL for the recombinant heritable populations of Milyang 23 and Rice. In this study, a total of 4 stem-related QTLs were newly discovered (Table 7). Two of the QTLs related to the traits in the first section were named qI1D1 and qI1D5, respectively. qI1D1 was found between RS0124-RS0125 on chromosome 1, and the one-fold phenotypic variation of this QTL was 5.02%. In alleles of representative rice, the 1st section thickness increased by 0.07 cm and the LOD value was 3.26 (Table 7). qI1D5 was found between RM6841-RS0578 on chromosome 5, and the variant of the first-fold thickness of this QTL was 8.99%. The allele of Milyang 23 increased 0.10 cm in the thickness of the first section, and the LOD value was 6.09, the highest value of newly found QTL (Table 7). In addition, one QTL was identified for the traits related to the thickness of Section 3, which was named qI3D1. This QTL was found between STS01039-RS0124 on chromosome 3, and the phenotypic variation of the 3-fold was 6.53%. The LOD value of this QTL was 3.17, and the allele of the representative rice increased the 3-fold thickness by 0.18 cm (Table 7). One QTL for the 4-fold thickness trait was searched and named qI4D1. This QTL was found between STS01039-RS0124 on chromosome 1, and the phenotype of the 4-fold phenotype was 9.97%. The LOD value of this QTL was 4.61, and the allele of the seed rice increased the 4-fold thickness by 0.25 cm (Table 7). qI1D1, qI3D1, qI4D1 were found in similar regions of chromosome 1. In particular, QTLs related to curves 3 and 4 were searched between the same markers. However, stem size measurement and QTL analysis were independent, and several traits may be dominated by one gene, but different QTLs were arbitrarily named because they may be dominated by different genes. Further studies are required to determine whether each trait is actually a different gene.

이러한 QTL 분석 결과는 유용형질들과 DNA 표지인자간의 연관관계를 규명하여 gene tagging을 하고, 이 표지인자를 이용하여 실질적인 육종을 수행하는데 기반이 될 것으로 생각된다.
This QTL analysis is expected to be the basis for genetic tagging by identifying the linkage between useful traits and DNA markers, and for carrying out substantive breeding using these markers.

MGRIL 개체에서 측정된 6가지 형질사이의 상관관계Correlation between six traits measured in MGRIL subjects TraitTrait I1DI1D I2DI2D I3DI3D I4DI4D CLCL PLPL I1DI1D zz 0.8441** 0.8441 ** 0.6546** 0.6546 ** 0.6025** 0.6025 ** 0.0557(nsy)0.0557 (ns y ) 0.5298** 0.5298 ** I2DI2D 0.8578** 0.8578 ** 0.7987** 0.7987 ** 0.1154(ns)0.1154 (ns) 0.5264** 0.5264 ** I3DI3D 0.9347** 0.9347 ** 0.3184** 0.3184 ** 0.4964** 0.4964 ** I4DI4D 0.3602** 0.3602 ** 0.4688** 0.4688 ** CLCL 0.2343** 0.2343 **

**p<0.01 ** p < 0.01

zI1D = first internode diameter; I2D = second internode diameter; I3D = third internode diameter; I4D = fourth internode diameter; CL = culm length; PL = Panicle length. z I1D = first internode diameter; I2D = second internode diameter; I3D = third internode diameter; I4D = fourth internode diameter; CL = culm length; PL = Panicle length.

yns, not significant.
y ns, not significant.

MGRIL의 6가지 형질로 탐지된 QTL 마커 특성Characteristics of QTL markers detected by 6 traits of MGRIL TraitsTraits No.No. QTL namez QTL name z Chry Chr y PositionPosition LODw LOD w AdditiveAdditive R2 R 2 Interval markerInterval marker ReferenceReference (cM)x (cM) x effectv effect v (%)u (%) u First
Internode
First
Internode
1One 1One 27.73 27.73 12.5612.56 0.15 0.15 21.1921.19 RS014RS014 , , RM1RM1 sdm1 (Kashiwagi et al. 2008) sdm1 (Kashiwagi et al. 2008)
22 qI1D1qI1D1 1One 196.62 196.62 3.263.26 -0.07 -0.07 5.025.02 RS0124RS0124 , , RS0125RS0125 33 qI1D5qI1D5 55 84.14 84.14 6.096.09 0.10 0.10 8.998.99 RM6841RM6841 , , RS0578RS0578 44 66 119.17 119.17 3.753.75 0.08 0.08 6.066.06 RS0693RS0693 , , RM5814RM5814 Kashiwagi & Ishimaru (2004)Kashiwagi & Ishimaru (2004) Second
Internode
Second
Internode
55 1One 27.73 27.73 5.865.86 0.17 0.17 11.1111.11 RS014RS014 , , RM1RM1 sdm1 (Kashiwagi et al. 2008) sdm1 (Kashiwagi et al. 2008)
66 66 110.87 110.87 6.106.10 0.18 0.18 12.1812.18 RS0691RS0691 , , RM1370RM1370 Kashiwagi & Ishimaru (2004)Kashiwagi & Ishimaru (2004) 77 77 57.00 57.00 3.193.19 0.13 0.13 6.316.31 STS07015STS07015 , , RS0798RS0798 sdm7 (Kashiwagi et al. 2008) sdm7 (Kashiwagi et al. 2008) Third
Internode
Third
Internode
88 qI3D1qI3D1 1One 192.10 192.10 3.173.17 -0.18 -0.18 6.536.53 STS01039STS01039 , , RS0124RS0124
99 44 74.84 74.84 4.124.12 -0.20 -0.20 7.767.76 RS0462RS0462 , , RS0463RS0463 qCD -4 (Wang et al. 2011) qCD -4 (Wang et al. 2011) 1010 66 113.39 113.39 6.456.45 0.26 0.26 12.9412.94 RM1370RM1370 , , RS0692RS0692 Kashiwagi & Ishimaru (2004)Kashiwagi & Ishimaru (2004) Fourth
Internode
Fourth
Internode
1111 qI4D1qI4D1 1One 193.10 193.10 4.614.61 -0.25 -0.25 9.979.97 STS01039STS01039 , , RS0124RS0124
1212 66 107.87 107.87 7.477.47 0.34 0.34 19.2519.25 RS0691RS0691 , , RM1370RM1370 Kashiwagi & Ishimaru (2004)Kashiwagi & Ishimaru (2004) 1313 1212 20.24 20.24 3.223.22 0.19 0.19 5.955.95 RS12140RS12140 , , STS12019STS12019 sdm12 (Kashiwagi et al. 2008), sdm12 (Kashiwagi et al. 2008), Culm
length
Culm
length
1414 1One 171.43171.43 31.1431.14 -9.99-9.99 58.2358.23 RS0119RS0119 , , RS0120RS0120 sd -1 (Ashikari et al. 2002,
Cho et al. 1994,
Monna et al. 2002,
Sasaki et al. 2002,
Spielmeyer et al. 2002)
sd- 1 ( Ashikari et al. 2002,
Cho et al. 1994,
Monna et al. 2002,
Sasaki et al. 2002,
Spielmeyer et al. 2002)
1515 qCL5qCL5 55 41.0841.08 3.513.51 2.72 2.72 4.244.24 R5M13R5M13 , , RS0573RS0573 1616 88 12.1612.16 5.375.37 3.33 3.33 6.446.44 STS08005STS08005 , , STS08008STS08008 pl8pl8 ( ( XiaoXiao etmeat alget . 1995), . 1995),
ph8ph8 ( ( XiongXiong etmeat alget . 1999) . 1999)
1717 qCL12qCL12 1212 94.294.2 3.093.09 2.47 2.47 3.593.59 RS12143RS12143 , , RM1300RM1300   Panicle
length
Panicle
length
1818 1One 134.68134.68 3.323.32 0.64 0.64 6.596.59 R1M37R1M37 , , RS0115RS0115 pl1 (Xiong et al. 1999),
pl1 .1 ( Septiningsih et al . 2003)
pl1 (Xiong et al. 1999),
pl1 .1 (Septiningsih meat al . 2003)
1919 33 41.0841.08 5.445.44 0.84 0.84 11.0311.03 R3M10R3M10 , , RTM5697RTM5697 Pl3 .1 (Septiningsih et al. 2003),
pl3b (Zhuang et al. 1997)
Pl3. 1 (Septiningsih et al. 2003),
pl3b (Zhuang et al. 1997)

z : QTLs were newly detected and tentatively named. z : QTLs were newly detected and tentatively named.

y : The number of chromosome. y : The number of chromosome.

x : Position of QTL from the top of each chromosome. x : Position of QTL from the top of each chromosome.

w : The logarithm of the ratio of two likelihoods. w : The logarithm of the ratio of two likelihoods.

v : Positive and negative values indicated additive effect contributed by the alleles of Milyang23 and Gihobyeo, respectively. v : Positive and negative values indicate the additive effect contributed by the alleles of Milyang23 and Gihobyeo, respectively.

u : Percentage of variance explained by each QTL. u : Percentage of variance explained by each QTL.

<110> REPUBLIC OF KOREA <120> QTL ANALYSIS OF STEM DIAMETER AND CAPS MARKER THEREFOR <130> P14R12D1002 <160> 292 <170> KopatentIn 2.0 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS011 FORWARD PRIMER <400> 1 tccagaagtc aggataggag tggca 25 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS011 REVERSE PRIMER <400> 2 tggaagaacc acaactgcat catg 24 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0110 FORWARD PRIMER <400> 3 tgaaaccctt cttcaggaaa ccagc 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0110 REVERSE PRIMER <400> 4 cattgtgcag ccaggaaaag gataa 25 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0111 FORWARD PRIMER <400> 5 cagtgcagcg atctttatca gcttc 25 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0111 REVERSE PRIMER <400> 6 tcgatcctcg agtccatgca tg 22 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0112 FORWARD PRIMER <400> 7 tcctgctttt atgttggctg tcact 25 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0112 REVERSE PRIMER <400> 8 ggctgctgct tcaaaattcc cttt 24 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0113 FORWARD PRIMER <400> 9 tgcattttgg agcattgtag acgc 24 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0113 REVERSE PRIMER <400> 10 tgcaagcaca gaagtgggca gt 22 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0114 FORWARD PRIMER <400> 11 cacacgcagc gcagaaacta aaa 23 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0114 REVERSE PRIMER <400> 12 ccatcgaaaa tccactgcaa catt 24 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0115 FORWARD PRIMER <400> 13 aatggtcttg gtgacgaagc aactg 25 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0115 REVERSE PRIMER <400> 14 cgaataggtg accgagcagc act 23 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0116 FORWARD PRIMER <400> 15 tgcagcgcca tcatcatgag c 21 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0116 REVERSE PRIMER <400> 16 agttgaggaa gctgagcacg gc 22 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0117 FORWARD PRIMER <400> 17 agggattaat tgattcacac agccc 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0117 REVERSE PRIMER <400> 18 cccagttgat gcaactcata tccct 25 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0118 FORWARD PRIMER <400> 19 atatgatgtc acccaaagtt gccct 25 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0118 REVERSE PRIMER <400> 20 gtgttccgtg ttcttgattt cgtgt 25 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0119 FORWARD PRIMER <400> 21 gggacattgg cttgacacat aagtg 25 <210> 22 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0119 REVERSE PRIMER <400> 22 acgaacactc tggcaaggac ca 22 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS012 FORWARD PRIMER <400> 23 ttgttcttgt aaaggcgctt cactg 25 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS012 REVERSE PRIMER <400> 24 actgtccttc gtttcaacag ggg 23 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0120 FORWARD PRIMER <400> 25 acacgtgctg ccaaatattg cg 22 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0120 REVERSE PRIMER <400> 26 ttttgcagtc ctgcagacca tttaa 25 <210> 27 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0121 FORWARD PRIMER <400> 27 tttaccaagc aggggatcag aaatg 25 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0121 REVERSE PRIMER <400> 28 tgcattgcat tacctgtgtc ctttt 25 <210> 29 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0122 FORWARD PRIMER <400> 29 ggcagaacag gagcattagc aagc 24 <210> 30 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0122 REVERSE PRIMER <400> 30 cctggactgg actggagtat aggga 25 <210> 31 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0123 FORWARD PRIMER <400> 31 ctgcaactca atggctccta ggtg 24 <210> 32 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0123 REVERSE PRIMER <400> 32 gctggcagag ctttatgtaa tggga 25 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0124 FORWARD PRIMER <400> 33 caggaggaaa acacaccgga tgg 23 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0124 REVERSE PRIMER <400> 34 ccgtccactg taagaactga atgcc 25 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0125 FORWARD PRIMER <400> 35 atgcggagga aatgccaaac a 21 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0125 REVERSE PRIMER <400> 36 ggatcgatgc gtgaaatatt gaaga 25 <210> 37 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS013 FORWARD PRIMER <400> 37 atcagggagt ttgcaatcaa aatgg 25 <210> 38 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS013 REVERSE PRIMER <400> 38 cccttgtggt atctgtccag tcaaa 25 <210> 39 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS014 FORWARD PRIMER <400> 39 tcagaagatt gtacctttgg ctccc 25 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS014 REVERSE PRIMER <400> 40 gggaagttcc tgctgaagag aggta 25 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS015 FORWARD PRIMER <400> 41 tgtgttcgtg ataggatgca cagg 24 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS015 REVERSE PRIMER <400> 42 cgcacctccc ctccatgtaa a 21 <210> 43 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS016 FORWARD PRIMER <400> 43 atcccatcca catcctttga atcc 24 <210> 44 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS016 REVERSE PRIMER <400> 44 cgaggtcaag agaatctggg agtct 25 <210> 45 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS017 FORWARD PRIMER <400> 45 tcagcaaatg gagttggcta aacaa 25 <210> 46 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS017 REVERSE PRIMER <400> 46 agtgatggag aggccaaaat gtctt 25 <210> 47 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS018 FORWARD PRIMER <400> 47 tgaaggggct gatcgagctc ca 22 <210> 48 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS018 REVERSE PRIMER <400> 48 tggatccggc gacgactact tatt 24 <210> 49 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS019 FORWARD PRIMER <400> 49 acttcatggg gacgagaagg tacg 24 <210> 50 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS019 REVERSE PRIMER <400> 50 cataggtagg aggcacacat ccgt 24 <210> 51 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0226 FORWARD PRIMER <400> 51 tgaagctgct tctaaatcac catcg 25 <210> 52 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0226 REVERSE PRIMER <400> 52 ctcacaggac caataccaag atgga 25 <210> 53 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0227 FORWARD PRIMER <400> 53 atctggctca agactgtccc tgatc 25 <210> 54 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0227 REVERSE PRIMER <400> 54 ggcaccactg catcatacgt ctact 25 <210> 55 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0228 FORWARD PRIMER <400> 55 gagatgttta gcgggaagag accaa 25 <210> 56 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0228 REVERSE PRIMER <400> 56 ggatggaatc ctgcgggtag ttaa 24 <210> 57 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0229 FORWARD PRIMER <400> 57 gaagttgcaa agatggagga actcg 25 <210> 58 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0229 REVERSE PRIMER <400> 58 tgcatggcca gtgaggatgg t 21 <210> 59 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0230 FORWARD PRIMER <400> 59 aaataaaaga caaacgggga gcaca 25 <210> 60 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0230 REVERSE PRIMER <400> 60 caaaaccgaa tcgcccctat aaatt 25 <210> 61 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0231 FORWARD PRIMER <400> 61 ctgctggcca gcgttctaca ag 22 <210> 62 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0231 REVERSE PRIMER <400> 62 ccaaccgcaa atcagcctac aa 22 <210> 63 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0232 FORWARD PRIMER <400> 63 ttgggctgaa gcaaagagcg a 21 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0232 REVERSE PRIMER <400> 64 cgtctgctgg aagacaaaat gaagg 25 <210> 65 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0233 FORWARD PRIMER <400> 65 tgtcatctgg aagtatggag gctca 25 <210> 66 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0233 REVERSE PRIMER <400> 66 tgttgctcta gctggggcat taaat 25 <210> 67 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0234 FORWARD PRIMER <400> 67 aaaatggtgc acgaagcaat tgatg 25 <210> 68 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0234 REVERSE PRIMER <400> 68 cccctgctga aaaaggaaaa tgag 24 <210> 69 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0235 FORWARD PRIMER <400> 69 agcatcttaa taggtttgcg gatgg 25 <210> 70 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0235 REVERSE PRIMER <400> 70 caaacacggg agctctccat acatt 25 <210> 71 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0236 FORWARD PRIMER <400> 71 tacctgaatc acaaccttct gtgcc 25 <210> 72 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0236 REVERSE PRIMER <400> 72 cctttggctg caatatgtct tgttg 25 <210> 73 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0237 FORWARD PRIMER <400> 73 ctggcattga tccgcattga ga 22 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0237 REVERSE PRIMER <400> 74 tcgtgtgatg acagttgagc aaaca 25 <210> 75 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0238 FORWARD PRIMER <400> 75 cgctgacata gcaaatctga tctcc 25 <210> 76 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0238 REVERSE PRIMER <400> 76 ccggtcgaga gaagctctgt agaag 25 <210> 77 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0239 FORWARD PRIMER <400> 77 agaaaatgcc tgcagttgtg ttgtc 25 <210> 78 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0239 REVERSE PRIMER <400> 78 ttccaaacaa tctgcagcca gc 22 <210> 79 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0240 FORWARD PRIMER <400> 79 ggaagtcatc ctgatccagc ttgtg 25 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0240 REVERSE PRIMER <400> 80 acgcctccag attcaagcaa gag 23 <210> 81 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0241 FORWARD PRIMER <400> 81 gccaagtggc acattcccaa c 21 <210> 82 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0241 REVERSE PRIMER <400> 82 agccggaagg atacacgaat cag 23 <210> 83 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0242 FORWARD PRIMER <400> 83 tgttaatgag gttgccatct tgtcg 25 <210> 84 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0242 REVERSE PRIMER <400> 84 ccattacaga aatgggttgg cactt 25 <210> 85 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0243 FORWARD PRIMER <400> 85 ttgacagtac atgctgggtt aggga 25 <210> 86 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0243 REVERSE PRIMER <400> 86 gcagcttttc attctgagcg ca 22 <210> 87 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0244 FORWARD PRIMER <400> 87 ttccagagta gcagcatctt gtgca 25 <210> 88 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0244 REVERSE PRIMER <400> 88 tggttttagt ggaggtgatt cgttg 25 <210> 89 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0245 FORWARD PRIMER <400> 89 tgtacggcta cacagctgaa attcc 25 <210> 90 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0245 REVERSE PRIMER <400> 90 accattttcc gaactgcttt ctttc 25 <210> 91 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0246 FORWARD PRIMER <400> 91 acgattattg ccatgacaag atcga 25 <210> 92 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0246 REVERSE PRIMER <400> 92 ggtttgtgtt ctcccactct ccaa 24 <210> 93 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0347 FORWARD PRIMER <400> 93 ttcgaaaata aaaaccctgc tccag 25 <210> 94 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0347 REVERSE PRIMER <400> 94 cctcaaaatg cctttccaaa ttcag 25 <210> 95 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0348 FORWARD PRIMER <400> 95 ttcactttcc tcctcacttt cgtca 25 <210> 96 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0348 REVERSE PRIMER <400> 96 ggcagtgcat tttggacaca cagta 25 <210> 97 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0349 FORWARD PRIMER <400> 97 tggcttgttt tgtgcgaagg g 21 <210> 98 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0349 REVERSE PRIMER <400> 98 cccattgacc aagtctttca caaga 25 <210> 99 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0350 FORWARD PRIMER <400> 99 tctcaatctt aaccccactc ttcgg 25 <210> 100 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0350 REVERSE PRIMER <400> 100 tgaccactgt ctgacatggg ctc 23 <210> 101 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0351 FORWARD PRIMER <400> 101 tcaaaattct gtgaagaccg atgga 25 <210> 102 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0351 REVERSE PRIMER <400> 102 caacaatttg ccaacctcat tgc 23 <210> 103 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0352 FORWARD PRIMER <400> 103 tttcgcaata caagtaggac tgcca 25 <210> 104 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0352 REVERSE PRIMER <400> 104 gtggtgtcgc tcaaacaggt ttg 23 <210> 105 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0353 FORWARD PRIMER <400> 105 atctagcagt cgattgttgg cattg 25 <210> 106 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0353 REVERSE PRIMER <400> 106 tggtgctgta attccatttc catca 25 <210> 107 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0354 FORWARD PRIMER <400> 107 ttgctgcctc cagttggaag tct 23 <210> 108 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0354 REVERSE PRIMER <400> 108 cccaacagca agcatacaca cactc 25 <210> 109 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0355 FORWARD PRIMER <400> 109 tgaccagcat cagcatatca aaaca 25 <210> 110 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0355 REVERSE PRIMER <400> 110 gcagcaaggt catgatgacc atatt 25 <210> 111 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0356 FORWARD PRIMER <400> 111 atgtaatcca tgccccttat tttgc 25 <210> 112 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0356 REVERSE PRIMER <400> 112 tcagagcttc tggaggtgag gaatt 25 <210> 113 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0457 FORWARD PRIMER <400> 113 catcattgtg caggtatggg agaaa 25 <210> 114 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0457 REVERSE PRIMER <400> 114 cccgcttaaa tcgtcccttt tgta 24 <210> 115 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0458 FORWARD PRIMER <400> 115 gatgatgaaa atgacactgc ttggg 25 <210> 116 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0458 REVERSE PRIMER <400> 116 gcaaagtaaa cagggcaagc aaaa 24 <210> 117 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0459 FORWARD PRIMER <400> 117 agcaattttt cgcctgcatt cc 22 <210> 118 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0459 REVERSE PRIMER <400> 118 tggaacatgc cattcattga cagag 25 <210> 119 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0460 FORWARD PRIMER <400> 119 ataggaaaat tcacctcgac agccg 25 <210> 120 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0460 REVERSE PRIMER <400> 120 tggcagctca acatgactgg c 21 <210> 121 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0461 FORWARD PRIMER <400> 121 cctggaacaa ccaaacactg acttg 25 <210> 122 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0461 REVERSE PRIMER <400> 122 cgccgtcgca attaaaatgt gc 22 <210> 123 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0462 FORWARD PRIMER <400> 123 ggaactggct acaggaaaga cttgg 25 <210> 124 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0462 REVERSE PRIMER <400> 124 agccctccaa gtcacttttg tgttt 25 <210> 125 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0463 FORWARD PRIMER <400> 125 ttagcagcca ctttctcaca atcca 25 <210> 126 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0463 REVERSE PRIMER <400> 126 gcagttcgca tttccagatc actag 25 <210> 127 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0464 FORWARD PRIMER <400> 127 ggggttctgc aatgaaggtg c 21 <210> 128 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0464 REVERSE PRIMER <400> 128 gcgctgaagc attagcagta gatgt 25 <210> 129 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0465 FORWARD PRIMER <400> 129 ttgaaattgc acacaagact agggg 25 <210> 130 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0465 REVERSE PRIMER <400> 130 tttctcggag tatatgcaat cggc 24 <210> 131 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0466 FORWARD PRIMER <400> 131 aacctgtcac tatgcgaacc aacac 25 <210> 132 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0466 REVERSE PRIMER <400> 132 catttccaga gccagatgtg tgg 23 <210> 133 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0467 FORWARD PRIMER <400> 133 atgaagaaac tttggtccag gcttg 25 <210> 134 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0467 REVERSE PRIMER <400> 134 ttgccaacac cagctatcgc a 21 <210> 135 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0468 FORWARD PRIMER <400> 135 ggtaccacag cagataacgg ttgtg 25 <210> 136 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0468 REVERSE PRIMER <400> 136 gcacacaaga tagctcaaac atccg 25 <210> 137 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0469 FORWARD PRIMER <400> 137 atggttttcc tgttgttgat gagcc 25 <210> 138 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0469 REVERSE PRIMER <400> 138 tcatgagcaa tgaaagcgat aatgc 25 <210> 139 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0470 FORWARD PRIMER <400> 139 cttcagcctc aagtttgtca ccatg 25 <210> 140 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0470 REVERSE PRIMER <400> 140 agcggagatc aagtgaactt gcttt 25 <210> 141 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0471 FORWARD PRIMER <400> 141 attaattacc atttgatggc gaggg 25 <210> 142 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0471 REVERSE PRIMER <400> 142 ggattggtta tccaggtggt ctcat 25 <210> 143 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0572 FORWARD PRIMER <400> 143 acaaaaagct gagatacgat tggca 25 <210> 144 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0572 REVERSE PRIMER <400> 144 ggggatgttg atgattggaa gaaaa 25 <210> 145 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0573 FORWARD PRIMER <400> 145 gccggcttca tgatatcacc aa 22 <210> 146 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0573 REVERSE PRIMER <400> 146 gagggggccc aaaaatatct ttaat 25 <210> 147 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0574 FORWARD PRIMER <400> 147 atcaatgttg ccaaatgatg ctgc 24 <210> 148 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0574 REVERSE PRIMER <400> 148 tggagacctc gatcgaacta gcttt 25 <210> 149 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0575 FORWARD PRIMER <400> 149 tcggcagtat cgtcaggcac tc 22 <210> 150 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0575 REVERSE PRIMER <400> 150 ggcccatgca aatacacctg c 21 <210> 151 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0576 FORWARD PRIMER <400> 151 tgacgacgaa agggagccag t 21 <210> 152 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0576 REVERSE PRIMER <400> 152 gcagtatccc cagttcccca ctaat 25 <210> 153 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0577 FORWARD PRIMER <400> 153 agagttcttc ctccttgtgg gtgtg 25 <210> 154 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0577 REVERSE PRIMER <400> 154 ttagttgcgg atcttccatc agcta 25 <210> 155 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0578 FORWARD PRIMER <400> 155 acactccaac tcttccatcg aagga 25 <210> 156 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0578 REVERSE PRIMER <400> 156 tccactgttg attcaggcat tgagt 25 <210> 157 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0579 FORWARD PRIMER <400> 157 gcagacgatc catcttgccc a 21 <210> 158 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0579 REVERSE PRIMER <400> 158 cgaggagaag aaggagactg agcag 25 <210> 159 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RS0680 FORWARD PRIMER <400> 159 tcgccggaga gcatgttgtc 20 <210> 160 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0680 REVERSE PRIMER <400> 160 ccttggtaac aatctcctgg aggg 24 <210> 161 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0681 FORWARD PRIMER <400> 161 tatcaataat cgtacctggg agcgc 25 <210> 162 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0681 REVERSE PRIMER <400> 162 ccaggcgtca ggtgattata ttgct 25 <210> 163 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0682 FORWARD PRIMER <400> 163 cagggaaacg atggtgacaa cg 22 <210> 164 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0682 REVERSE PRIMER <400> 164 tgaagcccat gcgaatccat t 21 <210> 165 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0683 FORWARD PRIMER <400> 165 aatgaagctg aagtgatgat gccac 25 <210> 166 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0683 REVERSE PRIMER <400> 166 tggcagccat agtgactgaa ggata 25 <210> 167 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0684 FORWARD PRIMER <400> 167 aacaagcatt ttccctatgc caca 24 <210> 168 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0684 REVERSE PRIMER <400> 168 agatttccca agatggacca agttg 25 <210> 169 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0685 FORWARD PRIMER <400> 169 tttgaatgaa agctcgcaga tgatc 25 <210> 170 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0685 REVERSE PRIMER <400> 170 tggaacttca agtgaaggct gtcag 25 <210> 171 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0686 FORWARD PRIMER <400> 171 ttgagcttat gaaaccaaca gccaa 25 <210> 172 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0686 REVERSE PRIMER <400> 172 tgaaatggcc gggagttaca atta 24 <210> 173 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0687 FORWARD PRIMER <400> 173 gaacttgggg ttcaccagag agatg 25 <210> 174 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0687 REVERSE PRIMER <400> 174 ggaaatgacc ccttgatcat gtgag 25 <210> 175 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0688 FORWARD PRIMER <400> 175 aggaagtgaa caacagcact cgtgt 25 <210> 176 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0688 REVERSE PRIMER <400> 176 tttattcgag ttgcgggaga cgt 23 <210> 177 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0689 FORWARD PRIMER <400> 177 cacaaccctt gctccttcca tg 22 <210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0689 REVERSE PRIMER <400> 178 cctctccagt aaggttgcca cagat 25 <210> 179 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0690 FORWARD PRIMER <400> 179 aggaatctca gggatatttg gagca 25 <210> 180 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0690 REVERSE PRIMER <400> 180 tggaaacctc actgcacttt ctgaa 25 <210> 181 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0691 FORWARD PRIMER <400> 181 gctgctagac tagttgatgc catgc 25 <210> 182 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0691 REVERSE PRIMER <400> 182 gaattgtggt tcctgctcca ttagg 25 <210> 183 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0692 FORWARD PRIMER <400> 183 gcacgccgat gtagtagaat ccg 23 <210> 184 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0692 REVERSE PRIMER <400> 184 ggaagttcta tgccgcgtga attg 24 <210> 185 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0693 FORWARD PRIMER <400> 185 acttcccttc ctaccctcgt tttca 25 <210> 186 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0693 REVERSE PRIMER <400> 186 aaccatagga gccaattctt ggaaa 25 <210> 187 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS07100 FORWARD PRIMER <400> 187 gagcacctgg ccaagcaaat cta 23 <210> 188 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS07100 REVERSE PRIMER <400> 188 ctgtaccggg aggtcagagg tga 23 <210> 189 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS07101 FORWARD PRIMER <400> 189 acattgagac cactgctagg cacaa 25 <210> 190 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS07101 REVERSE PRIMER <400> 190 gccgatgcta atagactcgc tgaat 25 <210> 191 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS07102 FORWARD PRIMER <400> 191 ggcagtaaaa tgcctcaaca ccaa 24 <210> 192 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS07102 REVERSE PRIMER <400> 192 ccatgcaaaa cgattcaaaa gtgg 24 <210> 193 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0794 FORWARD PRIMER <400> 193 tggaatcgag tttcccgtta ttcat 25 <210> 194 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0794 REVERSE PRIMER <400> 194 tcggtatcaa tggcgatgtt taatg 25 <210> 195 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0795 FORWARD PRIMER <400> 195 cgtcatccaa gccagagacc gt 22 <210> 196 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0795 REVERSE PRIMER <400> 196 tggaagcgtt tctcccatgt ctg 23 <210> 197 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0796 FORWARD PRIMER <400> 197 cttctagaga agcggttgct tgca 24 <210> 198 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0796 REVERSE PRIMER <400> 198 gcgataacct catccttctg ctga 24 <210> 199 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0797 FORWARD PRIMER <400> 199 cattgagtga ctcgggatga tatgg 25 <210> 200 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0797 REVERSE PRIMER <400> 200 gatctgctcc ctgctatttt gcg 23 <210> 201 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0798 FORWARD PRIMER <400> 201 atacgaccat gaagcctgcg ttct 24 <210> 202 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0798 REVERSE PRIMER <400> 202 tacttagcgg aaacaagcgg cttc 24 <210> 203 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0799 FORWARD PRIMER <400> 203 tttgtaacct gccagcattc atttc 25 <210> 204 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0799 REVERSE PRIMER <400> 204 ggggcaatgt tgtcttaatg ggtat 25 <210> 205 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS08103 FORWARD PRIMER <400> 205 tcaatgcgtc tggcctgaca a 21 <210> 206 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08103 REVERSE PRIMER <400> 206 gagatattcc ggtgtgtgac accag 25 <210> 207 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS08104 FORWARD PRIMER <400> 207 tcagtgaccg tggatctgaa tgg 23 <210> 208 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08104 REVERSE PRIMER <400> 208 catgagaact tgcctgcaca gaatt 25 <210> 209 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08105 FORWARD PRIMER <400> 209 tgattactac ccagtcggct tcagc 25 <210> 210 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08105 REVERSE PRIMER <400> 210 tgcttctgcc cttgtctatg attca 25 <210> 211 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08106 FORWARD PRIMER <400> 211 tcaagttacc gtaggccagt gtgtg 25 <210> 212 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS08106 REVERSE PRIMER <400> 212 gcctctcccc acagaatgat cag 23 <210> 213 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08107 FORWARD PRIMER <400> 213 aggtgtatgt agggcctttt gttcg 25 <210> 214 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08107 REVERSE PRIMER <400> 214 tggttttcaa atatgatgcc cagag 25 <210> 215 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08108 FORWARD PRIMER <400> 215 aatgatgggt gtgaatctat gcagc 25 <210> 216 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08108 REVERSE PRIMER <400> 216 gccctctcct ctcatctctc catta 25 <210> 217 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS08109 FORWARD PRIMER <400> 217 caatcatccc taatggtgag cagg 24 <210> 218 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RS08109 REVERSE PRIMER <400> 218 acaccgtgcg cgtcattgtc 20 <210> 219 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS08110 FORWARD PRIMER <400> 219 aggtatggac ggttattgag gcg 23 <210> 220 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08110 REVERSE PRIMER <400> 220 cagcttctgg tgtcatcctc atcat 25 <210> 221 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS08111 FORWARD PRIMER <400> 221 ctagacctct gcaacgccat tca 23 <210> 222 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS08111 REVERSE PRIMER <400> 222 catctgaata gcgaggccgt atca 24 <210> 223 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS08112 FORWARD PRIMER <400> 223 tcactggctt caatgaactt gcag 24 <210> 224 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08112 REVERSE PRIMER <400> 224 tccaaacacg gctcttgaag ttaaa 25 <210> 225 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09113 FORWARD PRIMER <400> 225 gcatgcagtg ctttctaaca aatcc 25 <210> 226 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09113 REVERSE PRIMER <400> 226 tgcatgtttg gtctgtacac ctcaa 25 <210> 227 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09114 FORWARD PRIMER <400> 227 tccttctcaa gaactagctg cacca 25 <210> 228 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS09114 REVERSE PRIMER <400> 228 caaataccgg cgcatctttg ag 22 <210> 229 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09115 FORWARD PRIMER <400> 229 aatgctaata gtccgccatt tggaa 25 <210> 230 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09115 REVERSE PRIMER <400> 230 ttgatccaga aggtgactgc cagta 25 <210> 231 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09116 FORWARD PRIMER <400> 231 ttgatagcca ctttggacat gttgg 25 <210> 232 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09116 REVERSE PRIMER <400> 232 gcattatggc cacacattga ttgaa 25 <210> 233 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS09117 FORWARD PRIMER <400> 233 aattgcgtct catctgttgg agct 24 <210> 234 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS09117 REVERSE PRIMER <400> 234 ttgggttggg actggcctta cta 23 <210> 235 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS10118 FORWARD PRIMER <400> 235 ggagatttcg tcatcgtgaa cgc 23 <210> 236 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS10118 REVERSE PRIMER <400> 236 tggagttgag agctggggat tca 23 <210> 237 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10119 FORWARD PRIMER <400> 237 tgtgcatctg tacacctctt gtccc 25 <210> 238 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS10119 REVERSE PRIMER <400> 238 gacgcccctc ctggtaatac agag 24 <210> 239 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10120 FORWARD PRIMER <400> 239 attgatttca acaacaagca tccgg 25 <210> 240 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10120 REVERSE PRIMER <400> 240 tgatgcaatg tcatgttgga agtga 25 <210> 241 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10121 FORWARD PRIMER <400> 241 ttatatttct tcacccgaca tggcc 25 <210> 242 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10121 REVERSE PRIMER <400> 242 ttgtgttgcc cttaaaacct aagca 25 <210> 243 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS10122 FORWARD PRIMER <400> 243 atggagcaga tgaccatcat cagc 24 <210> 244 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10122 REVERSE PRIMER <400> 244 cgttcactcg ggagattaaa atcca 25 <210> 245 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS10123 FORWARD PRIMER <400> 245 gtggtagatc agcgccagca tgt 23 <210> 246 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS10123 REVERSE PRIMER <400> 246 ccctagcttg gtcattgcac aaca 24 <210> 247 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10124 FORWARD PRIMER <400> 247 tcagtgcact tactgtcccc atctc 25 <210> 248 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS10124 REVERSE PRIMER <400> 248 ttggtgtttg aggaattgtc tcgc 24 <210> 249 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10125 FORWARD PRIMER <400> 249 ttgtaggtct acactgcatc gcgtt 25 <210> 250 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10125 REVERSE PRIMER <400> 250 ttggcaacag aaaatacagt ggagg 25 <210> 251 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS11126 FORWARD PRIMER <400> 251 cgagctgtgt tttgcttgac attg 24 <210> 252 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS11126 REVERSE PRIMER <400> 252 ccttcatgaa agatgcacgg tgaa 24 <210> 253 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11127 FORWARD PRIMER <400> 253 atcgatcaat gtacttgcag atggg 25 <210> 254 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS11127 REVERSE PRIMER <400> 254 aaagcctgac gcatcatcgc ta 22 <210> 255 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11128 FORWARD PRIMER <400> 255 ggtagcatcc caagagagct cttca 25 <210> 256 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11128 REVERSE PRIMER <400> 256 gctctggaaa gatcgtcgaa tgaaa 25 <210> 257 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11129 FORWARD PRIMER <400> 257 tgcatttggt catcttcagc tcttc 25 <210> 258 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11129 REVERSE PRIMER <400> 258 tcatgcctat ctaggttcct ccacc 25 <210> 259 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11130 FORWARD PRIMER <400> 259 gagatgacaa gaagcccata ttccc 25 <210> 260 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11130 REVERSE PRIMER <400> 260 ggcagatccc gtcttttcta ttcaa 25 <210> 261 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11131 FORWARD PRIMER <400> 261 cctttatacc acaggtaccc ggtca 25 <210> 262 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS11131 REVERSE PRIMER <400> 262 tgggttcaag tccttccatc gat 23 <210> 263 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11132 FORWARD PRIMER <400> 263 ctaactcatc aatgaaggcc tgctg 25 <210> 264 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS11132 REVERSE PRIMER <400> 264 ggacaagggc acagtctcca aaa 23 <210> 265 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS11133 FORWARD PRIMER <400> 265 gtgcttgctt ggcaatcacc att 23 <210> 266 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11133 REVERSE PRIMER <400> 266 ctccacagtt catctatcac ccgaa 25 <210> 267 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11134 FORWARD PRIMER <400> 267 gcttctcgat agtttgatgc attgc 25 <210> 268 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11134 REVERSE PRIMER <400> 268 gcaactcgca gatagaacct ggaat 25 <210> 269 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11135 FORWARD PRIMER <400> 269 aggtaacgga cagtcctgat tgacc 25 <210> 270 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS11135 REVERSE PRIMER <400> 270 gatgcatgag gccagtaaga ttgg 24 <210> 271 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS11136 FORWARD PRIMER <400> 271 tggccgagtc tttctctgcg tata 24 <210> 272 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11136 REVERSE PRIMER <400> 272 cgagatgatg aatgcaagga cttga 25 <210> 273 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11137 FORWARD PRIMER <400> 273 aaatcgtgaa gcagatcatg aaccg 25 <210> 274 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11137 REVERSE PRIMER <400> 274 gcattgagtc gaaaacggtt ccttt 25 <210> 275 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12138 FORWARD PRIMER <400> 275 gactgacttt gccatcatga ccttg 25 <210> 276 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS12138 REVERSE PRIMER <400> 276 ccaacagcaa gagcaaggca gata 24 <210> 277 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12139 FORWARD PRIMER <400> 277 tcttcttttg gaacagtgat ggctg 25 <210> 278 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12139 REVERSE PRIMER <400> 278 gcaccggttg tgtctgaaag aagta 25 <210> 279 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12140 FORWARD PRIMER <400> 279 cctttgtgtg gaaaacgcaa gtaaa 25 <210> 280 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12140 REVERSE PRIMER <400> 280 gccatgtaaa aggcatcctg tcaaa 25 <210> 281 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12141 FORWARD PRIMER <400> 281 actccagctt aaaaagggat ccgag 25 <210> 282 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS12141 REVERSE PRIMER <400> 282 tattgtagtt ggcagggcca tgtc 24 <210> 283 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS12142 FORWARD PRIMER <400> 283 gaggcaatcc atcaccatca ggt 23 <210> 284 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12142 REVERSE PRIMER <400> 284 gcggctctta aagtttgatg gacat 25 <210> 285 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12143 FORWARD PRIMER <400> 285 ttttgagttc ccaccaagag aatcc 25 <210> 286 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12143 REVERSE PRIMER <400> 286 gcgagaagat atacggaacg gtgtt 25 <210> 287 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS12144 FORWARD PRIMER <400> 287 taatggagct ttcacggttc atgc 24 <210> 288 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12144 REVERSE PRIMER <400> 288 tcgtggtatg taactatggc cgaca 25 <210> 289 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12145 FORWARD PRIMER <400> 289 agaatgataa tttgtgtggc gctga 25 <210> 290 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS12145 REVERSE PRIMER <400> 290 tgcacggtcc ttctacgtta atgg 24 <210> 291 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12146 FORWARD PRIMER <400> 291 tgatctggca atcaagtcat gaagg 25 <210> 292 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12146 REVERSE PRIMER <400> 292 ggcgattcct gtgtactgtt ggttt 25 <110> REPUBLIC OF KOREA <120> QTL ANALYSIS OF STEM DIAMETER AND CAPS MARKER THEREFOR <130> P14R12D1002 <160> 292 <170> Kopatentin 2.0 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS011 FORWARD PRIMER <400> 1 tccagaagtc aggataggag tggca 25 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS011 REVERSE PRIMER <400> 2 tggaagaacc acaactgcat catg 24 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0110 FORWARD PRIMER <400> 3 tgaaaccctt cttcaggaaa ccagc 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0110 REVERSE PRIMER <400> 4 cattgtgcag ccaggaaaag gataa 25 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0111 FORWARD PRIMER <400> 5 cagtgcagcg atctttatca gcttc 25 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0111 REVERSE PRIMER <400> 6 tcgatcctcg agtccatgca tg 22 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0112 FORWARD PRIMER <400> 7 tcctgctttt atgttggctg tcact 25 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0112 REVERSE PRIMER <400> 8 ggctgctgct tcaaaattcc cttt 24 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0113 FORWARD PRIMER <400> 9 tgcattttgg agcattgtag acgc 24 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0113 REVERSE PRIMER <400> 10 tgcaagcaca gaagtgggca gt 22 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0114 FORWARD PRIMER <400> 11 cacacgcagc gcagaaacta aaa 23 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0114 REVERSE PRIMER <400> 12 ccatcgaaaa tccactgcaa catt 24 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0115 FORWARD PRIMER <400> 13 aatggtcttg gtgacgaagc aactg 25 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0115 REVERSE PRIMER <400> 14 cgaataggtg accgagcagc act 23 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0116 FORWARD PRIMER <400> 15 tgcagcgcca tcatcatgag c 21 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0116 REVERSE PRIMER <400> 16 agttgaggaa gctgagcacg gc 22 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0117 FORWARD PRIMER <400> 17 agggattaat tgattcacac agccc 25 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0117 REVERSE PRIMER <400> 18 cccagttgat gcaactcata tccct 25 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0118 FORWARD PRIMER <400> 19 atatgatgtc acccaaagtt gccct 25 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0118 REVERSE PRIMER <400> 20 gtgttccgtg ttcttgattt cgtgt 25 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0119 FORWARD PRIMER <400> 21 gggacattgg cttgacacat aagtg 25 <210> 22 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0119 REVERSE PRIMER <400> 22 acgaacactc tggcaaggac ca 22 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS012 FORWARD PRIMER <400> 23 ttgttcttgt aaaggcgctt cactg 25 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS012 REVERSE PRIMER <400> 24 actgtccttc gtttcaacag ggg 23 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0120 FORWARD PRIMER <400> 25 acacgtgctg ccaaatattg cg 22 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0120 REVERSE PRIMER <400> 26 ttttgcagtc ctgcagacca tttaa 25 <210> 27 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0121 FORWARD PRIMER <400> 27 tttaccaagc aggggatcag aaatg 25 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0121 REVERSE PRIMER <400> 28 tgcattgcat tacctgtgtc ctttt 25 <210> 29 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0122 FORWARD PRIMER <400> 29 ggcagaacag gagcattagc aagc 24 <210> 30 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0122 REVERSE PRIMER <400> 30 cctggactgg actggagtat aggga 25 <210> 31 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0123 FORWARD PRIMER <400> 31 ctgcaactca atggctccta ggtg 24 <210> 32 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0123 REVERSE PRIMER <400> 32 gctggcagag ctttatgtaa tggga 25 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0124 FORWARD PRIMER <400> 33 caggaggaaa acacaccgga tgg 23 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0124 REVERSE PRIMER <400> 34 ccgtccactg taagaactga atgcc 25 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0125 FORWARD PRIMER <400> 35 atgcggagga aatgccaaac a 21 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0125 REVERSE PRIMER <400> 36 ggatcgatgc gtgaaatatt gaaga 25 <210> 37 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS013 FORWARD PRIMER <400> 37 atcagggagt ttgcaatcaa aatgg 25 <210> 38 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS013 REVERSE PRIMER <400> 38 cccttgtggt atctgtccag tcaaa 25 <210> 39 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS014 FORWARD PRIMER <400> 39 tcagaagatt gtacctttgg ctccc 25 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS014 REVERSE PRIMER <400> 40 gggaagttcc tgctgaagag aggta 25 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS015 FORWARD PRIMER <400> 41 tgtgttcgtg ataggatgca cagg 24 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS015 REVERSE PRIMER <400> 42 cgcacctccc ctccatgtaa a 21 <210> 43 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS016 FORWARD PRIMER <400> 43 atcccatcca catcctttga atcc 24 <210> 44 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS016 REVERSE PRIMER <400> 44 cgaggtcaag agaatctggg agtct 25 <210> 45 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS017 FORWARD PRIMER <400> 45 tcagcaaatg gagttggcta aacaa 25 <210> 46 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS017 REVERSE PRIMER <400> 46 agtgatggag aggccaaaat gtctt 25 <210> 47 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS018 FORWARD PRIMER <400> 47 tgaaggggct gatcgagctc ca 22 <210> 48 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS018 REVERSE PRIMER <400> 48 tggatccggc gacgactact tatt 24 <210> 49 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS019 FORWARD PRIMER <400> 49 acttcatggg gacgagaagg tacg 24 <210> 50 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS019 REVERSE PRIMER <400> 50 cataggtagg aggcacacat ccgt 24 <210> 51 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0226 FORWARD PRIMER <400> 51 tgaagctgct tctaaatcac catcg 25 <210> 52 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0226 REVERSE PRIMER <400> 52 ctcacaggac caataccaag atgga 25 <210> 53 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0227 FORWARD PRIMER <400> 53 atctggctca agactgtccc tgatc 25 <210> 54 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0227 REVERSE PRIMER <400> 54 ggcaccactg catcatacgt ctact 25 <210> 55 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0228 FORWARD PRIMER <400> 55 gagatgttta gcgggaagag accaa 25 <210> 56 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0228 REVERSE PRIMER <400> 56 ggatggaatc ctgcgggtag ttaa 24 <210> 57 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0229 FORWARD PRIMER <400> 57 gaagttgcaa agatggagga actcg 25 <210> 58 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0229 REVERSE PRIMER <400> 58 tgcatggcca gtgaggatgg t 21 <210> 59 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0230 FORWARD PRIMER <400> 59 aaataaaaga caaacgggga gcaca 25 <210> 60 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0230 REVERSE PRIMER <400> 60 caaaaccgaa tcgcccctat aaatt 25 <210> 61 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0231 FORWARD PRIMER <400> 61 ctgctggcca gcgttctaca ag 22 <210> 62 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0231 REVERSE PRIMER <400> 62 ccaaccgcaa atcagcctac aa 22 <210> 63 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0232 FORWARD PRIMER <400> 63 ttgggctgaa gcaaagagcg a 21 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0232 REVERSE PRIMER <400> 64 cgtctgctgg aagacaaaat gaagg 25 <210> 65 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0233 FORWARD PRIMER <400> 65 tgtcatctgg aagtatggag gctca 25 <210> 66 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0233 REVERSE PRIMER <400> 66 tgttgctcta gctggggcat taaat 25 <210> 67 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0234 FORWARD PRIMER <400> 67 aaaatggtgc acgaagcaat tgatg 25 <210> 68 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0234 REVERSE PRIMER <400> 68 cccctgctga aaaaggaaaa tgag 24 <210> 69 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0235 FORWARD PRIMER <400> 69 agcatcttaa taggtttgcg gatgg 25 <210> 70 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0235 REVERSE PRIMER <400> 70 caaacacggg agctctccat acatt 25 <210> 71 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0236 FORWARD PRIMER <400> 71 tacctgaatc acaaccttct gtgcc 25 <210> 72 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0236 REVERSE PRIMER <400> 72 cctttggctg caatatgtct tgttg 25 <210> 73 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0237 FORWARD PRIMER <400> 73 ctggcattga tccgcattga ga 22 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0237 REVERSE PRIMER <400> 74 tcgtgtgatg acagttgagc aaaca 25 <210> 75 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0238 FORWARD PRIMER <400> 75 cgctgacata gcaaatctga tctcc 25 <210> 76 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0238 REVERSE PRIMER <400> 76 ccggtcgaga gaagctctgt agaag 25 <210> 77 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0239 FORWARD PRIMER <400> 77 agaaaatgcc tgcagttgtg ttgtc 25 <210> 78 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0239 REVERSE PRIMER <400> 78 ttccaaacaa tctgcagcca gc 22 <210> 79 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0240 FORWARD PRIMER <400> 79 ggaagtcatc ctgatccagc ttgtg 25 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0240 REVERSE PRIMER <400> 80 acgcctccag attcaagcaa gag 23 <210> 81 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0241 FORWARD PRIMER <400> 81 gccaagtggc acattcccaa c 21 <210> 82 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0241 REVERSE PRIMER <400> 82 agccggaagg atacacgaat cag 23 <210> 83 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0242 FORWARD PRIMER <400> 83 tgttaatgag gttgccatct tgtcg 25 <210> 84 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0242 REVERSE PRIMER <400> 84 ccattacaga aatgggttgg cactt 25 <210> 85 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0243 FORWARD PRIMER <400> 85 ttgacagtac atgctgggtt aggga 25 <210> 86 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0243 REVERSE PRIMER <400> 86 gcagcttttc attctgagcg ca 22 <210> 87 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0244 FORWARD PRIMER <400> 87 ttccagagta gcagcatctt gtgca 25 <210> 88 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0244 REVERSE PRIMER <400> 88 tggttttagt ggaggtgatt cgttg 25 <210> 89 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0245 FORWARD PRIMER <400> 89 tgtacggcta cacagctgaa attcc 25 <210> 90 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0245 REVERSE PRIMER <400> 90 accattttcc gaactgcttt ctttc 25 <210> 91 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0246 FORWARD PRIMER <400> 91 acgattattg ccatgacaag atcga 25 <210> 92 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0246 REVERSE PRIMER <400> 92 ggtttgtgtt ctcccactct ccaa 24 <210> 93 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0347 FORWARD PRIMER <400> 93 ttcgaaaata aaaaccctgc tccag 25 <210> 94 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0347 REVERSE PRIMER <400> 94 cctcaaaatg cctttccaaa ttcag 25 <210> 95 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0348 FORWARD PRIMER <400> 95 ttcactttcc tcctcacttt cgtca 25 <210> 96 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0348 REVERSE PRIMER <400> 96 ggcagtgcat tttggacaca cagta 25 <210> 97 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0349 FORWARD PRIMER <400> 97 tggcttgttt tgtgcgaagg g 21 <210> 98 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0349 REVERSE PRIMER <400> 98 cccattgacc aagtctttca caaga 25 <210> 99 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0350 FORWARD PRIMER <400> 99 tctcaatctt aaccccactc ttcgg 25 <210> 100 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0350 REVERSE PRIMER <400> 100 tgaccactgt ctgacatggg ctc 23 <210> 101 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0351 FORWARD PRIMER <400> 101 tcaaaattct gtgaagaccg atgga 25 <210> 102 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0351 REVERSE PRIMER <400> 102 caacaatttg ccaacctcat tgc 23 <210> 103 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0352 FORWARD PRIMER <400> 103 tttcgcaata caagtaggac tgcca 25 <210> 104 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0352 REVERSE PRIMER <400> 104 gtggtgtcgc tcaaacaggt ttg 23 <210> 105 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0353 FORWARD PRIMER <400> 105 atctagcagt cgattgttgg cattg 25 <210> 106 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0353 REVERSE PRIMER <400> 106 tggtgctgta attccatttc catca 25 <210> 107 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0354 FORWARD PRIMER <400> 107 ttgctgcctc cagttggaag tct 23 <210> 108 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0354 REVERSE PRIMER <400> 108 cccaacagca agcatacaca cactc 25 <210> 109 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0355 FORWARD PRIMER <400> 109 tgaccagcat cagcatatca aaaca 25 <210> 110 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0355 REVERSE PRIMER <400> 110 gcagcaaggt catgatgacc atatt 25 <210> 111 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0356 FORWARD PRIMER <400> 111 atgtaatcca tgccccttat tttgc 25 <210> 112 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0356 REVERSE PRIMER <400> 112 tcagagcttc tggaggtgag gaatt 25 <210> 113 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0457 FORWARD PRIMER <400> 113 catcattgtg caggtatggg agaaa 25 <210> 114 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0457 REVERSE PRIMER <400> 114 cccgcttaaa tcgtcccttt tgta 24 <210> 115 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0458 FORWARD PRIMER <400> 115 gatgatgaaa atgacactgc ttggg 25 <210> 116 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0458 REVERSE PRIMER <400> 116 gcaaagtaaa cagggcaagc aaaa 24 <210> 117 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0459 FORWARD PRIMER <400> 117 agcaattttt cgcctgcatt cc 22 <210> 118 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0459 REVERSE PRIMER <400> 118 tggaacatgc cattcattga cagag 25 <210> 119 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0460 FORWARD PRIMER <400> 119 ataggaaaat tcacctcgac agccg 25 <210> 120 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0460 REVERSE PRIMER <400> 120 tggcagctca acatgactgg c 21 <210> 121 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0461 FORWARD PRIMER <400> 121 cctggaacaa ccaaacactg acttg 25 <210> 122 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0461 REVERSE PRIMER <400> 122 cgccgtcgca attaaaatgt gc 22 <210> 123 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0462 FORWARD PRIMER <400> 123 ggaactggct acaggaaaga cttgg 25 <210> 124 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0462 REVERSE PRIMER <400> 124 agccctccaa gtcacttttg tgttt 25 <210> 125 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0463 FORWARD PRIMER <400> 125 ttagcagcca ctttctcaca atcca 25 <210> 126 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0463 REVERSE PRIMER <400> 126 gcagttcgca tttccagatc actag 25 <210> 127 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0464 FORWARD PRIMER <400> 127 ggggttctgc aatgaaggtg c 21 <210> 128 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0464 REVERSE PRIMER <400> 128 gcgctgaagc attagcagta gatgt 25 <210> 129 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0465 FORWARD PRIMER <400> 129 ttgaaattgc acacaagact agggg 25 <210> 130 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0465 REVERSE PRIMER <400> 130 tttctcggag tatatgcaat cggc 24 <210> 131 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0466 FORWARD PRIMER <400> 131 aacctgtcac tatgcgaacc aacac 25 <210> 132 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0466 REVERSE PRIMER <400> 132 catttccaga gccagatgtg tgg 23 <210> 133 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0467 FORWARD PRIMER <400> 133 atgaagaaac tttggtccag gcttg 25 <210> 134 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0467 REVERSE PRIMER <400> 134 ttgccaacac cagctatcgc a 21 <210> 135 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0468 FORWARD PRIMER <400> 135 ggtaccacag cagataacgg ttgtg 25 <210> 136 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0468 REVERSE PRIMER <400> 136 gcacacaaga tagctcaaac atccg 25 <210> 137 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0469 FORWARD PRIMER <400> 137 atggttttcc tgttgttgat gagcc 25 <210> 138 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0469 REVERSE PRIMER <400> 138 tcatgagcaa tgaaagcgat aatgc 25 <210> 139 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0470 FORWARD PRIMER <400> 139 cttcagcctc aagtttgtca ccatg 25 <210> 140 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0470 REVERSE PRIMER <400> 140 agcggagatc aagtgaactt gcttt 25 <210> 141 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0471 FORWARD PRIMER <400> 141 attaattacc atttgatggc gaggg 25 <210> 142 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0471 REVERSE PRIMER <400> 142 ggattggtta tccaggtggt ctcat 25 <210> 143 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0572 FORWARD PRIMER <400> 143 acaaaaagct gagatacgat tggca 25 <210> 144 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0572 REVERSE PRIMER <400> 144 ggggatgttg atgattggaa gaaaa 25 <210> 145 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0573 FORWARD PRIMER <400> 145 gccggcttca tgatatcacc aa 22 <210> 146 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0573 REVERSE PRIMER <400> 146 gagggggccc aaaaatatct ttaat 25 <210> 147 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0574 FORWARD PRIMER <400> 147 atcaatgttg ccaaatgatg ctgc 24 <210> 148 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0574 REVERSE PRIMER <400> 148 tggagacctc gatcgaacta gcttt 25 <210> 149 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0575 FORWARD PRIMER <400> 149 tcggcagtat cgtcaggcac tc 22 <210> 150 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0575 REVERSE PRIMER <400> 150 ggcccatgca aatacacctg c 21 <210> 151 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0576 FORWARD PRIMER <400> 151 tgacgacgaa agggagccag t 21 <210> 152 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0576 REVERSE PRIMER <400> 152 gcagtatccc cagttcccca ctaat 25 <210> 153 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0577 FORWARD PRIMER <400> 153 agagttcttc ctccttgtgg gtgtg 25 <210> 154 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0577 REVERSE PRIMER <400> 154 ttagttgcgg atcttccatc agcta 25 <210> 155 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0578 FORWARD PRIMER <400> 155 acactccaac tcttccatcg aagga 25 <210> 156 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0578 REVERSE PRIMER <400> 156 tccactgttg attcaggcat tgagt 25 <210> 157 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0579 FORWARD PRIMER <400> 157 gcagacgatc catcttgccc a 21 <210> 158 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0579 REVERSE PRIMER <400> 158 cgaggagaag aaggagactg agcag 25 <210> 159 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RS0680 FORWARD PRIMER <400> 159 tcgccggaga gcatgttgtc 20 <210> 160 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0680 REVERSE PRIMER <400> 160 ccttggtaac aatctcctgg aggg 24 <210> 161 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0681 FORWARD PRIMER <400> 161 tatcaataat cgtacctggg agcgc 25 <210> 162 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0681 REVERSE PRIMER <400> 162 ccaggcgtca ggtgattata ttgct 25 <210> 163 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0682 FORWARD PRIMER <400> 163 cagggaaacg atggtgacaa cg 22 <210> 164 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS0682 REVERSE PRIMER <400> 164 tgaagcccat gcgaatccat t 21 <210> 165 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0683 FORWARD PRIMER <400> 165 aatgaagctg aagtgatgat gccac 25 <210> 166 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0683 REVERSE PRIMER <400> 166 tggcagccat agtgactgaa ggata 25 <210> 167 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0684 FORWARD PRIMER <400> 167 aacaagcatt ttccctatgc caca 24 <210> 168 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0684 REVERSE PRIMER <400> 168 agatttccca agatggacca agttg 25 <210> 169 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0685 FORWARD PRIMER <400> 169 tttgaatgaa agctcgcaga tgatc 25 <210> 170 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0685 REVERSE PRIMER <400> 170 tggaacttca agtgaaggct gtcag 25 <210> 171 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0686 FORWARD PRIMER <400> 171 ttgagcttat gaaaccaaca gccaa 25 <210> 172 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0686 REVERSE PRIMER <400> 172 tgaaatggcc gggagttaca atta 24 <210> 173 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0687 FORWARD PRIMER <400> 173 gaacttgggg ttcaccagag agatg 25 <210> 174 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0687 REVERSE PRIMER <400> 174 ggaaatgacc ccttgatcat gtgag 25 <210> 175 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0688 FORWARD PRIMER <400> 175 aggaagtgaa caacagcact cgtgt 25 <210> 176 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0688 REVERSE PRIMER <400> 176 tttattcgag ttgcgggaga cgt 23 <210> 177 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0689 FORWARD PRIMER <400> 177 cacaaccctt gctccttcca tg 22 <210> 178 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0689 REVERSE PRIMER <400> 178 cctctccagt aaggttgcca cagat 25 <210> 179 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0690 FORWARD PRIMER <400> 179 aggaatctca gggatatttg gagca 25 <210> 180 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0690 REVERSE PRIMER <400> 180 tggaaacctc actgcacttt ctgaa 25 <210> 181 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0691 FORWARD PRIMER <400> 181 gctgctagac tagttgatgc catgc 25 <210> 182 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0691 REVERSE PRIMER <400> 182 gaattgtggt tcctgctcca ttagg 25 <210> 183 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0692 FORWARD PRIMER <400> 183 gcacgccgat gtagtagaat ccg 23 <210> 184 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0692 REVERSE PRIMER <400> 184 ggaagttcta tgccgcgtga attg 24 <210> 185 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0693 FORWARD PRIMER <400> 185 acttcccttc ctaccctcgt tttca 25 <210> 186 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0693 REVERSE PRIMER <400> 186 aaccatagga gccaattctt ggaaa 25 <210> 187 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS07100 FORWARD PRIMER <400> 187 gagcacctgg ccaagcaaat cta 23 <210> 188 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS07100 REVERSE PRIMER <400> 188 ctgtaccggg aggtcagagg tga 23 <210> 189 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS07101 FORWARD PRIMER <400> 189 acattgagac cactgctagg cacaa 25 <210> 190 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS07101 REVERSE PRIMER <400> 190 gccgatgcta atagactcgc tgaat 25 <210> 191 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS07102 FORWARD PRIMER <400> 191 ggcagtaaaa tgcctcaaca ccaa 24 <210> 192 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS07102 REVERSE PRIMER <400> 192 ccatgcaaaa cgattcaaaa gtgg 24 <210> 193 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0794 FORWARD PRIMER <400> 193 tggaatcgag tttcccgtta ttcat 25 <210> 194 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0794 REVERSE PRIMER <400> 194 tcggtatcaa tggcgatgtt taatg 25 <210> 195 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS0795 FORWARD PRIMER <400> 195 cgtcatccaa gccagagacc gt 22 <210> 196 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0795 REVERSE PRIMER <400> 196 tggaagcgtt tctcccatgt ctg 23 <210> 197 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0796 FORWARD PRIMER <400> 197 cttctagaga agcggttgct tgca 24 <210> 198 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0796 REVERSE PRIMER <400> 198 gcgataacct catccttctg ctga 24 <210> 199 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0797 FORWARD PRIMER <400> 199 cattgagtga ctcgggatga tatgg 25 <210> 200 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS0797 REVERSE PRIMER <400> 200 gatctgctcc ctgctatttt gcg 23 <210> 201 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0798 FORWARD PRIMER <400> 201 atacgaccat gaagcctgcg ttct 24 <210> 202 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS0798 REVERSE PRIMER <400> 202 tacttagcgg aaacaagcgg cttc 24 <210> 203 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0799 FORWARD PRIMER <400> 203 tttgtaacct gccagcattc atttc 25 <210> 204 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS0799 REVERSE PRIMER <400> 204 ggggcaatgt tgtcttaatg ggtat 25 <210> 205 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RS08103 FORWARD PRIMER <400> 205 tcaatgcgtc tggcctgaca a 21 <210> 206 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08103 REVERSE PRIMER <400> 206 gagatattcc ggtgtgtgac accag 25 <210> 207 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS08104 FORWARD PRIMER <400> 207 tcagtgaccg tggatctgaa tgg 23 <210> 208 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08104 REVERSE PRIMER <400> 208 catgagaact tgcctgcaca gaatt 25 <210> 209 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08105 FORWARD PRIMER <400> 209 tgattactac ccagtcggct tcagc 25 <210> 210 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08105 REVERSE PRIMER <400> 210 tgcttctgcc cttgtctatg attca 25 <210> 211 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08106 FORWARD PRIMER <400> 211 tcaagttacc gtaggccagt gtgtg 25 <210> 212 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS08106 REVERSE PRIMER <400> 212 gcctctcccc acagaatgat cag 23 <210> 213 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08107 FORWARD PRIMER <400> 213 aggtgtatgt agggcctttt gttcg 25 <210> 214 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08107 REVERSE PRIMER <400> 214 tggttttcaa atatgatgcc cagag 25 <210> 215 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08108 FORWARD PRIMER <400> 215 aatgatgggt gtgaatctat gcagc 25 <210> 216 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08108 REVERSE PRIMER <400> 216 gccctctcct ctcatctctc catta 25 <210> 217 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS08109 FORWARD PRIMER <400> 217 caatcatccc taatggtgag cagg 24 <210> 218 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RS08109 REVERSE PRIMER <400> 218 acaccgtgcg cgtcattgtc 20 <210> 219 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS08110 FORWARD PRIMER <400> 219 aggtatggac ggttattgag gcg 23 <210> 220 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08110 REVERSE PRIMER <400> 220 cagcttctgg tgtcatcctc atcat 25 <210> 221 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS08111 FORWARD PRIMER <400> 221 ctagacctct gcaacgccat tca 23 <210> 222 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS08111 REVERSE PRIMER <400> 222 catctgaata gcgaggccgt atca 24 <210> 223 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS08112 FORWARD PRIMER <400> 223 tcactggctt caatgaactt gcag 24 <210> 224 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS08112 REVERSE PRIMER <400> 224 tccaaacacg gctcttgaag ttaaa 25 <210> 225 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09113 FORWARD PRIMER <400> 225 gcatgcagtg ctttctaaca aatcc 25 <210> 226 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09113 REVERSE PRIMER <400> 226 tgcatgtttg gtctgtacac ctcaa 25 <210> 227 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09114 FORWARD PRIMER <400> 227 tccttctcaa gaactagctg cacca 25 <210> 228 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS09114 REVERSE PRIMER <400> 228 caaataccgg cgcatctttg ag 22 <210> 229 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09115 FORWARD PRIMER <400> 229 aatgctaata gtccgccatt tggaa 25 <210> 230 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09115 REVERSE PRIMER <400> 230 ttgatccaga aggtgactgc cagta 25 <210> 231 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09116 FORWARD PRIMER <400> 231 ttgatagcca ctttggacat gttgg 25 <210> 232 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS09116 REVERSE PRIMER <400> 232 gcattatggc cacacattga ttgaa 25 <210> 233 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS09117 FORWARD PRIMER <400> 233 aattgcgtct catctgttgg agct 24 <210> 234 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS09117 REVERSE PRIMER <400> 234 ttgggttggg actggcctta cta 23 <210> 235 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS10118 FORWARD PRIMER <400> 235 ggagatttcg tcatcgtgaa cgc 23 <210> 236 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS10118 REVERSE PRIMER <400> 236 tggagttgag agctggggat tca 23 <210> 237 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10119 FORWARD PRIMER <400> 237 tgtgcatctg tacacctctt gtccc 25 <210> 238 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS10119 REVERSE PRIMER <400> 238 gacgcccctc ctggtaatac agag 24 <210> 239 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10120 FORWARD PRIMER <400> 239 attgatttca acaacaagca tccgg 25 <210> 240 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10120 REVERSE PRIMER <400> 240 tgatgcaatg tcatgttgga agtga 25 <210> 241 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10121 FORWARD PRIMER <400> 241 ttatatttct tcacccgaca tggcc 25 <210> 242 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10121 REVERSE PRIMER <400> 242 ttgtgttgcc cttaaaacct aagca 25 <210> 243 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS10122 FORWARD PRIMER <400> 243 atggagcaga tgaccatcat cagc 24 <210> 244 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10122 REVERSE PRIMER <400> 244 cgttcactcg ggagattaaa atcca 25 <210> 245 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS10123 FORWARD PRIMER <400> 245 gtggtagatc agcgccagca tgt 23 <210> 246 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS10123 REVERSE PRIMER <400> 246 ccctagcttg gtcattgcac aaca 24 <210> 247 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10124 FORWARD PRIMER <400> 247 tcagtgcact tactgtcccc atctc 25 <210> 248 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS10124 REVERSE PRIMER <400> 248 ttggtgtttg aggaattgtc tcgc 24 <210> 249 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10125 FORWARD PRIMER <400> 249 ttgtaggtct acactgcatc gcgtt 25 <210> 250 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS10125 REVERSE PRIMER <400> 250 ttggcaacag aaaatacagt ggagg 25 <210> 251 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS11126 FORWARD PRIMER <400> 251 cgagctgtgt tttgcttgac attg 24 <210> 252 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS11126 REVERSE PRIMER <400> 252 ccttcatgaa agatgcacgg tgaa 24 <210> 253 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11127 FORWARD PRIMER <400> 253 atcgatcaat gtacttgcag atggg 25 <210> 254 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RS11127 REVERSE PRIMER <400> 254 aaagcctgac gcatcatcgc ta 22 <210> 255 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11128 FORWARD PRIMER <400> 255 ggtagcatcc caagagagct cttca 25 <210> 256 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11128 REVERSE PRIMER <400> 256 gctctggaaa gatcgtcgaa tgaaa 25 <210> 257 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11129 FORWARD PRIMER <400> 257 tgcatttggt catcttcagc tcttc 25 <210> 258 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11129 REVERSE PRIMER <400> 258 tcatgcctat ctaggttcct ccacc 25 <210> 259 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11130 FORWARD PRIMER <400> 259 gagatgacaa gaagcccata ttccc 25 <210> 260 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11130 REVERSE PRIMER <400> 260 ggcagatccc gtcttttcta ttcaa 25 <210> 261 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11131 FORWARD PRIMER <400> 261 cctttatacc acaggtaccc ggtca 25 <210> 262 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS11131 REVERSE PRIMER <400> 262 tgggttcaag tccttccatc gat 23 <210> 263 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11132 FORWARD PRIMER <400> 263 ctaactcatc aatgaaggcc tgctg 25 <210> 264 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS11132 REVERSE PRIMER <400> 264 ggacaagggc acagtctcca aaa 23 <210> 265 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS11133 FORWARD PRIMER <400> 265 gtgcttgctt ggcaatcacc att 23 <210> 266 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11133 REVERSE PRIMER <400> 266 ctccacagtt catctatcac ccgaa 25 <210> 267 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11134 FORWARD PRIMER <400> 267 gcttctcgat agtttgatgc attgc 25 <210> 268 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11134 REVERSE PRIMER <400> 268 gcaactcgca gatagaacct ggaat 25 <210> 269 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11135 FORWARD PRIMER <400> 269 aggtaacgga cagtcctgat tgacc 25 <210> 270 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS11135 REVERSE PRIMER <400> 270 gatgcatgag gccagtaaga ttgg 24 <210> 271 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS11136 FORWARD PRIMER <400> 271 tggccgagtc tttctctgcg tata 24 <210> 272 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11136 REVERSE PRIMER <400> 272 cgagatgatg aatgcaagga cttga 25 <210> 273 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11137 FORWARD PRIMER <400> 273 aaatcgtgaa gcagatcatg aaccg 25 <210> 274 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS11137 REVERSE PRIMER <400> 274 gcattgagtc gaaaacggtt ccttt 25 <210> 275 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12138 FORWARD PRIMER <400> 275 gactgacttt gccatcatga ccttg 25 <210> 276 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS12138 REVERSE PRIMER <400> 276 ccaacagcaa gagcaaggca gata 24 <210> 277 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12139 FORWARD PRIMER <400> 277 tcttcttttg gaacagtgat ggctg 25 <210> 278 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12139 REVERSE PRIMER <400> 278 gcaccggttg tgtctgaaag aagta 25 <210> 279 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12140 FORWARD PRIMER <400> 279 cctttgtgtg gaaaacgcaa gtaaa 25 <210> 280 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12140 REVERSE PRIMER <400> 280 gccatgtaaa aggcatcctg tcaaa 25 <210> 281 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12141 FORWARD PRIMER <400> 281 actccagctt aaaaagggat ccgag 25 <210> 282 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS12141 REVERSE PRIMER <400> 282 tattgtagtt ggcagggcca tgtc 24 <210> 283 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> RS12142 FORWARD PRIMER <400> 283 gaggcaatcc atcaccatca ggt 23 <210> 284 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12142 REVERSE PRIMER <400> 284 gcggctctta aagtttgatg gacat 25 <210> 285 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12143 FORWARD PRIMER <400> 285 ttttgagttc ccaccaagag aatcc 25 <210> 286 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12143 REVERSE PRIMER <400> 286 gcgagaagat atacggaacg gtgtt 25 <210> 287 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS12144 FORWARD PRIMER <400> 287 taatggagct ttcacggttc atgc 24 <210> 288 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12144 REVERSE PRIMER <400> 288 tcgtggtatg taactatggc cgaca 25 <210> 289 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12145 FORWARD PRIMER <400> 289 agaatgataa tttgtgtggc gctga 25 <210> 290 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> RS12145 REVERSE PRIMER <400> 290 tgcacggtcc ttctacgtta atgg 24 <210> 291 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12146 FORWARD PRIMER <400> 291 tgatctggca atcaagtcat gaagg 25 <210> 292 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RS12146 REVERSE PRIMER <400> 292 ggcgattcct gtgtactgtt ggttt 25

Claims (4)

삭제delete RS011에 대한 서열번호 1 및 2로 표시되는 프라이머 쌍, RS0110에 대한 서열번호 3 및 4로 표시되는 프라이머 쌍, RS0111에 대한 서열번호 5 및 6으로 표시되는 프라이머 쌍, RS0112에 대한 서열번호 7 및 8로 표시되는 프라이머 쌍, RS0113에 대한 서열번호 9 및 10으로 표시되는 프라이머 쌍, RS0114에 대한 서열번호 11 및 12로 표시되는 프라이머 쌍, RS0115에 대한 서열번호 13 및 14로 표시되는 프라이머 쌍, RS0116에 대한 서열번호 15 및 16으로 표시되는 프라이머 쌍, RS0117에 대한 서열번호 17 및 18로 표시되는 프라이머 쌍, RS0118에 대한 서열번호 19 및 20으로 표시되는 프라이머 쌍, RS0119에 대한 21 및 22로 표시되는 프라이머 쌍, RS012에 대한 서열번호 23 및 24로 표시되는 프라이머 쌍, RS0120에 대한 서열번호 25 및 26으로 표시되는 프라이머 쌍, RS0121에 대한 서열번호 27 및 28로 표시되는 프라이머 쌍, RS0122에 대한 서열번호 29 및 30으로 표시되는 프라이머 쌍, RS0123에 대한 서열번호 31 및 32로 표시되는 프라이머 쌍, RS0124에 대한 서열번호 33 및 34로 표시되는 프라이머 쌍, RS0125에 대한 서열번호 35 및 36으로 표시되는 프라이머 쌍, RS013에 대한 서열번호 37 및 38로 표시되는 프라이머 쌍, RS014에 대한 서열번호 39 및 40으로 표시되는 프라이머 쌍, RS015에 대한 서열번호 41 및 42로 표시되는 프라이머 쌍, RS016에 대한 서열번호 43 및 44로 표시되는 프라이머 쌍, RS017에 대한 서열번호 45 및 46으로 표시되는 프라이머 쌍, RS018에 대한 서열번호 47 및 48로 표시되는 프라이머 쌍, RS019에 대한 서열번호 49 및 50으로 표시되는 프라이머 쌍, RS0226에 대한 서열번호 51 및 52로 표시되는 프라이머 쌍, RS0227에 대한 서열번호 53 및 54로 표시되는 프라이머 쌍, RS0228에 대한 서열번호 55 및 56으로 표시되는 프라이머 쌍, RS0229에 대한 서열번호 57 및 58로 표시되는 프라이머 쌍, RS0230에 대한 서열번호 59 및 60으로 표시되는 프라이머 쌍, RS0231에 대한 서열번호 61 및 62로 표시되는 프라이머 쌍, RS0232에 대한 서열번호 63 및 64로 표시되는 프라이머 쌍, RS0233에 대한 서열번호 65 및 66으로 표시되는 프라이머 쌍, RS0234에 대한 서열번호 67 및 68로 표시되는 프라이머 쌍, RS0235에 대한 서열번호 69 및 70으로 표시되는 프라이머 쌍, RS0236에 대한 서열번호 71 및 72로 표시되는 프라이머 쌍, RS0237에 대한 서열번호 73 및 74로 표시되는 프라이머 쌍, RS0238에 대한 서열번호 75 및 76으로 표시되는 프라이머 쌍, RS0239에 대한 서열번호 77 및 78로 표시되는 프라이머 쌍, RS0240에 대한 서열번호 79 및 80으로 표시되는 프라이머 쌍, RS0241에 대한 서열번호 81 및 82로 표시되는 프라이머 쌍, RS0242에 대한 서열번호 83 및 84로 표시되는 프라이머 쌍, RS0243에 대한 서열번호 85 및 86으로 표시되는 프라이머 쌍, RS0244에 대한 서열번호 87 및 88로 표시되는 프라이머 쌍, RS0245에 대한 서열번호 89 및 90으로 표시되는 프라이머 쌍, RS0246에 대한 서열번호 91 및 92로 표시되는 프라이머 쌍, RS0347에 대한 서열번호 93 및 94로 표시되는 프라이머 쌍, RS0348에 대한 서열번호 95 및 96으로 표시되는 프라이머 쌍, RS0349에 대한 서열번호 97 및 98로 표시되는 프라이머 쌍, RS0350에 대한 서열번호 99 및 100으로 표시되는 프라이머 쌍, RS0351에 대한 서열번호 101 및 102로 표시되는 프라이머 쌍, RS0352에 대한 서열번호 103 및 104로 표시되는 프라이머 쌍, RS0353에 대한 서열번호 105 및 106으로 표시되는 프라이머 쌍, RS0354에 대한 서열번호 107 및 108로 표시되는 프라이머 쌍, RS0355에 대한 서열번호 109 및 110으로 표시되는 프라이머 쌍, RS0356에 대한 서열번호 111 및 112로 표시되는 프라이머 쌍, RS0457에 대한 서열번호 113 및 114로 표시되는 프라이머 쌍, RS0458에 대한 서열번호 115 및 116으로 표시되는 프라이머 쌍, RS0459에 대한 서열번호 117 및 118로 표시되는 프라이머 쌍, RS0460에 대한 서열번호 119 및 120으로 표시되는 프라이머 쌍, RS0461에 대한 서열번호 121 및 122로 표시되는 프라이머 쌍, RS0462에 대한 서열번호 123 및 124로 표시되는 프라이머 쌍, RS0463에 대한 서열번호 125 및 126으로 표시되는 프라이머 쌍, RS0464에 대한 서열번호 127 및 128로 표시되는 프라이머 쌍, RS0465에 대한 서열번호 129 및 130으로 표시되는 프라이머 쌍, RS0466에 대한 서열번호 131 및 132로 표시되는 프라이머 쌍, RS0467에 대한 서열번호 133 및 134로 표시되는 프라이머 쌍, RS0468에 대한 서열번호 135 및 136으로 표시되는 프라이머 쌍, RS0469에 대한 서열번호 137 및 138로 표시되는 프라이머 쌍, RS0470에 대한 서열번호 139 및 140으로 표시되는 프라이머 쌍, RS0471에 대한 서열번호 141 및 142로 표시되는 프라이머 쌍, RS0572에 대한 서열번호 143 및 144로 표시되는 프라이머 쌍, RS0573에 대한 서열번호 145 및 146으로 표시되는 프라이머 쌍, RS0574에 대한 서열번호 147 및 148로 표시되는 프라이머 쌍, RS0575에 대한 서열번호 149 및 150으로 표시되는 프라이머 쌍, RS0576에 대한 서열번호 151 및 152로 표시되는 프라이머 쌍, RS0577에 대한 서열번호 153 및 154로 표시되는 프라이머 쌍, RS0578에 대한 서열번호 155 및 156으로 표시되는 프라이머 쌍, RS0579에 대한 서열번호 157 및 158로 표시되는 프라이머 쌍, RS0680에 대한 서열번호 159 및 160으로 표시되는 프라이머 쌍, RS0681에 대한 서열번호 161 및 162로 표시되는 프라이머 쌍, RS0682에 대한 서열번호 163 및 164로 표시되는 프라이머 쌍, RS0683에 대한 서열번호 165 및 166으로 표시되는 프라이머 쌍, RS0684에 대한 서열번호 167 및 168로 표시되는 프라이머 쌍, RS0685에 대한 서열번호 169 및 170으로 표시되는 프라이머 쌍, RS0686에 대한 서열번호 171 및 172로 표시되는 프라이머 쌍, RS0687에 대한 서열번호 173 및 174로 표시되는 프라이머 쌍, RS0688에 대한 서열번호 175 및 176으로 표시되는 프라이머 쌍, RS0689에 대한 서열번호 177 및 178로 표시되는 프라이머 쌍, RS0690에 대한 서열번호 179 및 180으로 표시되는 프라이머 쌍, RS0691에 대한 서열번호 181 및 182로 표시되는 프라이머 쌍, RS0692에 대한 서열번호 183 및 184로 표시되는 프라이머 쌍, RS0693에 대한 서열번호 185 및 186으로 표시되는 프라이머 쌍, RS07100에 대한 서열번호 187 및 188로 표시되는 프라이머 쌍, RS07101에 대한 서열번호 189 및 190으로 표시되는 프라이머 쌍, RS07102에 대한 서열번호 191 및 192로 표시되는 프라이머 쌍, RS0794에 대한 서열번호 193 및 194로 표시되는 프라이머 쌍, RS0795에 대한 서열번호 195 및 196으로 표시되는 프라이머 쌍, RS0796에 대한 서열번호 197 및 198로 표시되는 프라이머 쌍, RS0797에 대한 서열번호 199 및 200으로 표시되는 프라이머 쌍, RS0798에 대한 서열번호 201 및 202로 표시되는 프라이머 쌍, RS0799에 대한 서열번호 203 및 204로 표시되는 프라이머 쌍, RS08103에 대한 서열번호 205 및 206으로 표시되는 프라이머 쌍, RS08104에 대한 서열번호 207 및 208로 표시되는 프라이머 쌍, RS08105에 대한 서열번호 209 및 210으로 표시되는 프라이머 쌍, RS08106에 대한 서열번호 211 및 212로 표시되는 프라이머 쌍, RS08107에 대한 서열번호 213 및 214로 표시되는 프라이머 쌍, RS08108에 대한 서열번호 215 및 216으로 표시되는 프라이머 쌍, RS08109에 대한 서열번호 217 및 218로 표시되는 프라이머 쌍, RS08110에 대한 서열번호 219 및 220으로 표시되는 프라이머 쌍, RS08111에 대한 서열번호 221 및 222로 표시되는 프라이머 쌍, RS08112에 대한 서열번호 223 및 224로 표시되는 프라이머 쌍, RS09113에 대한 서열번호 225 및 226으로 표시되는 프라이머 쌍, RS09114에 대한 서열번호 227 및 228로 표시되는 프라이머 쌍, RS09115에 대한 서열번호 229 및 230으로 표시되는 프라이머 쌍, RS09116에 대한 서열번호 231 및 232로 표시되는 프라이머 쌍, RS09117에 대한 서열번호 233 및 234로 표시되는 프라이머 쌍, RS10118에 대한 서열번호 235 및 236으로 표시되는 프라이머 쌍, RS10119에 대한 서열번호 237 및 238로 표시되는 프라이머 쌍, RS10120에 대한 서열번호 239 및 240으로 표시되는 프라이머 쌍, RS10121에 대한 서열번호 241 및 242로 표시되는 프라이머 쌍, RS10122에 대한 서열번호 243 및 244로 표시되는 프라이머 쌍, RS10123에 대한 서열번호 245 및 246으로 표시되는 프라이머 쌍, RS10124에 대한 서열번호 247 및 248로 표시되는 프라이머 쌍, RS10125에 대한 서열번호 249 및 250으로 표시되는 프라이머 쌍, RS11126에 대한 서열번호 251 및 252로 표시되는 프라이머 쌍, RS11127에 대한 서열번호 253 및 254로 표시되는 프라이머 쌍, RS11128에 대한 서열번호 255 및 256으로 표시되는 프라이머 쌍, RS11129에 대한 서열번호 257 및 258로 표시되는 프라이머 쌍, RS11130에 대한 서열번호 259 및 260으로 표시되는 프라이머 쌍, RS11131에 대한 서열번호 261 및 262로 표시되는 프라이머 쌍, RS11132에 대한 서열번호 263 및 264로 표시되는 프라이머 쌍, RS11133에 대한 서열번호 265 및 266으로 표시되는 프라이머 쌍, RS11134에 대한 서열번호 267 및 268로 표시되는 프라이머 쌍, RS11135에 대한 서열번호 269 및 270으로 표시되는 프라이머 쌍, RS11136에 대한 서열번호 271 및 272로 표시되는 프라이머 쌍, RS11137에 대한 서열번호 273 및 274로 표시되는 프라이머 쌍, RS12138에 대한 서열번호 275 및 276으로 표시되는 프라이머 쌍, RS12139에 대한 서열번호 277 및 278로 표시되는 프라이머 쌍, RS12140에 대한 서열번호 279 및 280으로 표시되는 프라이머 쌍, RS12141에 대한 서열번호 281 및 282로 표시되는 프라이머 쌍, RS12142에 대한 서열번호 283 및 284로 표시되는 프라이머 쌍, RS12143에 대한 서열번호 285 및 286으로 표시되는 프라이머 쌍, RS12144에 대한 서열번호 287 및 288로 표시되는 프라이머 쌍, RS12145에 대한 서열번호 289 및 290으로 표시되는 프라이머 쌍, 및 RS12146에 대한 서열번호 291 및 292로 표시되는 프라이머 쌍을 모두 포함하는, 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기(stem diameter)와 관련된 양적형질 유전자좌(QTLs, quantitative trait loci)를 결정하기 위한 유전지도 작성용 CAPS(cleaved amplified polymorphic sequences) 마커 증폭용 프라이머 세트.
1 and 2 for RS011, a pair of primers represented by SEQ ID NOs: 3 and 4 for RS0110, a pair of primers represented by SEQ ID NOs: 5 and 6 for RS0111, a pair of SEQ ID NOs: 7 and 8 for RS0112 , Primer pairs shown in SEQ ID NOs: 9 and 10 for RS0113, primer pairs shown in SEQ ID NOs: 11 and 12 for RS0114, primer pairs shown in SEQ ID NOs: 13 and 14 for RS0115, primer pairs shown in RS0116 A pair of primers represented by SEQ ID NOs: 15 and 16 for RS0117, a pair of primers represented by SEQ ID NOs: 17 and 18 for RS0117, a pair of primers represented by SEQ ID NOs: 19 and 20 for RS0118, a pair of primers represented by 21 and 22 for RS0119 Pair, a pair of primers represented by SEQ ID NOs: 23 and 24 for RS012, a pair of primers represented by SEQ ID NOs: 25 and 26 for RS0120, a pair of SEQ ID NOs: 27 and 28 for RS0121 The primer pair shown in SEQ ID NOs: 29 and 30 for RS0122, the primer pair shown in SEQ ID NOs: 31 and 32 for RS0123, the primer pair shown in SEQ ID NOs: 33 and 34 for RS0124, the sequence for RS0125 37 and 38 for RS013, a pair of primers represented by SEQ ID NOs: 39 and 40 for RS014, a pair of primers represented by SEQ ID NOs: 41 and 42 for RS015, a pair of primers represented by SEQ ID NOs: Primer pair shown in SEQ ID NO: 43 and 44 for RS016, primer pair shown in SEQ ID NO: 45 and 46 for RS017, primer pair shown in SEQ ID NO: 47 and 48 for RS018, SEQ ID NO: 49 And 50, a pair of primers represented by SEQ ID NOS: 51 and 52 for RS0226, a pair of primers represented by SEQ ID NOS: 53 and 54 for RS0227, a pair of primers represented by RS0 57, and 58 for RS0229, a pair of primers represented by SEQ ID NOs: 59 and 60 for RS0230, a pair of primers represented by SEQ ID NOs: 61 and 62 for RS0231, a pair of primers represented by SEQ ID NOs: , Primer pairs shown in SEQ ID NOs: 63 and 64 for RS0232, primer pairs shown in SEQ ID NOs: 65 and 66 for RS0233, primer pairs shown in SEQ ID NOs: 67 and 68 for RS0234, primer pairs shown in RS0235 The primer pair shown in SEQ ID NOs: 69 and 70 for RS0236, the primer pair shown in SEQ ID NOs: 71 and 72 for RS0236, the primer pair shown in SEQ ID NOs: 73 and 74 for RS0237, and the SEQ ID NOs: 75 and 76 for RS0238 Primer pair shown in SEQ ID NO: 77 and 78 for RS0239, primer pair shown in SEQ ID NO: 79 and 80 for RS0240, sequence for RS0241 A primer pair represented by SEQ ID NO: 81 and 82, a primer pair represented by SEQ ID NO: 83 and 84 for RS0242, a primer pair represented by SEQ ID NO: 85 and 86 for RS0243, a primer pair represented by SEQ ID NO: 87 and 88 for RS0244 Pair, a pair of primers represented by SEQ ID NOs: 89 and 90 for RS0245, a pair of primers represented by SEQ ID NOs: 91 and 92 for RS0246, a pair of primers represented by SEQ ID NOs: 93 and 94 for RS0347, And 96, a pair of primers represented by SEQ ID NOs: 97 and 98 for RS0349, a pair of primers represented by SEQ ID NOs: 99 and 100 for RS0350, a pair of primers represented by SEQ ID NOs: 101 and 102 for RS0351, The primer pair shown in SEQ ID NO: 103 and 104 for RS0352, the primer pair shown in SEQ ID NO: 105 and 106 for RS0353, the SEQ ID NO: 107 and 1 08, a pair of primers represented by SEQ ID NOs: 109 and 110 for RS0355, a pair of primers represented by SEQ ID NOs: 111 and 112 for RS0356, a pair of primers represented by SEQ ID NOs: 113 and 114 for RS0457, a pair of primers represented by RS0458 117 and 118 for RS0459, a pair of primers represented by SEQ ID NOs: 119 and 120 for RS0460, a pair of primers represented by SEQ ID NO: 121 and 122 for RS0461 The primer pair shown in SEQ ID NO: 123 and 124 for RS0462, the primer pair shown in SEQ ID NO: 125 and 126 for RS0463, the primer pair shown in SEQ ID NO: 127 and 128 for RS0464, the primer pair shown in SEQ ID NO: The primer pair shown in SEQ ID NO: 129 and 130, the primer pair shown in SEQ ID NO: 131 and 132 for RS0466, the SEQ ID NO: 133 134, a pair of primers represented by SEQ ID NOs: 135 and 136 for RS0468, a pair of primers represented by SEQ ID NOs: 137 and 138 for RS0469, a pair of primers represented by SEQ ID NOs: 139 and 140 for RS0470, a pair of primers represented by RS0471 The primer pair shown in SEQ ID NO: 141 and 142, the primer pair shown in SEQ ID NO: 143 and 144 for RS0572, the primer pair shown in SEQ ID NO: 145 and 146 for RS0573, and the SEQ ID NO: 147 and 148 for RS0574 The primer pair shown in SEQ ID Nos. 149 and 150 for RS0575, the primer pair shown in SEQ ID Nos. 151 and 152 for RS0576, the primer pair shown in SEQ ID Nos. 153 and 154 for RS0577, the primer pair for RS0578 A pair of primers represented by SEQ ID NOs: 155 and 156, a pair of primers represented by SEQ ID NOs: 157 and 158 for RS0579, a pair of SEQ ID NO: 159 for RS0680 And 160, a pair of primers represented by SEQ ID NOs: 161 and 162 for RS0681, a pair of primers represented by SEQ ID NOs: 163 and 164 for RS0682, a pair of primers represented by SEQ ID NOs: 165 and 166 for RS0683, The primer pair shown in SEQ ID NOs: 167 and 168 for RS0684, the primer pair shown in SEQ ID NOs: 169 and 170 for RS0685, the primer pair shown in SEQ ID NOs: 171 and 172 for RS0686, the SEQ ID NOs: 173 and 174 , Primer pairs shown in SEQ ID NOs: 175 and 176 for RS0688, primer pairs shown in SEQ ID NOs: 177 and 178 for RS0689, primer pairs shown in SEQ ID NOs: 179 and 180 for RS0690, primer pairs shown in RS0691 181 and 182 for RS0692, a pair of primers represented by SEQ ID NOs: 183 and 184 for RS0692, a pair of primers represented by SEQ ID NO: 185 and 186, a pair of primers represented by SEQ ID NOs: 187 and 188 for RS07100, a pair of primers represented by SEQ ID NOs: 189 and 190 for RS07101, a pair of primers represented by SEQ ID NOs: 191 and 192 for RS07102 , Primer pairs shown in SEQ ID NOs: 193 and 194 for RS0794, primer pairs shown in SEQ ID NOs: 195 and 196 for RS0795, primer pairs shown in SEQ ID NOs: 197 and 198 for RS0796, SEQ ID NO: 199 for RS0797, 200, a pair of primers represented by SEQ ID NOs: 201 and 202 for RS0798, a pair of primers represented by SEQ ID NOs: 203 and 204 for RS0799, a pair of primers represented by SEQ ID NOs: 205 and 206 for RS08103, a pair of primers represented by RS08104 A pair of primers represented by SEQ ID NOs: 207 and 208 for RS08105, a pair of primers represented by SEQ ID NOs: 209 and 210 for RS08105, A pair of primers represented by SEQ ID NOs: 211 and 212, a pair of primers represented by SEQ ID NOs: 213 and 214 for RS08107, a pair of primers represented by SEQ ID NOs: 215 and 216 for RS08108, a pair of SEQ ID NOs: 217 and 218 for RS08109 A primer pair shown in SEQ ID NOs: 219 and 220 for RS08110, a primer pair shown in SEQ ID NOs: 221 and 222 for RS08111, a primer pair shown in SEQ ID NOs: 223 and 224 for RS08112, a primer pair shown in SEQ ID NO: 225 and 226, a pair of primers represented by SEQ ID NOs: 227 and 228 for RS09114, a pair of primers represented by SEQ ID NOs: 229 and 230 for RS09115, a pair of primers represented by SEQ ID NOs: 231 and 232 for RS09116 233 and 234 for RS09117, a pair of primers represented by SEQ ID NOs: 235 and 236 for RS10118, a pair of primers represented by RS 239 and 240 for RS10120, a pair of primers represented by SEQ ID NOS: 241 and 242 for RS10121, a pair of primers represented by SEQ ID NOS: 243 and 244 for RS10122 245 and 246 for RS10123, a pair of primers represented by SEQ ID Nos: 247 and 248 for RS10124, a pair of primers represented by SEQ ID N0: 249 and 250 for RS10125, a pair of primers represented by RS11126 A pair of primers represented by SEQ ID NOS: 251 and 252 for RS11127, a pair of primers represented by Nos. 253 and 254 for RS11127, a pair of primers represented by Nos. 255 and 256 for RS11128, and Nos. 257 and 258 for RS11129 The primer pair shown in SEQ ID NO: 259 and 260 for RS11130, the primer pair shown in SEQ ID NO: 261 and 262 for RS11131 A pair of primers represented by SEQ ID NOS: 263 and 264 for RS11132, a pair of primers represented by SEQ ID NOS: 265 and 266 for RS11133, a pair of primers represented by SEQ ID NOS: 267 and 268 for RS11134, 269 and 270, a pair of primers represented by SEQ ID NOS: 271 and 272 for RS11136, a pair of primers represented by SEQ ID NOS: 273 and 274 for RS11137, a pair of primers represented by SEQ ID NOS: 275 and 276 for RS12138 279 and 278 for RS12139, a pair of primers represented by SEQ ID NOS: 279 and 280 for RS12140, a pair of primers represented by SEQ ID NOS: 281 and 282 for RS12141, an Nos. 283 and 283 for RS12142, 284, a pair of primers represented by SEQ ID NOS: 285 and 286 for RS12143, a pair of primers represented by SEQ ID NOS: 287 and 288 for RS12144 And the primer pairs shown in SEQ ID NOS: 289 and 290 for RS12145 and the primer pairs shown in SEQ ID NOS: 291 and 292 for RS12146, A primer set for cleaved amplified polymorphic sequences (CAPS) marker amplification for genetic mapping to determine quantitative trait loci associated with stem diameters (QTLs).
제2항에 있어서, 상기 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기 관련 양적형질 유전자좌(QTL)는, 1번 염색체상의 RS0124 및 RS0125 사이에 위치하고, LOD(logarithm of the odds) 값이 3.26으로 기호벼의 대립유전자(allele)가 1절굵기를 0.07cm 증가시키며, 5.02%의 1절굵기 표현형 변이를 나타내는 특징을 가지는 "qI1D1"로 명명된 QTL, 5번 염색체상의 RM6841 및 RS0578 사이에 위치하고, LOD 값이 6.09로 밀양23호의 대립유전자가 1절굵기를 0.10cm 증가시키며, 8.99%의 1절굵기 표현형 변이를 나타내는 특징을 가지는 "qI1D5"로 명명된 QTL, 1번 염색체상의 STS01039 및 RS0124 사이에 위치하고, LOD 값이 3.17로 기호벼의 대립유전자가 3절굵기를 0.18cm 증가시키며, 6.53%의 3절굵기 표현형 변이를 나타내는 특징을 가지는 "qI3D1"로 명명된 QTL, 또는 1번 염색체상의 STS01039 및 RS0124 사이에 위치하고, LOD 값이 4.61로 기호벼의 대립유전자가 4절굵기를 0.25cm 증가시키며, 9.97%의 4절굵기 표현형 변이를 나타내는 특징을 가지는 "qI4D1"로 명명된 QTL인 것을 특징으로 하는, 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기와 관련된 양적형질 유전자좌를 결정하기 위한 유전지도 작성용 CAPS 마커 증폭용 프라이머 세트.
3. The method according to claim 2, wherein the stem-related quantitative trait loci (QTL) of the recombinant subspecies of Milyang 23 and the rice paddy are located between RS0124 and RS0125 on chromosome 1 and the logarithm of the odds value is 3.26 , The allele of the rice paddy is located between QTL named "qI1D1", RM6841 and RS0578 on chromosome 5, which increases the thickness of the 1st section by 0.07 cm and is characterized by a 5.02% 1-fold phenotypic variation , An LOD value of 6.09, an allele of Miryang 23 increased by 0.10 cm in thickness of the first section, a QTL named "qI1D5" with a characteristic of showing a one-fold thickness phenotypic variation of 8.99%, between STS01039 and RS0124 on chromosome 1 , QTL named "qI3D1" with an LOD value of 3.17, an allele of the common rice with a 3-fold thickness variation of 0.15 cm and a 6.53% 3-fold phenotypic variation, or STS01039 on chromosome 1 And RS0124 , The LOD value is 4.61, and the allele of the reference rice is a QTL named "qI4D1", which increases the 4-fold thickness by 0.25 cm and exhibits a 9.97% 4-fold phenotypic variation. And a primer set for CAPS marker amplification for genetic mapping to determine the quantitative trait loci associated with the stem thickness of the recombinant control group of rice.
유전지도 작성용 집단으로 밀양23호 및 기호벼의 재조합자식 계통을 대상으로 제2항에 따른 CAPS 마커 증폭용 프라이머 세트를 이용하여 PCR을 수행하고, 상기 PCR로 분리된 CAPS 마커를 이용하여 제작된, 밀양23호 및 기호벼의 재조합자식 집단의 줄기굵기 관련 양적형질 유전자좌를 결정하기 위한 도 3으로 표시되는 유전지도를 제작하는 방법.PCR was carried out using a primer set for CAPS marker amplification according to the second aspect of the recombinant strains of Milyang 23 and Korean rice paddy as a genetic mapping group and PCR was performed using the CAPS marker isolated by PCR , Milyang No. 23, and the recombinant control group of the representative rice paddy, in order to determine the stem-related quantitative trait locus.
KR1020140150002A 2014-10-31 2014-10-31 Qtl analysis of stem diameter and caps marker therefor KR101700596B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140150002A KR101700596B1 (en) 2014-10-31 2014-10-31 Qtl analysis of stem diameter and caps marker therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140150002A KR101700596B1 (en) 2014-10-31 2014-10-31 Qtl analysis of stem diameter and caps marker therefor

Publications (2)

Publication Number Publication Date
KR20160053150A KR20160053150A (en) 2016-05-13
KR101700596B1 true KR101700596B1 (en) 2017-02-01

Family

ID=56023054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140150002A KR101700596B1 (en) 2014-10-31 2014-10-31 Qtl analysis of stem diameter and caps marker therefor

Country Status (1)

Country Link
KR (1) KR101700596B1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Takayuki, K., et al., Plant Physiol., Vol.134, pp.676-683, (2004), "Identification and Functional Analysis of a Locus for Improvement of Lodging Resistance in Rice"
Wang, L., et al., Theor Appl Genet., Vol.122, pp.327-340, (2011) "Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines"
곽태순 외., Korean J Crop Sci., Vol.49(6), pp.539-545 (2004), "벼 밀양23호 X 기호벼 재조합 자식계통의 지역에 따른 품질 특성 관련 QTL 분석"
지현소 외., Kor. J. Breed. Sci., Vol.44(3), pp.273-281, (2012. 9), "벼의 밀양23호/기호벼 재조합자식 유전집단을 이용한 PCR 기반 DNA 마커들로 구성된 분자유전자지도 작성"

Also Published As

Publication number Publication date
KR20160053150A (en) 2016-05-13

Similar Documents

Publication Publication Date Title
Liu et al. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa
Hu et al. A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo
Yan et al. Analyses of the complete genome and gene expression of chloroplast of sweet potato [Ipomoea batata]
Li et al. Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton
US10590490B2 (en) QTLs associated with and methods for identifying whole plant field resistance to Sclerotinia
CA3175033A1 (en) Autoflowering markers
Xue et al. Chromosome level high-density integrated genetic maps improve the Pyrus bretschneideri ‘DangshanSuli’v1. 0 genome
CN109628630B (en) Gene obviously related to cotton coat-dividing character, SNP marker and application thereof
Skuza et al. Genetic diversity and relationship between cultivated, weedy and wild rye species as revealed by chloroplast and mitochondrial DNA non-coding regions analysis
Zheng et al. A consensus linkage map of common carp (Cyprinus carpio L.) to compare the distribution and variation of QTLs associated with growth traits
Wang et al. Construction of a high-density genetic map and analysis of seed-related traits using specific length amplified fragment sequencing for Cucurbita maxima
KR101696679B1 (en) Qtl analysis of culm length and caps marker therefor
US10526613B2 (en) QTLs associated with and methods for identifying shatter resistance in canola
CN101747420B (en) Dominant dwarf rice related protein, encoding gene thereof and application
KR101793042B1 (en) Molecular marker for selecting powdery mildew resistance gene in watermelon
Noh et al. A genome-wide association study for the detection of genes related to apple Marssonina blotch disease resistance in apples
Cavalet-Giorsa et al. Origin and evolution of the bread wheat D genome
WO2024108862A1 (en) Rice white leaf and panicle gene wlp3 and application thereof in rice stress resistance and yield increase
Yan et al. Analysis of the diversity and function of the alleles of the rice blast resistance genes Piz-t, Pita and Pik in 24 rice cultivars
KR101700596B1 (en) Qtl analysis of stem diameter and caps marker therefor
Zhao et al. Molecular mapping of a recessive gene for stripe rust resistance at the YrCf75 locus using bulked segregant analysis combined with single nucleotide polymorphism genotyping arrays and bulked segregant RNA-Sequencing
Wang et al. Bulked QTL-Seq identified a major QTL for the awnless trait in spring wheat cultivars in Qinghai, China
KR102172873B1 (en) SRPK4 gene for enhancing plant resistance to fusarium wilt and uses thereof
KR101570778B1 (en) SNP markers for discrimination of Bacterial Leaf Blight resistance line that anther-derived from Hwayeong rice
CN107022616B (en) Quinoa binary InDel molecular marker and development method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant