KR101697368B1 - Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same - Google Patents

Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same Download PDF

Info

Publication number
KR101697368B1
KR101697368B1 KR1020100087550A KR20100087550A KR101697368B1 KR 101697368 B1 KR101697368 B1 KR 101697368B1 KR 1020100087550 A KR1020100087550 A KR 1020100087550A KR 20100087550 A KR20100087550 A KR 20100087550A KR 101697368 B1 KR101697368 B1 KR 101697368B1
Authority
KR
South Korea
Prior art keywords
enzyme
butanol
ketoisovalerate
coa
isobutyryl
Prior art date
Application number
KR1020100087550A
Other languages
Korean (ko)
Other versions
KR20120025262A (en
Inventor
이상엽
최용준
박진환
Original Assignee
지에스칼텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사 filed Critical 지에스칼텍스 주식회사
Priority to KR1020100087550A priority Critical patent/KR101697368B1/en
Priority to PCT/KR2011/006607 priority patent/WO2012033334A2/en
Publication of KR20120025262A publication Critical patent/KR20120025262A/en
Application granted granted Critical
Publication of KR101697368B1 publication Critical patent/KR101697368B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/07Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with an iron-sulfur protein as acceptor (1.2.7)
    • C12Y102/070073-Methyl-2-oxobutanoate dehydrogenase (ferredoxin) (1.2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 부탄올 생성능이 개선된 재조합 미생물 및 이를 이용한 부탄올의 제조방법에 관한 것으로서, 더욱 상세하게는 L-발린의 전구체인 2-케토이소발레르산염을 중간체(intermediate)로 하여 부탄올을 생합성하는 재조합 미생물 및 이를 이용한 부탄올의 제조방법에 관한 것이다. 본 발명에 따른 재조합 미생물은 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorABC 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자가 도입되어 있는 것을 특징으로 한다.
본 발명에 따른 재조합 미생물은 기존의 클로스트리디움 아세토부틸리쿰(Clostridium acetobutylicum)과 달리 성장이 용이하고, 추가 대사흐름 조작으로 인한 균주개량의 가능성이 크므로 부탄올의 산업적 생성 미생물로 추가 대사흐름 조작으로 인한 균주개량의 가능성이 크므로 부탄올의 산업적 생성 미생물로 유용하며, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 과정을 단순화시킴으로써 부탄올 생성능이 개선된 재조합 미생물을 제공하는 효과가 있다.
The present invention relates to a recombinant microorganism having improved butanol production ability, and a method for producing butanol using the recombinant microorganism. More particularly, the present invention relates to a recombinant microorganism having improved butanol production ability by using 2-ketoisovalerate as a precursor of L-valine as an intermediate, And a method for producing butanol using the microorganism. The recombinant microorganism according to the present invention is characterized in that a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine is added to a microorganism having the ability to produce 2-ketoisovalerate as a microorganism which encodes a VorABC enzyme which is an enzyme for converting 2-ketoisovalerate into isobutyryl- A gene encoding an enzyme that converts isobutyryl-CoA into butyryl-CoA, a gene that codes an enzyme that converts butyryl-CoA into butylaldehyde, and a gene that encodes an enzyme that converts butylaldehyde to butanol Is introduced.
Since the recombinant microorganism according to the present invention is easy to grow unlike the conventional Clostridium acetobutylicum and has a high possibility of improving the strain due to the manipulation of the additional metabolic flow, the recombinant microorganism according to the present invention is industrially produced microorganism of butanol, , It is useful as an industrially produced microorganism of butanol and has an effect of providing a recombinant microorganism having improved butanol production ability by simplifying the process of converting 2-ketoisovalerate to isobutyryl-CoA have.

Description

부탄올 생성능이 개선된 재조합 미생물 및 이를 이용한 부탄올의 제조방법{Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same}TECHNICAL FIELD The present invention relates to a recombinant microorganism having improved butanol productivity and a method for producing butanol using the recombinant microorganism,

본 발명은 부탄올 생성능이 개선된 재조합 미생물 및 이를 이용한 부탄올의 제조방법에 관한 것으로서, 더욱 상세하게는 L-발린의 전구체인 2-케토이소발레르산염을 중간체(intermediate)로 하고 VorABC 유전자를 도입하여 2-케토이소발레르산염을 이소부티릴-CoA로 one-step으로 전환시킬 수 있는 부탄올 생성능이 개선된 재조합 미생물 및 이를 이용한 부탄올의 제조방법에 관한 것이다. The present invention relates to a recombinant microorganism having improved butanol productivity and a method for producing butanol using the same. More particularly, the present invention relates to a recombinant microorganism having improved butanol production ability by introducing a VorABC gene with an intermediate of 2-ketoisovalerate as a precursor of L- Which is capable of converting 2-ketoisovalerate into isobutyryl-CoA in one-step, and a process for producing butanol using the recombinant microorganism.

최근 고유가와 환경 문제로 인해 미생물을 이용한 바이오연료 생산이 큰 관심을 끌고 있다. 최근 바이오 부탄올이 휘발유의 대체 연료로 부상하면서 시장 규모가 매우 빠른 속도로 증가하고 있다. 현재 전세계적으로 연간 10~12 billion pound의 부탄올이 생산되고 있으며, 7~8.4 billion dollar의 시장규모를 이루고 있다 (Lee, S.Y. et al ., Biotechnology and Bioengineering 101: 209, 2008). 특히, 바이오부탄올은 에너지 밀도, 휘발성 제어, 충분한 옥탄가, 낮은 불순물 등 연료로서 적합한 특성을 갖고, 에탄올 보다 에너지 효율이 높고 휘발유와 더욱 잘 섞이며, 기존의 송유관이나 자동차 엔진 등을 그대로 사용할 수 있다는 장점을 지니고 있다. 따라서 대체연료로 가장 적합한 부탄올을 미생물을 이용하여 대량 생산한다면, 원유 수입 대체 효과 및 온실 가스 배출 감소로 인한 환경적 효과 등을 가져올 수 있다.Recently, due to high oil prices and environmental problems, biofuel production using microorganisms has attracted great interest. Recently, bio-butanol has emerged as an alternative fuel for petrol, and the market size is increasing rapidly. Currently, 10 to 12 billion pounds of butanol are produced annually around the world, with a market size of 7 to 8.4 billion dollars (Lee, SY et al ., Biotechnology and Bioengineering 101: 209, 2008). In particular, biobutanol has the characteristics of being suitable as a fuel, such as energy density, volatility control, sufficient octane number, low impurity, energy efficiency higher than ethanol, better mixing with gasoline, . Therefore, mass production of the most suitable butanol as a substitute fuel using microorganisms can bring about the effect of substituting crude oil imports and environmental effects due to the reduction of greenhouse gas emissions.

부탄올은 Clostridial 균주의 혐기적 ABE (Acetone-Butanol-Ethanol) fermentation에 의해 생물학적 방법으로 생산될 수 있는데 (Jones, D. T. and Woods, D. R., Microbiol . Rev., 50:484, 1986; Rogers, P., Adv . Appl . Microbiol., 31:1, 1986; Lesnik, E. A. et al ., Necleic Acids Research, 29: 3583, 2001), 이러한 방법이 1950년대 까지만 해도 40년 이상에 걸쳐 부탄올과 아세톤의 주요 공급원이었다. Clostridial 균주는 성장 조건이 까다롭고 분자생물학적 tool 및 omics technology 등이 완전히 갖추어져 있지 않아서 추가 균주 개량에 어려움이 있다.Butanol can be produced by biological methods by anaerobic ABE (Acetone-Butanol-Ethanol) fermentation of Clostridial strain (Jones, DT and Woods, DR, Microbiol . Rev. , 50: 484, 1986; Rogers, P., Adv . Appl . Microbiol ., 31: 1, 1986; Lesnik, EA et al ., Necleic Acids Research , 29: 3583, 2001), which was a major source of butanol and acetone for more than 40 years until the 1950s. Clostridial strains are difficult to grow because of poor growth conditions, complete molecular biology tools and omics technology.

따라서, 성장이 우수하고 다양한 omics technology가 구비된 대장균 등에서의 부탄올 생산이 요구되고 있다. 특히, 대사공학 또는 omics technology 등을 이용한 균주 개발이 전무한 상태이므로 무한한 개발 잠재력이 있다고 하겠다. Therefore, production of butanol from Escherichia coli having excellent growth and various omics technology is required. In particular, since there is no development of strains using metabolic engineering or omics technology, there is unlimited development potential.

클로스트리디움 아세토부틸리쿰(Clostridium acetobutylicum)에서의 부탄올 생성 경로는 도 1에 나타난 바와 같다 (Lee, S.Y. et al., Biotechnology and Bioengineering 101: 209, 2008). 대장균에도 해당 pathway를 도입하여 부탄올 생산이 시도되었는데, 이 중 일부 효소들 (crotonase, β-hydroxybutyryl-coenzyme A dehydrogenase, butyryl-CoA dehydrogenase)의 활성이 매우 낮거나 거의 없어서 (Boynton, Z. L. et al., J. Biotechnol., 178: 3015-3024, 1996) 클로스트리디움 아세토부틸리쿰에서처럼 효과적으로 해당 반응을 촉매화(catalyze)하기는 힘들다.The butanol production pathway in Clostridium acetobutylicum is shown in FIG. 1 (Lee, SY et al., Biotechnology and Bioengineering 101: 209, 2008). However, some enzymes (crotonase, β-hydroxybutyryl-coenzyme A dehydrogenase, and butyryl-CoA dehydrogenase) have very low or very little activity (Boynton, ZL et al. J. Biotechnol ., 178: 3015-3024, 1996) it is difficult to catalyze the reaction effectively as in Clostridium acetoobutylicum.

따라서, 부탄올 생합성 경로를 도입하여 부탄올 생성능을 가지는 재조합 박테리아를 제작하고, 이를 이용하여 부탄올 생산을 시도한 바 있으나, 그 생성량이 미미하였다 (WO2007/041269A2).Therefore, a butanol biosynthesis pathway was introduced to produce a recombinant bacterial having a butanol-producing ability, and butanol production was attempted using the recombinant bacteria, but the amount of the produced butanol was insignificant (WO 2007/041269 A2).

또한, 발린(valine)의 전구체인 2-케토산(ketoacid)로부터 부탄올, 이소부탄올 등의 다양한 체인(chain) 알코올 생산을 시도하였고(Shota Atsumi et al., Nature, 451, 2008), 재조합 미생물을 이용하여 피루베이트(pyruvate)로부터 α-케토이소발레르산염을 거쳐 이소부탄올 생산을 시도하였으나(US2007/0092957A1), 생산되는 부탄올 및 이소부탄올의 수율이 낮은 문제점이 있었다 (Shota Atsumi et al., Nature, 451, 2008).In addition, attempts have been made to produce various chain alcohols such as butanol and isobutanol from 2-ketoacid, a precursor of valine (Shota Atsumi et al ., Nature, 451, 2008) (US2007 / 0092957A1), the yield of butanol and isobutanol produced was low, although Shota Atsumi et al ., Nature , 451, 2008).

또한, 2-케토이소발레르산염을 부탄올로 전환시키는 대사회로를 새로이 구성하고, L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소를 코딩하는 유전자인 bkdAB-lpdV를 도입하여 부탄올 생성능을 가지는 재조합 미생물을 제작하였으나, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 과정에 bkdA1, bkdBlpdV 세가지 유전자가 복잡한 상호작용을 통해 관여하고 있어서 세 가지 유전자의 발현량을 조절하기 어렵다는 단점이 있었다.In addition, a metabolic circuit for converting 2-ketoisovalerate into butanol was newly constructed, and a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine was added with 2-ketoisovalerate as an isobutyl A recombinant microorganism having a butanol -producing ability was prepared by introducing bkdAB-lpdV , which is a gene coding for an enzyme that converts to l- CoA. However, bkdA1, bkdB, and bkdAB in the process of converting 2-ketoisovalerate to isobutyryl- The lpdV gene has been involved in complex interactions, making it difficult to control the expression levels of the three genes.

이에, 본 발명자들은 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 과정을 단순화시킴으로써 2-케토이소발레르산염을 부탄올로 전환시키는 효율을 증대시키기 위하여 예의 노력한 결과, VorA, VorBVorC 세 가지 유전자가 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 데 관여한다는 것을 규명함과 아울러 이를 도입한 재조합 미생물을 제작하고, 상기 재조합 미생물이 기존의 재조합 미생물에 비하여 부탄올 고생성능을 가지는 것을 확인하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have made intensive efforts to increase the efficiency of converting 2-ketoisovalerate to butanol by simplifying the process of converting 2-ketoisovalerate into isobutyryl-CoA. As a result, VorA, VorB and VorC genes were involved in the conversion of 2-ketoisovalerate into isobutyryl-CoA, and that recombinant microorganisms were introduced into the recombinant microorganism, and that the recombinant microorganism had higher butanol productivity And the present invention has been completed.

본 발명의 목적은 부탄올 생성능이 개선된 재조합 미생물 및 그 제조방법을 제공하는 데 있다. It is an object of the present invention to provide a recombinant microorganism having improved butanol production ability and a method for producing the recombinant microorganism.

본 발명의 다른 목적은 상기 재조합 미생물을 이용한 부탄올의 제조방법을 제공하는 데 있다. It is another object of the present invention to provide a process for producing butanol using the recombinant microorganism.

본 발명의 또 다른 목적은 VorABC 유전자가 도입되어 있는 2-케토이소발레르산염에서 이소부티릴-CoA 생성능을 가지는 재조합 미생물 및 이를 이용한 2-케토이소발레르산염에서 이소부티릴-CoA 를 생산하는 방법을 제공하는 데 있다.It is still another object of the present invention to provide a recombinant microorganism having the ability to produce isobutyryl-CoA in a 2-ketoisovalerate having an introduced VorABC gene and to produce isobutyryl-CoA from 2-ketoisovalerate using the same Method.

상기 목적을 달성하기 위하여, 본 발명은 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염(ketoisovalerate) 페레독신(ferredoxin) 리덕타제(reductase), 알파(alpha) 서브유닛(subunit)), VorB(2-옥소이소발레르산염(oxoisovalerate) 페레독신 옥시도리덕타제(oxidoreductase)) 및 VorC(2-케토이소발레르산염(ketoisovalerate) 페레독신 리덕타제, 감마(gamma) 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올(butanol)로 전환시키는 효소를 코딩하는 유전자를 도입시키는 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법을 제공한다.In order to accomplish the above object, the present invention provides a microorganism having the ability to produce 2-ketoisovalerate, which is a precursor of L-valine, to a microorganism having the ability to produce 2-ketoisovalerate as an enzyme for converting 2-ketoisovalerate into isobutyryl- Ketoisovalerate ferredoxin reductase, alpha subunit), VorB (2-oxoisovalerate ferredoxin oxydorodicta (< RTI ID = 0.0 > oxidoreductase) and VorC (ketoisovalerate ferredoxin reductase, gamma subunit), a gene coding for the VorABC enzyme, isobutyryl-CoA is converted to butyryl-CoA A gene encoding an enzyme that converts butyryl-CoA to butylaldehyde, and a gene encoding an enzyme that converts butylaldehyde to butanol. Provides a method for producing a recombinant microorganism.

본 발명은 또한, 상기 방법으로 제조되고, L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자가 도입되어 있는 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물을 제공한다.The present invention also relates to a microorganism having the ability to produce 2-ketoisovalerate which is a precursor of L-valine, which is produced by the above-mentioned method, and which has an ability to convert 2-ketoisovalerate into isobutyryl- (2-ketoisovalerate ferredoxin reductase, alpha subunit), VorB (2-oxoisovalerate ferredoxin oxydoryldexta) and VorC (2-ketoisovalerate ferredoxin reductase, Unit), a gene encoding an enzyme that converts isobutyryl-CoA to butyryl-CoA, a gene that codes for an enzyme that converts butyryl-CoA to butylaldehyde, and a gene encoding an enzyme that converts butylaldehyde A recombinant microorganism having a butanol-producing ability is provided, wherein a gene coding for an enzyme for converting the enzyme into butanol is introduced.

본 발명은 또한, L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자가 도입되어 있고, L-이소루신 생합성에 관여하는 효소를 코딩하는 유전자, L-루신 생합성에 관여하는 효소를 코딩하는 유전자, D-판토텐산 생합성에 관여하는 효소를 코딩하는 유전자 및 L-발린 생합성에 관여하는 효소를 코딩하는 유전자가 약화 또는 결실되어 있는 것임을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물을 제공한다.The present invention also relates to a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine, an enzyme which converts 2-ketoisovalerate into isobutyryl-CoA, VorA VorABC, which consists of VorB (2-oxoisovalerate peredoxin oxydoryldexta) and VorC (2-ketoisovalerate peredoxin reductase, gamma subunit) A gene encoding an enzyme that converts iso-butyryl-CoA into butyryl-CoA, a gene that codes an enzyme that converts butyryl-CoA into butylaldehyde, and an enzyme that converts butylaldehyde into butanol Encoding a gene coding for an enzyme involved in L-isoleucine biosynthesis, a gene encoding an enzyme involved in L-leucine biosynthesis, and an enzyme involved in D-pantothenic acid biosynthesis It provides a recombinant microorganism having high butanol producing ability, characterized in that L- and gene with a gene coding for the enzyme involved in valine biosynthesis is inactivated or deleted.

본 발명에 있어서, 상기 L-이소루신 생합성에 관여하는 효소를 코딩하는 유전자는 ilvA(트레오닌(threonine) 디하이드라타제(dehydratase)를 암호화하는 유전자)이고, 상기 L-루신 생합성에 관여하는 효소를 코딩하는 유전자는 leuA(2-이소프로필말레이트(isopropylmalate) 신타아제(synthase)를 암호화하는 유전자)이고, 상기 D-판토텐산 생합성에 관여하는 효소를 코딩하는 유전자는 panB(3-메틸-2-옥소부타노에이트(oxobutanoate) 하이드록시메틸트랜스페라제(hydroxymethyltransferase)를 암호화하는 유전자)이고, 상기 L-발린 생합성에 관여하는 효소를 코딩하는 유전자는 ilvE(가지달린 체인 아미노산 아미노트랜스페라제(aminotransferase)를 암호화하는 유전자)인 것을 특징으로 할 수 있다.In the present invention, the gene coding for the enzyme involved in L-isoleucine biosynthesis is ilvA (a gene encoding threonine dehydratase), and the enzyme involved in L-leucine biosynthesis The coding gene is leuA (a gene encoding isopropylmalate synthase), and the gene coding for the enzyme involved in D-pantothenic acid biosynthesis is panB (3-methyl-2-oxo Is a gene coding for oxobutanoate hydroxymethyltransferase), and the gene coding for the enzyme involved in L-valine biosynthesis is ilvE (chain amino acid aminotransferase) Encoding gene).

본 발명에 있어서, 상기 2-케토이소발레르산염의 생성능을 가지는 미생물은 (a) lacI(lac 오레론 억제인자(repressor)를 암호화하는 유전자) 유전자의 결실; (b) ilvH(아세토하이드록시산(acetohydroxy acid) 신타아제(synthase) 이소자임(isozyme) III) 유전자의 피드백 저해(feedback inhibition) 제거; (c) ilvGMEDA(아세토하이드록시산 신타아제 이소자임 I) 및 ilvBN(아세토하이드록시산 신타아제 이소자임 II) 오페론의 감쇠영역을 포함하는 원래의(native) 프로모터를 강한 프로모터로 치환; 및 (d) 강한 프로모터를 포함하는 발현벡터의 도입으로 구성된 군에서 선택되는 방법에 의해 추가로 변이되어 있는 것임을 특징으로 할 수 있다.In the present invention, the microorganism having the ability to produce 2-ketoisovalerate can be obtained by (a) deletion of a lacI gene (gene encoding a lac orerone repressor) gene; (b) ilvH (acetohydroxy acid synthase isozyme III) Elimination of feedback inhibition of genes; (c) replacing the native promoter comprising the attenuated region of ilvGMEDA (acetohydroxy acid synthase isozyme I) and ilvBN (acetohydroxy acid synthase isozyme II) operon with a strong promoter; And (d) introduction of an expression vector comprising a strong promoter.

본 발명은 또한, 상기 제조된 재조합 미생물을 배양하여 부탄올을 생성시킨 다음, 배양액으로부터 부탄올을 회수하는 것을 특징으로 하는 부탄올의 제조방법을 제공한다.The present invention also provides a method for producing butanol, wherein the produced recombinant microorganism is cultured to produce butanol, and then recovering butanol from the culture.

본 발명은 또한, L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자(VorABC)가 도입되어 있는 것을 특징으로 하는 2-케토이소발레르산염에서 이소부티릴-CoA 생성능을 가지는 재조합 미생물 및 상기 재조합 미생물을 배양하여 이소부티릴-CoA를 생성시킨 다음, 배양액으로부터 이소부티릴-CoA를 회수하는 것을 특징으로 하는 2-케토이소발레르산염에서 이소부티릴-CoA를 생산하는 방법을 제공한다. The present invention also relates to a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine, an enzyme which converts 2-ketoisovalerate into isobutyryl-CoA, VorA VorABC, which consists of VorB (2-oxoisovalerate peredoxin oxydoryldexta) and VorC (2-ketoisovalerate peredoxin reductase, gamma subunit) A recombinant microorganism having an ability to produce isobutyryl-CoA and a recombinant microorganism in the 2-ketoisovalerate obtained by introducing a gene coding for an enzyme ( VorABC ) are produced, and isobutyryl-CoA is produced , And recovering isobutyryl-CoA from the culture solution. The present invention also provides a method for producing isobutyryl-CoA from a 2-ketoisovaleric acid salt.

또한, 본 발명은 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소 또는 상기 효소를 발현하는 재조합 미생물을 이용하는 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 방법을 제공한다.In addition, the present invention relates to an enzyme for converting 2-ketoisovalerate into isobutyryl-CoA, VorA (2-ketoisovalerate ferredoxin reductase, alpha subunit), VorB (2-oxoisovalerate Ketoisobaric acid salt using a VorABC enzyme composed of Vor AB (ferredoxin oxidoreductase) and VorC (2-ketoisovalerate ferredoxin reductase, gamma subunit), or a recombinant microorganism expressing the enzyme, Butyryl-CoA. ≪ / RTI >

본 발명은 L-발린의 전구체인 2-케토이소발레르산염으로부터 부탄올 생합성능을 가지는 부탄올 생성능이 개선된 재조합 미생물을 제공하는 효과가 있다. 본 발명에 따른 재조합 미생물은 기존의 클로스트리디움 아세토부틸리쿰과 달리 성장이 용이하고 추가 대사흐름 조작으로 인한 균주개량의 가능성이 크므로 부탄올의 산업적 생성 미생물로 유용하며, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 과정을 단순화시킴으로써 부탄올 고생성능을 가지는 재조합 미생물을 제공하는 효과가 있다.The present invention has an effect of providing a recombinant microorganism improved in butanol production ability having a butanol biosynthesis ability from 2-ketoisovalerate as a precursor of L-valine. The recombinant microorganism according to the present invention is useful as industrially produced microorganisms of butanol because it is easy to grow unlike the existing Clostridium acetoobutylicum and has a high possibility of strain improvement due to the manipulation of additional metabolic flow, There is an effect of providing a recombinant microorganism having butanol solubility ability by simplifying the process of converting acid salt into isobutyryl-CoA.

도 1은 C. 아세토부틸리쿰 ATCC 824 균주의 부탄올 생성 pathway를 나타낸 것이다.
도 2는 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에서 2-케토이소발레르산염으로부터 부탄올을 생합성하는 대사회로를 나타낸 것이다.
도 3은 sacB 상동(homologous) 재조합(recombination) pSacHR06 벡터의 제작과정을 나타낸 것이다.
도 4는 pKBRilvBNCD-ptac-adhEbdhAB 벡터의 제작과정을 나타낸 것이다.
도 5는 2-케토이소발레르산염이 이소부티릴-CoA로 전환되는 과정을 나타낸 것이다.
도 6은 pTac15k_VorABC_ptac_icmAB 벡터를 나타낸 것이다.
1 shows the butanol production pathway of C. acetobutiliumum ATCC 824 strain.
2 shows a metabolic circuit in which butanol is biosynthesized from 2-ketoisovalerate in a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine.
Figure 3 shows the production process of the sacB homologous recombination pSacHR06 vector.
Fig. 4 shows the production process of the pKBRilvBNCD-ptac-adhEbdhAB vector.
Figure 5 shows the process by which 2-ketoisovalerate is converted to isobutyryl-CoA.
Figure 6 shows the pTac15k_VorABC_ptac_icmAB vector.

본 발명에서는 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소를 코딩하는 유전자인 VorABC를 도입함으로써 2-케토이소발레르산염을 부탄올로 전환시키는 대사회로를 새로이 구성하여, 부탄올 생성능이 개선된 재조합 미생물을 제작하고, 제작된 재조합 미생물이 부탄올을 합성할 수 있는지 확인하고자 하였다. In the present invention, by introducing VorABC , a gene encoding an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA, into a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine, 2- A recombinant microorganism having improved butanol production ability was constructed by constructing a metabolism circuit for converting ketoisovaleric acid to butanol to confirm whether the recombinant microorganism produced could synthesize butanol.

즉, L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소를 코딩하는 VorABC 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자를 도입시킬 경우, 2-케토이소발레르산염으로부터 부탄올이 생성될 것으로 예측하고, 특히 VorABC 유전자에 의해 2-케토이소발레르산염을 one-step으로 이소부티릴-CoA로 전환시킴으로써 부탄올 생성능도 증가할 것으로 예측하였다. That is, a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine, a VorABC gene encoding an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA, an isobutyryl-CoA When a gene encoding an enzyme that converts butyryl-CoA into butyryl-CoA, a gene that encodes an enzyme that converts butyryl-CoA into butylaldehyde, and a gene that encodes an enzyme that converts butylaldehyde into butanol are introduced, It is predicted that butanol will be produced from toisovalerate , especially by the VorABC gene The conversion of 2-ketoisovalerate into 1-step isobutyryl-CoA is expected to increase the butanol productivity.

상기 2-케토이소발레르산염의 생성능을 가지는 미생물은 박테리아, 효모, 곰팡이 등을 이용할 수 있으며, 바람직하게는 코리네박테리움(Corynebacterium) 속, 브레비박테리움(Brevibacterium) 속 및 대장균 등을 이용할 수 있으나, 2-케토이소발레르산염의 생성능을 가지고 있는 한 제한이 없다. The microorganisms having the ability to produce 2-ketoisovalerate can be bacteria, yeast, fungi and the like. Preferably, Corynebacterium genus, Brevibacterium genus and Escherichia coli are used. But there is no limitation as long as it has the ability to produce 2-ketoisovalerate.

2-케토이소발레르산염은 발린의 전구체이므로, 2-케토이소발레르산염의 생성능을 가지는 미생물은 L-발린 고생성능을 가지는 변이 미생물(Val)(한국등록특허 제832,740호)을 이용하거나, 2-케토이소발레르산염의 축적율을 더욱 증가시키기 위하여 상기 L-발린 고생성능을 가지는 변이 미생물(Val)에서 L-발린 생합성에 관여하는 효소를 코딩하는 유전자를 약화 또는 결실시킨 변이 미생물을 이용하고자 하였다. Since the 2-ketoisovalerate is a precursor of valine, the microorganism having the ability to produce 2-ketoisovalerate can be obtained by using a mutant microorganism (Val) (Korean Patent No. 832,740) having L- In order to further increase the accumulation rate of 2-ketoisovalerate, a mutant microorganism (L-valine) having mutant microorganisms (Val) that weaken or delete the gene encoding an enzyme involved in L-valine biosynthesis .

본 발명에서 "약화"란 해당 유전자의 일부 염기를 변이, 치환, 또는 삭제시키거나 일부 염기를 도입시켜 해당유전자에 의해 발현되는 효소의 활성을 감소시키는 것을 포괄하는 개념으로, 해당 유전자의 효소가 관여하는 생합성경로의 일부 또는 상당부분을 차단하는 모든 것을 포함한다. In the present invention, "attenuation" is a concept encompassing the mutation, substitution, deletion, or deletion of some bases of the gene or reduction of the activity of the enzyme expressed by the gene by introducing a part of the base. And blocking all or a substantial portion of the biosynthetic pathway.

본 발명에서 "증폭"이란 해당 유전자의 일부 염기를 변이, 치환, 또는 삭제시키거나, 일부 염기를 도입시키거나, 또는 동일한 효소를 코딩하는 다른 미생물 유래의 유전자를 도입시켜 대응하는 효소의 활성을 증가시키는 것을 포괄하는 개념이다.The term "amplification" in the present invention refers to amplification, substitution, or deletion of a part of the gene, introduction of a certain base, or introduction of a gene derived from another microorganism encoding the same enzyme to increase the activity of the corresponding enzyme .

도 2는 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에서 2-케토이소발레르산염으로부터 부탄올을 생합성하는 대사회로를 나타낸 것이다. 2 shows a metabolic circuit in which butanol is biosynthesized from 2-ketoisovalerate in a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine.

2-케토이소발레르산염의 생성능을 가지는 미생물을 이용하여, 2-케토이소발레르산염으로부터 부탄올을 제작하기 위하여, 2-케토이소발레르산염을 부탄올로 전환시키는 대사회로를 새로이 구성하고, 이를 구성하는 각 효소들을 코딩하는 유전자를 도입시켰다. 즉, L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자를 도입시켰다.In order to prepare butanol from 2-ketoisovalerate using a microorganism having the ability to produce 2-ketoisovalerate, a metabolic circuit for converting 2-ketoisovalerate to butanol was newly constructed, A gene encoding each of the enzymes that constitute it was introduced. That is, to a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine, an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA, VorA (2-ketoisovalerate, Vor ABC enzyme consisting of VorB (2-oxoisovalerate ferredoxin oxydoryldexta) and VorC (2-ketoisovalerate ferredoxin reductase, gamma subunit) was coded A gene encoding an enzyme that converts isobutyryl-CoA into butyryl-CoA, a gene that codes an enzyme that converts butyryl-CoA to butylaldehyde, and a gene that codes an enzyme that converts butylaldehyde to butanol Lt; / RTI >

본 발명에 있어서, 상기 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소는 이소부티릴-CoA 뮤타아제(mutase)이며, 상기 부티릴-CoA를 부틸알데하이드로 전환시키는 효소는 부틸알데하이드 디하이드로게나제이고, 상기 부틸알데하이드를 부탄올로 전환시키는 효소는 부탄올 디하이드로게나제인 것을 특징으로 할 수 있다.In the present invention, the enzyme that converts the isobutyryl-CoA to butyryl-CoA is an isobutyryl-CoA mutase, and the enzyme that converts the butyryl-CoA to butylaldehyde is butylaldehyde dihydro And the enzyme that converts the butyraldehyde to butanol is butanol dehydrogenase.

본 발명에 있어서, 상기 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소를 코딩하는 유전자는 메타노사르시나 아세티보란스 유래의 VorABC (서열번호 46)인 것을 특징으로 할 수 있고, 즉, 2-케토이소발레르산염 페레독신 리덕타제를 코딩하는 유전자는 메타노사르시나 아세티보란스 유래의 VorB이고, 2-옥소이소발레르산염 페레독신 옥시도리덕타제를 코딩하는 유전자는 메타노사르시나 아세티보란스 유래의 VorAVorC인 것을 특징으로 할 수 있다. 또한, 상기 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자는 스트렙토마이세스 아버미틸리스 유래의 icmAB인 것을 특징으로 할 수 있으나, 다른 미생물 유래라 하더라도 도입되는 숙주세포에서 발현되어 동일한 효소 활성을 나타내는 한 제한이 없을 것이다. In the present invention, the gene encoding the enzyme for converting the 2-ketoisovalerate into isobutyryl-CoA may be characterized by being VorABC (SEQ ID NO: 46) derived from methanosarcina or acetiburance , That is, a gene encoding 2- ketoisovalerate peresoxin reductase is VorB derived from methanosarcine acetylborance , and a gene encoding 2- oxoisovalerate peresoxin oxidoreductase is Methanose And VorA and VorC derived from Leucina acetylborance . The gene encoding the enzyme for converting the isobutyryl-CoA into butyryl-CoA may be icmAB derived from Streptomyces arbormitilis . However, even if it is derived from another microorganism, There is no restriction as long as it is expressed and exhibits the same enzyme activity.

또한, 상기 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자는 클로스트리이둠(Clostridium) 아세토부틸리쿰(acetobutylicum) 유래의 adhE인 것을 특징으로 할 수 있고, 상기 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자는 클로스트리디움 아세토부틸리쿰 유래의 bdhAB인 것을 특징으로 할 수 있으나, 다른 미생물 유래라 하더라도 도입되는 숙주세포에서 발현되어 동일한 효소 활성을 나타내는 한 제한이 없을 것이다.The gene coding for the enzyme that converts butyryl-CoA to butylaldehyde is adhE derived from Clostridium acetobutylicum . The butylaldehyde can be converted into butanol The gene coding for the enzyme may be bdhAB derived from Clostridium acetobutylicum. However, even if it is derived from another microorganism, there is no limitation as long as it is expressed in the introduced host cell and exhibits the same enzyme activity.

한편, 본 발명의 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물은 2-케토이소발레르산염의 축적율을 향상시키기 위하여, 변이시킨 미생물을 사용하는 것이 바람직하다. 구체적으로는 2-케토이소발레르산염 생합성에 관여하는 효소를 코딩하는 유전자의 발현이 증가되도록 변이시키고, L-이소루신 생합성에 관여하는 효소를 코딩하는 유전자, L-루신 생합성에 관여하는 효소를 코딩하는 유전자, D-판토텐산 생합성에 관여하는 효소를 코딩하는 유전자 및 L-발린 생합성에 관여하는 효소를 코딩하는 유전자를 약화 또는 결실시킨 미생물을 사용하는 것이 바람직하다. On the other hand, the microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine of the present invention is preferably a microorganism that has been mutated to improve the accumulation rate of 2-ketoisovalerate. Specifically, the gene encoding the enzyme involved in L-isoleucine biosynthesis is mutated so as to increase the expression of the gene encoding the enzyme involved in 2-ketoisovalerate biosynthesis, and a gene encoding an enzyme involved in L-isoleucine biosynthesis and an enzyme involved in L- It is preferable to use a microorganism in which a gene coding for an enzyme involved in D-pantothenic acid biosynthesis and a gene coding for an enzyme involved in L-valine biosynthesis are weakened or deleted.

본 발명에 있어서, 상기 L-이소루신 생합성에 관여하는 효소를 코딩하는 유전자는 ilvA(트레오닌 디하이드라타제를 암호화하는 유전자)이고, 상기 L-루신 생합성에 관여하는 효소를 코딩하는 유전자는 leuA(2-이소프로필말레이트 신타아제를 암호화하는 유전자)이고, 상기 D-판토텐산 생합성에 관여하는 효소를 코딩하는 유전자는 panB(3-메틸-2-옥소부타노에이트 하이드록시메틸트랜스페라제를 암호화하는 유전자)이고, 상기 L-발린 생합성에 관여하는 효소를 코딩하는 유전자는 ilvE(가지달린 체인 아미노산 아미노트랜스페라제를 암호화하는 유전자)인 것을 특징으로 할 수 있다.In the present invention, the gene coding for the enzyme involved in L-isoleucine biosynthesis is ilvA ( gene encoding threonine dehydratase), and the gene encoding the enzyme involved in L-leucine biosynthesis is leuA 2-isopropyl maleate synthase), and the gene coding for the enzyme involved in D-pantothenic acid biosynthesis is panB (a gene encoding 3-methyl-2-oxobutanoate hydroxymethyltransferase Gene), and the gene coding for the enzyme involved in the L-valine biosynthesis is ilvE (a gene encoding amino acid transaminase of branched chain amino acid).

아울러, 2-케토이소발레르산염 생합성에 관여하는 효소를 코딩하는 유전자의 발현을 증가시키기 위하여, (a) lacI(lac 오페론 억제인자를 암호화하는 유전자) 유전자를 결실시키거고, (b) ilvH(아세토하이드록시산 신타아제 이소자임 III) 유전자의 피드백 저해(feedback inhibition)를 제거시키고; (c) ilvGMEDA(아세토하이드록시산 신타아제 이소자임 I) 및 ilvBN(아세토하이드록시산 신타아제 이소자임 II) 오페론의 감쇠영역을 포함하는 원래의 프로모터를 강한 프로모터로 치환시키고, (d) 강한 프로모터를 포함하는 발현벡터를 도입시킬 수 있다.Further, in order to increase expression of a gene encoding an enzyme involved in 2-ketoisovalerate biosynthesis, (a) a gene encoding lacI (a gene encoding a lac operon inhibitory factor) is deleted, (b) ilvH Acetohydroxy acid synthetase isozyme III) Eliminate feedback inhibition of the gene; (c) replacing the original promoter comprising the attenuated region of ilvGMEDA (acetohydroxy acid synthase isozyme I) and ilvBN (acetohydroxy acid synthase isozyme II) operon with a strong promoter, and (d) Lt; / RTI > can be introduced.

본 발명에 있어서, 상기 강한 프로모터는 trc 프로모터, tac 프로모터, T7 프로모터, lac 프로모터 및 trp 프로모터로 구성된 군에서 선택된 것을 특징으로 할 수 있고, 상기 강한 프로모터를 포함하는 발현벡터는 ilvB, ilvN, ilvC 및 ilvD 유전자를 함유하는 벡터인 것을 특징으로 할 수 있다.In the present invention, the strong promoter may be selected from the group consisting of a trc promoter, a tac promoter, a T7 promoter, a lac promoter, and a trp promoter, wherein the expression vector comprising the strong promoter is selected from the group consisting of ilvB, ilvN, ilvC, and a vector containing the ilvD gene.

본 발명의 일 실시예에서는 2-케토이소발레르산염으로부터 부탄올을 제조하기 위하여, 2-케토이소발레르산염의 축적율이 우수한 변이 미생물을 제작한 다음, 여기에 2-케토이소발레르산염으로부터 부탄올을 제조하는데 관여하는 효소를 코딩하는 유전자를 도입시켜 부탄올 생성능을 가지는 재조합 미생물을 제작하였다.In one embodiment of the present invention, in order to prepare butanol from 2-ketoisovalerate, a mutant microorganism having an excellent accumulation rate of 2-ketoisovalerate is prepared, and then, a 2-ketoisovalerate A recombinant microorganism having a butanol production ability was prepared by introducing a gene encoding an enzyme involved in the production of butanol.

먼저, lacI 유전자가 제거되고, ilvH의 feedback inhibition이 제거되었으며, ilvGMEDA ilvBN 오페론의 감쇠영역을 포함한 본래의 프로모터가 강력한 전사활성을 가지는 tac 프로모터로 치환된 대장균 W3110 컴피턴트 세포를 제작한 후, ilvA, panB, leuAilvE 유전자의 결실을 유도하여, 2-케토이소발레르산염의 축적율이 우수한 변이 미생물을 제작하였다. First, lacI gene was removed, feedback inhibition of ilvH was removed, and Escherichia coli W3110 competent cells, in which the original promoter including the attenuation region of ilvGMEDA and ilvBN operon were replaced by a tac promoter having strong transcription activity, Deletion of the lvA , panB, leuA and ilvE genes was induced to produce a mutant microorganism having an excellent accumulation rate of 2-ketoisovalerate.

다음으로, Pseudomonas putida KT2440 유래의 branched chain ketoacid dehydrogenase (bkdA, bkdB, lpdV 유전자에 의해 각각 코딩되는 E1 subunit: the dehydrogenase-decarboxylase, E2 subunit: the transacylase, E3: lipoamide dehydrogenase의 complex) 및 Bacillus subtilis 유래의 branched chain ketoacid dehydrogenase (bkdA1, bkdA2, bkdB, lpdV 유전자에 의해 각각 코딩되는 subunit의 complex)가 발린의 catabolism에 관여하여 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 과정은(Sokatch, J. R. et al., J. Bacteriol., 148: 647-652, 1981; Sykes P. J. et al., J. Bacteriol., 169: 1619-1625, 1987; Namba, Y., et al., J. Biol. Chem., 244: 4437-4447) bkdA1, bkdB lpdV 유전자가 복잡한 interaction을 통해 이루어지기 때문에 세 가지 유전자의 발현량을 조절하는 데 어려움이 있었던 점에 착안하여, 2-케토이소발레르산염을 이소부티릴-CoA로 one-step으로 전환시킬 수 있도록 메타노사르시나 아세티보란스 유래의 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛, 서열번호 43), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제, 서열번호 44) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛, 서열번호 45)로 구성되는 VorABC 효소를 코딩하는 유전자들을 클로닝하였다. Next, the branched chain ketoacid dehydrogenase derived from Pseudomonas putida KT2440 (E1 subunit: the dehydrogenase-decarboxylase, E2 subunit: the transacylase, E3: lipoamide dehydrogenase complex respectively encoded by bkdA , bkdB and lpdV genes) and Bacillus subtilis The process by which the branched chain ketoacid dehydrogenase (a complex of subunits encoded by the bkdA1 , bkdA2, bkdB and lpdV genes) is involved in valine catabolism and converts 2-ketoisovalerate into isobutyryl-CoA (Sokatch, JR et al, J. Bacteriol, 148 : 647-652, 1981; Sykes PJ et al, J. Bacteriol, 169:..... 1619-1625, 1987; Namba, Y., et al, J. Biol. Chem ., 244: 4437-4447) In view of the fact that the bkdA1 , bkdB and lpdV genes were made through complex interactions, it was difficult to control the expression levels of the three genes, and 2-ketoisovalerate was converted into iso Butyryl-CoA to be converted into one-step VorA (2-ketoisovalerate ferredoxin reductase, alpha subunit, SEQ ID NO: 43), VorB (2-oxoisovalerate ferredoxin oxydoryldexazate, SEQ ID NO: 44) derived from methanosarcina acetuborans, ) And VorC (2-ketoisovalerate ferredoxin reductase, gamma subunit, SEQ ID NO: 45) were cloned.

그리고, 스트렙토마이세스 아버미틸리스 유래의 이소부티릴-CoA 뮤타아제 (icmA, icmB 유전자에 의해 코딩되는 단백질의 complex)가 이소부티릴-CoA를 부티릴-CoA로 전환시킨다는 사실 (Zerbe-Burkhardt, K., et al., J. Biol. Chem., 273: 6508-6517, 1998)에 근거하여 상기 유전자를 차례로 클로닝하여 2-케토이소발레르산염으로부터 부티릴-CoA를 만들고, 클로스트리디움 아세토부틸리쿰 유래의 adhE (butyraldehyde dehydrogenase를 코딩하는 유전자)와 bdhAB (Clostridium acetobutylicum의 부탄올 디하이드로게나제를 코딩하는 유전자)를 추가로 도입하여 최종적으로 부티릴-CoA로부터 부탄올을 합성하고자 하였다. And the fact that the isobutyryl-CoA mutase derived from Streptomyces arbormitilis (a complex of the protein encoded by icma , icmB gene) converts isobutyryl-CoA to butyryl-CoA (Zerbe-Burkhardt , K., et al ., J. Biol. Chem ., 273: 6508-6517, 1998), to prepare butyryl-CoA from 2-ketoisovalerate, (Butyraldehyde dehydrogenase-encoding gene) derived from Acetobutylicum and bdhAB (a gene coding for butanol dehydrogenase of Clostridium acetobutylicum ) were further introduced to finally synthesize butanol from butyryl-CoA.

bkdA, bkdB, lpdV 유전자에 의해 2-케토이소발레르산염이 이소부티릴-CoA로 전환되는 과정은, bkdA1 유전자에 의해 코딩되는 효소가 2-케토이소발레르산염을 2-methy-1-hydroxypropyl-Thpp로 전환시킨 후 다시 2-(2-methyl propanoyl)-dihydrilpoamide-E로 전환된 다음, bkdB유전자에 의해 코딩되는 효소에 의해 2-(2-methyl propanoyl)-dihydrilpoamide-E가 isobutyryl CoA로 전환되고, 또한 lpdV 유전자에 의해 코딩되는 효소가 상기 과정에 관여하여, 전체적으로 복잡한 interaction을 통해 이루어지는 반면에, VorABC 유전자를 도입한 경우에는 2-케토이소발레르산염이 이소부티릴-CoA로 바로 전환되는 것을 확인하였다(도 5). The process of converting 2-ketoisovalerate into isobutyryl-CoA by the bkdA , bkdB , and lpdV genes is a process in which the enzyme encoded by the bkdA1 gene converts 2-ketoisovalerate into 2-methyl-1-hydroxypropyl (2-methyl propanoyl) -dihydrilpoamide-E was converted to isobutyryl CoA by an enzyme encoded by the bkdB gene, which was then converted to 2- (2-methylpropanoyl) -dihydrilpoamide- And the enzyme encoded by the lpdV gene participates in the above process and is carried out through complex interactions as a whole, whereas when the VorABC gene is introduced, 2-ketoisovalerate is directly converted to isobutyryl-CoA (Fig. 5).

즉, 2-케토이소발레르산염 축적에 필수적인 유전자들인 ilvB(acetohydroxy acid synthase I large subunit을 암호화하는 유전자), ilvN(acetohydroxy acid synthase I small subunit을 암호화하는 유전자), ilvC(acetohydroxy acid isomeroreductase를 암호화하는 유전자), 및 ilvD(dihydroxy-acid dehydratase를 암호화하는 유전자) 등이 순차적으로 클로닝된 pKKilvBNCD 벡터에 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자 등을 도입시킨 벡터를 제작한 후, 이를 상기 2-케토이소발레르산염의 생성능을 가지는 미생물에 도입시킴으로써 부탄올 생성능을 가지는 재조합 미생물을 제작하였다. That is, the genes encoding ilvB (acetohydroxy acid synthase I large subunit), ilvN (genes encoding acetohydroxy acid synthase I small subunit) and ilvC (encoding acetohydroxy acid isomeroreductase), which are essential genes for 2-ketoisovalerate accumulation Gene encoding an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA to a pKKilvBNCD vector in which a gene encoding the gene (e.g., gene) and ilvD (gene encoding dihydroxy-acid dehydratase) are sequentially cloned, isobutyryl- A vector encoding a gene encoding an enzyme that converts CoA to butyryl-CoA, a gene encoding an enzyme that converts butyryl-CoA to butylaldehyde, and a gene encoding an enzyme that converts butylaldehyde to butanol , Which is then introduced into a microorganism having the ability to produce 2-ketoisovalerate, Microorganisms were produced.

상기 제작된 재조합 미생물을 글루코즈 함유 배지에서 배양한 결과, 부탄올이 생성되는 것을 확인할 수 있었다(표 1).When the recombinant microorganism was cultured in a glucose-containing medium, it was confirmed that butanol was produced (Table 1).

최종적으로, 본 발명에서는 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소를 코딩하는 유전자(VorABC), 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자(icmAB), 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자(adhE) 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자(bdhAB)를 도입시켜 재조합 미생물을 제작하고, 상기 재조합 미생물에서 부탄올 생성능이 획기적으로 증가하는 것을 확인하였다.Finally, in the present invention, a gene ( VorABC ) encoding an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA is added to a microorganism having the ability to produce 2-ketoisovalerate as a precursor of L- , ( IcmAB ) encoding an enzyme that converts isobutyryl-CoA to butyryl-CoA, a gene ( adhE ) encoding an enzyme that converts butyryl-CoA to butylaldehyde , and an enzyme that converts butylaldehyde to butanol ( BdhAB ) was introduced into the recombinant microorganism to produce a recombinant microorganism, which confirmed that the butanol production ability of the recombinant microorganism was remarkably increased.

또한, 본 발명에 따르면, VorABC 효소에 의하여 2-케토이소발레르산염에서 이소부티릴-CoA로 전환되므로, 2-케토이소발레르산염의 생성능을 가지는 미생물에 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소를 코딩하는 유전자(VorABC)를 도입시켜 재조합 미생물을 제작하고, 상기 재조합 미생물을 배양하여 이소부티릴-CoA를 생성할 수 있으며, 상기 재조합 미생물을 이용하면 혐기 조건에서도 2-케토이소발레르산염을 이소부티릴-CoA로 높은 효율로 전환시킬 수 있다. In addition, according to the present invention, since it is converted from 2-ketoisovalerate to isobutyryl-CoA by the VorABC enzyme, 2-ketoisovalerate is added to the microorganism having the ability to produce 2-ketoisovalerate, ( VorABC ) coding for an enzyme for conversion to butyryl-CoA is introduced to produce a recombinant microorganism, and the recombinant microorganism is cultured to produce isobutyryl-CoA. When the recombinant microorganism is used, It is possible to convert 2-ketoisovalerate into higher efficiency with isobutyryl-CoA.

이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It will be apparent to those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not limited to these embodiments.

특히, 하기 실시예에서는 대장균 W3110을 숙주 미생물로 이용하였으나, 다른 대장균이나, 박테리아, 효모 및 곰팡이를 사용하여 L-발린 생성능을 향상시키고, 2-케토이소발레르산염으로부터 부탄올을 생합성하는데 관여하는 효소의 유전자를 도입시킨 다음, 이를 이용하여 부탄올을 제조하는 것 역시 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. In particular, in the following examples, Escherichia coli W3110 was used as a host microorganism. However, it was found that an enzyme involved in biosynthesis of butanol from 2-ketoisovalerate was improved by using other Escherichia coli, bacteria, yeast and mold to improve L- And then using the same to produce butanol will be apparent to those skilled in the art.

또한, 하기 실시예에서는 도입 대상 유전자로 특정 균주 유래인 것만을 예시하였으나, 도입되는 숙주세포에서 발현되어 동일한 활성을 나타내는 한 그 제한이 없다는 것은 당업자에게 자명하다 할 것이다.In the following examples, only those genes derived from a specific strain are exemplified as genes to be introduced, but it will be apparent to those skilled in the art that there is no restriction as long as they are expressed in the introduced host cell and exhibit the same activity.

또한, 하기 실시예에서는 VorABC 효소의 반응으로 2-ketoacid의 keto기가 제거되고 CoA기가 새롭게 결합함으로써 2-케토이소발레르산염이 이소부티릴-CoA로 전환되는 것만을 확인하였으나, VorABC 효소의 이러한 기능을 확인한 이상 VorABC 효소가 2-케토이소발레르산염에 대하여만 이러한 반응을 일으키는 것이 아니라 다른 여러 종류의 2-ketoacid에 대하여도 페레독신 옥시도리덕타제의 기능을 나타낸다는 것은 당업자에게 자명하다 할 것이다. In the following example, it was confirmed that the keto group of 2-ketoacid was removed by the reaction of VorABC enzyme and the 2-ketoisovalerate was converted into isobutyryl-CoA by newly binding CoA group. However, this function of VorABC enzyme It would be obvious to one of ordinary skill in the art that the VorABC enzyme does not only cause this reaction to 2-ketoisovalerate, but also the function of the felodoxine oxydoroductase against several other 2-ketoacids .

아울러, 하기 실시예에서는 특정 배지와 배양방법만을 예시하였으나, 문헌에 보고된 바와 같이, 유청(whey), CSL(corn steep liquor) 등의 당화액과 다른 배지를 사용한 경우나, 유가배양(fed-batch culture), 연속배양 등 다양한 방법을 사용하는 것 (Lee et al ., Bioprocess Biosyst . Eng ., 26: 63, 2003; Lee et al., Appl. Microbiol . Biotechnol ., 58: 663, 2002; Lee et al ., Biotechnol . Lett ., 25: 111, 2003; Lee et al ., Appl . Microbiol . Biotechnol ., 54: 23, 2000; Lee et al., Biotechnol . Bioeng ., 72: 41, 2001)도 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
In the following examples, only a specific medium and a culture method are exemplified. However, as described in the literature, when a medium different from a saccharified liquid such as whey or CSL (corn steep liquor) is used or fed- batch culture, continuous culture, etc. (Lee et al . , Bioprocess Biosyst . Eng . , 26: 63, 2003; Lee et al. , Appl. Microbiol . Biotechnol . , 58: 663, 2002; Lee et al . , Biotechnol . Lett . , 25: 111, 2003; Lee et al . , Appl . Microbiol . Biotechnol . , 54: 23,2000; Lee et al. , Biotechnol . Bioeng . , 72: 41, 2001) will be apparent to those skilled in the art.

2-케토이소발레르산염의 생성능을 가지는 미생물을 이용한 부탄올 생성능을 갖는 재조합 미생물 제작 및부탄올의 생성능 측정Production of recombinant microorganism having butanol-producing ability using microorganisms having the ability to produce 2-ketoisovalerate and measurement of production ability of butanol

본 발명자의 한국 등록특허 (분지쇄 아미노산 생성능이 개선된 변이 미생물 및 이를 이용한 분지쇄 아미노산의 제조방법, 등록번호: 10-0832740, 등록일자: 2008. 5. 21)를 참조하여 2-케토이소발레르산염의 생성능을 가지는 미생물을 이용한 부탄올 생성능을 갖는 재조합 미생물을 제작하였다. The present inventors' Korean Patents (a mutant microorganism improved in branched chain amino acid production ability and a method for producing branched chain amino acid using the same, registration number: 10-0832740, registered on May 21, 2008) A recombinant microorganism having a butanol production ability using a microorganism capable of producing valerate was prepared .

1-1: 2-케토이소발레르산염의 생성능을 가지는 미생물의 제작 1-1: Production of microorganisms having the ability to produce 2-ketoisovalerate

1-1-1: pSacHR06의 제작1-1-1: Preparation of pSacHR06

염색체 DNA의 특정 염기 또는 염기들의 치환을 위해 바실러스 서틀리스 유래의 sacB homologous recombination 기법(Wohlleben et. al., J. Bacteriol., 174: 5462, 1992)을 이용할 목적으로 pSacHR06 벡터를 제작하였다(도 3). 도 3은 도 sacB homologous recombination pSacHR06의 제작과정을 나타낸 것이다.PSacHR06 vector was constructed for the purpose of using sacB homologous recombination technique (Wohlleben et al., J. Bacteriol. , 174: 5462, 1992) derived from Bacillus subtilis for the substitution of specific bases or bases of chromosomal DNA ). Fig. 3 shows the production process of sacB homologous recombination pSacHR06.

먼저, pUC19(New England Biolab) 벡터의 엠피실린(ampicillin)에 대한 내성 특성을 카나마이신(kanamycin)에 대한 내성 특성으로 치환하기 위하여 pUC19 벡터를 NdeI 및 AhdI으로 절단하여 얻은 1522bp 절편을 pACYC177 벡터(New England Biolabs)를 StuI으로 절단하여 얻은 1340bp 절편과 DNA 축합반응을 수행하여 pUC19KM 벡터를 얻었다. First, the 1522 bp fragment obtained by digesting the pUC19 vector with Nde I and Ahd I was inserted into the pACYC177 vector (SEQ ID NO: 2) to replace the ampicillin resistance property of the pUC19 (New England Biolab) vector with the resistance property to kanamycin New England Biolabs) was digested with StuI and subjected to DNA condensation reaction with a 1340 bp fragment to obtain a pUC19KM vector.

다음으로, 상기 pUC19KM 벡터를 PvuII로 절단하여 얻은 2.5kb 절편과 pBlu2KSP(full name: pBluescriptIIKS(+)) 벡터를 PvuII로 절단하여 얻은 400bp 절편을 축합반응하여 pUC19KKS 벡터를 얻었다. 이후 상기 벡터에 DNA 복제 원점의 용이한 제거가 가능하도록 하기 위해 서열번호 1 및 2의 프라이머와 pUC19 벡터 주형을 이용하여 PCR을 수행하였고, 그 결과 동일한 절단효소들의 인식부위를 양쪽 끝에 각각 가지고 있으며 DNA 복제기점을 가지는 DNA 절편을 획득하였다. 상기 절편을 SalI 및 DraIII로 절단하고, pUC19KKS 벡터를 SalI 및 DraIII로 절단하여 얻은 1.5kb 절편과 DNA 축합반응 하여 pUC19K 벡터를 얻었다. 상기 pUC19K 벡터에 바실러스 서틀리스(Bacillus subtilis)의 sacB 유전자를 도입하기 위하여 바실러스 서틀리스의 genomic DNA 주형과 서열번호 3 및 4의 프라이머를 사용하여 PCR을 수행하여 sacB 유전자를 가지는 DNA 절편을 합성하였고, 상기 합성된 DNA 절편과 pUC19K 벡터 모두를 XbaI, SpeI 및 EcoRV 효소로 절단하고 축합하여 sacB 유전자를 가지는 새로운 벡터를 제작하였고 이를 pSacHR06으로 명명하였다. Next, the 2.5kb fragment and the pBlu2KSP pUC19KM vector obtained by cutting with Pvu II (full name: pBluescriptIIKS ( +)) cutting the vector with Pvu II to obtain a vector pUC19KKS the 400bp fragment obtained by the condensation reaction. PCR was performed using the primers of SEQ ID NOS: 1 and 2 and the pUC19 vector template in order to facilitate the easy removal of the DNA replication origin in the vector. As a result, A DNA fragment having a replication origin was obtained. Cutting the fragment with Sal I and Dra III, and by cutting the vector with Sal I and Dra III pUC19KKS obtain a vector pUC19K reacted 1.5kb fragment and DNA condensation obtained. To introduce the sacB gene of Bacillus subtilis into the pUC19K vector, PCR was performed using the genomic DNA template of Bacillus subtilis and the primers of SEQ ID NOS: 3 and 4 to synthesize a DNA fragment having the sacB gene. The synthesized DNA fragment and pUC19K vector were digested with XbaI, SpeI and EcoRV enzymes and condensed to construct a new vector having the sacB gene, which was named pSacHR06.

pSacHR06 벡터는 바실러스 서틀리스 유래의 sacB 유전자를 가지며 제한효소를 사용하여 용이하게 DNA 복제 원점의 제거와 재축합 반응을 수행할 수 있기 때문에 sacB positive selection에 사용 가능하다. The pSacHR06 vector has a sacB gene derived from Bacillus subtilis and can be used for sacB positive selection because it can easily remove the DNA replication origin and perform the recondensation reaction using a restriction enzyme.

[서열번호 1] pucoriup: 5'-agccgtcgacgctagcgcatgcacgcgtgtgcacccatggga cgtcctcactgactcgctgcgctc-3'[SEQ ID NO: 1] pucoriup: 5'-agccgtcgacgctagcgcatgcacgcgtgtgcacccatggga cgtcctcactgactcgctgcgctc-3 '

[서열번호 2] pucorido: 5'-ggctcacaacgtggctagcgacgtcgtgcacccatgggttcc actgagcgtcagacc-3'[SEQ ID NO: 2] pucorido: 5'-ggctcacaacgtggctagcgacgtcgtgcacccatgggttcc actgagcgtcagacc-3 '

[서열번호 3] sacBf: 5'-actctctagacgcgggtttgttactgataa-3'[SEQ ID NO: 3] sacBf: 5'-actctctagacgcgggtttgttactgataa-3 '

[서열번호 4] sacBr: 5'-gctagatatcaggatatcggcattttcttt-3' [SEQ ID NO: 4] sacBr: 5'-gctagatatcaggatatcggcattttcttt-3 '

1-1-2: lacI 유전자의 결실1-1-2: deletion of lacI gene

2-케토이소발레르산염의 생성능을 가지는 미생물인 대장균 W3110(ATTC 39936)에서 서열번호 5 및 6의 프라이머를 이용한 one step inactivation 방법(Warner et al., PNAS, 6; 97(12): 6640-6645, 2000)을 이용하여, lac operon의 repressor를 암호화하는 유전자로, lactose 분해를 담당하는 lac operon의 전사를 억제하는 기능을 갖는 lacI 유전자를 결실시키고, 항생제 내성을 제거하였다. (Warner et al. , PNAS, 6: 97 (12): 6640-7) in E. coli W3110 (ATTC 39936), a microorganism having the ability to produce 2-ketoisovalerate, 6645, 2000), which is a gene encoding the repressor of the lac operon, deleted the lacI gene, which has the function of inhibiting transcription of the lac operon responsible for lactose degradation, and eliminated the antibiotic resistance.

[서열번호 5] lacI_1stup: 5'-gtgaaaccagtaacgttatacgatgtcgcagagtatgccgg tgtctcttagattgcagcattacacgtcttg-3'[SEQ ID NO: 5] lacI_1stup: 5'-gtgaaaccagtaacgttatacgatgtcgcagagtatgccgg tgtctcttagattgcagcattacacgtcttg-3 '

[서열번호 6] lacI_1stdo: 5'-tcactgcccgctttccagtcgggaaacctgtcgtgccagctg cattaatgcacttaacggctgacatggg-3'[SEQ ID NO: 6] lacI_1stdo: 5'-tcactgcccgctttccagtcgggaaacctgtcgtgccagctg cattaatgcacttaacggctgacatggg-3 '

1-1-3: ilvH의 feedback inhibition 제거1-1-3: elimination of feedback inhibition of ilvH

아지노모토 사에서 출원한 특허(US 6,737,255 B2)를 참고하여 아세토하이드록시산 신타아제 이소자임 III를 코딩하는 유전자인 ilvH의 41번째 염기(G)와 50번째 염기(C)를 각각 A와 T로 치환하였고, 대장균 W3110(ATTC 39936)의 염색체 DNA는 공지된 방법으로 분리 및 정제하였다 (Sambrook, et al., Molecular cloning, 2nd ed, Cold Spring Harbor Laboratory Press, NY, 1989). (G) and the 50th base (C) of ilvH , a gene encoding acetohydroxy acid synthetase isozyme III, are replaced with A and T, respectively, by referring to a patent (US Pat. No. 6,737,255 B2) filed by Ajinomoto , And the chromosomal DNA of E. coli W3110 (ATTC 39936) was isolated and purified by a known method (Sambrook, et al ., Molecular cloning, 2nd ed., Cold Spring Harbor Laboratory Press, NY, 1989).

즉, 서열번호 7 및 8과 9 및 10의 프라이머와, 대장균 W3110 genomic DNA 주형을 이용하여 각각 PCR을 수행한 다음, 수득된 두개의 PCR 절편을 동일 농도로 섞어 주형으로 하고, 서열번호 7 및 10을 프라이머로 사용하여 overlapping PCR을 수행하였다. 상기와 같은 방법으로 얻은 1280bp의 PCR 절편을 PstI 및 SalI 효소로 절단하고, 역시 PstI 및 SalI 효소로 절단한 sacB homologous recombination 용 벡터인 pSacHR06에 삽입한 다음, sequencing 하여, ilvH의 41번째 염기(G)와 50번째 염기(C)가 각각 A와 T로 치환되었음을 확인하였다. Namely, PCR was carried out using the primers of SEQ ID NOS: 7 and 8, 9 and 10, and Escherichia coli W3110 genomic DNA template, and the obtained two PCR fragments were mixed at the same concentration to obtain a template, Were used as primers to perform overlapping PCR. To the PCR fragment of 1280bp obtained in the same manner as described above was cut with Pst I and Sal I enzymes, and also inserted into a vector which pSacHR06 for the sacB homologous recombination digested with Pst I and Sal I enzymes, and then, sequencing, 41 th ilvH It was confirmed that the base (G) and the 50th base (C) were substituted with A and T, respectively.

상기 수득한 벡터를 NheI 효소로 절단하여, replication origin을 결실시킨 다음, self-ligation 시키고, 상기 1-1-2에서 제작된 lacI 유전자가 결실된 대장균 W3110 컴피턴트 세포(electroporation-competent cell)에 일렉트로포레이션하였다. 다음으로, sacB positive selection (Wohlleben et al., J. Bacteriol., 174: 5462, 1992) 방법에 의해 feedback inhibition이 제거된 균주를 수득하였다. The obtained vector was digested with NheI enzyme to delete the replication origin and then self-ligation was performed. Then, E. coli W3110 competent cells lacking the lacI gene prepared in the above 1-1-2 were added with electroporation- Respectively. Next, strains in which feedback inhibition was removed by sacB positive selection (Wohlleben et al ., J. Bacteriol ., 174: 5462, 1992) were obtained.

[서열번호 7] ilvH1: 5'-gactctgcagggtgatcgagactctttggcggttgac-3'[SEQ ID NO: 7] ilvH1: 5'-gactctgcagggtgatcgagactctttggcggttgac-3 '

[서열번호 8] ilvH2: 5'-ggaaaaaaggccaatcacgcggaataacgcgtctgattcattttcga gtaag-3'[SEQ ID NO: 8] ilvH2: 5'-ggaaaaaaggccaatcacgcggaataacgcgtctgattcattttcga gtaag-3 '

[서열번호 9] ilvH3: 5'-cttactcgaaaatgaatcagacgcgttattccgcgtgattggccttt tttcc-3'[SEQ ID NO: 9] ilvH3: 5'-cttactcgaaaatgaatcagacgcgttattccgcgtgattggccttt tttcc-3 '

[서열번호 10] ilvH4: 5'-gctccgtcgaccagtttcacaattgccccttgcgtaaa-3'[SEQ ID NO: 10] ilvH4: 5'-gctccgtcgaccagtttcacaattgccccttgcgtaaa-3 '

1-1-4: ilvGMEDA 및 ilvBN 오페론의 감쇠영역의 tac 프로모터로의 치환1-1-4: Replacement of the attenuation region of ilvGMEDA and ilvBN operons with the tac promoter

1-1-3에서 제작된 lacI 유전자와 ilvH의 feedback inhibition이 제거된 대장균 W3110에서, 아세토하이드록시산 신타아제 이소자임 I 및 II의 constitutive expression을 유도하기 위하여, 아세토하이드록시산 신타아제 이소자임 I 및 II를 각각 암호화하는 ilvBNilvGMEDA 오페론의 전사조절 기작에 관여하는 감쇠영역을 강력한 프로모터인 tac 프로모터로 치환하였다. In order to induce the constitutive expression of acetohydroxoic acid synthase isozyme I and II in Escherichia coli W3110 in which the feedback inhibition of the lacI gene and ilvH produced in 1-1-3 was removed, acetohydroxoic acid synthase isozyme I And ilvBN and ilvGMEDA operons, respectively, encoding the transcriptional regulatory mechanism of the operon were replaced by a strong promoter, the tac promoter.

먼저, ilvGMEDA operon 감쇠영역의 치환을 위해, 서열번호 11 및 12와 13 및 14를 각각 한 쌍의 프라이머와 대장균 W3110 genomic DNA 주형을 이용하여 PCR을 수행한 다음, PCR 절편, ilvGatt1 및 ilvGatt2를 각각 수득하였다. 상기 수득된 두 PCR 절편을 각각 SalI/BamHI 및 EcoRI/PstI 효소로 절단하여 pKK223-3 벡터(Pharmacia Biotech)의 해당 효소 절단 부위에 클로닝 한 다음, sequencing으로 염기서열을 확인한 후, SalI 및 PstI 효소로 절단한 부위를 상기 pSacHR06 벡터의 해당 효소 절단 부위에 클로닝하고, 상기 feedback inhibition 제거와 동일한 방법으로, 감쇠영역을 포함하는 원래의 프로모터를 tac 프로모터로 치환하였다. First, for the substitution of the ilvGMEDA operon attenuation region, PCR was carried out using a pair of primers and Escherichia coli W3110 genomic DNA template of SEQ ID NOS: 11 and 12, 13 and 14, respectively, and then PCR fragments ilvGatt1 and ilvGatt2 Respectively. By cutting the two PCR fragments thus obtained by each of Sal I / Bam HI and Eco RI / Pst I enzyme by cloning the appropriate enzyme cleavage site of the pKK223-3 vector (Pharmacia Biotech), and then, after confirming the nucleotide sequence in sequencing, Sal I and Pst I enzymes were cloned into the corresponding enzyme cleavage sites of the pSacHR06 vector and the original promoter containing the attenuated region was replaced with the tac promoter in the same manner as the above feedback inhibition removal.

ilvBN operon의 감쇠영역 제거를 위해, 서열번호 15 및 16과 17 및 18을 각각 한쌍의 프라이머로 사용하여 상기 ilvGMEDA 감쇠영역 제거와 동일한 방법으로 PCR 및 클로닝한 다음, 상기에서 ilvGMEDA 감쇠영역이 제거된 대장균 W3110 컴피턴트 세포에 일렉트로포레이션하였다. 그 결과 ilvBN 감쇠영역을 포함하는 원래의 프로모터를 tac 프로모터로 치환할 수 있었다. for attenuating regions removal of ilvBN operon, SEQ ID NO: 15 and 16 and 17 and the one using a pair of the 18 each primer PCR and cloned in the same manner as in removing the ilvGMEDA attenuation zone, and then, the ilvGMEDA attenuation region removed from the Escherichia coli And electroporated into W3110 competent cells. As a result, the original promoter containing the ilvBN attenuation region could be replaced with the tac promoter.

[서열번호 11] ilvGatt1f: 5'-gactgtcgacctaacttattggctgtaagctgttctgaggcc- 3'[SEQ ID NO: 11] ilvGatt1f: 5'-gactgtcgacctaacttattggctgtaagctgttctgaggcc-3 '

[서열번호 12] ilvGatt1r: 5'-gctcggatccgaatgttgttcccttcctcgtagttcatcc-3'[SEQ ID NO: 12] ilvGatt1r: 5'-gctcggatccgaatgttgttcccttcctcgtagttcatcc-3 '

[서열번호 13] ilvGatt2f: 5'-gactgaattcatgaatggcgcacagtgggtggtacatgcg- 3'[SEQ ID NO: 13] ilvGatt2f: 5'-gactgaattcatgaatggcgcacagtgggtggtacatgcg- 3 '

[서열번호 14] ilvGatt2r: 5'-gctcctgcagtcaccgctggctaactggatatcttttggg-3'[SEQ ID NO: 14] ilvGatt2r: 5'-gctcctgcagtcaccgctggctaactggatatcttttggg-3 '

[서열번호 15] ilvBatt1f: 5'-gactcgtcgacagagatggtagggcggataa-3'[SEQ ID NO: 15] ilvBatt1f: 5'-gactcgtcgacagagatggtagggcggataa-3 '

[서열번호 16] ilvBatt1r: 5'-gctcggatcccacactgtattatgtcaaca-3'[SEQ ID NO: 16] ilvBatt1r: 5'-gctcggatcccacactgtattatgtcaaca-3 '

[서열번호 17] ilvBatt2f: 5'-gactgaattcatggcaagttcgggcacaac-3'[SEQ ID NO: 17] ilvBatt2f: 5'-gactgaattcatggcaagttcgggcacaac-3 '

[서열번호 18] ilvBatt2r: 5'-gctcactgcagtgcgtcacgaatgctttctt-3'[SEQ ID NO: 18] ilvBatt2r: 5'-gctcactgcagtgcgtcacgaatgctttctt-3 '

1-1-5: ilvA, panB, ilvE leuA 유전자의 결실1-1-5: deletion of ilvA , panB, ilvE and leuA genes

1-1-4에서 수득된 lacI 유전자와 ilvH의 feedback inhibition이 제거되고 ilvGMEDAilvBN 오페론 감쇠영역의 tac 프로모터로의 치환된 W3110에서 ilvA, panB, ilvE leuA 유전자를 결실시키기 위하여, 서열번호 19 내지 26 프라이머들을 이용하여 상기 1-1-2에 언급한 one step inactivation 방법에 의해 ilvA (isoleucine 생합성 경로의 첫 번째 효소인 threonine dehydratase를 암호화하는 유전자), panB (pantothenate생합성에 필요한 효소 중 3-메틸-2-옥소부타노에이트 하이드록시메틸트랜스페라제를 암호화하는 유전자), ilvE (valine 생합성에 필요한 효소 중 가지달린 체인 아미노산 아미노트랜스페라제를 암호화하는 유전자) 및 leuA (leucine 생합성에 필요한 효소 중 2-이소프로필말레이트 신타아제를 암호화하는 유전자)등의 유전자를 결실시켰다. To eliminate the feedback inhibition of the lacI gene and ilvH obtained in 1-1-4 and to delete the ilvA , panB, ilvE and leuA genes in W3110 substituted with the tac promoter of the ilvGMEDA and ilvBN operon attenuation regions , 26 primer, ilvA (a gene encoding threonine dehydratase, the first enzyme of isoleucine biosynthesis pathway), panB (an enzyme necessary for pantothenate biosynthesis, 3-methyl- (A gene encoding 2-oxobutanoate hydroxymethyltransferase), ilvE (a gene encoding a branched chain amino acid aminotransferase among enzymes required for valine biosynthesis), and leuA (an enzyme required for leucine biosynthesis) A gene encoding isopropyl maleate synthase) and the like were deleted.

즉, 1-1-4에서 제작된 lacI 유전자가 제거되고, ilvH의 feedback inhibition이 제거되었으며, ilvGMEDA ilvBN 오페론의 감쇠영역을 포함한 본래의 프로모터가 강력한 전사활성을 가지는 tac 프로모터로 치환된 대장균 W3110 컴피턴트 세포에서 상기 유전자 4종의 결실을 유도하였다. That is, the lacI gene produced in 1-1-4 was removed, the feedback inhibition of ilvH was removed, and the original promoter including the attenuation region of ilvGMEDA and ilvBN operon was replaced with a tac promoter having strong transcription activity. The deletion of the four genes was induced in tent cells.

[서열번호 19] ilvA1stup: 5'-atggctgactcgcaacccctgtccggtgctccggaaggtgc cgaatatttgattgcagcattacacgtcttg-3'[SEQ ID NO: 19] ilvA1stup: 5'-atggctgactcgcaacccctgtccggtgctccggaaggtgc cgaatatttgattgcagcattacacgtcttg-3 '

[서열번호 20] ilvA1stdo: 5'-ctaacccgccaaaaagaacctgaacgccgggttattggttt cgtcgtggccacttaacggctgacatggg-3'[SEQ ID NO: 20] ilvA1stdo: 5'-ctaacccgccaaaagaacctgaacgccgggttattggttt cgtcgtggccacttaacggctgacatggg-3 '

[서열번호 21] panB1stup: 5'-atgaaaccgaccaccatctccttactgcagaagtacaaac aggaaaaaaagattgcagcattacacgtcttg-3'[SEQ ID NO: 21] panB1stup: 5'-atgaaaccgaccaccatctccttactgcagaagtacaaac aggaaaaaaagattgcagcattacacgtcttg-3 '

[서열번호 22] panB1stdo: 5'-ttaatggaaactgtgttcttcgcccggataaacgccggact ccacttcagcacttaacggctgacatggg-3'[SEQ ID NO: 22] panB1stdo: 5'-ttaatggaaactgtgttcttcgcccggataaacgccggact ccacttcagcacttaacggctgacatggg-3 '

[서열번호 23] leuA1stup: 5'-atgagccagcaagtcattattttcgataccacattgcgcga cggtgaacagattgcagcattacacgtcttg-3'[SEQ ID NO: 23] leuA1stup: 5'-atgagccagcaagtcattattttcgataccacattgcgcga cggtgaacagattgcagcattacacgtcttg-3 '

[서열번호 24] leuA1stdo: 5'-ttcagaacgtgcaccatggctttggcagatgactcgacaat atcggtagcacttaacggctgacatggg-3'[SEQ ID NO: 24] leuA1stdo: 5'-ttcagaacgtgcaccatggctttggcagatgactcgacaat atcggtagcacttaacggctgacatggg-3 '

[서열번호 25] ilvE1stup: 5'-atcttcgtcggtgatgttggcatgggagtaaacccgccag cgggatactctaggtgacactatagaacgcg-3'[SEQ ID NO: 25] ilvE1stup: 5'-atcttcgtcggtgatgttggcatgggagtaaacccgccag cgggatactctaggtgacactatagaacgcg-3 '

[서열번호 26] ilvE1stdo: 5'-caggttttcgcctgcgccttcagagatataaccgttcacatc cagcgcgatagtggatctgatgggtacc-3'[SEQ ID NO: 26] ilvE1stdo: 5'-caggttttcgcctgcgccttcagagatataaccgttcacatc cagcgcgatagtggatctgatgggtacc-3 '

1-1-6: pKBRilvBNCD 벡터의 제작1-1-6: Construction of pKBRilvBNCD vector

서열번호 27 내지 32의 프라이머들을 이용하여 2-케토이소발레르산염 축적에 필수적인 유전자들, 즉 ilvB(acetohydroxy acid synthase I large subunit을 암호화하는 유전자), ilvN(acetohydroxy acid synthase I small subunit을 암호화하는 유전자), ilvC(acetohydroxy acid isomeroreductase를 암호화하는 유전자), 및 ilvD(dihydroxy-acid dehydratase를 암호화하는 유전자) 등을 순차적으로 pKK223-3 발현벡터(Pharmacia Biotech)에 클로닝하여 pKKilvBNCD 벡터를 수득하고, sequencing으로 염기서열을 확인하였다. 상기 pKKilvBNCD 벡터를 PciI 및 SphI 효소로 절단한 8.0kb 절편과, pBR322 벡터를 PciI 및 SphI 효소로 절단한 1.9kb 절편을 ligation 하여 pKBRilvBNCD 벡터를 최종 수득하였다(도 4 참조).The genes coding for ilvB (acetohydroxy acid synthase I large subunit), ilvN (encoding acetohydroxy acid synthase I small subunit), and genes coding for < RTI ID = ), ilvC (a gene encoding acetohydroxy acid isomeroreductase), and ilvD (a gene encoding dihydroxy-acid dehydratase) are successively cloned into a pKK223-3 expression vector (Pharmacia Biotech) to obtain a pKKilvBNCD vector, The sequence was confirmed. The pKKilvBNCD vector was obtained by ligation of the 8.0 kb fragment obtained by digesting the pKKilvBNCD vector with the Pci I and Sph I enzymes and the 1.9 kb fragment obtained by digesting the pBR322 vector with the Pci I and Sph I enzymes (see FIG. 4).

[서열번호 27] ilvBNf: 5'-actcgaattcatggcaagttcgggcacaacat-3' [SEQ ID NO: 27] ilvBNf: 5'-actcgaattcatggcaagttcgggcacaacat-3 '

[서열번호 28] ilvBNr: 5'-actcgaattcatggcaagttcgggcacaacat-3'[SEQ ID NO: 28] ilvBNr: 5'-actcgaattcatggcaagttcgggcacaacat-3 '

[서열번호 29] ilvCf: 5'-agtgctgcagacgaggaatcaccatggctaac-3'[SEQ ID NO: 29] ilvCf: 5'-agtgctgcagacgaggaatcaccatggctaac-3 '

[서열번호 30] ilvCrSX: 5'-gctcctgcagtctagagctagcgagctcttaacccgc-3'[SEQ ID NO: 30] ilvCrSX: 5'-gctcctgcagtctagagctagcgagctcttaacccgc-3 '

[서열번호 31] ilvDf: 5'-actcgagctcgagacagacactgggagtaa-3'[SEQ ID NO: 31] ilvDf: 5'-actcgagctcgagacagacactgggagtaa-3 '

[서열번호 32] ilvDr: 5'-tacgtctagattaaccccccagtttcgatt-3'[SEQ ID NO: 32] ilvDr: 5'-tacgtctagattaaccccccagtttcgatt-3 '

1-1-7: pKBRilvBNCD-ptac-adhE-bdhAB 벡터의 제작1-1-7: Construction of pKBRilvBNCD-ptac-adhE-bdhAB vector

pTac15K 벡터를 주형으로 하고, 서열번호 33의 프라이머와 서열번호 34의 프라이머를 사용하여 PCR반응을 수행하였다. 이로부터 확보된 tac 프로모터를 XbaI 로 절단하고, 이를 상기 실시예 1-1-6에서 제작한 pKBRilvBNCD 벡터의 동일한 제한효소 절단부위에 삽입하여 pKBRilvBNCD-ptac 벡터를 수득하였다. PCR was carried out using the pTac15K vector as a template and the primers of SEQ ID NO: 33 and SEQ ID NO: 34. The tac promoter thus obtained was digested with Xba I and inserted into the same restriction enzyme cleavage site of the pKBRilvBNCD vector prepared in Example 1-1-6 to obtain a pKBRilvBNCD-ptac vector.

C. acetobutylicum ATCC 824 genomic DNA를 주형으로 하고, 서열번호 35의 프라이머와 서열번호 36의 프라이머를 사용하여 PCR 반응을 수행하였다. 이로부터 확보된 adhE 유전자를 NheIStuI로 절단하고, 이를 상기 pKBRilvBNCD-ptac 벡터의 동일한 제한효소 절단부위에 삽입하여 pKBRilvBNCD-ptac-adhE 벡터를 수득하였다. The PCR reaction was carried out using the C. acetobutylicum ATCC 824 genomic DNA as a template and the primers of SEQ ID NO: 35 and SEQ ID NO: 36. The adhE gene thus obtained was digested with NheI and StuI and inserted into the same restriction enzyme cleavage site of the pKBRilvBNCD-ptac vector to obtain a pKBRilvBNCD-ptac-adhE vector.

다음으로, C. acetobutylicum ATCC 824 genomic DNA를 주형으로 하고, 서열번호 37의 프라이머와 서열번호 38의 프라이머를 사용하여 PCR 반응을 수행하였다. 이로부터 확보된 bdhAB 유전자를 StuI로 절단하고, 이를 상기 pKBRilvBNCD-ptac-adhE 벡터의 동일한 제한효소 절단부위에 삽입하여 pKBRilvBNCD-ptac-adhE-bdhAB 벡터를 제작하였다 (도 4 참조). Next, the PCR reaction was carried out using primers of SEQ ID NO: 37 and SEQ ID NO: 38 using C. acetobutylicum ATCC 824 genomic DNA as a template. The bdhAB gene thus obtained was digested with StuI and inserted into the same restriction enzyme cleavage site of the pKBRilvBNCD-ptac-adhE vector to prepare a pKBRilvBNCD-ptac-adhE-bdhAB vector (see FIG. 4).

[서열번호 33] tacf: 5'-atcttctagaatcggaagctgtggtatggc-3'[SEQ ID NO: 33] tacf: 5'-atcttctagaatcggaagctgtggtatggc-3 '

[서열번호 34] tacrsn: 5'-gtgctctagaaggcctgatcagctagctgtttcctgtgtga-3'[SEQ ID NO: 34] tacrsn: 5'-gtgctctagaaggcctgatcagctagctgtttcctgtgtga-3 '

[서열번호 35] adhEfn: 5'-acgcgctagcatgaaagttacaaatcaaaa-3'[SEQ ID NO: 35] adhEfn: 5'-acgcgctagcatgaaagttacaaatcaaaa-3 '

[서열번호 36] adhErs: 5'-acgtaggcctatagtctatgtgcttcatga-3'[SEQ ID NO: 36] adhErs: 5'-acgtaggcctatagtctatgtgcttcatga-3 '

[서열번호 37] bdhfst: 5'-atgcaggcctcaacgaaaaattcaccccct-3'[SEQ ID NO: 37] bdhfst: 5'-atgcaggcctcaacgaaaaattcaccccct-3 '

[서열번호 38] bdhrst: 5'-acgtaggcctccggtaggtttacacagatt-3'[SEQ ID NO: 38] bdhrst: 5'-acgtaggcctccggtaggtttacacagatt-3 '

1-1-8:1-1-8: pTac15K_VorABC 벡터의 제작Construction of pTac15K_VorABC vector

pTac15K 벡터(p15A origin, low copies, KmR; KAISTMBEL stock)에 Methanosarcina acetivoransvorA, vorB, vorC operon을 서열번호 39과 40의 프라이머들을 이용하여 클로닝하여 pTac15K_VorABC 벡터를 제작하였다. pTac15K_VorABC vector was prepared by cloning vorA , vorB , and vorC operon of Methanosarcina acetivorans with the primers of SEQ ID NOS: 39 and 40 in the pTac15K vector (p15A origin, low copies, KmR; KAISTMBEL stock).

[서열번호 39] VorABCF-2: 5'-TATAGAGCTCATGGCAAAAAATGATGAAAA-3'[SEQ ID NO: 39] VorABCF-2: 5'-TATAGAGCTCATGGCAAAAAATGATGAAAA-3 '

[서열번호 40] VorABCR-2: 5'-TATTTCTAGATCATACCTTATACTCTCTTGCCC-3'[SEQ ID NO: 40] VorABCR-2: 5'-TATTTCTAGATCATACCTTATACTCTCTTGCCC-3 '

1-1-9: pTac15K_VorABC_ptac_icmAB 벡터의 제작1-1-9: Construction of pTac15K_VorABC_ptac_icmAB vector

pTac15K_VorABC 벡터에 Streptomyces avermitilisicmA, icmB gene들을 서열번호 41 및 42의 프라이머들을 이용하여 클로닝하여 pTac15K_VorABC_ptac_icmAB 벡터를 제작하였다. The pTac15K_VorABC_ptac_icmAB vector was prepared by cloning the icma and icmB genes of Streptomyces avermitilis into the pTac15K_VorABC vector using the primers of SEQ ID NOS: 41 and 42.

[서열번호 41] tacicmABF-1: 5'-CGCGGCATGCGAAATGAGCTGTTGACAATT-3'[SEQ ID NO: 41] tacicmABF-1: 5'-CGCGGCATGCGAAATGAGCTGTTGACAATT-3 '

[서열번호 42] tacicmABR-1: 5'-TATAGCATGCCTACGCCCCGGCAGGCTGCC-3'[SEQ ID NO: 42] tacicmABR-1: 5'-TATAGCATGCCTACGCCCCGGCAGGCTGCC-3 '

1-2: 부탄올 생성균주의 제작1-2: Production of butanol-producing bacteria

상기 1-1-1 내지 1-1-5의 과정을 통해 ilvGMEDAilvBN operon의 감쇠영역을 포함하는 원래의 프로모터가 tac 프로모터로 치환되고, ilvH의 feedback inhibition이 제거되고, lacI, ilvA, panB, leuAilvE 유전자가 결실된 대장균 W3110 균주 {Val(△ilvE)}에 상기 1-1-6 내지 1-1-9에서 제작된 벡터를 도입하여 부탄올 생성 미생물을 제작하였다. The original promoter including the attenuated region of ilvGMEDA and ilvBN operon was substituted with the tac promoter, the feedback inhibition of ilvH was removed, and lacI , ilvA , panB , The microorganism producing the butanol was prepared by introducing the vector prepared in 1-1-6 to 1-1-9 into Escherichia coli W3110 strain {Val (Δ ilvE )} in which the leuA and ilvE genes were deleted.

1-3: 부탄올 생성능의 측정1-3: Measurement of butanol production ability

상기 1-2에서 제작된 부탄올 생성 미생물들을 엠피실린(ampicillin) 및 클로람페니콜(chloramphenicol)이 각각 50㎍/㎖ 및 30㎍/㎖ 첨가된 LB 평판배지에서 선별하였다. 상기 형질전환 균주와 대한민국 특허출원 제10-2009-0059560호에 명시된 부탄올 생성 미생물을 10㎖ LB 배지에 접종하여 37℃에서 12시간 동안 전배양을 수행하였다. 그 후, 멸균 후 80℃ 이상에서 꺼낸 100㎖ LB를 함유한 250㎖ 플라스크에 glucose (10g/L)를 첨가하고 상기 전배양액 1㎖을 접종하여, 31℃에서 12시간 배양하였다. 그 결과, 표 1에 나타난 바와 같이, 야생형 대장균 W3110에서는 부탄올이 생성되지 않았고, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소를 코딩하는 유전자로 bkdAB-lpdV를 도입한 재조합 미생물의 경우와 비교할 때(대한민국 특허출원 제10-2009-0059560호), 본 발명에 따른 재조합 변이 미생물은 32mg/L의 부탄올 생산을, bkdAB-lpdV를 도입한 재조합 미생물은 10mg/L의 부탄올을 생산을 나타내었다. 이는 100㎖ flask에서 12시간 배양한 결과이며, 즉, 본 발명에 따른 재조합 미생물에서 더 많은 양의 부탄올을 생산함을 확인하였고, large scale 배양시 더 많은 양의 부탄올이 생성될 것으로 예상된다. 이 결과로부터, 본 발명에서의 VorABC, adhE, icmAB bdhAB 유전자들의 과발현으로 인해 2-케토이소발레르산염으로부터 부탄올이 성공적으로 생성되었으며, 또한 2-케토이소발레르산염의 생성능을 가지는 미생물에 도입된 유전자 조작에 의해 2-케토이소발레르산염이 축적되어 부탄올 생산에 중요한 전구체로 작용한 것을 확인할 수 있었다.The butanol-producing microorganisms prepared in 1-2 above were selected on LB plate medium supplemented with ampicillin and chloramphenicol at 50 占 퐂 / ml and 30 占 퐂 / ml, respectively. The transformant and the butanol-producing microorganism described in Korean Patent Application No. 10-2009-0059560 were inoculated in 10 ml of LB medium and pre-cultured at 37 ° C for 12 hours. Then, glucose (10 g / L) was added to a 250 ml flask containing 100 ml LB taken out at 80 ° C or higher after sterilization, and 1 ml of the preculture was inoculated and cultured at 31 ° C for 12 hours. As a result, as shown in Table 1, no butanol was produced in wild-type E. coli W3110, and recombinant microorganism bkdAB-lpdV was introduced as a gene encoding an enzyme that converts 2-ketoisovalerate to isobutyryl- (Korean Patent Application No. 10-2009-0059560), the recombinant mutant microorganism according to the present invention produces 32 mg / L butanol, while the recombinant microorganism into which bkdAB-lpdV is introduced produces 10 mg / L butanol Respectively. It was confirmed that the recombinant microorganism according to the present invention produced a larger amount of butanol, and a larger amount of butanol was expected to be produced in a large scale culture. These results indicate that butanol was successfully produced from 2-ketoisovalerate by overexpression of the VorABC , adhE, icmAB and bdhAB genes in the present invention and was also introduced into microorganisms having the ability to produce 2-ketoisovalerate It was confirmed that 2-ketoisovalerate was accumulated by the genetic manipulation and acted as an important precursor for the production of butanol.

StrainStrain Butanol (mg/L)Butanol (mg / L) W3110W3110 ND1 ND 1 Val(△ilvE)+pKBRilvBNCD-ptac-adhEbdhAB+ pTac15KlpdVbkdA1-ptac-bkdA2BicmAB Val (△ ilvE) + pKBRilvBNCD- ptac-adhEbdhAB + pTac15KlpdVbkdA1-ptac-bkdA2BicmAB 1010 Val(△ilvE)+pKBRilvBNCD-ptac-adhEbdhAB+ pTac15K_VorABC_icmAB Val (△ ilvE) + pKBRilvBNCD- ptac-adhEbdhAB + pTac15K_VorABC_icmAB 3232

1 Not detected. 1 Not detected.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Korea Advanced Institute of Science and Technology <120> Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same <130> P10-B186 <160> 46 <170> KopatentIn 1.71 <210> 1 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 agccgtcgac gctagcgcat gcacgcgtgt gcacccatgg gacgtcctca ctgactcgct 60 gcgctc 66 <210> 2 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ggctcacaac gtggctagcg acgtcgtgca cccatgggtt ccactgagcg tcagacc 57 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 actctctaga cgcgggtttg ttactgataa 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gctagatatc aggatatcgg cattttcttt 30 <210> 5 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta gattgcagca 60 ttacacgtct tg 72 <210> 6 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tcactgcccg ctttccagtc gggaaacctg tcgtgccagc tgcattaatg cacttaacgg 60 ctgacatggg 70 <210> 7 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 gactctgcag ggtgatcgag actctttggc ggttgac 37 <210> 8 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggaaaaaagg ccaatcacgc ggaataacgc gtctgattca ttttcgagta ag 52 <210> 9 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cttactcgaa aatgaatcag acgcgttatt ccgcgtgatt ggcctttttt cc 52 <210> 10 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gctccgtcga ccagtttcac aattgcccct tgcgtaaa 38 <210> 11 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gactgtcgac ctaacttatt ggctgtaagc tgttctgagg cc 42 <210> 12 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gctcggatcc gaatgttgtt cccttcctcg tagttcatcc 40 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gactgaattc atgaatggcg cacagtgggt ggtacatgcg 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gctcctgcag tcaccgctgg ctaactggat atcttttggg 40 <210> 15 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 gactcgtcga cagagatggt agggcggata a 31 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gctcggatcc cacactgtat tatgtcaaca 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gactgaattc atggcaagtt cgggcacaac 30 <210> 18 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gctcactgca gtgcgtcacg aatgctttct t 31 <210> 19 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 atggctgact cgcaacccct gtccggtgct ccggaaggtg ccgaatattt gattgcagca 60 ttacacgtct tg 72 <210> 20 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 ctaacccgcc aaaaagaacc tgaacgccgg gttattggtt tcgtcgtggc cacttaacgg 60 ctgacatggg 70 <210> 21 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 atgaaaccga ccaccatctc cttactgcag aagtacaaac aggaaaaaaa gattgcagca 60 ttacacgtct tg 72 <210> 22 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 ttaatggaaa ctgtgttctt cgcccggata aacgccggac tccacttcag cacttaacgg 60 ctgacatggg 70 <210> 23 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 atgagccagc aagtcattat tttcgatacc acattgcgcg acggtgaaca gattgcagca 60 ttacacgtct tg 72 <210> 24 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ttcagaacgt gcaccatggc tttggcagat gactcgacaa tatcggtagc acttaacggc 60 tgacatggg 69 <210> 25 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 atcttcgtcg gtgatgttgg catgggagta aacccgccag cgggatactc taggtgacac 60 tatagaacgc g 71 <210> 26 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 caggttttcg cctgcgcctt cagagatata accgttcaca tccagcgcga tagtggatct 60 gatgggtacc 70 <210> 27 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 actcgaattc atggcaagtt cgggcacaac at 32 <210> 28 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 actcgaattc atggcaagtt cgggcacaac at 32 <210> 29 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 agtgctgcag acgaggaatc accatggcta ac 32 <210> 30 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gctcctgcag tctagagcta gcgagctctt aacccgc 37 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 actcgagctc gagacagaca ctgggagtaa 30 <210> 32 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 tacgtctaga ttaacccccc agtttcgatt 30 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 atcttctaga atcggaagct gtggtatggc 30 <210> 34 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gtgctctaga aggcctgatc agctagctgt ttcctgtgtg a 41 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 acgcgctagc atgaaagtta caaatcaaaa 30 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 acgtaggcct atagtctatg tgcttcatga 30 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 atgcaggcct caacgaaaaa ttcaccccct 30 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 acgtaggcct ccggtaggtt tacacagatt 30 <210> 39 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 tatagagctc atggcaaaaa atgatgaaaa 30 <210> 40 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 tatttctaga tcatacctta tactctcttg ccc 33 <210> 41 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 cgcggcatgc gaaatgagct gttgacaatt 30 <210> 42 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 tatagcatgc ctacgccccg gcaggctgcc 30 <210> 43 <211> 482 <212> PRT <213> Methanosarcina acetivorans <400> 43 Met Lys Met Ala Ala Glu Ile Ile Asp Gly Glu Lys Val Ile Lys Lys 1 5 10 15 Pro Lys Ala Leu Tyr Ser Glu Tyr Pro Arg Lys Gly Gly Ala Ala Pro 20 25 30 Thr Ala Thr His Tyr Cys Pro Gly Cys Gly His Gly Val Leu His Lys 35 40 45 Leu Ile Ala Glu Ala Ile Asp Asp Leu Gly Ile Gln Asp Arg Thr Val 50 55 60 Met Ile Ser Pro Val Gly Cys Ala Val Phe Ala Tyr Tyr Tyr Phe Asp 65 70 75 80 Thr Gly Asn Ile Gln Val Ala His Gly Arg Ala Pro Ala Val Gly Thr 85 90 95 Gly Val Ser Arg Ala Glu Glu Asn Ala Val Val Ile Ser Tyr Gln Gly 100 105 110 Asp Gly Asp Leu Ala Ser Ile Gly Leu Asn Glu Thr Leu Gln Ala Ala 115 120 125 Asn Arg Gly Glu Lys Leu Ala Val Phe Phe Val Asn Asn Thr Val Tyr 130 135 140 Gly Met Thr Gly Gly Gln Met Ala Pro Thr Thr Leu Ile Gly Glu Lys 145 150 155 160 Thr Thr Thr Thr Pro Glu Gly Arg Asp Pro Arg Phe Ala Gly Tyr Pro 165 170 175 Leu His Met Cys Glu Leu Leu Asp Asn Leu Lys Ala Pro Ile Phe Ile 180 185 190 Glu Arg Val Ser Val Ser Asp Ile Ser His Ile Arg Lys Ala Arg Lys 195 200 205 Ala Val Arg Lys Ala Leu Glu Val Gln Arg Asp Gly Lys Gly Tyr Ala 210 215 220 Phe Val Glu Val Leu Ala Ala Cys Pro Thr Asn Leu Arg Met Asp Ala 225 230 235 240 Glu Gln Ala Ile Gln Phe Ile Asn Glu Gln Met Glu Lys Glu Phe Pro 245 250 255 Leu Arg Asn Phe Arg Asp Asn Phe Glu Ser Ala Glu Pro Leu His Arg 260 265 270 Gly Ile Ser Asp Phe Thr Thr Glu Ser Leu Glu Lys Leu Tyr Gly Ile 275 280 285 Glu Ala Glu Thr Gly Glu Lys Pro Ser Arg Thr Asp Phe Ala Pro Ile 290 295 300 Gln Thr Lys Ile Ala Gly Phe Gly Gly Gln Gly Val Leu Ser Met Gly 305 310 315 320 Leu Ile Leu Ala Gln Ala Gly Val Lys Ala Asn Leu Asn Ala Ser Trp 325 330 335 Phe Pro Ser Tyr Gly Pro Glu Gln Arg Gly Gly Thr Ser Asn Cys Ser 340 345 350 Val Val Ile Ser Gly Gln Ala Ile Gly Ser Pro Thr Val Tyr Thr Pro 355 360 365 Asp Ile Leu Ile Ala Met Asn Arg Pro Ser Leu Glu Arg Phe Glu Gly 370 375 380 Ala Val Lys Glu Gly Gly Phe Ile Leu Tyr Asp Ser Thr Ile Gly Glu 385 390 395 400 Ala Glu Thr Pro Ala Gly Val Asn Ala Ile Ala Val Pro Ala Thr Glu 405 410 415 Lys Ala Lys Glu Ala Gly Asp Glu Arg Ala Ala Asn Ser Phe Met Leu 420 425 430 Gly Val Leu Leu Gly Leu Asn Ala Thr Gly Leu Glu Glu Glu Ala Phe 435 440 445 Lys Glu Ala Leu Ala Glu Asn Phe Thr Gly Lys Pro Lys Val Ile Glu 450 455 460 Phe Asn Gln Gln Met Leu Glu Ala Gly Ala Ala Trp Ala Arg Glu Tyr 465 470 475 480 Lys Val <210> 44 <211> 351 <212> PRT <213> Methanosarcina acetivorans <400> 44 Met Ala Thr Gln Leu Val Lys Gly Asn Ser Ala Ile Val Val Gly Ala 1 5 10 15 Leu Tyr Ala Gly Cys Asp Cys Phe Phe Gly Tyr Pro Ile Thr Pro Ala 20 25 30 Ser Glu Ile Leu His Asp Ala Ser Lys Tyr Phe Pro Met Ile Gly Arg 35 40 45 Lys Phe Val Gln Ala Glu Ser Glu Glu Ala Ala Ile Asn Met Val Phe 50 55 60 Gly Gly Ala Ser Ala Gly His Arg Val Met Thr Ser Ser Ser Gly Pro 65 70 75 80 Gly Ile Ser Leu Met Gln Glu Gly Ile Ser Tyr Leu Ala Gly Ala Glu 85 90 95 Leu Pro Cys Val Leu Val Asp Ile Met Arg Ala Gly Pro Gly Leu Gly 100 105 110 Asn Ile Gly Pro Glu Gln Gly Asp Tyr Asn Gln Val Val Lys Gly Gly 115 120 125 Gly His Gly Asn Tyr Lys Asn Ile Val Leu Ala Pro Asn Ser Val Gln 130 135 140 Glu Met Cys Asp Phe Thr Met Lys Ala Phe Glu Leu Ala Phe Lys Tyr 145 150 155 160 Arg Asn Pro Ala Ile Val Leu Ala Asp Gly Val Leu Gly Gln Met Ile 165 170 175 Glu Ser Leu Glu Phe Pro Lys Lys Ala Leu Thr Pro Glu Ile Asp Ala 180 185 190 Ser Trp Ala Val Asn Gly Thr Ala Glu Thr Arg Pro Asn Leu Ile Thr 195 200 205 Ser Ile Phe Leu Asp Phe Asn Glu Leu Gly Gln Phe Asn Glu Lys Leu 210 215 220 Gln Ala Lys Tyr Glu Leu Ile Lys Gln Asn Glu Val Asp Tyr Glu Glu 225 230 235 240 Tyr Met Thr Asp Asp Ala Ser Ile Val Leu Val Ser Tyr Gly Ile Ser 245 250 255 Ser Arg Ile Cys Arg Ser Ala Val Asp Leu Ala Arg Lys Glu Gly Ile 260 265 270 Lys Val Gly Leu Phe Arg Pro Lys Thr Leu Phe Pro Phe Pro Glu Ala 275 280 285 Gln Leu Lys Ala Leu Ala Asp Lys Glu Ala Ser Phe Ile Ser Val Glu 290 295 300 Met Ser Asn Gly Gln Met Ile Asp Asp Ile Arg Leu Ala Ile Asp Cys 305 310 315 320 Ser Gln Pro Val Glu Leu Val Asn Arg Met Gly Gly Asn Leu Ile Thr 325 330 335 Leu Asp Gln Ile Met Asp Lys Ile Arg Lys Val Ala Gly Glu Ala 340 345 350 <210> 45 <211> 82 <212> PRT <213> Methanosarcina acetivorans <400> 45 Met Ala Lys Asn Asp Glu Lys Glu Pro Tyr Pro Val Ile Asn Ile Leu 1 5 10 15 Glu Cys Lys Ala Cys Gly Arg Cys Leu Leu Ala Cys Pro Lys Asp Val 20 25 30 Leu Phe Met Ser Asp Asn Leu Asn Ala Arg Gly Tyr His Tyr Val Glu 35 40 45 Tyr Lys Gly Glu Gly Cys Ser Gly Cys Ala Ser Cys Tyr Tyr Thr Cys 50 55 60 Pro Glu Pro Leu Ala Leu Glu Ile His Ile Pro Leu Lys Lys Glu Glu 65 70 75 80 Ala Asp <210> 46 <211> 2772 <212> DNA <213> Methanosarcina acetivorans <400> 46 atggcaaaaa atgatgaaaa agaaccgtac cctgttatca acattctgga gtgcaaggct 60 tgtgggcgct gccttcttgc ctgcccgaag gatgtgcttt tcatgagtga taacctgaac 120 gccaggggtt accactacgt agagtataaa ggagaaggct gttcaggctg tgcgagctgc 180 tactatacct gtcctgaacc ccttgcactg gaaatccata ttcccctgaa aaaggaggaa 240 gccgactaag gcaggataag gagggaaaaa gatggcaaca caactcgtaa aaggcaactc 300 cgcaatagtc gttggcgcac tttatgccgg atgtgactgt ttctttggat atcccattac 360 tccggcaagc gaaattctgc atgatgcatc caaatacttt cccatgatag gaaggaaatt 420 cgtgcaggcc gagtcagagg aggctgcaat taacatggtc ttcggggggg catcagccgg 480 gcacagggta atgacgtcct cctcaggccc aggaattagc ctgatgcagg aagggatctc 540 ttatcttgca ggcgcagagc ttccttgtgt gcttgtcgat ataatgaggg caggccctgg 600 actagggaac atcggacctg aacagggtga ttataaccag gtagtaaaag gtggagggca 660 cgggaattat aaaaatatcg tacttgcccc caactccgtg caggagatgt gtgactttac 720 catgaaggct tttgagctgg ccttcaagta caggaaccct gcaatcgtgc ttgctgacgg 780 agtgctcggg cagatgattg agtcccttga gtttccgaaa aaagccctta ctcctgaaat 840 cgatgcaagc tgggcagtca acggtacagc cgaaaccagg cctaacctga taacctctat 900 cttccttgac ttcaacgaac tcgggcagtt caacgagaaa ctgcaggcaa aatacgagct 960 gataaagcaa aatgaggttg actacgaaga atacatgacc gacgatgcct caatcgtgct 1020 tgtctcttac ggcataagca gcaggatctg caggtcagct gtagaccttg ccagaaagga 1080 aggcataaag gtggggctct tcaggccaaa gactcttttc ccattcccgg aggcgcagtt 1140 gaaagccctt gcagataagg aagcttcttt catctccgtg gagatgagca acgggcagat 1200 gatagatgac atcaggcttg caatcgactg ctcacagccc gtggaactgg taaaccgcat 1260 gggaggcaac ctgatcaccc ttgaccagat catggacaaa atcagaaagg tagcagggga 1320 ggcatgaaaa tggcagcaga aattattgac ggagaaaagg ttatcaaaaa gccaaaagcc 1380 ctgtactcgg aatacccgcg caaaggaggt gcagctccaa cagccaccca ctattgtcct 1440 ggctgcggac atggggtttt gcacaagctc attgccgagg caattgacga cctcggaatc 1500 caggacagga cggttatgat cagccctgtg ggatgtgcag tttttgctta ttattacttt 1560 gacacaggca atatccaggt tgcccacggc cgggctcctg ctgttggaac aggtgtctca 1620 agggctgaag aaaacgctgt agttatctcc taccagggcg acggagacct tgcttcgatc 1680 ggcctgaacg agacgctgca ggcggcaaac agaggagaaa agcttgcagt ttttttcgta 1740 aataacaccg tatacggcat gaccggcgga cagatggctc caacaaccct tatcggggaa 1800 aagacaacca caacccctga aggtcgcgac ccccgctttg caggctaccc gctccacatg 1860 tgtgagcttc tggacaacct gaaggctccg atttttatcg aaagagtctc ggtttccgat 1920 atctctcata tccgaaaagc ccgaaaagcc gttcgaaagg cgctcgaagt ccagcgtgat 1980 ggcaagggct atgcttttgt ggaagtcctt gcagcctgcc cgaccaacct taggatggat 2040 gcagagcagg ctatccagtt cattaacgag cagatggaaa aggaattccc gctcaggaac 2100 ttcagggaca atttcgaatc tgccgaaccc cttcaccgcg ggatcagtga ctttacaact 2160 gagtcccttg aaaagcttta cggaattgaa gcggaaaccg gagaaaaacc ctcaaggact 2220 gactttgctc cgatccagac caagattgca ggtttcggag gacagggtgt cctgagcatg 2280 ggccttatcc ttgcccaggc aggagtcaaa gcaaacctca atgcttcctg gttcccgtct 2340 tacggcccgg aacagcgcgg cggaacctca aactgctcgg tcgtgatttc aggtcaggct 2400 ataggctcgc ctacggtcta caccccagat atccttatag ccatgaaccg tccctccctc 2460 gagagattcg aaggggcagt aaaagaagga ggcttcatcc tctacgactc tacaatcggc 2520 gaagccgaga cccctgcagg cgtaaacgca attgcagtcc ctgcaaccga aaaagcaaaa 2580 gaagcaggtg atgagagagc cgcaaactcc ttcatgctcg gagtccttct gggcctgaac 2640 gcaaccggcc ttgaagaaga agccttcaaa gaagcccttg ccgaaaactt cacaggcaaa 2700 cccaaagtta ttgagtttaa ccagcagatg ctcgaagccg gggcagcatg ggcaagagag 2760 tataaggtat ga 2772 <110> Korea Advanced Institute of Science and Technology <120> Enhanced Butanol Producing Recombinant Microorganisms and Method          Preparing Butanol Using the Same <130> P10-B186 <160> 46 <170> Kopatentin 1.71 <210> 1 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 agccgtcgac gctagcgcat gcacgcgtgt gcacccatgg gacgtcctca ctgactcgct 60 gcgctc 66 <210> 2 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ggctcacaac gtggctagcg acgtcgtgca cccatgggtt ccactgagcg tcagacc 57 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 actctctaga cgcgggtttg ttactgataa 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gctagatatc aggatatcgg cattttcttt 30 <210> 5 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta gattgcagca 60 ttacacgtct tg 72 <210> 6 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tcactgcccg ctttccagtc gggaaacctg tcgtgccagc tgcattaatg cacttaacgg 60 ctgacatggg 70 <210> 7 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 gactctgcag ggtgatcgag actctttggc ggttgac 37 <210> 8 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggaaaaaagg ccaatcacgc ggaataacgc gtctgattca ttttcgagta ag 52 <210> 9 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 cttactcgaa aatgaatcag acgcgttatt ccgcgtgatt ggcctttttt cc 52 <210> 10 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gctccgtcga ccagtttcac aattgcccct tgcgtaaa 38 <210> 11 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gactgtcgac ctaacttatt ggctgtaagc tgttctgagg cc 42 <210> 12 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gctcggatcc gaatgttgtt cccttcctcg tagttcatcc 40 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gactgaattc atgaatggcg cacagtgggt ggtacatgcg 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gctcctgcag tcaccgctgg ctaactggat atcttttggg 40 <210> 15 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 gactcgtcga cagagatggt agggcggata a 31 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gctcggatcc cacactgtat tatgtcaaca 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gactgaattc atggcaagtt cgggcacaac 30 <210> 18 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gctcactgca gtgcgtcacg aatgctttct t 31 <210> 19 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 atggctgact cgcaacccct gtccggtgct ccggaaggtg ccgaatattt gattgcagca 60 ttacacgtct tg 72 <210> 20 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 ctaacccgcc aaaaagaacc tgaacgccgg gttattggtt tcgtcgtggc cacttaacgg 60 ctgacatggg 70 <210> 21 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 atgaaaccga ccaccatctc cttactgcag aagtacaaac aggaaaaaaa gattgcagca 60 ttacacgtct tg 72 <210> 22 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 ttaatggaaa ctgtgttctt cgcccggata aacgccggac tccacttcag cacttaacgg 60 ctgacatggg 70 <210> 23 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 atgagccagc aagtcattat tttcgatacc acattgcgcg acggtgaaca gattgcagca 60 ttacacgtct tg 72 <210> 24 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ttcagaacgt gcaccatggc tttggcagat gactcgacaa tatcggtagc acttaacggc 60 tgacatggg 69 <210> 25 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 atcttcgtcg gtgatgttgg catgggagta aacccgccag cgggatactc taggtgacac 60 tatagaacgc g 71 <210> 26 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 caggttttcg cctgcgcctt cagagatata accgttcaca tccagcgcga tagtggatct 60 gatgggtacc 70 <210> 27 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 actcgaattc atggcaagtt cgggcacaac at 32 <210> 28 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 actcgaattc atggcaagtt cgggcacaac at 32 <210> 29 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 agtgctgcag acgaggaatc accatggcta ac 32 <210> 30 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gctcctgcag tctagagcta gcgagctctt aacccgc 37 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 actcgagctc gagacagaca ctgggagtaa 30 <210> 32 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 tacgtctaga ttaacccccc agtttcgatt 30 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 atcttctaga atcggaagct gtggtatggc 30 <210> 34 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gtgctctaga aggcctgatc agctagctgt ttcctgtgtg a 41 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 acgcgctagc atgaaagtta caaatcaaaa 30 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 acgtaggcct atagtctatg tgcttcatga 30 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 atgcaggcct caacgaaaaa ttcaccccct 30 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 acgtaggcct ccggtaggtt tacacagatt 30 <210> 39 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 tatagagctc atggcaaaaa atgatgaaaa 30 <210> 40 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 tatttctaga tcatacctta tactctcttg ccc 33 <210> 41 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 cgcggcatgc gaaatgagct gttgacaatt 30 <210> 42 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 tatagcatgc ctacgccccg gcaggctgcc 30 <210> 43 <211> 482 <212> PRT <213> Methanosarcina acetivorans <400> 43 Met Lys Met Ala Ala Glu Ile Ile Asp Gly Glu Lys Val Ile Lys Lys   1 5 10 15 Pro Lys Ala Leu Tyr Ser Glu Tyr Pro Arg Lys Gly Gly Ala Ala Pro              20 25 30 Thr Ala Thr His Tyr Cys Pro Gly Cys Gly His Gly Val Leu His Lys          35 40 45 Leu Ile Ala Glu Ala Ile Asp Asp Leu Gly Ile Gln Asp Arg Thr Val      50 55 60 Met Ile Ser Pro Val Gly Cys Ala Val Phe Ala Tyr Tyr Tyr Phe Asp  65 70 75 80 Thr Gly Asn Ile Gln Val Ala His Gly Arg Ala Pro Ala Val Gly Thr                  85 90 95 Gly Val Ser Ser Ala Glu Glu Asn Ala Val Val Ile Ser Tyr Gln Gly             100 105 110 Asp Gly Asp Leu Ala Ser Ile Gly Leu Asn Glu Thr Leu Gln Ala Ala         115 120 125 Asn Arg Gly Glu Lys Leu Ala Val Phe Phe Val Asn Asn Thr Val Tyr     130 135 140 Gly Met Thr Gly Gly Gln Met Ala Pro Thr Thr Leu Ile Gly Glu Lys 145 150 155 160 Thr Thr Thr Pro Glu Gly Arg Asp Pro Arg Phe Ala Gly Tyr Pro                 165 170 175 Leu His Met Cys Glu Leu Leu Asp Asn Leu Lys Ala Pro Ile Phe Ile             180 185 190 Glu Arg Val Ser Val Ser Asp Ile Ser His Ile Arg Lys Ala Arg Lys         195 200 205 Ala Val Arg Lys Ala Leu Glu Val Gln Arg Asp Gly Lys Gly Tyr Ala     210 215 220 Phe Val Glu Val Leu Ala Ala Cys Pro Thr Asn Leu Arg Met Asp Ala 225 230 235 240 Glu Gln Ala Ile Gln Phe Ile Asn Glu Gln Met Glu Lys Glu Phe Pro                 245 250 255 Leu Arg Asn Phe Arg Asp Asn Phe Glu Ser Ala Glu Pro Leu His Arg             260 265 270 Gly Ile Ser Asp Phe Thr Thr Glu Ser Leu Glu Lys Leu Tyr Gly Ile         275 280 285 Glu Ala Glu Thr Gly Glu Lys Pro Ser Arg Thr Asp Phe Ala Pro Ile     290 295 300 Gln Thr Lys Ile Ala Gly Phe Gly Gly Gln Gly Val Leu Ser Met Gly 305 310 315 320 Leu Ile Leu Ala Gln Ala Gly Val Lys Ala Asn Leu Asn Ala Ser Trp                 325 330 335 Phe Pro Ser Tyr Gly Pro Glu Gln Arg Gly Gly Thr Ser Asn Cys Ser             340 345 350 Val Val Ile Ser Gly Gln Ala Ile Gly Ser Pro Thr Val Tyr Thr Pro         355 360 365 Asp Ile Leu Ile Ala Met Asn Arg Pro Ser Leu Glu Arg Phe Glu Gly     370 375 380 Ala Val Lys Glu Gly Gly Phe Ile Leu Tyr Asp Ser Thr Ile Gly Glu 385 390 395 400 Ala Glu Thr Pro Ala Gly Val Asn Ala Ile Ala Val Ala Thr Glu                 405 410 415 Lys Ala Lys Glu Ala Gly Asp Glu Arg Ala Asn Ser Phe Met Leu             420 425 430 Gly Val Leu Leu Gly Leu Asn Ala Thr Gly Leu Glu Glu Glu Ala Phe         435 440 445 Lys Glu Ala Leu Ala Glu Asn Phe Thr Gly Lys Pro Lys Val Ile Glu     450 455 460 Phe Asn Gln Gln Met Leu Glu Ala Gly Ala Ala Trp Ala Arg Glu Tyr 465 470 475 480 Lys Val         <210> 44 <211> 351 <212> PRT <213> Methanosarcina acetivorans <400> 44 Met Ala Thr Gln Leu Val Lys Gly Asn Ser Ala Ile Val Val Gly Ala   1 5 10 15 Leu Tyr Ala Gly Cys Asp Cys Phe Phe Gly Tyr Pro Ile Thr Pro Ala              20 25 30 Ser Glu Ile Leu His Asp Ala Ser Lys Tyr Phe Pro Met Ile Gly Arg          35 40 45 Lys Phe Val Gln Ala Glu Ser Glu Glu Ala Ala Ile Asn Met Val Phe      50 55 60 Gly Gly Ala Ser Ala Gly His Arg Val Met Thr Ser Ser Ser Gly Pro  65 70 75 80 Gly Ile Ser Leu Met Gln Glu Gly Ile Ser Tyr Leu Ala Gly Ala Glu                  85 90 95 Leu Pro Cys Val Leu Val Asp Ile Met Arg Ala Gly Pro Gly Leu Gly             100 105 110 Asn Ile Gly Pro Glu Gln Gly Asp Tyr Asn Gln Val Val Lys Gly Gly         115 120 125 Gly His Gly Asn Tyr Lys Asn Ile Val Leu Ala Pro Asn Ser Val Gln     130 135 140 Glu Met Cys Asp Phe Thr Met Lys Ala Phe Glu Leu Ala Phe Lys Tyr 145 150 155 160 Arg Asn Pro Ala Ile Val Leu Ala Asp Gly Val Leu Gly Gln Met Ile                 165 170 175 Glu Ser Leu Glu Phe Pro Lys Lys Ala Leu Thr Pro Glu Ile Asp Ala             180 185 190 Ser Trp Ala Val Asn Gly Thr Ala Glu Thr Arg Pro Asn Leu Ile Thr         195 200 205 Ser Ile Phe Leu Asp Phe Asn Glu Leu Gly Gln Phe Asn Glu Lys Leu     210 215 220 Gln Ala Lys Tyr Glu Leu Ile Lys Gln Asn Glu Val Asp Tyr Glu Glu 225 230 235 240 Tyr Met Thr Asp Asp Ser Ser Ile Val Ser Val Ser Ser Gyr Ile Ser                 245 250 255 Ser Arg Ile Cys Arg Ser Ala Val Asp Leu Ala Arg Lys Glu Gly Ile             260 265 270 Lys Val Gly Leu Phe Arg Pro Lys Thr Leu Phe Pro Phe Pro Glu Ala         275 280 285 Gln Leu Lys Ala Leu Ala Asp Lys Glu Ala Ser Phe Ile Ser Val Glu     290 295 300 Met Ser Asn Gly Gln Met Ile Asp Asp Ile Arg Leu Ala Ile Asp Cys 305 310 315 320 Ser Gln Pro Val Glu Leu Val Asn Arg Met Gly Gly Asn Leu Ile Thr                 325 330 335 Leu Asp Gln Ile Met Asp Lys Ile Arg Lys Val Ala Gly Glu Ala             340 345 350 <210> 45 <211> 82 <212> PRT <213> Methanosarcina acetivorans <400> 45 Met Ala Lys Asn Asp Glu Lys Glu Pro Tyr Pro Val Ile Asn Ile Leu   1 5 10 15 Glu Cys Lys Ala Cys Gly Arg Cys Leu Leu Ala Cys Pro Lys Asp Val              20 25 30 Leu Phe Met Ser Asp Asn Leu Asn Ala Arg Gly Tyr His Tyr Val Glu          35 40 45 Tyr Lys Gly Glu Gly Cys Ser Gly Cys Ala Ser Cys Tyr Tyr Thr Cys      50 55 60 Pro Glu Pro Leu Ala Leu Glu Ile His Ile Pro Leu Lys Lys Glu Glu  65 70 75 80 Ala Asp         <210> 46 <211> 2772 <212> DNA <213> Methanosarcina acetivorans <400> 46 atggcaaaaa atgatgaaaa agaaccgtac cctgttatca acattctgga gtgcaaggct 60 tgtgggcgct gccttcttgc ctgcccgaag gatgtgcttt tcatgagtga taacctgaac 120 gccaggggtt accactacgt agagtataaa ggagaaggct gttcaggctg tgcgagctgc 180 tactatacct gtcctgaacc ccttgcactg gaaatccata ttcccctgaa aaaggaggaa 240 gccgactaag gcaggataag gagggaaaaa gatggcaaca caactcgtaa aaggcaactc 300 cgcaatagtc gttggcgcac tttatgccgg atgtgactgt ttctttggat atcccattac 360 tccggcaagc gaaattctgc atgatgcatc caaatacttt cccatgatag gaaggaaatt 420 cgtgcaggcc gagtcagagg aggctgcaat taacatggtc ttcggggggg catcagccgg 480 gcacagggta atgacgtcct cctcaggccc aggaattagc ctgatgcagg aagggatctc 540 ttatcttgca ggcgcagagc ttccttgtgt gcttgtcgat ataatgaggg caggccctgg 600 actagggaac atcggacctg aacagggtga ttataaccag gtagtaaaag gtggagggca 660 cgggaattat aaaaatatcg tacttgcccc caactccgtg caggagatgt gtgactttac 720 catgaaggct tttgagctgg ccttcaagta caggaaccct gcaatcgtgc ttgctgacgg 780 agtgctcggg cagatgattg agtcccttga gtttccgaaa aaagccctta ctcctgaaat 840 cgatgcaagc tgggcagtca acggtacagc cgaaaccagg cctaacctga taacctctat 900 cttccttgac ttcaacgaac tcgggcagtt caacgagaaa ctgcaggcaa aatacgagct 960 gataaagcaa aatgaggttg actacgaaga atacatgacc gacgatgcct caatcgtgct 1020 tgtctcttac ggcataagca gcaggatctg caggtcagct gtagaccttg ccagaaagga 1080 aggcataaag gtggggctct tcaggccaaa gactcttttc ccattcccgg aggcgcagtt 1140 gaaagccctt gcagataagg aagcttcttt catctccgtg gagatgagca acgggcagat 1200 gatagatgac atcaggcttg caatcgactg ctcacagccc gtggaactgg taaaccgcat 1260 gggaggcaac ctgatcaccc ttgaccagat catggacaaa atcagaaagg tagcagggga 1320 ggcatgaaaa tggcagcaga aattattgac ggagaaaagg ttatcaaaaa gccaaaagcc 1380 ctgtactcgg aatacccgcg caaaggaggt gcagctccaa cagccaccca ctattgtcct 1440 ggctgcggac atggggtttt gcacaagctc attgccgagg caattgacga cctcggaatc 1500 caggacagga cggttatgat cagccctgtg ggatgtgcag tttttgctta ttattacttt 1560 gacacaggca atatccaggt tgcccacggc cgggctcctg ctgttggaac aggtgtctca 1620 agggctgaag aaaacgctgt agttatctcc taccagggcg acggagacct tgcttcgatc 1680 ggcctgaacg agacgctgca ggcggcaaac agaggagaaa agcttgcagt ttttttcgta 1740 aataacaccg tatacggcat gaccggcgga cagatggctc caacaaccct tatcggggaa 1800 aagacaacca caacccctga aggtcgcgac ccccgctttg caggctaccc gctccacatg 1860 tgtgagcttc tggacaacct gaaggctccg atttttatcg aaagagtctc ggtttccgat 1920 atctctcata tccgaaaagc ccgaaaagcc gttcgaaagg cgctcgaagt ccagcgtgat 1980 ggcaagggct atgcttttgt ggaagtcctt gcagcctgcc cgaccaacct taggatggat 2040 gcagagcagg ctatccagtt cattaacgag cagatggaaa aggaattccc gctcaggaac 2100 ttcagggaca atttcgaatc tgccgaaccc cttcaccgcg ggatcagtga ctttacaact 2160 gagtcccttg aaaagcttta cggaattgaa gcggaaaccg gagaaaaacc ctcaaggact 2220 gactttgctc cgatccagac caagattgca ggtttcggag gacagggtgt cctgagcatg 2280 ggccttatcc ttgcccaggc aggagtcaaa gcaaacctca atgcttcctg gttcccgtct 2340 tacggcccgg aacagcgcgg cggaacctca aactgctcgg tcgtgatttc aggtcaggct 2400 ataggctcgc ctacggtcta caccccagat atccttatag ccatgaaccg tccctccctc 2460 gagagattcg aaggggcagt aaaagaagga ggcttcatcc tctacgactc tacaatcggc 2520 gaagccgaga cccctgcagg cgtaaacgca attgcagtcc ctgcaaccga aaaagcaaaa 2580 gaagcaggtg atgagagagc cgcaaactcc ttcatgctcg gagtccttct gggcctgaac 2640 gcaaccggcc ttgaagaaga agccttcaaa gaagcccttg ccgaaaactt cacaggcaaa 2700 cccaaagtta ttgagtttaa ccagcagatg ctcgaagccg gggcagcatg ggcaagagag 2760 tataaggtat ga 2772

Claims (32)

L-발린의 전구체인 2-케토이소발레르산염(ketoisovalerate)의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴(isobutyryl)-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴(butyryl)-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드(butyraldehyde)로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자를 도입시키는 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
A microorganism having the ability to produce 2-ketoisovalerate, which is a precursor of L-valine, is added to an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA, VorA (2-keto (Alpha-subunit), VorB (2-oxoisovalerate ferredoxin oxydoryldexta), and VorC (2-ketoisovalerate ferredoxin reductase, gamma subunit) A gene encoding an enzyme that converts isobutyryl-CoA to butyryl-CoA, a gene that codes for an enzyme that converts butyryl-CoA to butylaldehyde (butyraldehyde), and a gene encoding butylaldehyde To a recombinant microorganism having a butanol-producing ability.
제1항에 있어서, 상기 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물은 박테리아, 효모 및 곰팡이로 구성된 군에서 선택되는 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
The process for producing a recombinant microorganism having butanol-producing ability according to claim 1, wherein the microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine is selected from the group consisting of bacteria, yeast and fungi .
제1항에 있어서, 상기 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물은 코리네박테리움(Corynebacterium) 속, 브레비박테리움(Brevibacterium) 속 및 대장균으로 구성된 군에서 선택되는 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
The method according to claim 1, wherein the microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine is selected from the group consisting of Corynebacterium genus, Brevibacterium genus, and E. coli Wherein the recombinant microorganism has a butanol-producing ability.
제1항에 있어서, 상기 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물은 2-케토이소발레르산염의 축적율을 향상시키기 위하여, L-이소루신 생합성에 관여하는 효소를 코딩하는 유전자, L-루신 생합성에 관여하는 효소를 코딩하는 유전자, D-판토텐산 생합성에 관여하는 효소를 코딩하는 유전자 및 L-발린 생합성에 관여하는 효소를 코딩하는 유전자가 약화 또는 결실되어 있는 것임을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
2. The method according to claim 1, wherein the microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine is selected from the group consisting of enzymes involved in L-isoleucine biosynthesis A gene encoding an enzyme involved in L-leucine biosynthesis, a gene encoding an enzyme involved in D-pantothenic acid biosynthesis, and a gene encoding an enzyme involved in L-valine biosynthesis are weakened or deleted Wherein the recombinant microorganism has a butanol-producing ability.
제4항에 있어서, 상기 L-이소루신 생합성에 관여하는 효소를 코딩하는 유전자는 ilvA(트레오닌 디하이드라타제를 암호화하는 유전자)이고, 상기 L-루신 생합성에 관여하는 효소를 코딩하는 유전자는 leuA(2-이소프로필말레이트 신타아제를 암호화하는 유전자)이며, 상기 D-판토텐산 생합성에 관여하는 효소를 코딩하는 유전자는 panB(3-메틸-2-옥소부타노에이트 하이드록시메틸트랜스페라제를 암호화하는 유전자)이고, 상기 L-발린 생합성에 관여하는 효소를 코딩하는 유전자는 ilvE(가지달린 체인 아미노산 아미노트랜스페라제를 암호화하는 유전자)인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
5. The method according to claim 4, wherein the gene coding for the enzyme involved in L-isoleucine biosynthesis is ilvA ( gene encoding threonine dehydratase), and the gene encoding the enzyme involved in L-leucine biosynthesis is leuA (A gene encoding 2-isopropyl maleate synthase), and the gene coding for the enzyme involved in D-pantothenic acid biosynthesis is panB (3-methyl-2-oxobutanoate hydroxymethyl transperase encoded Wherein the gene coding for the enzyme involved in L-valine biosynthesis is ilvE (gene encoding amino acid transaminase of branched chain amino acid).
제4항에 있어서, 상기 2-케토이소발레르산염의 생성능을 가지는 미생물은 다음으로 구성된 군에서 선택되는 방법에 의해 추가로 변이되어 있는 것임을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법: (a) lacI(lac 오페론 억제인자를 암호화하는 유전자) 유전자의 결실; (b) ilvH(아세토하이드록시산 신타아제 이소자임 III) 유전자의 피드백 저해(feedback inhibition) 제거; (c) ilvGMEDA(아세토하이드록시산 신타아제 이소자임 I) 및 ilvBN(아세토하이드록시산 신타아제 이소자임 II) 오페론의 감쇠영역(attenuator)을 포함하는 원래의 프로모터를 강한 프로모터로 치환; 및 (d) 강한 프로모터를 포함하는 발현벡터의 도입.
5. The method for producing a recombinant microorganism having a butanol-producing ability according to claim 4, wherein the microorganism having the ability to produce 2-ketoisovalerate is further modified by a method selected from the group consisting of a) deletion of lacI (gene encoding the lac operon inhibitor) gene; (b) ilvH (acetohydroxy acid synthase isozyme III) Elimination of feedback inhibition of genes; (c) replacing the original promoter comprising the attenuator of ilvGMEDA (acetohydroxy acid synthase isozyme I) and ilvBN (acetohydroxy acid synthase isozyme II) operon with a strong promoter; And (d) introduction of an expression vector comprising a strong promoter.
제6항에 있어서, 상기 강한 프로모터는 trc 프로모터, tac 프로모터, T7 프로모터, lac 프로모터 및 trp 프로모터로 구성된 군에서 선택된 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
[Claim 7] The method according to claim 6, wherein the strong promoter is selected from the group consisting of trc promoter, tac promoter, T7 promoter, lac promoter and trp promoter.
제6항에 있어서, 상기 강한 프로모터를 포함하는 발현벡터는 ilvB, ilvN, ilvC ilvD 유전자를 함유하는 벡터인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
[Claim 7] The method according to claim 6, wherein the expression vector containing the strong promoter is a vector containing ilvB, ilvN , ilvC, and ilvD genes.
제1항에 있어서, 상기 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소는 이소부티릴-CoA 뮤타아제이며, 상기 부티릴-CoA를 부틸알데하이드로 전환시키는 효소는 부틸알데하이드 디하이드로게나제이고, 상기 부틸알데하이드를 부탄올로 전환시키는 효소는 부탄올 디하이드로게나제인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
2. The method according to claim 1, wherein the enzyme that converts the isobutyryl-CoA to butyryl-CoA is isobutyryl-CoA mutase and the enzyme that converts the butyryl-CoA to butylaldehyde is butylaldehyde dehydrogenase , And the enzyme for converting the butylaldehyde to butanol is butanol dehydrogenase. The method for producing a recombinant microorganism having a butanol-producing ability according to claim 1,
제1항에 있어서, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자는 메타노사르시나(Methanosarcina) 아세티보란스(acetivorans) 유래의 VorABC인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
2. The method according to claim 1, wherein the enzyme is selected from the group consisting of VorA (2-ketoisovalerate ferredoxin reductase, alpha subunit), VorB (2-oxoisobarbital), which is an enzyme that converts 2-ketoisovalerate into isobutyryl- acid ferredoxin oxy Torii virtue hydratase) and VorC (2- Kane toy small valeric acid ferredoxin reductase, a gene encoding the enzyme VorABC consisting of gamma subunit) is meta or industrial reusi (Methanosarcina) acetoxy TiVo lance (acetivorans) method of producing a recombinant microorganism having high butanol producing ability, characterized in that the derived VorABC.
제1항에 있어서, 상기 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자는 스트렙토마이세스(Streptomyces) 아버미틸리스(avermitilis) 유래의 icmAB인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
The method of claim 1, wherein the gene coding for the enzyme to convert the isobutyryl -CoA as butyryl -CoA is a butanol productivity according to claim Streptomyces (Streptomyces) Arbor US subtilis (avermitilis) derived from the icmAB &Lt; / RTI &gt;
제1항에 있어서, 상기 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자는 클로스트리디움 아세토부틸리쿰 유래의 adhE인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
2. The method for producing a recombinant microorganism having a butanol-producing ability according to claim 1, wherein the gene coding for the enzyme for converting the butyryl-CoA to butylaldehyde is adhE derived from Clostridium acetoobutylicum .
제1항에 있어서, 상기 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자는 클로스트리디움 아세토부틸리쿰 유래의 bdhAB인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물의 제조방법.
2. The method for producing a recombinant microorganism having a butanol-producing ability according to claim 1, wherein the gene coding for the enzyme for converting butylaldehyde to butanol is bdhAB derived from Clostridium acetoobutylicum .
L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자가 도입되어 있는 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
A microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine was added to an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA, VorA (2-ketoisovalerate, A gene coding for the VorABC enzyme consisting of VorB (2-oxoisovalerate peredoxin oxydoryldexta) and VorC (2-ketoisovalerate ferredoxin reductase, gamma subunit) , A gene encoding an enzyme that converts isobutyryl-CoA into butyryl-CoA, a gene encoding an enzyme that converts butyryl-CoA to butylaldehyde, and a gene encoding an enzyme that converts butylaldehyde to butanol Wherein the recombinant microorganism has a butanol-producing ability.
제14항에 있어서, 상기 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물은 박테리아, 효모 및 곰팡이로 구성된 군에서 선택되는 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
15. The recombinant microorganism having ability to produce butanol according to claim 14, wherein the microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine is selected from the group consisting of bacteria, yeast and fungi.
제14항에 있어서, 상기 L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물은 코리네박테리움(Corynebacterium) 속, 브레비박테리움(Brevibacterium) 속 및 대장균으로 구성된 군에서 선택되는 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
15. The method according to claim 14, wherein the microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine is selected from the group consisting of Corynebacterium genus, Brevibacterium genus and E. coli Wherein the recombinant microorganism has a butanol-producing ability.
제14항에 있어서, 상기 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소는 이소부티릴-CoA 뮤타아제이고, 상기 부티릴-CoA를 부틸알데하이드로 전환시키는 효소는 부틸알데하이드 디하이드로게나제이고, 상기 부틸알데하이드를 부탄올로 전환시키는 효소는 부탄올 디하이드로게나제인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
15. The method according to claim 14, wherein the enzyme that converts isobutyryl-CoA to butyryl-CoA is isobutyryl-CoA mutase and the enzyme that converts the butyryl-CoA to butylaldehyde is butylaldehyde dehydrogenase , And the enzyme that converts the butyraldehyde to butanol is butanol dehydrogenase.
제14항에 있어서, 상기 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자는 메타노사르시나 아세티보란스 유래의 VorABC인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
15. The method of claim 14, wherein the enzyme that converts the 2-ketoisovalerate into isobutyryl-CoA, VorA (2-ketoisovalerate ferredoxin reductase, alpha subunit), VorB The gene coding for the VorABC enzyme consisting of Vor AB (valereate ferredoxin oxydoryldactase) and VorC (2-ketoisovalerate ferredoxin reductase, gamma subunit) is VorABC derived from methanosarcina acetylborance The recombinant microorganism having the ability to produce butanol.
제14항에 있어서, 상기 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자는 스트렙토마이세스 아버미틸리스 유래의 icmAB인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
15. The recombinant microorganism having a butanol- producing ability according to claim 14, wherein the gene encoding the enzyme for converting the isobutyryl-CoA to butyryl-CoA is icmAB derived from Streptomyces arbormitilis .
제14항에 있어서, 상기 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자는 클로스트리디움 아세토부틸리쿰 유래의 adhE인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
15. The recombinant microorganism having butanol-producing ability according to claim 14, wherein the gene coding for the enzyme for converting the butyryl-CoA to butylaldehyde is adhE derived from Clostridium acetoobutylicum .
제14항에 있어서, 상기 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자는 클로스트리디움 아세토부틸리쿰 유래의 bdhAB인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
15. The recombinant microorganism having a butanol-producing ability according to claim 14, wherein the gene coding for the enzyme for converting butylaldehyde to butanol is bdhAB derived from Clostridium acetobutylicum.
L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자, 이소부티릴-CoA를 부티릴-CoA로 전환시키는 효소를 코딩하는 유전자, 부티릴-CoA를 부틸알데하이드로 전환시키는 효소를 코딩하는 유전자 및 부틸알데하이드를 부탄올로 전환시키는 효소를 코딩하는 유전자가 도입되어 있고, L-이소루신 생합성에 관여하는 효소를 코딩하는 유전자, L-루신 생합성에 관여하는 효소를 코딩하는 유전자, D-판토텐산 생합성에 관여하는 효소를 코딩하는 유전자 및 L-발린 생합성에 관여하는 효소를 코딩하는 유전자가 약화 또는 결실되어 있는 것임을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
A microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine was added to an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA, VorA (2-ketoisovalerate, A gene coding for the VorABC enzyme consisting of VorB (2-oxoisovalerate peredoxin oxydoryldexta) and VorC (2-ketoisovalerate ferredoxin reductase, gamma subunit) , A gene encoding an enzyme that converts isobutyryl-CoA into butyryl-CoA, a gene encoding an enzyme that converts butyryl-CoA to butylaldehyde, and a gene encoding an enzyme that converts butylaldehyde to butanol A gene encoding an enzyme involved in L-isoleucine biosynthesis, a gene encoding an enzyme involved in L-leucine biosynthesis, a gene encoding an enzyme involved in D-pantothenic acid biosynthesis, and a gene encoding L- Recombinant microorganism having high butanol producing ability, characterized in that in the gene coding for the enzyme involved in the biosynthesis is inactivated or deleted.
제22항에 있어서, 상기 L-이소루신 생합성에 관여하는 효소를 코딩하는 유전자는 ilvA(트레오닌 디하이드라타제를 암호화하는 유전자)이고, 상기 L-루신 생합성에 관여하는 효소를 코딩하는 유전자는 leuA(2-이소프로필말레이트 신타아제를 암호화하는 유전자)이며, 상기 D-판토텐산 생합성에 관여하는 효소를 코딩하는 유전자는 panB(3-메틸-2-옥소부타노에이트 하이드록시메틸트랜스페라제를 암호화하는 유전자)이고, 상기 L-발린 생합성에 관여하는 효소를 코딩하는 유전자는 ilvE(가지달린 체인 아미노산 아미노트랜스페라제를 암호화하는 유전자)인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
23. The method according to claim 22, wherein the gene coding for the enzyme involved in L-isoleucine biosynthesis is ilvA ( gene encoding threonine dehydratase), and the gene encoding the enzyme involved in L-leucine biosynthesis is leuA (A gene encoding 2-isopropyl maleate synthase), and the gene coding for the enzyme involved in D-pantothenic acid biosynthesis is panB (3-methyl-2-oxobutanoate hydroxymethyl transperase encoded Wherein the gene coding for the enzyme involved in L-valine biosynthesis is ilvE (gene encoding amino acid transaminase of branched chain amino acid).
제22항에 있어서, 상기 2-케토이소발레르산염의 생성능을 가지는 미생물은 다음으로 구성된 군에서 선택되는 방법에 의해 추가로 변이되어 있는 것임을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물: (a) lacI(lac 오페론 억제인자를 암호화하는 유전자) 유전자의 결실; (b) ilvH(아세토하이드록시산 신타아제 이소자임 III) 유전자의 피드백 저해(feedback inhibition) 제거; (c) ilvGMEDA(아세토하이드록시산 신타아제 이소자임 I) 및 ilvBN(아세토하이드록시산 신타아제 이소자임 II) 오페론의 감쇠영역을 포함하는 원래의 프로모터를 강한 프로모터로 치환; 및 (d) 강한 프로모터를 포함하는 발현벡터의 도입.
The recombinant microorganism having ability to produce 2-ketoisovalerate according to claim 22, wherein the microorganism having the ability to produce 2-ketoisovalerate is further mutated by a method selected from the group consisting of: (a) lacI (gene encoding the lac operon inhibitor) deletion of the gene; (b) ilvH (acetohydroxy acid synthase isozyme III) Elimination of feedback inhibition of genes; (c) replacing the original promoter comprising the attenuation region of ilvGMEDA (acetohydroxy acid synthase isozyme I) and ilvBN (acetohydroxy acid synthase isozyme II) operon with a strong promoter; And (d) introduction of an expression vector comprising a strong promoter.
제24항에 있어서, 상기 강한 프로모터를 포함하는 발현벡터는 ilvB, ilvN, ilvC ilvD 유전자를 함유하는 벡터인 것을 특징으로 하는 부탄올 생성능을 가지는 재조합 미생물.
25. The recombinant microorganism having butanol-producing ability according to claim 24, wherein the expression vector comprising the strong promoter is a vector containing ilvB, ilvN , ilvC, and ilvD genes.
제14항의 재조합 미생물을 배양하여 부탄올을 생성시킨 다음, 배양액으로부터 부탄올을 회수하는 것을 특징으로 하는 부탄올의 제조방법.
14. The method for producing butanol according to claim 14, wherein the recombinant microorganism is cultured to produce butanol, and then the butanol is recovered from the culture.
제22항 또는 제24항의 재조합 미생물을 배양하여 부탄올을 생성시킨 다음, 배양액으로부터 부탄올을 회수하는 것을 특징으로 하는 부탄올의 제조방법.
The method for producing butanol according to claim 22 or 24, wherein the recombinant microorganism is cultured to produce butanol, and then the butanol is recovered from the culture.
L-발린의 전구체인 2-케토이소발레르산염의 생성능을 가지는 미생물에, 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소를 코딩하는 유전자(VorABC)가 도입되어 있는 것을 특징으로 하는 2-케토이소발레르산염에서 이소부티릴-CoA 생성능을 가지는 재조합 미생물.
A microorganism having the ability to produce 2-ketoisovalerate as a precursor of L-valine was added to an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA, VorA (2-ketoisovalerate, A gene coding for the VorABC enzyme consisting of VorB (2-oxoisovalerate peredoxin oxydoryldexta) and VorC (2-ketoisovalerate ferredoxin reductase, gamma subunit) ( VorABC ) is introduced into the recombinant microorganism. The recombinant microorganism having the ability to produce isobutyryl-CoA in the 2-ketoisovalerate.
제28항에 있어서, 상기 VorA는 서열번호 43, VorB는 서열번호 44, VorC는 서열번호 45의 아미노산 서열로 표시되는 것을 특징으로 하는 2-케토이소발레르산염에서 이소부티릴-CoA 생성능을 가지는 재조합 미생물.
28. The method according to claim 28, wherein the VorA is represented by SEQ ID NO: 43, VorB is represented by SEQ ID NO: 44, and VorC is represented by amino acid sequence of SEQ ID NO: 45. Recombinant microorganism.
제28항 또는 제29항의 재조합 미생물을 배양하여 이소부티릴-CoA를 생성시킨 다음, 배양액으로부터 이소부티릴-CoA를 회수하는 것을 특징으로 하는 2-케토이소발레르산염에서 이소부티릴-CoA를 생산하는 방법.
A method for producing isobutyryl-CoA, which comprises culturing the recombinant microorganism of claim 28 or 29 to produce isobutyryl-CoA, and then recovering isobutyryl-CoA from the culture broth. How to produce.
2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 효소인 VorA(2-케토이소발레르산염 페레독신 리덕타제, 알파 서브유닛), VorB(2-옥소이소발레르산염 페레독신 옥시도리덕타제) 및 VorC(2-케토이소발레르산염 페레독신 리덕타제, 감마 서브유닛)로 구성되는 VorABC 효소 또는 상기 효소를 발현하는 재조합 미생물을 이용하여 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 방법.
VorA (2-ketoisovalerate ferredoxin reductase, alpha subunit), an enzyme that converts 2-ketoisovalerate into isobutyryl-CoA, VorB (2-oxoisovalerate ferredoxin oxydorudate VorABC enzyme consisting of Vor AB (Vor ABC) and VorC (2-Ketoisovalerate ferredoxin reductase, gamma subunit), or recombinant microorganism expressing the enzyme, was used to convert 2-ketoisovalerate into isobutyryl-CoA .
제31항에 있어서, 상기 VorA는 서열번호 43, VorB는 서열번호 44, VorC는 서열번호 45의 아미노산 서열로 표시되는 것을 특징으로 하는 2-케토이소발레르산염을 이소부티릴-CoA로 전환시키는 방법.
32. The method according to claim 31, wherein the VorA is represented by SEQ ID NO: 43, VorB is represented by SEQ ID NO: 44, and VorC is represented by amino acid sequence of SEQ ID NO: 45. Way.
KR1020100087550A 2010-09-07 2010-09-07 Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same KR101697368B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100087550A KR101697368B1 (en) 2010-09-07 2010-09-07 Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same
PCT/KR2011/006607 WO2012033334A2 (en) 2010-09-07 2011-09-07 Recombinant microorganism having an improved ability to produce butanol and a production method for butanol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100087550A KR101697368B1 (en) 2010-09-07 2010-09-07 Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same

Publications (2)

Publication Number Publication Date
KR20120025262A KR20120025262A (en) 2012-03-15
KR101697368B1 true KR101697368B1 (en) 2017-01-17

Family

ID=45811072

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100087550A KR101697368B1 (en) 2010-09-07 2010-09-07 Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same

Country Status (2)

Country Link
KR (1) KR101697368B1 (en)
WO (1) WO2012033334A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191483A1 (en) 2016-05-05 2017-11-09 Newpek S.A. De C.V. Enzymatic methods for butanol production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832740B1 (en) 2007-01-17 2008-05-27 한국과학기술원 Mutant microorganism with improved productivity of branched amino acid and method for preparing it using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072920A1 (en) * 2006-12-15 2008-06-19 Biofuelchem Co., Ltd. Method for preparing butanol through butyryl-coa as an intermediate using bacteria
KR20110002130A (en) * 2009-07-01 2011-01-07 한국과학기술원 Recombinant microorganisms producing butanol and method for preparing butanol using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832740B1 (en) 2007-01-17 2008-05-27 한국과학기술원 Mutant microorganism with improved productivity of branched amino acid and method for preparing it using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BMC Syst. Biol. 4: 35(2010.03.28.)
J. Bacteriol. 178(3): 780-787(1996.02.)
Mol. Biochem. Parasitol. 98(2): 203-214(1999.01.25.)

Also Published As

Publication number Publication date
WO2012033334A3 (en) 2012-08-23
WO2012033334A2 (en) 2012-03-15
KR20120025262A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
US9121041B2 (en) Method for the preparation of diols
JP4613177B2 (en) Advanced microorganisms for the production of 1,2-propanediol
US20230203542A1 (en) Microbial Production of 2-Phenylethanol from Renewable Substrates
KR20090117739A (en) Biofuel production by recombinant microorganisms
JP5420798B2 (en) Method for preparing 1,3-propanediol from sucrose
CA2873109A1 (en) Ketol-acid reductoisomerase enzymes and methods of use
CN106957878B (en) Method for producing 2-phenethyl alcohol by biological catalysis
CN108728470B (en) Recombinant bacterium for producing beta-alanine and construction method and application thereof
CN104379729A (en) Useful microorganism, and method for producing desired substance
EP2532751A1 (en) Use of inducible promoters in the fermentative production of 1,2-propanediol
US20130210097A1 (en) Glycolic acid fermentative production with a modified microorganism
US20160326554A1 (en) Recombinant microorganisms for producing organic acids
CN102533870A (en) Method, enzyme system and recombinant cell for synthesizing isoprene by biological method, and application thereof
KR101697368B1 (en) Enhanced Butanol Producing Recombinant Microorganisms and Method for Preparing Butanol Using the Same
KR101725454B1 (en) Gene encoding lysine decarboxylase derived from H. alvei, recombinant vector, host cell and method for producing cadaverine using the same
CA3172057A1 (en) Production of ethanol with one or more co-products in yeast
KR101758910B1 (en) Recombinant Microorganisms Producing Butanol and Method for Preparing Butanol Using the Same
CA2993485C (en) New polypeptide having ferredoxin-nadp+ reductase activity, polynucleotide encoding the same and uses thereof
KR20110002130A (en) Recombinant microorganisms producing butanol and method for preparing butanol using the same
KR101841261B1 (en) Recombinant Microorganisms Having Enhanced Propanol and Method for Preparing Propanol Using the Same
Xiang-Lei et al. Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli
CN108728469B (en) Construction of recombinant escherichia coli engineering bacteria and application thereof in production of beta-alanine
US20140329275A1 (en) Biocatalysis cells and methods
CN115873880A (en) Recombinant nucleic acid sequence, recombinant expression vector and genetically engineered bacterium
Seo Production of 1-butanol and butanol isomers by metabolically engineered Clostridium beijerinckii and Saccharomyces cerevisiae

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200113

Year of fee payment: 4