KR101696220B1 - Method of detecting line to ground fault in the distribution line of multiple grounding system - Google Patents
Method of detecting line to ground fault in the distribution line of multiple grounding system Download PDFInfo
- Publication number
- KR101696220B1 KR101696220B1 KR1020150103751A KR20150103751A KR101696220B1 KR 101696220 B1 KR101696220 B1 KR 101696220B1 KR 1020150103751 A KR1020150103751 A KR 1020150103751A KR 20150103751 A KR20150103751 A KR 20150103751A KR 101696220 B1 KR101696220 B1 KR 101696220B1
- Authority
- KR
- South Korea
- Prior art keywords
- ground fault
- fault
- current
- vector sum
- line
- Prior art date
Links
Images
Classifications
-
- G01R31/024—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/083—Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/185—Electrical failure alarms
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
본 출원은 다중접지계통 단선지락고장 검출 방법에 관한 것이다.The present invention relates to a multi-ground system single-wire ground fault detection method.
일반적으로 지락고장은 큰 고장전류를 가지므로 계전기(예를 들어, OCR, OCGR 등)와 리클로저(Recloser)의 검출부를 통해 고장을 쉽게 검출 및 차단할 수 있다. 그러나, 지락점의 고장저항이 큰 고저항 지락고장의 경우 전류의 크기로 검출하기 어려운 불감대가 존재한다.Generally, since ground fault has a large fault current, fault can be easily detected and blocked through a relay (eg, OCR, OCGR, etc.) and a detector of a recloser. However, in the case of a high-resistance ground fault having a large fault resistance at the ground point, there is a dead band which is difficult to detect by the magnitude of the current.
한편, 전선단선구간 이후에 배전 자동화기기가 구비된 경우, 해당 기기에서 경험하는 부하전류 및 전원과, 부하측 전압의 상실정보를 이용하여 전원 구간의 전선단선을 검출할 수 있으나, 부하측에 더 이상의 자동화기기가 없는 수지상의 말단구간에서 전선단선이 발생하는 경우 해당 고장을 검출할 수 없다.On the other hand, when the power distribution automation equipment is provided after the wire breakage section, it is possible to detect the disconnection of the power source section using the load current and the power source experienced by the device and the loss information of the load side voltage. If a wire break occurs in the terminal section of a resin-free device, the corresponding fault can not be detected.
이와 같은 수지상의 말단구간에서 단선고장을 검출하기 위해, 종래의 배전 자동화기기에서는 고장후의 전압불평형율 또는 고장 전후의 고장불평형율 변화를 이용하여 단선고장 여부를 판단하도록 하였다. 그러나, 이 경우에도 여전히 고장 검출이 어려운 불감대가 존재하고 판단의 신뢰성이 떨어진다는 한계가 있다.
In order to detect a single-wire fault in such a dendritic terminal section, the conventional power distribution automation apparatus judges whether a single-wire fault has occurred by using a voltage unbalance rate after a fault or a change in a fault unbalance rate before and after a fault. However, in this case, there still exists a dead band which is difficult to detect a failure, and there is a limitation in that the reliability of judgment is poor.
이와 관련하여, 하기 선행기술문헌에 기재된 특허문헌 1은, 고저항 지락고장검출 시스템 및 그 방법을 개시하고 있다.In this connection, Patent Document 1 described in the following prior art documents discloses a high resistance ground fault detection system and a method thereof.
따라서, 당해 기술분야에서는 종래 기술에 의해 지락고장을 검출하기 어려운 불감대에서도 고저항 지락고장을 검출하기 위한 방안이 요구되고 있다.Therefore, there is a need in the art for a method for detecting a high-resistance ground fault even in a dead zone where it is difficult to detect a ground fault by the prior art.
상기 과제를 해결하기 위해서, 본 발명의 일 실시예는 다중접지계통 단선지락고장 검출 방법을 제공한다. 상기 다중접지계통 단선지락고장 검출 방법은, 부하측에 구비된 단말장치에 의해서, 중성선 전류 및 전력선의 각 상에서의 부하전류를 취득하는 단계; 상기 각 상에서의 부하전류의 벡터합을 계산하는 단계; 상기 중성선 전류와 상기 벡터합의 위상차가 기 정해진 제1 임계치 이상이면, 상기 각 상에서의 부하전류에서 2상을 조합한 벡터합을 계산하는 단계; 및 상기 중성선 전류와 상기 2상을 조합한 벡터합의 위상차가 기 설정된 제2 임계치 이내인 조합이 존재하면, 단선지락고장이 검출된 것으로 판단하는 단계를 포함할 수 있다.
In order to solve the above problems, an embodiment of the present invention provides a multi-ground system single line ground fault detection method. The multiple ground system broken line ground fault detection method includes: obtaining load currents on respective phases of a neutral line current and a power line by a terminal device provided on a load side; Calculating a vector sum of load currents in each phase; If the phase difference between the neutral line current and the vector sum is greater than or equal to a predetermined first threshold value, calculating a vector sum combining two phases at a load current of each phase; And determining that a broken ground fault is detected if there is a combination in which a phase difference between a vector sum of the neutral line current and the two phases is within a predetermined second threshold value.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것이 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.In addition, the means for solving the above-mentioned problems are not all enumerating the features of the present invention. The various features of the present invention and the advantages and effects thereof will be more fully understood by reference to the following specific embodiments.
본 발명의 일 실시예에 따르면, 기존의 방법으로 검출이 불가능한 고저항 단선지락고장을 검출할 수 있다. 이에 따라, 자동차단 등의 계통보호를 구현할 수 있고, 단선지락고장에 따른 결상 공급과 이로 인한 설비 피해를 방지할 수 있으며, 더 나아가 단선개소에서의 안전사고를 미연에 방지할 수 있게 된다.According to an embodiment of the present invention, it is possible to detect a high resistance single-wire ground fault that can not be detected by an existing method. Accordingly, it is possible to implement system protection such as an automobile end, to prevent the supply of an image due to a broken ground fault and to prevent damage to the equipment, and furthermore, to prevent a safety accident at a broken line.
도 1은 본 발명의 일 실시예가 적용되는 고저항 지락고장을 설명하기 위한 도면이다.
도 2는 도 1에 도시된 고저항 지락고장을 급수계통으로 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 다중접지계통 단선지락고장 검출 방법의 흐름도이다.1 is a view for explaining a high-resistance ground fault according to an embodiment of the present invention.
Fig. 2 is a view showing the high-resistance ground fault shown in Fig. 1 in a water supply system.
3 is a flowchart of a multi-ground system single-wire ground fault detection method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in order that those skilled in the art can easily carry out the present invention. In the following detailed description of the preferred embodiments of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. In the drawings, like reference numerals are used throughout the drawings.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
In addition, in the entire specification, when a part is referred to as being 'connected' to another part, it may be referred to as 'indirectly connected' not only with 'directly connected' . Also, to "include" an element means that it may include other elements, rather than excluding other elements, unless specifically stated otherwise.
본 발명의 일 실시예에 따른 다중접지계통 단선지락고장 검출 방법에 대해 설명하기에 앞서, 전력계통에서 발생하는 지락고장, 특히, 본 발명의 일 실시예가 적용되는 고저항 지락고장에 대해 구체적으로 살펴본다.
Before describing a method of detecting a ground fault in a multiple ground system according to an embodiment of the present invention, a detailed description will be given of a ground fault occurring in a power system, in particular, a high resistance earth fault in which an embodiment of the present invention is applied see.
전력계통에서 발생하는 지락고장은 그 특성에 따라, 전력선이 계통의 중성점(즉, 접지극)에 직접 접촉하는 지락고장과(완전지락), 전력선이 고장점의 고장저항에 의해 대지에 직접 접촉하는 지락고장(불완전지락, 고장저항이 높은 경우를 특히 고저항지락이라 함)의 두 가지 경우로 구분될 수 있다.
Ground fault in the power system can be classified into ground fault (direct ground fault) and ground fault (ground fault) in which the power line is in direct contact with the neutral point of the system Fault (ground fault incomplete, high fault resistance is called high resistance ground fault in particular).
도 1은 본 발명의 일 실시예가 적용되는 고저항 지락고장을 설명하기 위한 도면이다.1 is a view for explaining a high-resistance ground fault according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 고저항 지락고장의 경우 절단된 전력선이 대지 표면에서 고장저항으로 직접 접촉한 경우로, 고장저항은 전력선이 중성점에 직접 접촉하는 완전지락고장에 비해 상대적으로 높은 저항값(Rg)을 갖는다.
As shown in FIG. 1, in the case of a high-resistance ground fault, the cut power line is in direct contact with the fault resistance at the surface of the earth. The fault resistance is relatively high resistance value compared to the complete ground fault where the power line is in direct contact with the neutral point (Rg).
도 2는 도 1에 도시된 고저항 지락고장을 급수계통으로 나타낸 도면이다.Fig. 2 is a view showing the high-resistance ground fault shown in Fig. 1 in a water supply system.
도 2를 참조하면, 고저항 지락고장은 급수관(220)이 반투막(211)에 막힌 채 수원인 바다(210)에 바로 연결되는 상황으로 설명할 수 있다.Referring to FIG. 2, the high resistance ground fault can be explained as a situation where the
이 경우, 반투막(211)이 급수의 흐름을 방해하는 저항이 고장 전의 정상부하인 수차(230)의 저항보다 크고, 이로써 동일한 힘의 펌프로 공급하는 수량은 정상상태에서보다 적을 수 있다.In this case, the resistance of the
또한, 펌프에서 공급된 물(예를 들어, 90톤)은 전량 반투막(211)을 통해 수원인 바다(210)로 직접 들어가게 되므로, 급수관의 222 지점으로 공급되어야 하는 물은 바다와 연결된 소형의 누설관(240)을 통해 흡입되어 공급된다. 이를 기초로, 고저항 지락고장의 경우 고장전류 귀로 특성을 이해할 수 있다.
In addition, since the water (for example, 90 tons) supplied from the pump is directly introduced into the
구체적으로, 전압선이 중성점의 접지측 도체를 통하지 않고 대지로 직접 접촉하여 발생한 지락고장의 경우, 전력선을 통과한 고장전류 전량은 일단 대지로 모두 유입되고, 해당 배전계통의 모든 접지극이 대지와 구성한 접지회로를 통해 전원의 중성점으로 귀로하게 된다.Specifically, in the case of a ground fault occurring when the voltage line is directly contacted to the ground without passing through the grounded conductor of the neutral point, the entire amount of the fault current passing through the power line is once introduced into the ground, and all earth electrodes of the power distribution system are grounded The circuit is used to return to the neutral point of the power supply.
여기서, 해당 배전계통이라 함은 배전변전소 주변압기 2차의 동일모선에서 인출된 모든 배전 선로를 말하는 것이다. 해당 주변압기의 중성점과 전기적으로 연결되어 있는 모든 중성선에서 접지극을 통해 대지와 연결된 모든 접지회로가, 대지로 유입된 고장전류가 변압기 중성점으로 회귀할 수 있는 통로가 된다.Here, the distribution system refers to all the distribution lines drawn from the same bus of the second main transformer substation of the distribution substation. Any grounding circuit connected to the earth through all grounded conductors connected to the neutral point of the main transformer is grounded, and the fault current flowing into the ground becomes a path for returning to the neutral point of the transformer.
이 때, 각 접지극으로 유입되어 변압기 중성점으로 귀로하는 고장전류의 크기는 변압기 중성점으로부터 해당 접지극까지의 전기적 거리에 의해 결정될 수 있다. 여기서, 전기적 거리라 함은 해당 접지극이 변압기 중성점과 결합하는 합성 임피던스로 이해될 수 있다.
At this time, the magnitude of the fault current flowing into each earth electrode and returning to the neutral point of the transformer can be determined by the electrical distance from the neutral point of the transformer to the earth electrode. Here, the electrical distance can be understood as a synthetic impedance in which the earth electrode is coupled with the neutral point of the transformer.
요약하면, 국내 배전계통과 같은 삼상4선식의 다중접지계통에서 전선단선 등으로 인해 전압측 도체가 대지에 직접 접촉하는 지락고장에 있어서, 일단 대지로 유입된 전체 고장 전류는 다음과 같은 특성을 갖는다.In summary, in a three-phase, four-wire multi-ground system such as the domestic distribution system, a ground fault in which a voltage side conductor directly contacts a ground due to wire disconnection, etc., has a characteristic of the following: .
① 해당 계통의 중성선이 접지극을 통해 대지와 구성한 모든 접지회로를 통해 변압기의 중성점으로 귀로한다.① The neutral line of the system shall be connected to the ground through the earth pole and through the grounding circuit to the neutral point of the transformer.
② 고장전류 귀로가 되는 접지극은 지락이 발생한 배전선로의 중성선과 연결된 접지극으로 국한되지 않고 해당 주변압기 2차에서 인출된 모든 배전선로의 중성선과 연결된 접지극이 모두 그 대상이 된다.② Fault current The grounding pole to be the returning ground is not limited to the grounding pole connected to the neutral line of the distribution line where ground fault occurred, but it is all the grounding pole connected to the neutral line of all the distribution line drawn from the secondary transformer main.
③ 국내 배전계통에서는 고압배전선로의 중성선과 저압배전선로의 중성선이 전기적으로 절연되지 않고 연결되어 있으므로, 저압배전선로의 중성선이 접지극을 통해 대지와 구성한 접지회로 역시 해당 지락고장전류의 귀로가 될 수 있다.③ In the domestic distribution system, since the neutral line of the high-voltage distribution line and the neutral line of the low-voltage distribution line are connected without being electrically insulated, the neutral line of the low-voltage distribution line is grounded through the earth pole, have.
④ 각 개별 접지극으로 유입되는 고장전류의 크기는 전체 접지극 수인 분류회로 수와 해당 접지극이 주변압기 중성점과 이루는 합성 임피던스의 크기에 의해 결정된다.
④ The magnitude of the fault current flowing into each individual ground electrode is determined by the number of classification circuits, which are the total number of ground poles, and the magnitude of the synthetic impedance formed by the neutral pole of the ground pole with the main transformer neutral point.
상술한 바와 같은 지락고장전류의 귀로 특성에 의해, 전선단선 등으로 인해 전압측 도체가 대지와 직접 접촉하는 지락고장에서 대지로 유입된 고장전류가 중성선으로 귀로하는 경로는 정상상태의 불평형 전류와 분명한 차이를 나타낸다. 따라서, 이를 이용하면 수지상선로의 말단에 설치된 배전 자동화기기에서도 단선지락 고장을 확실하게 검출할 수 있다.
Due to the earthed characteristics of the ground fault current as described above, the path through which the fault current introduced to the ground at the ground fault in which the voltage side conductor comes into direct contact with the ground due to wire disconnection, etc., is returned to the neutral line is a steady state unbalance current Show the difference. Therefore, by using this, it is possible to reliably detect the broken ground fault even in the power distribution automation device provided at the end of the dendritic line.
도 3은 본 발명의 일 실시예에 따른 다중접지계통 단선지락고장 검출 방법의 흐름도로, 수지상 선로의 가장 부하측에 구비된 배전 자동화기기 단말장치에서 중성선에서 취득한 중성선 전류와 전력선을 통과하는 상전류의 벡터합을 비교하여 부하측의 단선지락고장을 판단하는 일 실시예를 도시한다.FIG. 3 is a flow chart of a multi-ground system ground fault failure detection method according to an embodiment of the present invention, in which a neutral current obtained from a neutral line and a vector of a phase current passing through a power line in a terminal device of a distribution automation equipment provided at the most load side of a dendritic line And compares the sums to determine the broken ground fault of the load side.
여기서, 배전 자동화기기 단말장치는 중앙처리장치(CPU), 그래픽처리장치(GPU), 마이크로프로세서, 주문형 반도체(Application Specific Integrated Circuit, ASIC), Field Programmable Gate Arrays(FPGA) 등으로 구현된 프로세서를 구비할 수 있다.
Here, the power distribution unit terminal device includes a processor implemented as a central processing unit (CPU), a graphics processing unit (GPU), a microprocessor, an application specific integrated circuit (ASIC), a field programmable gate array can do.
도 3에 도시된 바와 같이, 우선, 각 상에서의 부하전류 Ia, Ib, Ic와 중선선 전류 In을 취득하고(S31), 부하전류 Ia, Ib, Ic의 벡터합을 구한다(S32).3, the first, the vector sum of the load current I a, I b, I c and the median line acquire the current I n and (S31), the load current I a, I b, I c on each (S32).
이후, 중성선 전류와 부하전류의 벡터합의 위상각을 비교하여 위상차가 기 정해진 제1 임계치(예를 들어, 10도) 이상이면(S33), 2상을 조합한 벡터합을 구한다(S34). 여기서, 단선지락고장을 검출하기 위한 초기 조건으로 위상차가 10도 이상인 경우를 예로 들었으나, 이는 다양한 현장 여건에 따라 설정될 수 있다. Then, the phase angle of the vector sum of the neutral line current and the load current is compared. If the phase difference is equal to or larger than the predetermined first threshold value (for example, 10 degrees) (S33), the vector sum obtained by combining the two phases is obtained (S34). Here, an example of an initial condition for detecting a broken ground fault is that the phase difference is 10 degrees or more, but it can be set according to various site conditions.
이후, 중성선 전류와 2상 조합 벡터합의 위상을 비교하여 그 위상차가 기 설정된 제2 임계치(예를 들어, 5도) 이내인 조합이 존재하는지 여부를 판단한다(S35). 이로써, 인근의 타 선로 지락고장으로 인한 오검출을 방지하고 개폐기 이후의 부하측 단선지락고장만을 검출하는 선택성과, 검출 신뢰성을 보장할 수 있다.Thereafter, the phases of the neutral line current and the two-phase combination vector sum are compared and it is determined whether there exists a combination whose phase difference is within a predetermined second threshold (for example, 5 degrees) (S35). Thus, it is possible to prevent the erroneous detection due to the other line ground fault in the vicinity, and to ensure the selectivity and detection reliability to detect only the broken ground fault of the load side after the switchgear.
판단 결과, 상술한 조건을 만족하는 2상 조합 벡터합이 존재하면, 단선지락고장이 검출된 것으로 판단하고 이를 알려주기 위한 메시지 등을 배전자동화기기 등으로 전송할 수 있다(S36).
As a result of the determination, if there is a two-phase combination vector sum satisfying the above-mentioned condition, it is determined that a broken ground fault is detected and a message for notifying the broken ground fault is transmitted to the distribution automation equipment or the like (S36).
본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명에 따른 구성요소를 치환, 변형 및 변경할 수 있다는 것이 명백할 것이다.The present invention is not limited to the above-described embodiments and the accompanying drawings. It will be apparent to those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
210: 바다
211: 반투막
220: 급수관
230: 수차
240: 누설관210: Sea
211: Semipermeable membrane
220: Water supply pipe
230: aberration
240: Leakage tube
Claims (2)
중성선 전류 및 전력선의 각 상에서의 부하전류를 취득하는 단계;
상기 각 상에서의 부하전류의 벡터합을 계산하는 단계;
상기 중성선 전류와 상기 벡터합의 위상차가 기 정해진 제1 임계치 이상이면, 상기 각 상에서의 부하전류에서 2상을 조합한 벡터합을 계산하는 단계; 및
상기 중성선 전류와 상기 2상을 조합한 벡터합의 위상차가 기 설정된 제2 임계치 이내인 조합이 존재하면, 단선지락고장이 검출된 것으로 판단하는 단계를 포함하는 다중접지계통 단선지락고장 검출 방법.
A method for detecting a ground fault in a multi-ground system by a terminal device provided on a load side,
Obtaining a load current in each phase of the neutral line current and the power line;
Calculating a vector sum of load currents in each phase;
If the phase difference between the neutral line current and the vector sum is greater than or equal to a predetermined first threshold value, calculating a vector sum combining two phases at a load current of each phase; And
And determining that a broken ground fault is detected when there is a combination in which a phase difference between a vector sum of the neutral line current and the two phases is within a predetermined second threshold value.
단선지락고장이 검출된 경우, 단선지락고장 검출을 알려주기 위한 메시지를 배전 자동화기기로 전송하는 단계를 더 포함하는 다중접지계통 단선지락고장 검출 방법.The method according to claim 1,
Further comprising the step of transmitting a message to the power distribution automation equipment to inform the detection of a broken ground fault if a broken ground fault is detected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150103751A KR101696220B1 (en) | 2015-07-22 | 2015-07-22 | Method of detecting line to ground fault in the distribution line of multiple grounding system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150103751A KR101696220B1 (en) | 2015-07-22 | 2015-07-22 | Method of detecting line to ground fault in the distribution line of multiple grounding system |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101696220B1 true KR101696220B1 (en) | 2017-01-16 |
Family
ID=57993376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150103751A KR101696220B1 (en) | 2015-07-22 | 2015-07-22 | Method of detecting line to ground fault in the distribution line of multiple grounding system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101696220B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108919003A (en) * | 2018-07-06 | 2018-11-30 | 华北电力大学 | A kind of test of sensitive equipment voltage dip resistance characteristics and data processing method |
CN109061394A (en) * | 2018-09-14 | 2018-12-21 | 国网江苏省电力有限公司镇江供电分公司 | Null line breaking alarm positioning device and method |
CN109444640A (en) * | 2018-11-28 | 2019-03-08 | 南京国电南自电网自动化有限公司 | A kind of power distribution network single-phase high-impedance detection method, system and storage medium |
CN109507516A (en) * | 2018-11-28 | 2019-03-22 | 南京国电南自软件工程有限公司 | Earth-fault detecting method, system and storage medium based on steady state fault amount |
CN112014772A (en) * | 2020-09-09 | 2020-12-01 | 南方电网数字电网研究院有限公司 | Zero-fault detection method and device, storage medium and power distribution gateway |
CN112904150A (en) * | 2021-03-11 | 2021-06-04 | 国网新疆电力有限公司乌鲁木齐供电公司 | System for recognizing and positioning high-voltage line disconnection fault based on low-voltage power distribution |
CN113109665A (en) * | 2021-03-31 | 2021-07-13 | 国网福建省电力有限公司电力科学研究院 | Voltage sag source positioning method based on positive sequence component phase difference |
US20210247435A1 (en) * | 2020-02-06 | 2021-08-12 | Aclara Technologies Llc | High impedance fault detector |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090056686A (en) * | 2007-11-30 | 2009-06-03 | (주)한국아이이디 | Method and apparatus for detecting a leakage current and determining a phase of the leakage current using phase comparison between a net current and phase currents |
KR20120136952A (en) | 2011-06-10 | 2012-12-20 | 한국전력공사 | System and method for monitoring ground fault of high resistance |
-
2015
- 2015-07-22 KR KR1020150103751A patent/KR101696220B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090056686A (en) * | 2007-11-30 | 2009-06-03 | (주)한국아이이디 | Method and apparatus for detecting a leakage current and determining a phase of the leakage current using phase comparison between a net current and phase currents |
KR20120136952A (en) | 2011-06-10 | 2012-12-20 | 한국전력공사 | System and method for monitoring ground fault of high resistance |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108919003B (en) * | 2018-07-06 | 2020-10-23 | 华北电力大学 | Sensitive equipment voltage sag tolerance characteristic testing and data processing method |
CN108919003A (en) * | 2018-07-06 | 2018-11-30 | 华北电力大学 | A kind of test of sensitive equipment voltage dip resistance characteristics and data processing method |
CN109061394A (en) * | 2018-09-14 | 2018-12-21 | 国网江苏省电力有限公司镇江供电分公司 | Null line breaking alarm positioning device and method |
CN109061394B (en) * | 2018-09-14 | 2023-10-13 | 国网江苏省电力有限公司镇江供电分公司 | Zero line breakage alarm positioning device and method for three-phase four-wire system power supply system |
CN109444640A (en) * | 2018-11-28 | 2019-03-08 | 南京国电南自电网自动化有限公司 | A kind of power distribution network single-phase high-impedance detection method, system and storage medium |
CN109507516A (en) * | 2018-11-28 | 2019-03-22 | 南京国电南自软件工程有限公司 | Earth-fault detecting method, system and storage medium based on steady state fault amount |
US20210247435A1 (en) * | 2020-02-06 | 2021-08-12 | Aclara Technologies Llc | High impedance fault detector |
US12019113B2 (en) * | 2020-02-06 | 2024-06-25 | Aclara Technologies Llc | High impedance fault detector |
CN112014772B (en) * | 2020-09-09 | 2022-04-08 | 南方电网数字电网研究院有限公司 | Zero-fault detection method and device, storage medium and power distribution gateway |
CN112014772A (en) * | 2020-09-09 | 2020-12-01 | 南方电网数字电网研究院有限公司 | Zero-fault detection method and device, storage medium and power distribution gateway |
CN112904150A (en) * | 2021-03-11 | 2021-06-04 | 国网新疆电力有限公司乌鲁木齐供电公司 | System for recognizing and positioning high-voltage line disconnection fault based on low-voltage power distribution |
CN113109665A (en) * | 2021-03-31 | 2021-07-13 | 国网福建省电力有限公司电力科学研究院 | Voltage sag source positioning method based on positive sequence component phase difference |
CN113109665B (en) * | 2021-03-31 | 2024-01-12 | 国网福建省电力有限公司电力科学研究院 | Voltage sag source positioning method based on positive sequence component phase difference |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101696220B1 (en) | Method of detecting line to ground fault in the distribution line of multiple grounding system | |
CN106663933B (en) | Transient protection for multi-terminal HVDC grid | |
CN105580232B (en) | Distributed arc error protection between socket and breaker | |
RU2491563C2 (en) | Technique and device for detection of phase-to-ground fault | |
CN108603909B (en) | Method and apparatus for detecting a fault of a transmission line in an electric power system | |
US10859639B2 (en) | Fault-type identification in an electric power delivery system using composite signals | |
EP2820435B1 (en) | A method and an apparatus for detecting a fault in an hvdc power transmission system | |
EP2645512B1 (en) | Faulty protective earth ground circuit detection system and method | |
CN102621451B (en) | Based on the distribution circuit single-phase earth fault detection method of momentary signal method | |
CN104267311A (en) | Phase selection method for faults of double-circuit lines on same tower | |
CN103217613B (en) | Power transmission and distribution line fault property judgment and fault state tracing and detecting method | |
CN105337256B (en) | A kind of residual voltage compensating element, blocking method for multiple-circuit on same tower | |
CN106501683A (en) | One kind is without main website power distribution network one-way earth fault localization method | |
KR100918515B1 (en) | Method for measuring earth resistance of a single ground in active state | |
CN104977499A (en) | Small current grounding system single-phase grounding fault line selection method | |
Han et al. | Fault location on a mixed overhead and underground transmission feeder using a multiple-zone quadrilateral impedance relay and a double-ended travelling wave fault locator | |
CN109596934A (en) | A kind of double split-core type meter mensurations of secondary circuit multipoint earthing | |
CN110596529B (en) | Flexible direct current power grid ground insulation fault detection device and system | |
CN103760472B (en) | Analyses for double circuits on same tower fault phase sequence of the same name diagnostic method | |
CN109038513B (en) | A kind of intelligent processing method of the broken string ground connection for failure phase transfer earthing or grounding means | |
ZA202102427B (en) | An electrical protection system and a method thereof | |
KR102350387B1 (en) | Apparatus and method for detecting fault line | |
CN204391681U (en) | Earth leakage protective device | |
CN107991533A (en) | Voltage-phase localization method based on single-phase cable | |
CN107515353A (en) | PT/CT secondary neutral line operation intelligent monitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20191226 Year of fee payment: 4 |