KR101684377B1 - Process for preparing lithium difluorophosphate - Google Patents

Process for preparing lithium difluorophosphate Download PDF

Info

Publication number
KR101684377B1
KR101684377B1 KR1020160047397A KR20160047397A KR101684377B1 KR 101684377 B1 KR101684377 B1 KR 101684377B1 KR 1020160047397 A KR1020160047397 A KR 1020160047397A KR 20160047397 A KR20160047397 A KR 20160047397A KR 101684377 B1 KR101684377 B1 KR 101684377B1
Authority
KR
South Korea
Prior art keywords
process according
lipf
lithium
chain
formula
Prior art date
Application number
KR1020160047397A
Other languages
Korean (ko)
Inventor
전기호
이동훈
Original Assignee
(주)켐트로스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)켐트로스 filed Critical (주)켐트로스
Priority to KR1020160047397A priority Critical patent/KR101684377B1/en
Application granted granted Critical
Publication of KR101684377B1 publication Critical patent/KR101684377B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate

Abstract

The present invention relates to a preparation method of lithium difluorophosphate (LiPO_2F_2), comprising a step of making lithium hexafluorophosphate (LiPF_6) and a silane compound react with water. According to the preparation method of the present invention, lithium difluorophosphate used as a non-aqueous electrolyte for a lithium secondary battery can be prepared in a cost-efficient and industrial way within a short period of time.

Description

디플루오로인산리튬의 제조방법 {Process for preparing lithium difluorophosphate}The present invention relates to a process for preparing lithium difluorophosphate,

본 발명은 리튬이차전지용 비수전해액 첨가제로 사용되는 디플루오로인산리튬을 경제적이고 공업적으로 제조하는 방법에 관한 것이다.The present invention relates to a process for economically and industrially producing lithium difluorophosphate which is used as a non-aqueous electrolyte additive for lithium secondary batteries.

최근 이차전지의 수요가 급격하게 증가하고 있으며, 특히 휴대 전화, 노트북, PC 등 휴대형 전자 기기가 급속히 보급됨에 따라 이들을 구동하는 경량 및 고성능의 전지 수요가 계속 증대하고 있다. 또한, 소형 용도 이외에 자동차용 이차전지로의 활용도 기대되고 있으며, 그 중 리튬이온전지는 이러한 시장의 요구를 충족하는 고성능 전지로서 주목받고 있다. 2. Description of the Related Art Recently, the demand for secondary batteries has been rapidly increasing. In particular, portable electronic devices such as mobile phones, notebooks, and PCs are rapidly spreading, and thus demand for lightweight and high performance batteries for driving them is continuously increasing. In addition, it is expected to be utilized as a secondary battery for automobiles in addition to small-sized applications. Among them, lithium ion batteries are attracting attention as high-performance batteries satisfying such market demands.

이러한 리튬이온전지에는 비수전해액이 주로 사용되고 있는데, 하기 화학식 1로 표시되는 디플루오로인산리튬을 전해액에 첨가하면 전극 계면에 작용하여 고온 사이클 특성이 향상되는 것으로 보고된 바 있다[일본 특허공개 제11-067279호].A non-aqueous electrolyte is mainly used for such a lithium ion battery. It has been reported that when lithium difluorophosphate represented by the following formula (1) is added to an electrolytic solution, it acts on the electrode interface to improve high-temperature cycle characteristics (Japanese Patent Laid- -067279].

[화학식 1][Chemical Formula 1]

LiPO2F2 LiPO 2 F 2

상기 화학식 1의 디플루오로인산리튬은 다양한 방법에 의해 제조될 수 있는 것으로 알려져 있다. 먼저, 일본 특허공개 제2005-219994호에는 하기 반응식 1과 같이 LiPF6과 이산화규소를 반응시켜 디플루오로인산리튬을 제조하는 방법이 개시되어 있다. 그러나, 상기 방법은 50℃의 반응온도에서 반응종료까지 72시간이라는 장시간이 필요한 문제점이 있다.The lithium difluorophosphate of Formula 1 is known to be prepared by various methods. First, Japanese Patent Application Laid-Open No. 2005-219994 discloses a method for producing lithium difluorophosphate by reacting LiPF 6 with silicon dioxide as shown in Reaction Scheme 1 below. However, the above method has a problem that it takes 72 hours to complete the reaction at a reaction temperature of 50 ° C.

[반응식 1][Reaction Scheme 1]

Figure 112016037313604-pat00001
Figure 112016037313604-pat00001

또한, 미국 특허 제8,980,214호에는 하기 반응식 2와 같이 탄산리튬과 LiPF6를 비수용매 중에서 반응시킴으로써 디플루오로인산리튬을 제조하는 방법이 기재되어 있다. 그러나, 상기 방법도 50℃의 반응온도에서 72시간 반응이 필요하여 장시간을 요하는 문제점이 있다. 또한, 상기 방법은 부산물로 생성되는 플루오르화리튬을 제거하는 추가 공정이 필요하다.U.S. Patent No. 8,980,214 discloses a process for producing lithium difluorophosphate by reacting lithium carbonate and LiPF 6 in a nonaqueous solvent as shown in Reaction Scheme 2 below. However, this method also requires a long reaction time at 72 ° C for 72 hours at a reaction temperature of 50 ° C. The process also requires an additional process to remove the lithium fluoride produced as a by-product.

[반응식 2][Reaction Scheme 2]

Figure 112016037313604-pat00002
Figure 112016037313604-pat00002

일본 특허공개 제11-067279호Japanese Patent Laid-Open No. 11-067279 일본 특허공개 제2005-219994호Japanese Patent Application Laid-Open No. 2005-219994 미국 특허 제8,980,214호U.S. Patent No. 8,980,214

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 한 목적은 통상적으로 구입이 용이하고 경제적인 원료로부터 간단하게 경제적이고 공업적으로 디플루오로인산리튬을 제조하는 방법을 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for easily and economically and industrially producing lithium difluorophosphate from a raw material which is easy to purchase and economical.

본 발명의 다른 목적은 비교적 단시간 내에 높은 수율로 디플루오로인산리튬을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing lithium difluorophosphate in a relatively short time in a high yield.

본 발명은 헥사플루오로인산리튬(LiPF6)과 하기 화학식 2, 화학식 3 또는 화학식 4로 표시되는 실란 화합물을 물과 함께 반응시키는 단계를 포함하는 디플루오로인산리튬(LiPO2F2)의 제조방법에 관한 것이다.The present invention relates to a process for producing lithium difluorophosphate (LiPO 2 F 2 ) comprising reacting lithium hexafluorophosphate (LiPF 6 ) with a silane compound represented by the following formula (2), (3) ≪ / RTI >

[화학식 2](2)

Figure 112016037313604-pat00003
Figure 112016037313604-pat00003

[화학식 3](3)

Figure 112016037313604-pat00004
Figure 112016037313604-pat00004

[화학식 4][Chemical Formula 4]

Figure 112016037313604-pat00005
Figure 112016037313604-pat00005

상기 식에서, In this formula,

R1, R2 및 R3는 각각 독립적으로 수소, C1-C6의 알킬기 또는 C2-C6의 알케닐기, 바람직하게는 수소, 메틸, 에틸 또는 비닐, 보다 바람직하게는 모두 메틸이거나, R1 및 R2가 메틸이고 R3가 비닐이고,R 1 , R 2 and R 3 are each independently hydrogen, a C 1 -C 6 alkyl group or a C 2 -C 6 alkenyl group, preferably hydrogen, methyl, ethyl or vinyl, more preferably methyl, R 1 and R 2 are methyl and R 3 is vinyl,

X는 할로겐, 바람직하게는 클로로, 브로모 또는 요오도, 보다 바람직하게는 클로로이다.X is halogen, preferably chloro, bromo or iodo, more preferably chloro.

본 명세서에서, C1-C6의 알킬기는 탄소수 1 내지 6개로 구성된 직쇄형 또는 분지형의 탄화수소를 의미하며, 예를 들어 메틸, 에틸, n-프로필, i-프로필 등이 포함되나 이에 한정되는 것은 아니다.In the present specification, the C 1 -C 6 alkyl group means a linear or branched hydrocarbon group having 1 to 6 carbon atoms, and includes, for example, methyl, ethyl, n-propyl, It is not.

본 명세서에서, C2-C6의 알케닐기는 하나 이상의 탄소-탄소 이중결합을 갖는 탄소수 2 내지 6개로 구성된 직쇄형 또는 분지형 불포화 탄화수소를 의미하며, 예를 들어 비닐, 1-프로페닐, 2-프로페닐 등이 포함되나 이에 한정되는 것은 아니다.
As used herein, a C 2 -C 6 alkenyl group means a straight or branched unsaturated hydrocarbon having 2 to 6 carbon atoms having at least one carbon-carbon double bond, such as vinyl, 1-propenyl, 2 - propenyl, and the like.

본 발명에서 사용되는 화학식 2 내지 4의 실란 화합물, 예컨대 할로알킬실란 및 할로알킬알케닐실란, 구체적으로 클로로트리메틸실란, 디클로로디메틸실란, 메틸트리클로로실란 및 클로로디메틸비닐실란은 상업적으로 쉽게 입수가 가능하다.
The silane compounds of the formulas 2 to 4, such as haloalkylsilane and haloalkylalkenylsilane, particularly chlorotrimethylsilane, dichlorodimethylsilane, methyltrichlorosilane and chlorodimethylvinylsilane, which are used in the present invention, are commercially available Do.

본 발명의 제조방법에 따르면, 반응물질로서 LiPF6; 화학식 2, 화학식 3 또는 화학식 4로 표시되는 화합물; 및 물을 사용함으로써 5시간 이하의 단시간, 예를 들어 2시간 내지 2시간 30분의 짧은 반응 시간 내에 디플루오로인산리튬을 70% 이상의 높은 수율로 제조할 수 있다(실시예 1 내지 4 참조).
According to the production process of the present invention, LiPF 6 as a reactant; A compound represented by Formula 2, Formula 3 or Formula 4; And water, a lithium difluorophosphate can be produced with a high yield of 70% or more within a short reaction time of 5 hours or less, for example, 2 hours to 2 hours 30 minutes (see Examples 1 to 4) .

본 발명의 일 실시형태에서, 헥사플루오로인산리튬(LiPF6)에 대한 화학식 2로 표시되는 화합물의 몰비는 1:3.8 내지 4.2, 바람직하게는 1:3.9 내지 4.1, 보다 바람직하게는 1:4이다.In one embodiment of the present invention, the molar ratio of the compound represented by the general formula (2) to lithium hexafluorophosphate (LiPF 6 ) is 1: 3.8 to 4.2, preferably 1: 3.9 to 4.1, to be.

또한, 헥사플루오로인산리튬(LiPF6)에 대한 화학식 3 또는 화학식 4로 표시되는 화합물의 몰비는 1:1.8 내지 2.2, 바람직하게는 1:1.9 내지 2.1, 보다 바람직하게는 1:2이다.The molar ratio of the compound represented by the formula (3) or (4) to lithium hexafluorophosphate (LiPF 6 ) is 1: 1.8 to 2.2, preferably 1: 1.9 to 2.1, more preferably 1: 2.

본 발명의 일 실시형태에서, 헥사플루오로인산리튬(LiPF6)에 대한 물의 몰비는 1:1.8 내지 2.2, 바람직하게는 1:1.9 내지 2.1, 보다 바람직하게는 1:2이다.
In one embodiment of the present invention, the molar ratio of water to lithium hexafluorophosphate (LiPF 6 ) is 1: 1.8 to 2.2, preferably 1: 1.9 to 2.1, more preferably 1: 2.

본 발명의 일 실시형태에 따른 제조방법은 LiPF6를 비수용매에 용해시키고 화학식 2, 화학식 3 또는 화학식 4로 표시되는 실란 화합물 및 물과 함께 반응시키는 단계를 포함할 수 있다.The production method according to one embodiment of the present invention may include a step of dissolving LiPF 6 in a nonaqueous solvent and reacting it with a silane compound represented by the general formula (2), (3) or (4) and water.

본 발명에서 사용되는 비수용매로는 환상 카보네이트, 쇄상 카보네이트, 쇄상 니트릴, 환상 에스테르, 쇄상 에스테르, 환상 에테르, 쇄상 에테르 및 쇄상 할로겐화 용매로 구성된 군으로부터 선택된 하나 이상의 용매가 사용될 수 있다. 예를 들면, 프로필렌카보네이트, 에틸렌카보네이트, 부틸렌카보네이트 등의 환상 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트 등의 쇄상 카보네이트, 아세토니트릴, 프로피오니트릴 등의 쇄상 니트릴, 부티로락톤, 발레로락톤 등의 환상 에스테르, 아세트산에틸, 프로피온산에틸 등의 쇄상 에스테르, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등의 환상 에테르, 디부틸에테르, 1,2-디메톡시에탄, 1,2-디에톡시에탄, 에톡시메톡시에탄 등의 쇄상 에테르, 디클로로메탄, 1,2-디클로로에탄 등의 쇄상 할로겐화 용매 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.As the non-aqueous solvent used in the present invention, at least one solvent selected from the group consisting of cyclic carbonates, chain carbonates, chain nitriles, cyclic esters, chain esters, cyclic ethers, chain ethers and chain halogenated solvents can be used. Examples of the solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate, chain nitriles such as acetonitrile and propionitrile, Cyclic esters such as lactone, chain esters such as ethyl acetate and ethyl propionate, cyclic ethers such as 2-methyltetrahydrofuran and tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane , Ethoxymethoxyethane and the like, and chain halogenating solvents such as dichloromethane and 1,2-dichloroethane, but the present invention is not limited thereto.

이들 비수용매는 탈수된 것을 사용하는 것이 바람직하며, 본 발명에 사용되는 비수용매 중의 수분 농도는 바람직하게는 500 중량ppm 이하이다. 수분 농도가 500 중량ppm을 상회하면 LiPF6 및 LiPO2F2가 가수분해되기 때문에 바람직하지 않다.
It is preferable to use dehydrated these non-aqueous solvents, and the water concentration in the non-aqueous solvent used in the present invention is preferably 500 ppm by weight or less. When the water concentration exceeds 500 ppm by weight, LiPF 6 and LiPO 2 F 2 are not preferable because they are hydrolyzed.

본 발명에서 사용되는 비수용매 중의 LiPF6의 농도는 특별히 한정되지 않고 임의의 농도로 할 수 있으나, 하한은 바람직하게는 1 중량%, 보다 바람직하게는 5 중량%이고, 상한은 바람직하게는 40 중량%, 보다 바람직하게는 30 중량%의 범위이다. 농도가 1 중량%를 하회하면 반응속도가 느리고 용매량의 증가로 경제적이지 않다. 한편 농도가 40 중량%를 넘으면 용액의 점도가 상승함으로써 반응을 원활하게 수행하는 것이 곤란할 수 있다.
The concentration of LiPF 6 in the non-aqueous solvent used in the present invention is not particularly limited and may be any concentration, but the lower limit is preferably 1 wt%, more preferably 5 wt%, and the upper limit is preferably 40 wt% %, More preferably 30% by weight. If the concentration is less than 1% by weight, the reaction rate is slow and the solvent amount is increased, which is not economical. On the other hand, if the concentration exceeds 40% by weight, the viscosity of the solution may increase and it may be difficult to perform the reaction smoothly.

본 발명의 일 실시형태에서, 반응 온도는 통상 5 내지 60℃의 범위, 바람직하게는 10 내지 30℃의 범위이다. 반응 온도가 5℃ 미만이면 반응 시간이 길어져 경제적이지 않고, 60℃를 초과하면 생성물이나 원료 LiPF6가 분해되는 등 부산물이 증가되어 악영향을 줄 수 있다.
In one embodiment of the present invention, the reaction temperature is usually in the range of 5 to 60 ° C, preferably in the range of 10 to 30 ° C. If the reaction temperature is less than 5 ° C, the reaction time becomes long and is not economical. If the reaction temperature exceeds 60 ° C, the byproducts such as decomposition of the product and the raw material LiPF 6 may be increased and adverse effects may be caused.

본 발명의 제조방법에서 생성되는 반응 부산물들은 비점이 낮거나 가스 상태로 쉽게 제거가 가능하므로, 효과적인 가스 포집장치를 이용하여 제거할 수 있다. 반응 온도를 올림으로써, 생성되는 부산물인 플루오로화 실란 화합물 및 할로겐화 수소(hydrogen halide), 예컨대 염산 가스를 제거할 수도 있으나, 감압(10~50mmHg)함으로써 더욱 효과적으로 제거할 수 있다.
The reaction byproducts produced in the production process of the present invention can be removed using an effective gas trapping device because they have a low boiling point or can be easily removed in a gaseous state. By increasing the reaction temperature, the fluorinated silane compound and the hydrogen halide such as hydrochloric acid gas, which are produced by-products, can be removed, but can be more effectively removed by reduced pressure (10 to 50 mmHg).

본 발명의 제조방법은 생성물인 디플루오로인산리튬이 수분에 의해 가수분해를 받는 것으로 알려져 있기 때문에 반응에 사용되는 물 이외의 수분을 함유하지 않는 분위기에서 반응을 수행하는 것이 바람직하다. 예를 들면, 질소, 아르곤 등의 불활성 가스 분위기에서 반응을 수행하는 것이 바람직하다.
In the production method of the present invention, it is preferable that the reaction is carried out in an atmosphere containing no water other than the water used for the reaction, because lithium difluorophosphate is hydrolyzed by moisture. For example, it is preferable to carry out the reaction in an atmosphere of an inert gas such as nitrogen or argon.

본 발명에 따라 제조되는 디플루오로인산리튬을 사용하여 비수전해액 전지용 전해액을 조제하는 방법은 특별히 한정되는 것은 아니나, 디플루오로인산리튬이 소정의 농도가 되도록 상기 비수용매, 주전해질, 및 기타 첨가제를 첨가함으로써 원하는 비수전해액 전지용 전해액을 얻을 수 있다.The method for preparing the electrolyte for the non-aqueous electrolyte cell using the lithium difluorophosphate produced according to the present invention is not particularly limited, but it is preferable that the non-aqueous solvent, the main electrolyte, and the other additives such as lithium difluorophosphate An electrolyte solution for a desired non-aqueous electrolyte cell can be obtained.

주전해질로서는 LiPF6, LiBF4, LiClO4, LiAsF6, LiSbF6, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiN(SO2CF3)(SO2C4F9), LiC(SO2CF3)3, LiPF3(C3F7)3, LiB(CF3)4, LiBF3(C2F5) 등으로 대표되는 전해질 리튬염을 사용할 수 있다.As the main electrolyte LiPF 6, LiBF 4, LiClO 4 , LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9) , LiC (SO 2 CF 3) 3, LiPF 3 (C 3 F 7) 3, LiB (CF 3) 4, LiBF 3 (C 2 F 5) an electrolyte lithium salt, represented by such as Can be used.

또한 기타 첨가제로서는 디플루오로비스(옥살라토)인산 리튬, 테트라플루오로(옥살라토)인산 리튬, 디플루오로(옥살라토)붕산 리튬, 시클로헥실 벤젠, 비페닐, t-부틸 벤젠, 비닐렌 카보네이트, 비닐에틸렌카보네이트, 디플루오로아니솔, 플루오로에틸렌카보네이트, 프로판 술톤, 디메틸비닐렌 카보네이트 등의 과충전 방지 효과, 부극(負極) 피막 형성 효과, 정극(正極) 보호 효과를 가지는 화합물 등을 사용할 수 있다.Examples of other additives include lithium salts such as lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate, lithium difluoro (oxalato) borate, cyclohexylbenzene, biphenyl, (Negative electrode) film-forming effect, a compound having a positive electrode (protective) effect, etc., for example, an overcharge preventing effect such as vinylene carbonate, vinyl ethylene carbonate, difluoroanisole, fluoroethylene carbonate, propane sultone, dimethylvinylene carbonate Can be used.

본 발명의 제조방법에 따르면, 비수전해액 전지의 성능 향상에 유효한 첨가제로 사용되고 있는 디플루오로인산리튬을 통상적으로 구입이 용이하고 경제적인 물질인 실란 화합물과 물을 사용함으로써 LiPF6로부터 단시간 내에 경제적이고 공업적으로 제조 가능하다.According to the production method of the present invention, lithium difluorophosphate, which is used as an effective additive for improving the performance of a non-aqueous electrolyte cell, can be economically produced from LiPF 6 in a short time by using a silane compound and water, It can be industrially produced.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It should be apparent to those skilled in the art that these embodiments are for illustrative purpose only and that the scope of the present invention is not limited to these embodiments.

실시예Example 1:  One: 클로로트리메틸실란을Chlorotrimethylsilane 이용한  Used 디플루오로인산리튬의Of lithium difluorophosphate 제조 Produce

가스 포집기에 연결된 500mL 3구 둥근바닥(RB) PFA 플라스크에 아르곤 대기에서 30% LiPF6 디메틸카보네이트 용액 60.0g을 가했다. 5℃까지 냉각하고 물 4.27g과 클로로트리메틸실란 54.1g을 가했다. 20℃까지 가열하고 2시간 동안 교반 반응시킨 후 감압(20mmHg) 하에 유리 가스를 제거했다. 10℃까지 냉각하고 1시간 교반 후 여과했다. 여과하여 얻어진 고체를 60℃에서 12시간 진공 건조하여 목적물 12.4g(수율 97%)을 얻었다.To a 500 mL three-neck round bottom (RB) PFA flask connected to a gas collector was added 60.0 g of a 30% LiPF 6 dimethyl carbonate solution in an argon atmosphere. The mixture was cooled to 5 占 폚 and 4.27 g of water and 54.1 g of chlorotrimethylsilane were added. The mixture was heated to 20 DEG C and stirred for 2 hours, and then the glassy gas was removed under reduced pressure (20 mmHg). The mixture was cooled to 10 DEG C, stirred for 1 hour and filtered. The solid obtained by filtration was vacuum-dried at 60 DEG C for 12 hours to obtain 12.4 g (yield: 97%) of the target compound.

19F-NMR 400MHz(Acetone-d6, ppm): -83.52(s), -85.98(s) 19 F-NMR 400 MHz (Acetone-d6, ppm): -83.52 (s), -85.98 (s)

FT-IR(cm-1): 1263, 1145, 926, 879, 536, 495
FT-IR (cm -1 ): 1263, 1145, 926, 879, 536, 495

실시예Example 2:  2: 디클로로디메틸실란을Dichlorodimethylsilane 이용한  Used 디플루오로인산리튬의Of lithium difluorophosphate 제조 Produce

가스 포집기에 연결된 500mL 3구 둥근바닥(RB) PFA 플라스크에 아르곤 대기에서 13% LiPF6 에틸메틸카보네이트 용액 100.0g을 가했다. 5℃까지 냉각하고 물 3.08g과 디클로로디메틸실란 23.2g을 가했다. 20℃까지 가열하고 2시간 동안 교반 반응시킨 후 30℃에서 30분간 교반 반응시켰다. 감압(20mmHg) 하에 유리 가스를 제거했다. 10℃까지 냉각하고 1시간 교반 후 여과했다. 여과하여 얻어진 고체를 60℃에서 12시간 진공 건조하여 목적물 8.0g(수율 87%)을 얻었다.To a 500 mL three-necked round bottom (RB) PFA flask connected to a gas collector was added 100.0 g of a 13% LiPF 6 ethylmethyl carbonate solution in an argon atmosphere. After cooling to 5 캜, 3.08 g of water and 23.2 g of dichlorodimethylsilane were added. The mixture was heated to 20 DEG C, stirred for 2 hours, and stirred at 30 DEG C for 30 minutes. The glassy gas was removed under reduced pressure (20 mmHg). The mixture was cooled to 10 DEG C, stirred for 1 hour and filtered. The solid obtained by filtration was vacuum-dried at 60 DEG C for 12 hours to obtain 8.0 g (yield: 87%) of the target compound.

19F-NMR 400MHz(Acetone-d6, ppm): -83.52(s), -85.98(s) 19 F-NMR 400 MHz (Acetone-d6, ppm): -83.52 (s), -85.98 (s)

FT-IR(cm-1): 1264, 1145, 926, 879, 535, 495
FT-IR (cm -1 ): 1264, 1145, 926, 879, 535, 495

실시예Example 3:  3: 메틸트리클로로실란을Methyl trichlorosilane 이용한  Used 디플루오로인산리튬의Of lithium difluorophosphate 제조 Produce

가스 포집기에 연결된 500mL 3구 둥근바닥(RB) PFA 플라스크에 아르곤 대기에서 15% LiPF6 디메틸카보네이트 용액 120.0g을 가했다. 5℃까지 냉각하고 물 4.27g과 메틸트리클로로실란 26.6g을 가했다. 20℃까지 가열하고 2시간 동안 교반 반응시킨 후 30℃에서 30분간 교반 반응시켰다. 감압(20mmHg) 하에 유리 가스를 제거했다. 10℃까지 냉각하고 1시간 교반 후 여과했다. 여과하여 얻어진 고체를 60℃에서 12시간 진공 건조하여 목적물 8.9g(수율 70%)을 얻었다.A 500 mL three-necked round bottom (RB) PFA flask connected to a gas collector was charged with 120.0 g of a 15% LiPF 6 dimethyl carbonate solution in an argon atmosphere. The mixture was cooled to 5 DEG C, and 4.27 g of water and 26.6 g of methyltrichlorosilane were added. The mixture was heated to 20 DEG C, stirred for 2 hours, and stirred at 30 DEG C for 30 minutes. The glassy gas was removed under reduced pressure (20 mmHg). The mixture was cooled to 10 DEG C, stirred for 1 hour and filtered. The solid obtained by filtration was vacuum-dried at 60 DEG C for 12 hours to obtain 8.9 g (yield 70%) of the target compound.

19F-NMR 400MHz(Acetone-d6, ppm): -83.39(s), -85.85(s) 19 F-NMR 400 MHz (Acetone-d6, ppm): -83.39 (s), -85.85 (s)

FT-IR(cm-1): 1263, 1146, 927, 880, 535, 496
FT-IR (cm -1 ): 1263, 1146, 927, 880, 535, 496

실시예Example 4:  4: 클로로디메틸비닐실란을Chlorodimethylvinylsilane 이용한  Used 디플루오로인산리튬의Of lithium difluorophosphate 제조 Produce

가스 포집기에 연결된 500mL 3구 둥근바닥(RB) PFA 플라스크에 아르곤 대기에서 13% LiPF6 에틸메틸카보네이트 용액 45.0g을 가했다. 5℃까지 냉각하고 물 1.39g과 클로로디메틸비닐실란 19.5g을 가했다. 20℃까지 가열하고 2시간 동안 교반 반응시킨 후 감압(20mmHg) 하에 유리 가스를 제거했다. 10℃까지 냉각하고 1시간 교반 후 여과했다. 여과하여 얻어진 고체를 60℃에서 12시간 진공 건조하여 목적물 3.9g(수율 94%)을 얻었다.A 500 mL 3-neck round bottom (RB) PFA flask connected to a gas collector was charged with 45.0 g of a 13% LiPF 6 ethylmethyl carbonate solution in an argon atmosphere. The mixture was cooled to 5 占 폚 and 1.39 g of water and 19.5 g of chlorodimethylvinylsilane were added. The mixture was heated to 20 DEG C and stirred for 2 hours, and then the glassy gas was removed under reduced pressure (20 mmHg). The mixture was cooled to 10 DEG C, stirred for 1 hour and filtered. The solid obtained by filtration was vacuum-dried at 60 DEG C for 12 hours to obtain 3.9 g (yield: 94%) of the target compound.

19F-NMR 400MHz(Acetone-d6, ppm): -83.52(s), -85.98(s) 19 F-NMR 400 MHz (Acetone-d6, ppm): -83.52 (s), -85.98 (s)

FT-IR(cm-1): 1263, 1145, 926, 879, 536, 495FT-IR (cm -1 ): 1263, 1145, 926, 879, 536, 495

Claims (12)

헥사플루오로인산리튬(LiPF6)과 하기 화학식 2, 화학식 3 또는 화학식 4로 표시되는 실란 화합물을 물과 함께 반응시키는 단계; 및
상기 반응 생성물로부터 고체 형태의 디플루오로인산리튬(LiPO2F2)을 여과 분리하는 단계를 포함하는 디플루오로인산리튬(LiPO2F2)의 제조방법:
[화학식 2]
Figure 112016088915428-pat00006

[화학식 3]
Figure 112016088915428-pat00007

[화학식 4]
Figure 112016088915428-pat00008

상기 식에서,
R1, R2 및 R3는 각각 독립적으로 C1-C6의 알킬기 또는 C2-C6의 알케닐기이고,
X는 할로겐이다.
Reacting lithium hexafluorophosphate (LiPF 6 ) with a silane compound represented by the following formula (2), (3) or (4) with water; And
Method of manufacturing a lithium phosphate lithium phosphate (LiPO 2 F 2) difluoro comprises a filtration (LiPO 2 F 2) in the difluoro solid from the reaction product:
(2)
Figure 112016088915428-pat00006

(3)
Figure 112016088915428-pat00007

[Chemical Formula 4]
Figure 112016088915428-pat00008

In this formula,
R 1 , R 2 and R 3 are each independently a C 1 -C 6 alkyl group or a C 2 -C 6 alkenyl group,
X is halogen.
제1항에 있어서, R1, R2 및 R3가 각각 독립적으로 수소, 메틸, 에틸 또는 비닐인 제조방법.The process according to claim 1 , wherein R 1 , R 2 and R 3 are each independently hydrogen, methyl, ethyl or vinyl. 제1항에 있어서, R1, R2 및 R3가 모두 메틸인 제조방법.The method of claim 1, wherein, R 1, R 2 and R 3 is a process for producing both methyl. 제1항에 있어서, R1 및 R2가 메틸이고, R3가 비닐인 제조방법.The process according to claim 1, wherein R 1 and R 2 are methyl and R 3 is vinyl. 제1항에 있어서, X가 클로로인 제조방법.2. The process according to claim 1, wherein X is chloro. 제1항에 있어서, 헥사플루오로인산리튬(LiPF6)에 대한 화학식 2로 표시되는 화합물의 몰비가 1:3.8 내지 4.2인 제조방법.The process according to claim 1, wherein the molar ratio of the compound represented by the general formula (2) to lithium hexafluorophosphate (LiPF 6 ) is 1: 3.8 to 4.2. 제1항에 있어서, 헥사플루오로인산리튬(LiPF6)에 대한 화학식 3 또는 화학식 4로 표시되는 화합물의 몰비가 1:1.8 내지 2.2인 제조방법.The production method according to claim 1, wherein the molar ratio of the compound represented by Formula (3) or (4) to lithium hexafluorophosphate (LiPF 6 ) is 1: 1.8 to 2.2. 제1항에 있어서, 헥사플루오로인산리튬(LiPF6)에 대한 물의 몰비가 1:1.8 내지 2.2인 제조방법.The process according to claim 1, wherein the molar ratio of water to lithium hexafluorophosphate (LiPF 6 ) is 1: 1.8 to 2.2. 제1항 내지 제8항 중 어느 한 항에 있어서, 비수용매 중에서 반응시키는 제조방법.The process according to any one of claims 1 to 8, wherein the reaction is carried out in a non-aqueous solvent. 제9항에 있어서, 비수용매가 환상 카보네이트, 쇄상 카보네이트, 쇄상 니트릴, 환상 에스테르, 쇄상 에스테르, 환상 에테르, 쇄상 에테르 및 쇄상 할로겐화 용매로 구성된 군으로부터 선택된 하나 이상의 용매인 제조방법.The process according to claim 9, wherein the nonaqueous solvent is at least one solvent selected from the group consisting of cyclic carbonates, chain carbonates, chain nitriles, cyclic esters, chain esters, cyclic ethers, chain ethers and chain halogenated solvents. 제1항 내지 제8항 중 어느 한 항에 있어서, 반응온도가 5 내지 60℃인 제조방법.The process according to any one of claims 1 to 8, wherein the reaction temperature is from 5 to 60 캜. 제1항 내지 제8항 중 어느 한 항에 있어서, 반응 부산물을 감압하여 제거하는 단계를 추가로 포함하는 제조방법.9. The process according to any one of claims 1 to 8, further comprising depressurizing and removing the reaction byproduct.
KR1020160047397A 2016-04-19 2016-04-19 Process for preparing lithium difluorophosphate KR101684377B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160047397A KR101684377B1 (en) 2016-04-19 2016-04-19 Process for preparing lithium difluorophosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160047397A KR101684377B1 (en) 2016-04-19 2016-04-19 Process for preparing lithium difluorophosphate

Publications (1)

Publication Number Publication Date
KR101684377B1 true KR101684377B1 (en) 2016-12-08

Family

ID=57576899

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160047397A KR101684377B1 (en) 2016-04-19 2016-04-19 Process for preparing lithium difluorophosphate

Country Status (1)

Country Link
KR (1) KR101684377B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106829909A (en) * 2017-01-16 2017-06-13 武汉海斯普林科技发展有限公司 A kind of preparation method of difluorophosphate
KR101887488B1 (en) * 2018-01-18 2018-08-10 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR20180094631A (en) * 2017-02-16 2018-08-24 임광민 Preparing method of lithium difluorophosphate
CN109422257A (en) * 2017-08-31 2019-03-05 东莞东阳光科研发有限公司 A kind of preparation method of difluorophosphate
CN111137870A (en) * 2018-11-06 2020-05-12 宁波氟创新能源科技有限公司 Lithium difluorophosphate, preparation method thereof and lithium ion battery electrolyte
KR20200107564A (en) * 2019-03-08 2020-09-16 임광민 Economical and efficient manufacturing process of lithium difluorophosphate having high-purity
KR102209974B1 (en) * 2020-09-08 2021-02-02 (주)켐트로스 Process for Preparing Lithium Tetrafluoro(oxalato)phosphate
KR102219684B1 (en) * 2020-04-20 2021-02-24 (주)부흥산업사 A method for preparing litium difluorophosphate
KR102231049B1 (en) * 2020-09-09 2021-03-23 주식회사 천보 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellent solubility and Non-aqueous electrolyte for secondary battery
WO2021210934A1 (en) * 2020-04-16 2021-10-21 (주)켐트로스 Lithium difluorobis(oxalato)phosphate 1,4-dioxane solvate, method for preparing same, and electrolyte composition comprising same
KR102660204B1 (en) 2018-11-28 2024-04-25 에스케이이노베이션 주식회사 Method for manufacturing cesium fluoro oxalato phosphate with high purity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167279A (en) 1997-08-25 1999-03-09 Denso Corp Battery
JP2005219994A (en) 2004-02-09 2005-08-18 Mitsubishi Chemicals Corp Method for producing lithium difluorophosphate and non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery using the solution
KR20090118117A (en) * 2007-03-12 2009-11-17 샌트랄 글래스 컴퍼니 리미티드 Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
KR20140040280A (en) * 2006-08-22 2014-04-02 미쓰비시 가가꾸 가부시키가이샤 Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same
JP2014062036A (en) * 2012-08-28 2014-04-10 Kanto Denka Kogyo Co Ltd Method for producing lithium difluorophosphate
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
JP2015092470A (en) * 2013-10-04 2015-05-14 旭化成株式会社 Electrolyte and lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167279A (en) 1997-08-25 1999-03-09 Denso Corp Battery
JP2005219994A (en) 2004-02-09 2005-08-18 Mitsubishi Chemicals Corp Method for producing lithium difluorophosphate and non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery using the solution
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
KR20140040280A (en) * 2006-08-22 2014-04-02 미쓰비시 가가꾸 가부시키가이샤 Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same
KR20090118117A (en) * 2007-03-12 2009-11-17 샌트랄 글래스 컴퍼니 리미티드 Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
JP2014062036A (en) * 2012-08-28 2014-04-10 Kanto Denka Kogyo Co Ltd Method for producing lithium difluorophosphate
JP2015092470A (en) * 2013-10-04 2015-05-14 旭化成株式会社 Electrolyte and lithium ion secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106829909B (en) * 2017-01-16 2019-05-07 武汉海斯普林科技发展有限公司 A kind of preparation method of difluorophosphate
CN106829909A (en) * 2017-01-16 2017-06-13 武汉海斯普林科技发展有限公司 A kind of preparation method of difluorophosphate
KR20180094631A (en) * 2017-02-16 2018-08-24 임광민 Preparing method of lithium difluorophosphate
KR101898803B1 (en) * 2017-02-16 2018-09-13 임광민 Preparing method of lithium difluorophosphate
CN109422257B (en) * 2017-08-31 2022-04-29 东莞东阳光科研发有限公司 Preparation method of lithium difluorophosphate
CN109422257A (en) * 2017-08-31 2019-03-05 东莞东阳光科研发有限公司 A kind of preparation method of difluorophosphate
KR101887488B1 (en) * 2018-01-18 2018-08-10 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
CN111137870A (en) * 2018-11-06 2020-05-12 宁波氟创新能源科技有限公司 Lithium difluorophosphate, preparation method thereof and lithium ion battery electrolyte
KR102660204B1 (en) 2018-11-28 2024-04-25 에스케이이노베이션 주식회사 Method for manufacturing cesium fluoro oxalato phosphate with high purity
KR102267470B1 (en) 2019-03-08 2021-06-21 임광민 Economical and efficient manufacturing process of lithium difluorophosphate having high-purity
KR20200107564A (en) * 2019-03-08 2020-09-16 임광민 Economical and efficient manufacturing process of lithium difluorophosphate having high-purity
WO2021210934A1 (en) * 2020-04-16 2021-10-21 (주)켐트로스 Lithium difluorobis(oxalato)phosphate 1,4-dioxane solvate, method for preparing same, and electrolyte composition comprising same
KR102219684B1 (en) * 2020-04-20 2021-02-24 (주)부흥산업사 A method for preparing litium difluorophosphate
KR102209974B1 (en) * 2020-09-08 2021-02-02 (주)켐트로스 Process for Preparing Lithium Tetrafluoro(oxalato)phosphate
KR102231049B1 (en) * 2020-09-09 2021-03-23 주식회사 천보 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellent solubility and Non-aqueous electrolyte for secondary battery

Similar Documents

Publication Publication Date Title
KR101684377B1 (en) Process for preparing lithium difluorophosphate
KR101395663B1 (en) Process for preparing lithium difluorobis(oxalato)phosphate, lithium tetrafluoro(oxalato)phosphate, or their mixture
KR102045964B1 (en) Method for producing lithium difluorophosphate
US11489198B2 (en) Nonaqueous electrolyte compositions comprising silyl oxalates
JP5695209B2 (en) Nonaqueous electrolyte containing phosphonosulfonic acid compound and lithium secondary battery
JP2022044673A (en) Modified ionic liquids containing phosphorus
KR102083080B1 (en) The method for preparing lithium difluorophosphate using difluorophosphate ester
US10316006B2 (en) Heterocyclic ionic liquids
KR101773539B1 (en) Method for producing difluorophosphate
JP7005587B2 (en) Non-aqueous electrolyte composition
US20150203516A1 (en) Organohalosilane and use thereof in electrolytes of non-aqueous lithium ion batteries
JP5679719B2 (en) High purity fluorine-containing phosphate for non-aqueous electrolyte
JP6031828B2 (en) Method for producing tetrafluoro (oxalato) phosphate solution
KR20130041184A (en) Manufacture of lipo2f2
KR101898803B1 (en) Preparing method of lithium difluorophosphate
KR20220044275A (en) Manufacturing method of lithium difluorophosphate, manufacturing method of difluorophosphate ester, manufacturing method of lithium difluorophosphate, non-aqueous electrolyte, and manufacturing method of non-aqueous secondary battery
JP2018529638A (en) Process for the production of fluorinated cyclic carbonates and their use for lithium ion batteries
CN111606952B (en) Preparation method of lithium tetrafluorooxalate phosphate, nonaqueous electrolyte and battery
WO2019018999A1 (en) Method for preparing lithium difluorophosphate
CN103987691A (en) Process for the manufacture of 1,1'-difluorosubstituted dialkyl carbonates, isomers thereof and electrolyte compositions containing them
KR20160089434A (en) Silylated cyclic phosphonamides
KR102521086B1 (en) Manufacturing method of lithium difluorophosphate
KR102209974B1 (en) Process for Preparing Lithium Tetrafluoro(oxalato)phosphate
TWI598292B (en) Method of producing phosphorus pentafluoride, method of producing lithium hexafluorophosphate, lithium hexafluorophosphate, non-aqueous electrolyte solution for battery, and lithium secondary battery
CN111137870A (en) Lithium difluorophosphate, preparation method thereof and lithium ion battery electrolyte

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191008

Year of fee payment: 4