KR101681670B1 - Method for Culturing Microalge Thraustochytrid Using Palm Empty Fruit Bunch Hydrolysate and Method for Preparing Biooil Through the Same - Google Patents

Method for Culturing Microalge Thraustochytrid Using Palm Empty Fruit Bunch Hydrolysate and Method for Preparing Biooil Through the Same Download PDF

Info

Publication number
KR101681670B1
KR101681670B1 KR1020160043003A KR20160043003A KR101681670B1 KR 101681670 B1 KR101681670 B1 KR 101681670B1 KR 1020160043003 A KR1020160043003 A KR 1020160043003A KR 20160043003 A KR20160043003 A KR 20160043003A KR 101681670 B1 KR101681670 B1 KR 101681670B1
Authority
KR
South Korea
Prior art keywords
oil
product
palm oil
thraustochytrid
bio
Prior art date
Application number
KR1020160043003A
Other languages
Korean (ko)
Other versions
KR20160041892A (en
Inventor
서정우
김철호
유안나
홍원경
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020160043003A priority Critical patent/KR101681670B1/en
Publication of KR20160041892A publication Critical patent/KR20160041892A/en
Application granted granted Critical
Publication of KR101681670B1 publication Critical patent/KR101681670B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 섬유질계 팜오일산업부산물의 당화액을 이용한 트라우스토키트리드(Thraustochytrid)계 미세조류의 배양을 통하여 고농도의 DHA를 함유하는 바이오오일을 제조하는 방법에 관한 것으로, 보다 구체적으로, 트라우스토키트리드(Thraustochytrid)계 미세조류를 섬유질계 팜오일산업부산물의 당화액을 배지에서 배양하여 바이오오일을 생성시킨 다음, 상기 생성된 바이오오일을 회수하는 것을 특징으로 하는 바이오오일의 제조방법에 관한 것이다.
본 발명에 따른 바이오오일의 제조방법은 트라우스토키트리드(Thraustochytrid)계 미세조류의 배양을 통해 풍부한 비식량 섬유질계 바이오매스로부터 바이오오일을 생산할 수 있어 식량자원 수급불안 및 원재료 가격 상승 등의 바이오연료 개발의 한계를 극복할 수 있으며, 미생물 발효오일의 상업적 경쟁력을 확보할 수 있다.
The present invention relates to a method for producing a high-concentration DHA-containing bio-oil by culturing a micro-algae of Thraustochytrid using a glycated liquid of a fibrous palm oil industry by-product, and more specifically, The present invention relates to a method for producing a bio-oil, which comprises culturing a micro-algae of a Thraustochytrid-type microalgae in a fibrous palm oil industry by-product in a culture medium to produce a bio-oil, and then recovering the bio-oil .
The method for producing bio-oil according to the present invention can produce bio-oil from abundant non-food fiber biomass through cultivation of micro-algae of Thraustochytrid, It is possible to overcome the limit of development and to secure the commercial competitiveness of microbial fermentation oil.

Description

팜오일산업부산물 당화액을 이용한 트라우스토키트리드계 미세조류의 배양 방법 및 이를 통한 바이오오일의 제조방법{Method for Culturing Microalge Thraustochytrid Using Palm Empty Fruit Bunch Hydrolysate and Method for Preparing Biooil Through the Same}FIELD OF THE INVENTION [0001] The present invention relates to a method for culturing micro-algae using a saccharification solution and a method for producing bio-oil using the micro-

본 발명은 트라우스토키트리드(Thraustochytrid)계 미세조류를 이용한 섬유질계 바이오매스로부터 바이오오일의 제조방법에 관한 것으로, 보다 구체적으로, 트라우스토키트리드(Thraustochytrid)계 미세조류를 섬유질계 팜오일산업부산물의 당화액을 포함하는 배지에서 배양하여 미생물오일을 생성시킨 다음, 상기 생성된 미생물오일을 회수하는 것을 특징으로 하는 미생물오일의 제조방법에 관한 것이다. The present invention relates to a method for producing a bio-oil from a fibrous biomass using micro-algae based on Thraustochytrid, and more particularly, to a method for producing bio-oil from a fibrous palm oil industrial by- In a medium containing a saccharification solution to produce microbial oil, and then recovering the microbial oil.

유채, 대두, 팜과 같은 유지성 식물의 오일을 원료로 하여 제조되는 바이오디젤은 이미 상용화가 이루어진 대표적인 바이오에너지로서 전 세계적으로 그 생산량이 급증하고 있다. 하지만, 생산 비용 측면에서 원료작물의 높은 가격 때문에 바이오디젤은 원유 유래의 디젤 원료에 비해 상대적으로 경쟁력이 취약한 편이다. 따라서 환경, 농업 경제 등 다양한 이점에도 불구하고 정부의 세제 감면 혜택이 없다면 바이오디젤의 시장 경쟁력은 없다고 볼 수 있다. 향후 에너지 고갈에 따른 원유가격의 상승은 바이오디젤에 시장경쟁력을 제공할 수 있을 것으로 기대되지만, 한편 최근의 바이오디젤 생산 증가에 따른 원료 작물 가격의 급등은 바이오디젤의 경쟁력을 더욱 악화시키는 새로운 요인으로 대두되고 있다.Biodiesel, which is produced from oil of sustainable plants such as rapeseed, soybean, and palm, is a representative bio-energy that has already been commercialized, and its production is rapidly increasing worldwide. However, due to the high cost of raw materials in terms of production costs, biodiesel is relatively ineffective compared to diesel raw materials derived from crude oil. Therefore, despite the various advantages of the environment and agriculture economy, biodiesel is not competitive in the market without the government tax relief benefits. In the future, rising oil prices due to energy depletion are expected to provide market competitiveness to biodiesel. However, the recent surge in raw material prices due to the increase in biodiesel production is a new factor that further deteriorates the competitiveness of biodiesel Is emerging.

또한, 바이오디젤의 제조를 위한 바이오오일 원료의 주요한 공급원인 유지성 식물 및 미세조류의 광합성 오일은 풍부한 태양광을 이용하고 이산화탄소를 재활용하는 매우 중요한 장점이 있지만, 시간, 공간, 계절, 기후 등 다양한 환경 요인에 의해 영향을 받는 단점이 있으며, 일각에서는 광합성 오일을 원료로 하는 바이오디젤의 보급 확대가 식량 부족 및 원료작물의 대량 재배에 따른 새로운 환경문제를 야기할 수 있기 때문에 그 실효성 자체에 대한 의구심이 제기되고 있는 상황이다.In addition, photosynthetic oils of sustainable plants and microalgae, which are the main sources of bio-oil raw materials for the production of biodiesel, have a very important advantage of using abundant sunlight and recycling carbon dioxide. However, in various environments such as time, space, , And some of them have doubts about the effectiveness of biodiesel because it can cause new environmental problems due to lack of food and mass cultivation of raw material crops. It is a situation that is being raised.

최근 바이오오일의 대량 생산 방법으로 유기영양 미생물의 발효배양법이 주목을 받고 있으며, 대표적인 유지 생산 미생물로는 Chlorella protothecoides , Yarrowia lipolytica , Rhodosporidium toruloides , Rhodotorula glutinis 등이 있다. 이들의 발효 공정 연구는 활발하게 진행 중이다. 바이오디젤 원료로서 미생물 발효오일의 상업적 경쟁력을 확보하기 위해 가장 중요한 요소는 영양원으로 산업폐기물, 폐자원, 잉여의 바이오매스를 활용하는 것이며, 궁극적으로는 풍부한 비식용 섬유질계 바이오매스를 활용하는 것이다 (도 1). 비식용 섬유소계 바이오매스 자원으로는 목질계, 농업부산물, 도시폐기물 등이 여기에 해당된다(한국특허공개 10-2008-097651, 미국특허공개 2009-648483) .Recently, the fermentation culture method of organic nutrition microorganisms has attracted attention as a mass production method of bio oil, and typical representative production microorganisms include Chlorella protothecoides , Yarrowia lipolytica , Rhodosporidium toruloides , Rhodotorula glutinis . Studies on these fermentation processes are actively underway. The most important factor to secure commercial competitiveness of microbial fermentation oils as raw materials for biodiesel is to utilize industrial waste, waste resources and surplus biomass as nutrients, ultimately to utilize abundant non-edible fibrous biomass 1). Non-edible fiber sub-total biomass resources include woody, agricultural by-products, and municipal wastes (Korean Patent Laid-Open No. 10-2008-097651, US Patent Publication No. 2009-648483).

한편, 트라우스토키트리드(Thraustochytrid) 계열 종속영양 미세조류는 DHA(docosahexaenoic acid)와 같은 고도불포화지방산(polyunsaturated fatty acid)을 함유하는 바이오오일을 건조 균체량의 최대 70%까지 생성이 가능한 유지성 미생물이다(한국특허공개 10-2011-0122424). DHA는 두뇌, 안구조직 및 신경계에 필수적인 지방산으로 특히 유아의 시력 및 운동신경 능력 개발에 중요한 기능을 하는 것으로 알려져 있다. 또한 치매 환자 뇌에서는 그 양이 현저하게 줄어드는 것으로 보고되었으며, 노안의 황반변성 억제 등 다양한 항노화 기능들이 새롭게 밝혀지고 있다. 이러한 유용한 생리적 기능에도 불구하고, 인체는 자체적으로 충분한 량의 DHA를 합성할 수 없기 때문에 외부로부터 공급되어야 하는 필수 영양소로 인식되어 세계보건기구를 비롯한 각국의 공인 기관들이 DHA를 하루 1g 이상 꾸준히 섭취할 것을 권장하고 있다. 때문에 DHA는 건강기능성 식품 등 다양한 제품으로 상용화되고 있으며, 의약품 원료로도 활용 가능성이 높아 DHA의 상업적 가치는 매우 높다고 할 수 있다. 따라서, DHA를 고농도로 함유하는 트라우스토키트리드(Thraustochytrid) 미세조류의 발효오일은 DHA를 활용한 고부가가치 산업과 바이오디젤 산업을 연계함으로써, 일반적인 미생물 발효 오일 혹은 광합성 오일과 달리 바이오디젤의 시장 경쟁력을 제공할 수 있을 것으로 기대된다.On the other hand, Thraustochytrid-based heterotrophic microalgae are biofuels containing polyunsaturated fatty acids such as DHA (docosahexaenoic acid), which are sustainable microorganisms capable of producing up to 70% of dry cell mass Korean Patent Publication No. 10-2011-0122424). DHA is an essential fatty acid in the brain, eye tissues and nervous system, and is known to play an important role in developing the visual and motor skills of babies. In addition, it has been reported that the amount of dementia is significantly reduced in the brain of demented patients, and various anti-aging functions such as inhibition of presbyopia and macular degeneration are newly discovered. Despite these useful physiological functions, the human body can not synthesize sufficient amount of DHA itself. Therefore, it is recognized as an essential nutrient to be supplied from the outside, and the authorized bodies of the World Health Organization and other countries in the world constantly consume more than 1 g of DHA per day . Therefore, DHA is commercialized as a diverse product such as health functional food, and DHA has a high commercial value because it is highly available as a raw material for pharmaceuticals. Therefore, the fermentation oil of Thraustochytrid microalgae containing DHA at a high concentration, by linking the high-value-added industry and the biodiesel industry using DHA, is different from general microbial fermentation oil or photosynthetic oil, It is expected to be able to provide.

본 발명자들은 영양원으로 풍부한 섬유질계 바이오매스를 이용한 미세조류의 배양을 통한 바이오오일의 생산방법을 개발하고자 예의 노력한 결과, 맹글로브지역의 토양으로부터 분리한 트라우스토키트리드(Thraustochytrid)계 미세조류 KRS101(KCTC11686BP)을 섬유질계 팜오일산업부산물의 당화액을 영양원으로 하여 배양할 경우, DHA를 함유하는 바이오오일을 생산하는 것을 확인하고, 본 발명을 완성하게 되었다.The present inventors have made intensive efforts to develop a method for producing bio-oils by cultivating microalgae using a fibrous biomass rich in nutrients. As a result, they have found that Thraustochytrid-type microalga KRS101 KCTC11686BP) as a nutrient source of a byproduct of fibrous palm oil industry as a nutrient source, it was confirmed that DHA-containing bio oil was produced. Thus, the present invention was completed.

본 발명의 목적은 섬유질계 팜오일산업부산물의 당화액을 영양원으로 이용한 미세조류의 배양방법을 제공하는데 있다. It is an object of the present invention to provide a method for culturing microalgae using a saccharified liquid of a fibrous palm oil industrial by-product as a nutrient source.

본 발명의 다른 목적은 유질계 팜오일산업부산물의 당화액을 영양원으로 이용한 바이오오일의 제조방법을 제공하는데 있다.Another object of the present invention is to provide a method for producing a bio-oil using a saccharified liquid of a by-product of the oily palm oil industry as a nutrient source.

상기 목적을 달성하기 위하여, 본 발명은 (a) 섬유질계 팜오일산업부산물을 알칼리 용액에 침적시킨 후, 100~130℃에서 30분~3시간 처리한 후, 물로 세척한 후 건조시켜 전처리하는 단계; (b) 상기 전처리된 섬유질계 팜오일산업부산물에 증류수와 당화효소를 첨가하고 교반하여 섬유질계 팜오일산업부산물 당화액을 제조하는 단계; 및 (c) 섬유질계 팜오일산업부산물 당화액에 미세조류를 접종하여 배양하는 단계를 포함하는 섬유질계 팜오일산업부산물을 이용한 미세조류의 배양방법을 제공한다.In order to accomplish the above object, the present invention provides a method for producing a palm oil, comprising the steps of: (a) immersing the fibrous palm oil industry by-product in an alkali solution, treating the mixture at 100 to 130 ° C for 30 minutes to 3 hours, washing with water, ; (b) adding distilled water and a saccharifying enzyme to the pretreated fibrous palm oil industry by-product and stirring to prepare a fibrous palm oil industrial by-product saccharified liquid; And (c) culturing the fibrous palm oil industrial by-product glycated fluid by inoculating microalgae. The present invention also provides a method for culturing microalgae using the fibrous palm oil industrial by-product.

본 발명은 또한, (a) 섬유질계 팜오일산업부산물을 알칼리 용액에 침적시킨 후, 100~130℃에서 30분~3시간 처리한 후, 물로 세척한 후 건조시켜 전처리하는 단계; 및 (b) 상기 전처리된 섬유질계 팜오일산업부산물에 증류수와 당화효소 및 미세조류를 접종하여, 당화와 배양을 동시에 수행하는 단계를 포함하는 섬유질계 팜오일산업부산물을 이용한 미세조류의 배양방법을 제공한다. (A) immersing the fibrous palm oil industrial by-product in an alkali solution, treating the flask at 100 to 130 ° C for 30 minutes to 3 hours, washing it with water, and drying and pretreating it; And (b) inoculating distilled water, saccharifying enzyme and microalgae into the pretreated fibrous palm oil industrial by-product, and simultaneously performing saccharification and cultivation, wherein the microalgae are cultured using the fibrous palm oil industrial by- to provide.

본 발명은 또한, 본 발명은 (a) 섬유질계 팜오일산업부산물을 알칼리 용액에 침적시킨 후, 100~130℃에서 30분~3시간 처리한 후, 물로 세척한 후 건조시켜 전처리하는 단계; (b) 상기 전처리된 섬유질계 팜오일산업부산물에 증류수와 당화효소를 첨가하고 교반하여 섬유질계 팜오일산업부산물 당화액을 제조하는 단계; (c) 섬유질계 팜오일산업부산물 당화액에 트라우스토키트리드 (Thraustochytrid)계 미세조류를 접종하여 배양하는 단계; 및 (d) 배양된 트라우스토키트리드 (Thraustochytrid)계 미세조류에서 바이오오일을 수득하는 단계를 포함하는 섬유질계 팜오일산업부산물을 탄소원으로 사용하는 것을 특징으로 하는 바이오오일의 제조방법을 제공한다. The present invention also relates to a method for producing a palm oil composition, comprising the steps of: (a) immersing a fibrous palm oil industrial by-product in an alkali solution, treating at 100 to 130 ° C for 30 minutes to 3 hours, washing with water, (b) adding distilled water and a saccharifying enzyme to the pretreated fibrous palm oil industry by-product and stirring to prepare a fibrous palm oil industrial by-product saccharified liquid; (c) inoculating and cultivating a microalgae of a threustochytrid system in a glycated solution of a fibrous palm oil industry by-product; And (d) obtaining a bio-oil from the cultured micro-algae of Thraustochytrid-type microalgae, wherein the by-product of the fiber-based palm oil industry is used as a carbon source.

본 발명은 또한, (a) 섬유질계 팜오일산업부산물을 알칼리 용액에 침적시킨 후, 100~130℃에서 30분~3시간 처리한 후, 물로 세척한 후 건조시켜 전처리하는 단계; (b) 상기 전처리된 섬유질계 팜오일산업부산물에 증류수와 당화효소 및 트라우스토키트리드 (Thraustochytrid)계 미세조류를 접종하여, 당화와 배양을 동시에 수행하는 단계; 및 (c) 배양된 트라우스토키트리드 (Thraustochytrid)계 미세조류에서 바이오오일을 수득하는 단계를 포함하는 섬유질계 팜오일산업부산물을 탄소원으로 사용하는 것을 특징으로 하는 바이오오일의 제조방법을 제공한다. (A) immersing the fibrous palm oil industrial by-product in an alkali solution, treating the flask at 100 to 130 ° C for 30 minutes to 3 hours, washing it with water, and drying and pretreating it; (b) inoculating distilled water, a saccharifying enzyme and a Thraustochytrid-type microalgae into the pretreated fibrous palm oil industry by-product, and performing saccharification and culture simultaneously; And (c) obtaining a bio-oil from the cultured micro-algae of Thraustochytrid-type microalgae, wherein the byproduct of the fiber-based palm oil industry is used as a carbon source.

본 발명에 따른 바이오오일의 제조방법은 트라우스토키트리드(Thraustochytrid)계 미세조류의 배양을 통해 풍부한 비식량 섬유질계 산업부산물 자원으로부터 바이오오일을 생산할 수 있어 식량자원 수급불안 및 원재료 가격 상승 등의 바이오연료 개발의 한계를 극복할 수 있으며, 미생물 발효오일의 상업적 경쟁력을 확보할 수 있다. The method for producing bio-oil according to the present invention can produce bio-oil from abundant non-food fibrous industrial byproduct resources through cultivation of micro-algae of Thraustochytrid, It is possible to overcome the limit of fuel development and to secure the commercial competitiveness of microbial fermentation oil.

도 1은 팜오일산업부산물 당화액의 조성을 분석한 결과를 나타낸 것이다.
도 2는 섬유질계 팜오일산업부산물 당화액을 이용한 미세조류 KRS101의 배양조건에 대한 반응표면분석법 결과를 나타낸 것이다.
도 3는 팜오일산업부산물 당화액을 이용하여 미세조류 KRS101 균주를 배양한 결과를 나타낸 것이다.
도 4는 팜오일산업부산물을 이용하여 미세조류 KRS101 균주를 동시당화 배양한 결과를 나타낸 것이다.
도 5는 팜오일산업부산물을 이용한 미세조류 KRS101 균주의 동시당화 배양에 대한 접종량의 영향을 조사한 결과이다.
Fig. 1 shows the results of analysis of the composition of the palm oil industrial by-product saccharified liquid.
Fig. 2 shows the results of the reaction surface analysis for the culture conditions of the microalgae KRS101 using the glycated fluid of the fibrous palm oil industry by-product.
Fig. 3 shows the result of culturing the microalgae KRS101 strain using the palm oil industrial by-product saccharified liquid.
Fig. 4 shows the result of simultaneous saccharification culture of microalgae KRS101 strain using palm oil industrial by-products.
FIG. 5 shows the results of investigation of the effect of the inoculation amount on the simultaneous saccharification culture of the microalgae KRS101 strain using the by-product of the palm oil industry.

일관점에서, 본 발명은 (a) 섬유질계 팜오일산업부산물(PEFB)을 알칼리 용액에 침적시킨 후, 100~130℃에서 30분~3시간 처리한 후, 물로 세척한 후 건조시켜 전처리하는 단계; (b) 상기 전처리된 섬유질계 팜오일산업부산물에 증류수와 당화효소를 첨가하고 교반하여 섬유질계 팜오일산업부산물 당화액을 제조하는 단계; 및 (c) 섬유질계 팜오일산업부산물 당화액에 미세조류를 접종하여 배양하는 단계를 포함하는 섬유질계 팜오일산업부산물을 이용한 미세조류의 배양방법에 관한 것이다. In one aspect, the present invention relates to a process for producing a fiber-based palm oil by-product (PEFB), which comprises (a) immersing a fibrous palm oil industrial by-product (PEFB) in an alkali solution, treating at 100 to 130 ° C for 30 minutes to 3 hours, washing with water, ; (b) adding distilled water and a saccharifying enzyme to the pretreated fibrous palm oil industry by-product and stirring to prepare a fibrous palm oil industrial by-product saccharified liquid; And (c) a step of inoculating and cultivating a microalgae in a glycated solution of a fibrous palm oil industry by-product, and culturing the microalgae using a fibrous palm oil industrial by-product.

본 발명은 헤미셀룰로오즈와 리그닌이 과량으로 포함되어 있는 섬유조직 형태(fiber-type)의 팜 열매 껍질(Empty Palm Fruit Bunch Fiber)을 물리화학적 전처리 한 후, 당화한 당화액을 미세조류의 배양에 이용하는 방법으로, 본 발명의 일 양태에서는, 맹글로브지역의 토양으로부터 분리한 트라우스토키트리드(Thraustochytrid)계 미세조류 KRS101(KCTC11686BP)의 배양을 위한 PEFB 당화액을 하기와 같이 제조하였다. The present invention relates to a method of physically and chemically pretreating a fiber-type emulsion palm fruit bunch fiber containing an excess of hemicellulose and lignin and then using a saccharified saccharified liquid for culturing microalgae As a method, in one embodiment of the present invention, a PEFB saccharification solution for culturing a Thraustochytrid-based microalga KRS101 (KCTC11686BP) isolated from soil in the Mangungbu area was prepared as follows.

먼저 전처리를 위해 약 1~2mm 크기로 파쇄된 팜오일 부산물을 1M NaOH 용액에서 30분 동안 침적하고, autoclave(121℃, 15 psi, 1시간)를 실시한 후, 물로 NaOH를 완전히 세척, 건조하였다. 증류수와 효소를 포함한 혼합액 500ml에 전처리한 EFB 50g을 넣어(PEFB 첨가량 10% (w/v)) 45℃에서 150rpm으로 교반하면서 3일간 당화하였다. 이 때, 당화효소는 상기의 방법으로 전처리한 EFB 건조중량 1 g에 40 FPU (Filter Paper Assay Unit)를 사용하였다. 제조한 PEFB 당화액의 성분을 분석한 결과, glucose와 xylose가 각각 68 g/L, 22 g/L로 존재하는 것으로 나타났으며, HMF와 furfural은 검출되지 않았다. First, for the pretreatment, crushed palm oil byproducts of 1 ~ 2mm size were immersed in 1M NaOH solution for 30 minutes, and autoclave (121 ℃, 15 psi, 1 hour) was performed. 50 g of the pretreated EFB (PEFB added amount 10% (w / v)) was added to 500 ml of a mixture solution containing distilled water and enzyme, and saccharification was carried out for 3 days with stirring at 45 rpm at 150 rpm. At this time, a 40 FPU (Filter Paper Assay Unit) was used for 1 g of dry weight of EFB pretreated with the above method. The contents of glucose and xylose were 68 g / L and 22 g / L, respectively, and HMF and furfural were not detected.

상기 방법으로 제조된 섬유질계 팜오일산업부산물 당화액에 미세조류 KRS101을 배양한 결과, PEFB 당화액 포도당의 농도 53.8 g/L, Yeast extract의 농도 6.03 g/L, 해수염의 농도 20.1 g/L, 초기배양액 pH 5.7에서 가장 높은 오일 함량(15.35 g/L)과 DHA 함량(5.28 g/L)을 보이는 것으로 나타났다. 배양 36시간 경과 후 배양액 중의 포도당이 모두 소모되었으며, 그 후 xylose가 소모되는 양상을 보였다. 배양 결과 최대 오일 생산량은 12.53 g/L이었고 (% 오일 g/ 포도당 g), 이때 DHA의 함량은 전체 지방산의 43%인 5.39 g/L이었다. The microalgae KRS101 was cultivated in the glycated fluid of the fibrous palm oil industry by-product prepared by the above method. As a result, the concentration of PEFB glycosylated glucose was 53.8 g / L, the concentration of yeast extract was 6.03 g / L, the concentration of seawater salt was 20.1 g / The highest oil content (15.35 g / L) and DHA content (5.28 g / L) were found at pH 5.7 of the initial culture. After 36 hours of culture, glucose was consumed and then xylose was consumed. The maximum oil production was 12.53 g / L (% oil g / g glucose) and the content of DHA was 5.39 g / L, 43% of total fatty acids.

다른 관점에서, 본 발명은 (a) 섬유질계 팜오일산업부산물을 알칼리 용액에 침적시킨 후, 100~130℃에서 30분~3시간 처리한 후, 물로 세척한 후 건조시켜 전처리하는 단계; 및 (b) 상기 전처리된 섬유질계 팜오일산업부산물에 증류수와 당화효소 및 미세조류를 접종하여, 당화와 배양을 동시에 수행하는 단계.를 포함하는 섬유질계 팜오일산업부산물을 이용한 미세조류의 배양방법에 관한 것이다. In another aspect, the present invention provides a method for producing a palm oil, comprising: (a) immersing the fibrous palm oil industry by-product in an alkali solution, treating the mixture at 100 to 130 ° C for 30 minutes to 3 hours, washing with water, And (b) inoculating distilled water, saccharifying enzyme and microalgae into the pretreated fibrous palm oil industry by-product, and simultaneously performing saccharification and cultivation, and culturing the microalgae using the fibrous palm oil industrial byproduct .

본 발명의 일 양태에서는 전처리된 섬유질계 팜오일산업부산물에 당화효소와 미세조류 KRS101를 함께 투입하여, 당화와 배양을 같이 수행하였으며, PEFB 5%로 투입한 동시당화 배양에서 배양 3일째부터 배양액 중의 포도당이 완전히 소모되기 시작하였으며, 이와 함께 xylose의 이용이 개시되기 시작하였다 (도 3A). 미세조류 균주를 접종하지 않은 대조구 실험을 통하여 투입된 5% PEFB로 생산되는 탄소원의 총량은 포도당과 xylose가 각각 33.7 g/L와 10.8 g/L이었다. 이로부터 생산된 오일의 최대 생산량은 1.7 g/L (0.57 g/L day)이었으며, 전체지방산 중 DHA의 함량은 45%이상으로 나타났다(도 3C).In one embodiment of the present invention, the saccharification enzyme and the microalgae KRS101 were added to the pretreated byproducts of the fibrous palm oil industry, and saccharification and cultivation were performed in the same manner. In the simultaneous saccharification culture in which 5% PEFB was added, Glucose was completely consumed and the use of xylose started to be started (Fig. 3A). The total amount of carbon source produced by 5% PEFB was 33.7 g / L and 10.8 g / L for glucose and xylose, respectively. The maximum yield of the oil produced was 1.7 g / L (0.57 g / L day) and the content of DHA in the total fatty acids was more than 45% (FIG. 3C).

한편 도 3B에서 보인 바와 같이, 10% PEFB를 투입한 동시당화배양실험에서 57.3 g/L의 포도당과 26.2 g/L의 xylose가 생성되어 배양 5일째 까지 단지 31.1 g/L의 포도당이 소모되었으며 xylose는 거의 이용되지 못하는 것으로 나타났으나, 하지만 5% PEFB를 투입한 경우에 비해 오일의 생산량은 10% PEFB 투입에서 2배 정도 높은 것으로 나타났다 (3.4 g/L, 0.68 g/L day).As shown in FIG. 3B, in the simultaneous saccharification culture experiment in which 10% PEFB was added, 57.3 g / L of glucose and 26.2 g / L of xylose were produced and only 31.1 g / L of glucose was consumed until the fifth day of culture. However, the production of oil was twice as high as that of 5% PEFB (3.4 g / L, 0.68 g / L day), compared with 10% PEFB input.

또 다른 관점에서, 본 발명은 (a) 섬유질계 팜오일산업부산물을 알칼리 용액에 침적시킨 후, 100~130℃에서 30분~3시간 처리한 후, 물로 세척한 후 건조시켜 전처리하는 단계; (b) 상기 전처리된 섬유질계 팜오일산업부산물에 증류수와 당화효소를 첨가하고 교반하여 섬유질계 팜오일산업부산물 당화액을 제조하는 단계; (c) 섬유질계 팜오일산업부산물 당화액에 트라우스토키트리드 (Thraustochytrid)계 미세조류를 접종하여 배양하는 단계; 및 (d) 배양된 트라우스토키트리드 (Thraustochytrid)계 미세조류에서 바이오오일을 수득하는 단계.를 포함하는 섬유질계 팜오일산업부산물을 탄소원으로 사용하는 것을 특징으로 하는 바이오오일의 제조방법에 관한 것이다. According to another aspect of the present invention, there is provided a method for producing a palm oil, comprising: (a) immersing a fibrous palm oil industrial by-product in an alkali solution, treating the mixture at 100 to 130 ° C for 30 minutes to 3 hours, washing with water, (b) adding distilled water and a saccharifying enzyme to the pretreated fibrous palm oil industry by-product and stirring to prepare a fibrous palm oil industrial by-product saccharified liquid; (c) inoculating and cultivating a microalgae of a threustochytrid system in a glycated solution of a fibrous palm oil industry by-product; And (d) a step of obtaining a bio-oil from the cultured Thraustochytrid-based microalgae, wherein the by-product of the fiber-based palm oil industry is used as a carbon source .

또 다른 관점에서, 본 발명은 (a) 섬유질계 팜오일산업부산물을 알칼리 용액에 침적시킨 후, 121℃, 15psi에서 30분~3시간 처리한 후, 물로 세척한 후 건조시켜 전처리하는 단계; (b) 상기 전처리된 섬유질계 팜오일산업부산물에 증류수와 당화효소 및 트라우스토키트리드 (Thraustochytrid)계 미세조류를 접종하여, 당화와 배양을 동시에 수행하는 단계; 및According to another aspect of the present invention, there is provided a method for producing a palm oil, comprising: (a) immersing the fibrous palm oil industry by-product in an alkali solution, treating the mixture at 121 DEG C and 15 psi for 30 minutes to 3 hours, (b) inoculating distilled water, a saccharifying enzyme and a Thraustochytrid-type microalgae into the pretreated fibrous palm oil industry by-product, and performing saccharification and culture simultaneously; And

(c) 배양된 트라우스토키트리드 (Thraustochytrid)계 미세조류에서 바이오오일을 수득하는 단계를 포함하는 섬유질계 팜오일산업부산물을 탄소원으로 사용하는 것을 특징으로 하는 바이오오일의 제조방법에 관한 것이다. (c) obtaining a bio-oil from the cultured Thraustochytrid-type microalgae, wherein the by-product of the fibrous palm oil industry is used as a carbon source.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to examples. It is to be understood by those skilled in the art that these embodiments are only for illustrating the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

반응표면분석법을 통한 미세조류 KRS101 균주의 배양 조건 확립Establishment of culture condition of microalgae KRS101 strain by reaction surface analysis

섬유질계 팜오일산업부산물 (Palm Empty Fruit Bunch, PEFB) 당화액을 영양원으로 이용한 트라우스토키트리드 (Thraustochytrid)계 Aurantiochytrium 속 종속영양 미세조류 KRS101 균주 (KCTC11686BP)의 배양조건을 조사하였다. 미세조류 KRS101 균주를 기본배지인 탄소원 포도당 60g/L, 질소원 Yeast extract 10g/L, 인공해수염 6g/L을 함유한 배지에 단일 콜로니를 접종하여 28℃에서 125rpm으로 3일간 전배양하여 접종원으로 사용하였으며, 28℃에서 125rpm으로 배양하면서 600nm에서 흡광도(OD, optical density)를 측정하여 균체 성장을 분석하였다.Culture conditions of KRS101 (KCTC11686BP) strain of subspecies Aurantiochytrium subsp. Genus Thraustochytrid were investigated using palm oil fumigation (PEFB) as a nutrient source. The microalgae KRS101 strain was inoculated into medium containing 60 g / L of carbon source glucose, 10 g / L of yeast extract, 6 g / L of nitrogen source, and 6 g / L of artificial sea salt, and cultured for 3 days at 28 ° C and 125 rpm for inoculation , And the cell growth was analyzed by measuring the optical density (OD) at 600 nm while culturing at 28 ° C at 125 rpm.

미세조류 KRS101 균주의 배양을 위한 PEFB 당화액은 하기와 같이 제조하였다. 먼저 전처리를 위해 약 1~2mm 크기로 파쇄된 팜오일 부산물을 1M NaOH 용액에서 30분 동안 침적하고, autoclave(121℃, 15 psi, 1시간)를 실시한 후, 물로 NaOH를 완전히 세척, 건조하였다.The PEFB saccharified liquid for culturing microalgae strain KRS101 was prepared as follows. First, for the pretreatment, crushed palm oil byproducts of 1 ~ 2mm size were immersed in 1M NaOH solution for 30 minutes, and autoclave (121 ℃, 15 psi, 1 hour) was performed.

증류수와 효소를 포함한 혼합액 500ml에 전처리한 EFB 50g을 넣어(PEFB 첨가량 10% (w/v)) 45℃에서 150rpm으로 교반하면서 3일간 당화하였다. 이 때, 당화효소는 상기의 방법으로 전처리한 EFB 건조중량 1 g에 40 FPU (Filter Paper Assay Unit)를 사용하였다.  50 g of the pretreated EFB (PEFB added amount 10% (w / v)) was added to 500 ml of a mixture solution containing distilled water and enzyme, and saccharification was carried out for 3 days with stirring at 45 rpm at 150 rpm. At this time, a 40 FPU (Filter Paper Assay Unit) was used for 1 g of dry weight of EFB pretreated with the above method.

제조한 PEFB 당화액의 성분을 분석한 결과, glucose와 xylose가 각각 68 g/L, 22 g/L로 존재하는 것으로 나타났으며, HMF와 furfural은 검출되지 않았다 (도 1).As a result of analysis of components of the saccharified liquid of PEFB, glucose and xylose were present at 68 g / L and 22 g / L, respectively, and HMF and furfural were not detected (FIG. 1).

미세조류 KRS101 균주에 함유된 오일의 함량은 수정된 Bligh-Dyer법(Burja et al., 2007)을 이용하여 분석하였다. 건조 균체량 125mg에 Chloroform 6.25mL, methanol 12.5mL, 50mM K2HPO4 버퍼(pH 7.4) 5mL를 가하여 28℃에서 200rpm으로 1시간 동안 반응시킨 후 Chloroform 6.25mL, K2HPO4 버퍼 6.25mL를 첨가하여 30회 정도 섞어준 다음 30분 동안 방치하여 수층과 오일이 함유된 유기용매층으로 분리되도록 하였다. 미리 무게를 측정해둔 알루미늄 접시로 클로로포름층을 조심스럽게 옮긴 후 80℃에서 30분 동안 건조시킨 다음 오일의 무게를 측정하였다. 전체 오일 함량은 아래와 같이 산출하였다.The content of oil in the microalgae KRS101 strain was analyzed using the modified Bligh-Dyer method (Burja et al., 2007). The reaction was carried out at 28 ° C and 200 rpm for 1 hour with 6.25 mL of chloroform, 12.5 mL of methanol and 5 mL of 50 mM K 2 HPO 4 buffer (pH 7.4), and 6.25 mL of chloroform and 6.25 mL of K2HPO4 buffer were added to the dried cell mass of 125 mg, And allowed to stand for 30 minutes to separate into a water layer and an oil-containing organic solvent layer. The chloroform layer was carefully transferred to an aluminum plate which had been previously weighed, and then dried at 80 ° C. for 30 minutes, and then the weight of the oil was measured. The total oil content was calculated as follows.

총 오일함량 (%, 오일 g /건조균체량 100 g) = (WL-WD)xVCx100/VPxWSTotal oil content (%, oil g / dry cell weight 100 g) = (WL-WD) xVCx100 / VPxWS

WL: 알루미늄 접시의 무게WL: Weight of aluminum plate

WD: 알루미늄 접시 + 지질의 무게WD: Weight of aluminum plate + lipid

VC: Chloroform의 총 부피VC: Total volume of Chloroform

VP: 알루미늄 접시에 옮긴 Chloroform의 부피VP: Volume of Chloroform transferred to aluminum plate

WS: 사용한 균체의 무게 (건조중량)WS: weight of the used cells (dry weight)

한편, 오일 중에 함유된 DHA의 함량은 기체크로마토그래피법으로 측정하였다. 적당량의 건조된 균체를 메탄올-황산 용액(96:4(v/v)%) 3mL에 현탁하여 90℃에서 1시간 동안 반응시켜 지방산에스테르를 생성시킨 다음 핵산 0.3mL로 추출하여 기체크로마토그래피로 분석하였다. On the other hand, the content of DHA contained in the oil was measured by gas chromatography. An appropriate amount of dried cells was suspended in 3 mL of a methanol-sulfuric acid solution (96: 4 (v / v)%) and reacted at 90 ° C for 1 hour to produce a fatty acid ester. The resultant was extracted with 0.3 mL of nucleic acid and analyzed by gas chromatography Respectively.

상기의 실험방법으로 반응표면분석법을 통하여 미세조류 KRS101의 최적 배양 조건을 검토한 결과 (도 2), PEFB 당화액 포도당의 농도 53.8 g/L, Yeast extract의 농도 6.03 g/L, 해수염의 농도 20.1 g/L, 초기배양액 pH 5.7에서 가장 높은 오일 함량(15.35 g/L)과 DHA 함량(5.28 g/L)을 보이는 것으로 나타났다 (표 1).The optimum culture conditions of the microalgae KRS101 (FIG. 2) were examined through the reaction surface analysis method, the concentration of PEFB glycosylated glucose was 53.8 g / L, the concentration of yeast extract was 6.03 g / L, (15.35 g / L) and DHA content (5.28 g / L) at the initial culture pH of 5.7 (Table 1).

반응표면분석법에 의한 PEFB 당화액을 이용한 미세조류 KRS101 배양 조건 검토Study on the culture condition of microalgae KRS101 using PEFB saccharified solution by reaction surface analysis StdStd F1 (당화액농도)F1 (glycation solution concentration) F2 (질소원농도)F2 (nitrogen source concentration) F3 (염농도)F3 (salt concentration) F4 (pH)F4 (pH) Total lipid(g/L)Total lipid (g / L) Total lipid (g/g sample)Total lipid (g / g sample) OD600
OD600
DHA(%)DHA (%)
1One 2020 55 2020 5.35.3 0.21 0.21 0.0047 0.0047 19.319.3 44.0 44.0 22 4040 55 2020 5.35.3 7.06 7.06 0.1084 0.1084 24.324.3 46.2 46.2 33 2020 1313 2020 5.35.3 0.19 0.19 0.0038 0.0038 23.523.5 50.6 50.6 44 4040 1313 2020 5.35.3 0.32 0.32 0.0049 0.0049 30.230.2 49.7 49.7 55 2020 55 4040 5.35.3 0.45 0.45 0.0067 0.0067 19.919.9 45.7 45.7 66 4040 55 4040 5.35.3 7.33 7.33 0.0859 0.0859 24.424.4 46.5 46.5 77 2020 1313 4040 5.35.3 1.41 1.41 0.0203 0.0203 23.623.6 50.0 50.0 88 4040 1313 4040 5.35.3 0.53 0.53 0.0068 0.0068 27.627.6 52.3 52.3 99 2020 55 2020 5.75.7 0.24 0.24 0.0053 0.0053 20.120.1 45.1 45.1 1010 4040 55 2020 5.75.7 6.43 6.43 0.1026 0.1026 24.624.6 45.5 45.5 1111 2020 1313 2020 5.75.7 0.18 0.18 0.0036 0.0036 26.526.5 50.7 50.7 1212 4040 1313 2020 5.75.7 0.35 0.35 0.0053 0.0053 29.229.2 49.9 49.9 1313 2020 55 4040 5.75.7 0.31 0.31 0.0051 0.0051 20.620.6 44.2 44.2 1414 4040 55 4040 5.75.7 7.32 7.32 0.0970 0.0970 24.924.9 46.4 46.4 1515 2020 1313 4040 5.75.7 0.54 0.54 0.0083 0.0083 21.721.7 50.4 50.4 1616 4040 1313 4040 5.75.7 0.50 0.50 0.0059 0.0059 28.828.8 49.5 49.5 1717 1010 99 3030 5.55.5 0.20 0.20 0.0043 0.0043 18.518.5 48.1 48.1 1818 5050 99 3030 5.55.5 3.65 3.65 0.0452 0.0452 32.632.6 50.3 50.3 1919 3030 1One 3030 5.55.5 7.58 7.58 0.1206 0.1206 17.317.3 40.4 40.4 2020 3030 1717 3030 5.55.5 0.25 0.25 0.0035 0.0035 31.531.5 50.7 50.7 2121 3030 99 1010 5.55.5 0.17 0.17 0.0035 0.0035 30.330.3 48.8 48.8 2222 3030 99 5050 5.55.5 0.38 0.38 0.0045 0.0045 24.924.9 45.1 45.1 2323 3030 99 3030 5.15.1 0.30 0.30 0.0046 0.0046 2323 49.0 49.0 2424 3030 99 3030 5.95.9 0.27 0.27 0.0042 0.0042 26.426.4 46.4 46.4 2525 3030 99 3030 5.55.5 0.25 0.25 0.0037 0.0037 26.426.4 47.8 47.8 2626 3030 99 3030 5.55.5 0.28 0.28 0.0046 0.0046 27.227.2 49.8 49.8 2727 3030 99 3030 5.55.5 0.30 0.30 0.0046 0.0046 24.424.4 48.1 48.1 2828 3030 99 3030 5.55.5 0.29 0.29 0.0044 0.0044 2626 49.3 49.3 2929 3030 99 3030 5.55.5 0.27 0.27 0.0041 0.0041 24.624.6 49.5 49.5 3030 3030 99 3030 5.55.5 0.30 0.30 0.0047 0.0047 25.625.6 48.1 48.1

PEFB 당화액을 이용한 미세조류 KRS101 균주의 배양과 오일 생산Culture and oil production of microalgae KRS101 strain using PEFB saccharified solution

실시예 1의 배양조건으로 PEFB 당화액을 이용한 미세조류 KRS101 균주의 발효배양을 실시하였다. 도 2에서 보인바와 같이 배양 36시간 경과 후 배양액 중의 포도당이 모두 소모되었으며, 그 후 xylose가 소모되는 양상을 보였다. 배양 결과 최대 오일 생산량은 12.53 g/L이었고 (% 오일 g/ 포도당 g), 이때 DHA의 함량은 전체 지방산의 43%인 5.39 g/L이었다.The microalgae KRS101 strain was fermented using the PEFB saccharified solution under the culture conditions of Example 1. [ As shown in FIG. 2, after 36 hours of cultivation, glucose was consumed in the culture medium, and then xylose was consumed. The maximum oil production was 12.53 g / L (% oil g / g glucose) and the content of DHA was 5.39 g / L, 43% of total fatty acids.

PEFB의 동시당화 배양에 의한 오일 생산Oil production by simultaneous saccharification culture of PEFB

실시예 1의 배양조건으로 PEFB를 이용한 미세조류 KRS101 균주의 동시당화 배양을 실시하였다. 당화효소는 상기의 방법으로 전처리한 EFB 건조중량 1 g에 40 FPU (Filter Paper Assay Unit)를 사용하였다. 먼저 PEFB 5%로 투입한 동시당화 배양에서 배양 3일째부터 배양액 중의 포도당이 완전히 소모되기 시작하였으며, 이와 함께 xylose의 이용이 개시되기 시작하였다 (도 3A). 미세조류 균주를 접종하지 않은 대조구 실험을 통하여 투입된 5% PEFB로 생산되는 탄소원의 총량은 포도당과 xylose가 각각 33.7 g/L와 10.8 g/L이었다. 이로부터 생산된 오일의 최대 생산량은 1.7 g/L (0.57 g/L day)이었으며, 전체지방산 중 DHA의 함량은 45%이상으로 나타났다 (도 3C).The microalgae KRS101 strain was co-saccharified using PEFB under the culture conditions of Example 1. For the saccharification enzyme, 40 FPU (Filter Paper Assay Unit) was used for 1 g dry weight of EFB pretreated by the above method. First, in the simultaneous saccharification culture in which the PEFB was added at 5%, the glucose in the culture liquid began to be completely consumed from the third culture day, and the use of xylose started to be started (FIG. 3A). The total amount of carbon source produced by 5% PEFB was 33.7 g / L and 10.8 g / L for glucose and xylose, respectively. The maximum yield of the oil produced was 1.7 g / L (0.57 g / L day) and the content of DHA in the total fatty acids was over 45% (FIG. 3C).

한편 도 3B에서 보인 바와 같이, 10% PEFB를 투입한 동시당화배양실험에서 57.3 g/L의 포도당과 26.2 g/L의 xylose가 생성되어 배양 5일째 까지 단지 31.1 g/L의 포도당이 소모되었으며 xylose는 거의 이용되지 못하는 것으로 나타났다. 하지만 5% PEFB를 투입한 경우에 비해 오일의 생산량은 10% PEFB 투입에서 2배 정도 높은 것으로 나타났다 (3.4 g/L, 0.68 g/L day).As shown in FIG. 3B, in the simultaneous saccharification culture experiment in which 10% PEFB was added, 57.3 g / L of glucose and 26.2 g / L of xylose were produced and only 31.1 g / L of glucose was consumed until the fifth day of culture. Were rarely used. However, the production of oil was twice as high as that of 5% PEFB (3.4 g / L, 0.68 g / L day).

PEFB 동시당화발효에 대한 미세조류 접종량의 영향Effect of Microalgae Inoculation on PEFB Simultaneous Saccharification Fermentation

본 실시예에서는 미세조류 접종량을 2%, 5%, 10%로 달리하면서 10% PEFB 투입 동시당화배양실험을 수행하였다. 도 4A에서 보인 바와 같이, 접종량에 비례하여 PEFB 당화액이 이용되는 것으로 나타났으며, 특히 10%의 접종량을 사용한 동시당화 배양에서 배양 7일째에 PEFB 당화액중의 포도당이 전부 소모되고 xylose가 이용되기 시작하는 것으로 나타났다. 이와 상응하는 결과로 오일의 생산량은 미세조류 균주 접종량을 사용한 동시당화 배양에서 약 4배이상 증가하는 것으로 나타났다 (12.6 g/L, 1.8 g/L day).In this example, 10% PEFB injection simultaneous saccharification culture experiments were carried out while varying microalgae inoculations at 2%, 5%, and 10%. As shown in FIG. 4A, the PEFB saccharification solution was used in proportion to the inoculum amount. In particular, in the simultaneous saccharification culture using 10% of the inoculum amount, glucose was consumed in the PEFB saccharification solution on the 7th day of culture and xylose was used . As a result, the yield of oil increased about 4 times in the simultaneous saccharification culture using microalgae strain (12.6 g / L, 1.8 g / L day).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (1)

다음 단계를 포함하는 섬유질계 팜오일산업부산물을 탄소원으로 사용하는 것을 특징으로 하는 바이오오일의 제조방법:
(a) 1~2mm 크기로 파쇄된 섬유질계 팜오일산업부산물을 NaOH 용액에 침적시킨 후, 121℃, 15psi에서 30분~3시간 처리하고, 물로 세척한 후 건조시켜 전처리하는 단계;
(b) 증류수와 당화효소에 상기 전처리된 섬유질계 팜오일산업부산물 5%(w/v)를 첨가하고, 트라우스토키트리드 (Thraustochytrid)계 미세조류를 접종하여, 당화와 배양을 동시에 수행하는 단계; 및
(c) 배양된 트라우스토키트리드 (Thraustochytrid)계 미세조류에서 바이오오일을 수득하는 단계.
A method for producing a bio-oil characterized by using a fiber-based palm oil industrial by-product, which comprises the following steps, as a carbon source:
(a) immersing the fibrous palm oil industrial by-product, which has been crushed to a size of 1 to 2 mm, in an NaOH solution, treating at 121 캜 and 15 psi for 30 minutes to 3 hours, washing with water,
(b) adding 5% (w / v) of the above-mentioned pretreated fibrous palm oil industry by-product to distilled water and saccharifying enzyme, inoculating a microalgae of Thraustochytrid, and performing saccharification and culture simultaneously ; And
(c) obtaining a bio-oil from the cultured Thraustochytrid-based microalgae.
KR1020160043003A 2016-04-07 2016-04-07 Method for Culturing Microalge Thraustochytrid Using Palm Empty Fruit Bunch Hydrolysate and Method for Preparing Biooil Through the Same KR101681670B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160043003A KR101681670B1 (en) 2016-04-07 2016-04-07 Method for Culturing Microalge Thraustochytrid Using Palm Empty Fruit Bunch Hydrolysate and Method for Preparing Biooil Through the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160043003A KR101681670B1 (en) 2016-04-07 2016-04-07 Method for Culturing Microalge Thraustochytrid Using Palm Empty Fruit Bunch Hydrolysate and Method for Preparing Biooil Through the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120046550A Division KR20130123246A (en) 2012-05-02 2012-05-02 Method for culturing microalge thraustochytrid using palm empty fruit bunch hydrolysate and method for preparing biooil through the same

Publications (2)

Publication Number Publication Date
KR20160041892A KR20160041892A (en) 2016-04-18
KR101681670B1 true KR101681670B1 (en) 2016-12-01

Family

ID=55916850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160043003A KR101681670B1 (en) 2016-04-07 2016-04-07 Method for Culturing Microalge Thraustochytrid Using Palm Empty Fruit Bunch Hydrolysate and Method for Preparing Biooil Through the Same

Country Status (1)

Country Link
KR (1) KR101681670B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923185B (en) * 2018-09-19 2021-08-27 中国科学院青岛生物能源与过程研究所 Culture method for improving oil content of microalgae cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147450B1 (en) * 2010-05-04 2012-05-21 한국생명공학연구원 Novel Fatty Oilic Microalgae KRS101 and Preparing Method for Biooil Using Thereof
KR101238932B1 (en) * 2010-07-29 2013-03-06 삼성전자주식회사 Manufacturing method of biobutanol from lignocellulosic biomass

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Agric. Food Chem. Vol. 46, Pages 3359-3364(공개일: 1998.)
Pertanika J. Sci. & Technol. Vol. 16, No. 2, Pages 157-169(공개일: 2008)*

Also Published As

Publication number Publication date
KR20160041892A (en) 2016-04-18

Similar Documents

Publication Publication Date Title
Bharathiraja et al. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products
Jambo et al. A review on third generation bioethanol feedstock
Huang et al. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization
Taher et al. A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology
Li et al. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a
Chang et al. A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production
Dhandayuthapani et al. Study on the ethanol production from hydrolysate derived by ultrasonic pretreated defatted biomass of chlorella sorokiniana NITTS3
Miazek et al. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production
Lin et al. Microbial lipid production by oleaginous yeast in D-xylose solution using a two-stage culture mode
Hong et al. Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101
Razzak et al. Valorization of microalgae biomass to biofuel production: a review
Haixing et al. Improvement of microalgae lipid productivity and quality in an ion-exchange-membrane photobioreactor using real municipal wastewater
KR101244469B1 (en) Method and Device for Producing Bio-Diesel and Fermentation Material by Culturing Microalgae
CN107208035A (en) Saccharomyces olei variant, its preparation method and its purposes for lipid production
KR101681670B1 (en) Method for Culturing Microalge Thraustochytrid Using Palm Empty Fruit Bunch Hydrolysate and Method for Preparing Biooil Through the Same
Obara et al. Bioethanol production from mixed biomass (waste of Undaria pinnatifida processing and paper shredding) by fermentation with marine-derived Saccharomyces cerevisiae
Pradechboon et al. Alkali pretreatment and enzymatic saccharification of blue-green alga Nostochopsis lobatus for bioethanol production
Hamed et al. Complementary production of biofuels by the green alga Chlorella vulgaris
Patel et al. Potential of aquatic oomycete as a novel feedstock for microbial oil grown on waste sugarcane bagasse
Vidhya Microalgae—The ideal source of biofuel
KR20130123246A (en) Method for culturing microalge thraustochytrid using palm empty fruit bunch hydrolysate and method for preparing biooil through the same
Kim et al. Volatile fatty acid-treated mixotrophic cultivation of lipid/carbohydrate-rich cyanobacterial species, Pseudanabaena mucicola GO0704, for the enhancement of biofuel production
El-Khair et al. Complementary production of biofuels by the green alga Chlorella vulgaris
KR101780298B1 (en) Method for Preparing Biooil from Cellulosic Biomasses Using Microalgae Thraustochytrid
Yu et al. Efficient fractionation of microalgae biomass as a whole for biodiesel production enabled by deep eutectic solvent and water

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191008

Year of fee payment: 4