KR101668462B1 - Pharmaceutical Composition for Preventing or Treating a Glaucoma Comprising Blood Components as Active Ingredients - Google Patents

Pharmaceutical Composition for Preventing or Treating a Glaucoma Comprising Blood Components as Active Ingredients Download PDF

Info

Publication number
KR101668462B1
KR101668462B1 KR1020150026931A KR20150026931A KR101668462B1 KR 101668462 B1 KR101668462 B1 KR 101668462B1 KR 1020150026931 A KR1020150026931 A KR 1020150026931A KR 20150026931 A KR20150026931 A KR 20150026931A KR 101668462 B1 KR101668462 B1 KR 101668462B1
Authority
KR
South Korea
Prior art keywords
glaucoma
cells
extract
present
blood
Prior art date
Application number
KR1020150026931A
Other languages
Korean (ko)
Other versions
KR20160104217A (en
Inventor
김윤배
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020150026931A priority Critical patent/KR101668462B1/en
Publication of KR20160104217A publication Critical patent/KR20160104217A/en
Application granted granted Critical
Publication of KR101668462B1 publication Critical patent/KR101668462B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/19Platelets; Megacaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 혈액성분을 유효성분으로 포함하는 녹내장의 예방 또는 치료용 약제학적 조성물에 관한 것이다. 본 발명에 따르면, 단핵구 추출액 또는 혈소판 추출액을 녹내장이 유발된 안구에 직접 주입할 경우, 녹내장으로 인한 안압상승을 완화하고 망막신경절세포의 손상을 보호하며 시력을 개선하는 효과를 나타낸다. 따라서 본 발명의 혈액성분을 유효성분으로 포함하는 조성물은 녹내장의 치료제 개발에 이용될 수 있다.The present invention relates to a pharmaceutical composition for preventing or treating glaucoma comprising a blood component as an active ingredient. According to the present invention, when monocyte extract or platelet extract is directly injected into the glaucoma-induced eyeball, the increase of glaucoma-induced glaucoma is mitigated, the retinal ganglion cell damage is protected, and the visual acuity is improved. Therefore, a composition comprising the blood component of the present invention as an active ingredient can be used for the development of a therapeutic agent for glaucoma.

Description

혈액성분을 유효성분으로 포함하는 녹내장의 예방 또는 치료용 약제학적 조성물{Pharmaceutical Composition for Preventing or Treating a Glaucoma Comprising Blood Components as Active Ingredients}TECHNICAL FIELD The present invention relates to a pharmaceutical composition for preventing or treating glaucoma,

본 발명은 혈액성분을 유효성분으로 포함하는 녹내장의 예방 또는 치료용 약제학적 조성물에 관한 것이다.
The present invention relates to a pharmaceutical composition for preventing or treating glaucoma comprising a blood component as an active ingredient.

녹내장은 만성 시신경 병변으로, 시신경의 점진적 변성, 망막신경절세포(retinal ganglionic cells, RGC)의 진행성 소실 및 시야결손에 따른 시력상실을 초래하는 중증 난치성 질환이다. 국내 녹내장 환자수는 약 48만 명으로 추산되며, 전 세계적으로는 약 7천만 명에 이른다.Glaucoma is a chronic optic nerve lesion, which is a severe refractory disease that results in gradual degeneration of the optic nerve, progressive loss of retinal ganglionic cells (RGC), and visual loss due to visual field defect. The number of domestic glaucoma patients is estimated to be about 480,000, and around 70 million people worldwide.

녹내장의 위험요소로는 연령, 인종, 성별, 고혈압 등 다양하지만, 안압(intraocular pressure, IOP) 상승이 여러 가지 녹내장, 특히 일차성 개방각 녹내장(open angle glaucoma, OAG)의 가장 중요한 원인으로 알려져 있다. 녹내장은 안구 내 지주그물(trabecular meshwork, TM)의 세포 사멸로 세포 외 기질농도가 증가하게 되고, 이로 인해 지주그물을 통한 안방수(aqueous humor, AH) 배출에 대한 저항성이 증가하여 안압이 상승하기 때문에 일어난다(Alvarado et al., 1981; Grierson and Howes, 1987; Caballero et al., 2003; Tamm and Fuchshofer, 2007; Acott and Kelley, 2008; Baleriola et al., 2008; Tamm, 2009). 즉, 안압상승은 녹내장의 가장 중요한 위험요소로서 안압 항상성의 변화는 시신경 손상을 초래하므로 안압조절이 녹내장 완화를 위해 가장 우선시되는 관리방법이다(Kwon et al., 2009; Chauhan et al., 2010).The risk factors for glaucoma include age, race, sex, hypertension, etc. However, intraocular pressure (IOP) elevation is known to be the most important cause of various glaucoma, especially open angle glaucoma (OAG) . In glaucoma, the extracellular matrix concentration of the trabecular meshwork (TM) is increased by the apoptosis of the eye, resulting in increased resistance to the release of aqueous humor (AH) (Alvarado et al., 1981; Grierson and Howes, 1987; Caballero et al., 2003; Tamm and Fuchshofer, 2007; Acott and Kelley, 2008; Baleriola et al., 2008; Tamm, 2009). In this study, we evaluated the effect of intraocular pressure (IOP) on the glaucoma severity in patients with glaucoma. In this study, .

평생 동안 지속되어야 할 녹내장 관리를 위해서는 안방수 생성을 감소시키는 약물을 처방하거나, 지주그물이 일시적으로 안압을 조절할 수 있도록 레이저를 조사하거나, 수술적으로 새로운 안방수 배출 경로를 만들어 주는 방법 등이 있다(Leske et al., 2007, 2008; McKinnon et al., 2008; Robert et al., 2013). 하지만 레이저 지주그물 성형수술(laser trabeculoplasty) 외에는 지주그물을 근본적으로 치료하는 방법이 시도된 바가 없다. 따라서 안압조절 기능을 회복시켜 줄 수 있는 효과적인 지주그물 재생방법의 개발은 녹내장 치료에 있어 획기적인 해법이 될 것으로 기대된다.For the management of glaucoma that should last a lifetime, there is a method of prescribing drugs that reduce the production of aquaria, irradiating a laser to temporarily control the intraocular pressure of the holding net, or creating a new ventilation drainage route surgically (Leske et al., 2007, 2008; McKinnon et al., 2008; Robert et al., 2013). However, there has been no attempt to fundamentally treat a holding net other than laser trabeculoplasty. Therefore, it is expected that the development of an effective net restoration method for restoring the intraocular pressure regulating function will be a breakthrough in the treatment of glaucoma.

다양한 뇌질환 연구에서 줄기세포(stem cells, SC)가 세포대체, 뇌보호 및 염증억제를 통해 비가역적 뇌손상을 개선시켜 주는 것으로 밝혀졌다. 예를 들어, 신경줄기세포(neural stem cells, NSC)와 지방줄기세포(adipose tissue-derived stem cells, ASC)는 염증을 억제하여 뇌세포를 보호하고, 손상된 세포를 대체하며, 더 나아가서는 신경세포 재생을 통해 뇌질환 및 뇌의 노화에 따른 중추기능 이상을 개선시켜 주는 것으로 나타났다(Park et al., 2012a, 2013a, 2013b). 이러한 뇌세포 보호 및 재생에는 줄기세포에서 분비되는 다양한 성장인자(Growth Factors, GF)와 신경영양인자(Neurotrophic Factors, NF)가 작용하는 것으로 보고되고 있다(Park et al., 2013a, 2013b). 최근 망막세포 보호에 있어서도 신경줄기세포, 골수줄기세포(bone marrow-derived stem cells, BMSC), 망막전구세포(retinal progenitor cells, RPC) 등의 이식이 효과적인 것으로 보고되었는데(Park et al., 2012b; Hu et al., 2013; Lu et al., 2013; Luo et al., 2014), 이와 같은 효능에 있어서도 성장인자와 신경영양인자가 중요한 역할을 하는 것으로 여겨지고 있다. In a study of various brain diseases, stem cells (SC) have been shown to improve irreversible brain damage through cell replacement, brain protection and inflammation inhibition. For example, neural stem cells (NSCs) and adipose tissue-derived stem cells (ASCs) inhibit inflammation to protect brain cells, replace damaged cells, (Park et al., 2012a, 2013a, 2013b), which are associated with brain diseases and aging of the brain. Growth Factors (GF) and neurotrophic factors (NF) have been reported to play a role in brain cell protection and regeneration (Park et al., 2013a, 2013b). Recently, transplantation of neural stem cells, bone marrow-derived stem cells (BMSC), and retinal progenitor cells (RPC) has been reported to be effective in protecting retinal cells (Park et al., 2012b; Hu Luo et al., 2013; Luo et al., 2014). It is believed that growth factors and neurotransmitters play an important role in this effect.

하지만 기능성 성장인자나 신경영양인자 유전자를 발현하는 자가 줄기세포 (Autologous Stem cell)및 전구세포의 확립 및 이의 임상적용을 위해서는 동물과 인체에서의 효능은 물론, 다양한 항목의 안전성 확보가 우선되어야 한다는 어려움이 있다.However, for the establishment of autologous stem cells and progenitor cells expressing functional growth factors or neurotrophin genes and its clinical application, it is difficult to secure the safety of various items as well as the efficacy in animals and the human body have.

흥미롭게도 최근 연구결과에 의하면, 선택적 레이저 지주그물 성형수술 후 지주그물 내로 단핵구(monocytes)가 유입되는 것이 확인되었으며, 단핵구의 세포유래 사이토카인(cytokines) 등에 의해 안방수 유출(aqueous outflow)이 촉진되는 것이 확인되었다(Alvarado et al., 2010). 또한, 단핵구 유인단백질-1(Monocyte Chemoattractant Protein-1, MCP-1/CCL2)을 안구 내에 주사하는 경우, 망막신경절세포가 보호되는 것으로 밝혀졌다(Chiu et al., 2010). Interestingly, recent studies have shown that monocytes infiltrate into the nets after selective laser-holding net plastic surgery, and that aqueous outflow is promoted by cytokines such as monocytes from cells (Alvarado et al., 2010). In addition, retinal ganglion cells were found to be protected when injected with monocyte protein 1 (Monocyte Chemoattractant Protein-1, MCP-1 / CCL2) in the eye (Chiu et al., 2010).

따라서 본 발명자들은 안구 내의 망막신경절세포가 조직재생에 필요한 산소와 성장/영양인자를 공급해 주는 혈액이 도달할 수 없는 고립된 부위에 존재한다는 점에 착안하여 혈액성분을 직접 안구 내로 주입하였고, 결과적으로 혈액성분이 녹내장으로 인한 안압상승과 시력저하를 개선한다는 것을 발견하였다.
Therefore, the present inventors injected the blood component directly into the eyeball in consideration of the fact that the retinal ganglion cells in the eye are present in the isolated region where the blood supplying oxygen and growth / nutritional factors necessary for tissue regeneration can not reach. We found that the blood component improves glaucoma-induced elevation of IOP and decreased visual acuity.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 녹내장으로 인한 안압상승, 시력저하 및 망막신경절세포의 손상을 보호할 수 있는 조성물을 발굴하고자 연구 노력하였다. 그 결과, 본 발명자들은 인간 혈액 내의 단핵구 추출액 또는 혈소판 추출액을 직접 안구에 주입하는 경우, 녹내장으로 인한 안압상승과 시력저하가 개선된다는 것을 확인함으로써, 본 발명을 완성하게 되었다.The present inventors have sought to find a composition capable of protecting the glaucoma from elevated intraocular pressure, decreased visual acuity, and damage to retinal ganglion cells. As a result, the present inventors have completed the present invention by confirming that the intraocular injection of the monocyte extract or the platelet extract in human blood improves the intraocular pressure and the visual acuity increase due to glaucoma.

본 발명의 목적은 백혈구 또는 혈소판의 성분(components)을 유효성분으로 포함하는 녹내장의 예방 또는 치료용 약제학적 조성물을 제공하는 데 있다.It is an object of the present invention to provide a pharmaceutical composition for the prevention or treatment of glaucoma which comprises components of leukocytes or platelets as an active ingredient.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 혈액 내의 백혈구 또는 혈소판의 성분(components)을 유효성분으로 포함하는 녹내장의 예방 또는 치료용 약제학적 조성물을 제공한다. According to one aspect of the present invention, there is provided a pharmaceutical composition for preventing or treating glaucoma, the composition comprising components of leukocytes or platelets in blood as an active ingredient.

백혈구(leukocyte, White Blood Cell, WBC)는 혈액에서 적혈구를 제외한 나머지 세포들로서, 적혈구와 달리 종류가 다양하다. 세포질의 특이 과립의 존재 여부에 따라 크게 과립성 백혈구(granulocyte)와 무과립성 백혈구(agranulocyte)로 나눈다. 과립성 백혈구에는 호산구(eosinophil), 호염기구(basophil) 및 호중구(neutrophil)가 있으며, 무과립성 백혈구에는 림프구(lymphocyte)와 단핵구(monocyte)가 있다. 비율은 호중구가 54-62%로 가장 많으며, 그 다음에는 림프구가 25-45%, 단핵구 4-8%, 호산구와 호염기구가 약 5% 정도를 차지한다. 백혈구 내에는 여러 종류의 성장인자/영양인자와 같은 단백질과 다양한 사이토카인 등이 포함되어 있다. Leukocytes (leukocytes, white blood cells, WBC) are blood cells other than red blood cells, which are different from red blood cells. It is divided into granulocyte and agranulocyte depending on the presence of specific granules in cytoplasm. Granulocytic leukocytes have eosinophil, basophil and neutrophil, and granulocytic leukocytes have lymphocyte and monocyte. The proportion of neutrophils is 54-62%, followed by lymphocytes 25-45%, monocytes 4-8%, and eosinophils and basophils 5%. Leukocytes contain proteins such as various growth factors / nutrients and various cytokines.

본 발명은 백혈구의 성분을 유효성분으로 하며, 바람직하게는 백혈구 중 단핵구의 성분을 유효성분으로 하며, 더 바람직하게는 백혈구의 단핵구를 파쇄하여 얻어진 용해성(soluble) 성분을 유효성분으로 한다. 본 발명의 어떤 구현예에 따르면, 사람의 혈액에서 백혈구를 분리하고, 다시 여기서 단핵구를 분리한 다음, 이를 파쇄하여 얻어진 용해성 성분을 녹내장이 유발된 동물모델의 안구에 직접 주입하는 경우, 녹내장 증상을 완화하는 효과를 나타낸다. The present invention is based on the active ingredient of a component of leukocyte, preferably a monocyte of leukocyte as an active ingredient, more preferably a soluble component obtained by disrupting monocyte of leukocyte. According to some embodiments of the present invention, when leukocytes are isolated from the blood of a human, and then the mononuclear cells are separated from the blood, and then the monocytes are disrupted, and the resulting soluble component is directly injected into the eye of the glaucoma-induced animal model, It shows the effect of alleviating.

혈소판(Platelet, Thrombocyte)은 혈액 응고에 중요한 역할을 하는 고형 성분의 하나로서, 골수 안에 있는 거핵 세포의 세포질이 찢어져 혈액 속에 나온 것이다. 따라서 핵은 없으며, 1개의 거핵세포가 약 400~8000개 정도의 혈소판을 생성한다. 혈소판 내에는 여러 종류의 성장인자/영양인자와 같은 단백질과 다양한 사이토카인 등이 포함되어 있다. Platelet (Platelet, Thrombocyte) is one of the solid components that plays an important role in blood clotting, and the cytoplasm of the megakaryocyte in the bone marrow has been torn into the blood. Thus, there is no nucleus, and one megakaryocyte produces about 400 to 8000 platelets. Platelets contain proteins such as various growth factors / nutrients and various cytokines.

본 발명은 혈소판의 성분을 유효성분으로 하며, 바람직하게는 혈소판을 파쇄하여 얻어진 용해성(soluble) 성분을 유효성분으로 한다. 본 발명의 어떤 구현예에 따르면, 사람의 혈액에서 혈소판을 분리하고, 이를 파쇄하여 얻어진 용해성 성분을 녹내장이 유발된 동물모델의 안구에 직접 주입하는 경우, 녹내장 증상을 완화하는 효과를 나타낸다. 혈소판을 파쇄하여 얻어진 용해성 성분은 단핵구를 파쇄하여 얻어진 용해성 성분보다 더 효과적으로 녹내장 증상을 완화하는데, 이는 혈소판 내에 단핵구와 다른 성장/영양인자가 존재하기 때문으로 생각된다.The present invention comprises a platelet component as an active ingredient, preferably a soluble component obtained by disrupting platelets as an active ingredient. According to some embodiments of the present invention, when platelets are isolated from human blood, and the soluble component obtained by breaking the platelets is injected directly into the eye of the glaucoma-induced animal model, the effect of alleviating glaucoma symptoms is exhibited. The soluble component obtained by disruption of platelets seems to be more effective in relieving glaucoma symptoms than the soluble component obtained by disrupting monocytes, probably because monocytes and other growth / nutritional factors are present in the platelets.

본 발명의 백혈구 또는 혈소판의 성분은 녹내장 환자의 안구에 직접 주입하는 것을 특징으로 한다. 바람직하게는 녹내장 환자의 초자체강내 직접 주입(intravitreal injectioin)하는 것을 특징으로 한다. 정상적인 안구의 초자체내에는 부유 상태의 세포가 존재하지 않으므로, 인위적으로 세포를 주입하는 경우 주입된 세포가 이동하여 시야에 악영향을 미칠 수 있기 때문에 세포 자체보다는 혈청또는 세포 추출액을 사용하는 편이 훨씬 더 안전하다. 또한, 타인의 줄기세포(allogeneic stem cells)나 이종줄기세포(heterologous or xenogeneic stem cells)의 경우 항체생성으로 인한 염증 및 쇼크 가능성이 있으며(Pigott et al., 2013), 배아줄기세포(embryonic stem cells, ESC)의 경우 종양으로 발전할 가능성이 높다(Germain et al., 2012)는 문제점이 있다. 따라서 자가 유래 혈액 또는 세포로부터 유효성분을 추출하여 사용하는 경우, 부작용을 원천적으로 배제할 수 있다는 장점이 있다. 본 발명의 어떤 구현예에 따르면, 사람의 혈액에서 분리한 단핵구 또는 혈소판을 파쇄하여 얻어진 용해성 성분을 녹내장이 유발된 동물모델의 초자체강내 직접 주입하는 경우, 현저하게 녹내장 증상을 완화하는 효과를 나타낸다. The leukocyte or platelet component of the present invention is characterized by being injected directly into the eye of a glaucoma patient. Preferably, the glaucoma patient is intravitreal injected. Since normal cells do not have suspended cells in the vitreous body, it is much safer to use serum or cell extract than the cell itself, since artificially injected cells can cause adverse effects on the visual field Do. In the case of allogeneic stem cells or heterologous or xenogeneic stem cells, there is a possibility of inflammation and shock due to antibody production (Pigott et al., 2013), embryonic stem cells , ESC) are more likely to develop into tumors (Germain et al., 2012). Therefore, when the active ingredient is extracted from the self-derived blood or cells, the side effect can be excluded. According to some embodiments of the present invention, when a soluble component obtained by disrupting monocytes or platelets isolated from human blood is injected directly into the glaucoma-induced animal model, it exhibits an effect of remarkably reducing glaucoma symptoms.

본 발명은 녹내장을 치료할 수 있는 약제학적 조성물에 관한 것으로서, 본인 또는 타인 유래 혈액 내의 백혈구나 혈소판으로부터 얻어진 성분을 혈류가 도달하지 못하는 안구 내로 직접 주입함으로써 녹내장으로 인한 안압상승과 그에 따른 망막세포 소실 및 시력저하를 개선하는 효과를 나타낸다. 따라서 본 발명은 효과적인 치료제가 없는 녹내장을 치료할 수 있는 새로운 치료제의 개발 가능성을 제시한다. The present invention relates to a pharmaceutical composition capable of treating glaucoma. The present invention relates to a pharmaceutical composition capable of treating glaucoma, and it is intended to provide a pharmaceutical composition capable of treating glaucoma by directly injecting a leukocyte or platelet derived component of blood, Thereby exhibiting an effect of improving visual acuity. Accordingly, the present invention suggests the possibility of developing a novel therapeutic agent capable of treating glaucoma without an effective therapeutic agent.

도 1은 혈청(Serum), 단핵구 추출액(Monocyte extract, ME) 및 혈소판 추출액(Platelet extract, PE)의 안압 강하효과를 보여주는 사진이다.
도 2는 혈청(Serum), 단핵구 추출액(Monocyte extract, ME) 및 혈소판 추출액(Platelet extract, PE)의 시력 개선효과를 보여주는 사진이다.
도 3은 혈청(Serum), 단핵구 추출액(Monocyte extract, ME) 및 혈소판 추출액(Platelet extract, PE)에 의한 대표적인 망막신경절세포 보호 예를 보여주는 사진이다.
도 4는 혈청(Serum), 단핵구 추출액(Monocyte extract, ME) 및 혈소판 추출액(Platelet extract, PE)에 의한 망막신경절세포 보호효과를 보여주는 사진이다.
FIG. 1 is a photograph showing the effect of intraocular pressure drop of serum, monocyte extract (ME) and platelet extract (PE).
2 is a photograph showing the effect of improving the visual acuity of serum, monocyte extract (ME) and platelet extract (PE).
3 is a photograph showing an example of retinal ganglion cell protection by serum, monocyte extract (ME) and platelet extract (PE).
4 is a photograph showing the protective effect of retinal ganglion cells by serum, monocyte extract (ME) and platelet extract (PE).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

실시예 1 : 실험동물의 준비Example 1: Preparation of experimental animals

암컷 Sprague-Dawley 랫트(Rat, 10주령, 240-260 g)를 코아텍(대한민국, 평택)으로부터 공급받아 약 1주간 실험실 순화과정을 거친 후 실험에 사용하였다. 실험동물을 랫트용 케이지에 2마리씩 수용하고, 동물실험실의 환경을 온도 23± 2℃, 상대습도 55± 10%, 환기횟수 12회/시간, 조명주기 12시간(07:00-19:00), 조도 150-300 lux로 조절하였다. 실험동물용 펠렛형 고형사료(Purina Rat Chow, 바이오피아, 대한민국)를 급여하였으며, 음료수는 멸균정제수를 자유롭게 섭취하도록 하였다. 본 실험은 충북대학교 실험동물연구지원센터의 동물실험윤리위원회(Institutional Animal Care and Use Committee, IACUC)의 승인 하에 동 기관의 표준작업지침서(Standard Operation Procedures, SOP)에 따라 수행되었다.
Female Sprague-Dawley rats (Rat, 10 wk, 240-260 g) were supplied from Koatech (Pyeongtaek, Korea) and used in the experiment after approximately one week of laboratory purification. The animals were housed in a cage for 2 rats, and the environment of the animal laboratory was maintained at a temperature of 23 ± 2 ° C., a relative humidity of 55 ± 10%, a ventilation frequency of 12 times / hour, a lighting cycle of 12 hours (07:00 to 19:00) , And the illumination was adjusted to 150-300 lux. Pelleted solid feed (Purina Rat Chow, BioPia, Korea) for laboratory animals was fed. Sterile purified water was allowed to drink freely. This study was carried out in accordance with the Standard Operation Procedures (SOP) of the Institutional Animal Care and Use Committee (IACUC) of Chungbuk National University.

실시예 2 : 시험물질-단핵구 추출액, 혈소판 추출액의 준비Example 2: Preparation of test substance-monocyte extract, platelet extract

51세 정상인 남성의 혈액을 정맥으로부터 채혈하여 4 ℃에 30분간 방치한 후 12,000 rpm으로 원심분리 하여 혈청(serum)을 얻었다. 채혈 과정에서 일부의 혈액은 0.8% 시트르산(citric acid, Sigma-Aldrich, St. Louis, USA), 2.2% 시트르산삼나트륨(trisodium citrate, Sigma-Aldrich, St. Louis, USA) 및 2% 덱스트로오스(dextrose, Sigma-Aldrich, St. Louis, USA)가 함유된 항응고 용액(citrate-dextrose)에 채혈한 다음, 다음의 방법에 따라 단핵구 추출액 및 혈소판 추출액을 얻었다.Blood from a 51-year-old male was collected from the vein, left at 4 ° C for 30 minutes, and centrifuged at 12,000 rpm to obtain serum. In the blood collection, some of the blood was diluted with 0.8% citric acid (Sigma-Aldrich, St. Louis, USA), 2.2% trisodium citrate (Sigma-Aldrich, St. Louis, USA) and 2% dextrose (dextrose, Sigma-Aldrich, St. Louis, USA), and then monocyte extract and platelet extract were obtained by the following method.

단핵구 추출액을 얻기 위하여, 우선 Percoll 농도경사 원심분리를 통해 말초혈액 단핵구(peripheral blood mononuclear cells, PBMC)를 분리하였다(Waschbisch et al., 2014). 분리한 단핵구를 1분간 초음파로 파쇄하고, 모세관(capillary tube) 내에서 5분간 원심분리 하여 단핵구 추출액(monocyte extract, ME)을 얻었다. To obtain monocyte extracts, peripheral blood mononuclear cells (PBMCs) were first isolated by Percoll concentration gradient centrifugation (Waschbisch et al., 2014). The separated mononuclear cells were disrupted by ultrasonication for 1 minute and centrifuged in a capillary tube for 5 minutes to obtain a monocyte extract (ME).

혈소판 추출액을 얻기 위하여, 항응고 용액(citrate-dextrose)에 채혈한 혈액을 230 g로 10분간 원심분리 하여 혈소판 함유 혈장(platelet-rich plasma, PRP)을 얻었다(Jang et al., 2013). 이 PRP를 다시 800 g로 15분간 원심분리 하여 혈소판을 얻었다. 얻어진 혈소판을 HEPES 버퍼(pH 7.4)로 세척한 후 1분간 초음파로 파쇄하고, 모세관(capillary tube) 내에서 5분간 원심분리하여 혈소판 추출액(platelet extract, PE)을 얻었다.
Platelet-rich plasma (PRP) (Jang et al., 2013) was obtained by centrifuging the blood collected in an anticoagulant solution (citrate-dextrose) at 230 g for 10 minutes to obtain platelet extract. The PRP was further centrifuged at 800 g for 15 minutes to obtain platelets. The obtained platelets were washed with HEPES buffer (pH 7.4), disrupted by ultrasonication for 1 minute, and centrifuged in a capillary tube for 5 minutes to obtain a platelet extract (PE).

실시예Example 3 : 녹내장 유발 및 안압 측정 3: Glaucoma induction and intraocular pressure measurement

랫트에 케타민-자일라진(ketamine-xylazine, Bayer, Toronto, Canada)을 복강 내로 주사하여 마취하고, 좌측 안구 내의 상공막정맥(episcleral veins) 내로 50 ㎕의 1.8 M 고장성 식염수(hypertonic saline)를 주사하여 지주그물에 반흔(scar)을 유발함으로써 안방수 배출경로의 저항성에 의한 안압상승을 유도하였다(He et al., 2013). 우측 안구를 대조부위로 하였고, Tonolab tonometer(Icare Finland Oy, Espoo, Finland)를 사용하여 녹내장 유발 전 및 유발 후 2일 간격으로 2주 동안 좌측과 우측 안구의 안압을 측정하였다(Chiu et al., 2009, 2010). 시간차 및 마취에 의한 안압 변화를 최소화하기 위해 안압측정은 오전 10시경, 마취제 투여 15-30분 내에 이루어졌으며, 5회 측정 후 평균값을 계산하여 제시하였다. 시험물질의 효과를 시험하기 위하여, 녹내장 유발 4일 후 시험물질(2 ㎕)을 초자체(vitreous cavity) 내로 주사한 다음, 일정한 간격으로 안압을 측정하였다.Rats were anesthetized by intraperitoneal injection of ketamine-xylazine (Bayer, Toronto, Canada) and injected with 50 μl of 1.8 M hypertonic saline into episcleral veins in the left eye (He et al., 2013), which induced scarring in the nets by resistance of the anoxic water discharge pathway (He et al., 2013). The right eye was used as a control and the left eye and right eye were measured for intraocular pressure for 2 weeks at 2-day intervals before and after glaucoma induction using a Tonolab tonometer (Icare Finland Oy, Espoo, Finland) (Chiu et al. 2009, 2010). In order to minimize the time difference and the change of intraocular pressure by anesthesia, intraocular pressure was measured at 10 am and 15-30 minutes after anesthesia. To test the effect of the test substance, 4 days after glaucoma induction, the test substance (2 μl) was injected into the vitreous cavity and the intraocular pressure was measured at regular intervals.

이후의 모든 시험결과는 mean± SEM으로 표시하였고, 집단 간 차이는 oneway analysis of variance (ANOVA, SPSS 12.0 version)을 이용하여 분석하였으며 P value < 0.05 미만일 때 통계학적으로 유의성이 있다고 판단하였다.All the test results were expressed as mean ± SEM. The difference between groups was analyzed using oneway analysis of variance (ANOVA, SPSS 12.0 version) and it was considered statistically significant when P value <0.05.

녹내장 유발 전 랫트의 안압은 50-70 mmHg로 정상범위(40-80 mmHg) 내에 있었다(도 1). 하지만 고장액(1.8 M)의 식염수를 지주그물 내로 주사하여 녹내장을 유발했을 때, 주사 4일 후에 안압이 약 110 mmHg로 상승하였고, 6일 후에는 약 138 mmHg의 최고치에 도달하여 14일 이후까지 높게 유지되었다. The intraocular pressure of the glaucoma-induced rats ranged from 50-70 mmHg in the normal range (40-80 mmHg) (Fig. 1). However, when glaucoma was induced by injection of saline solution (1.8 M) into the holding net, the intraocular pressure was increased to about 110 mmHg 4 days after injection, and reached to the maximum value of about 138 mmHg after 6 days Respectively.

시험물질을 주사한 경우 이와 같은 안압증가가 완화되었다. 즉, 녹내장 유발 4일째에 2 ㎕의 혈청(serum)을 초자체 내로 주사한 경우, 안압증가가 다소 완화되는 경향을 나타내었다. 말초혈액 단핵구 추출액(ME)을 주사한 경우, 안압이 서서히 떨어져 8일 후인 12일째에는 정상범위 이내로 회복되었다. 특히, 혈소판 추출액(PE)을 주사한 경우, 안압이 급속히 강하하여 혈소판 추출액 주사 4일 후인 시험 8일째에 이르기 전에 안압이 정상수준으로 회복되었다.
This increase in intraocular pressure was alleviated when the test substance was injected. That is, when 2 μl of serum was injected into the vitreous body on the fourth day after glaucoma induction, the increase in the intraocular pressure tended to be somewhat relaxed. When the peripheral blood mononuclear cell extract (ME) was injected, the intraocular pressure slowly recovered to within the normal range on day 12 after 8 days. In particular, when intravenous injection of platelet extract (PE) was performed, the intraocular pressure rapidly dropped, and the intraocular pressure returned to normal level on the eighth day after the injection of platelet extract 4 days.

실시예Example 4 : 시력 측정 4: Measurement of vision

동물의 시력을 Morris water-maze system (Smart v2.5; Panlab Technology, Barcelona, Spain)을 이용하여 평가하였다. 즉, 직경 1.8 m의 수조에 22± 2℃의 물을 채우고 수조를 네 구역으로 나눈 후, 한 구역에 수면 위 5 cm 높이(직경 10 cm)의 플랫폼을 설치하였다. 시험 종료 시점인 녹내장 유도 후 14일째에 플랫폼의 반대편 구역에 동물을 수조의 벽쪽을 향하도록 넣어 스스로 플랫폼을 찾아갈 때까지의 시간(latency time)을 측정하였으며, 5회 반복 실험하고 평균값을 계산하여 제시하였다(Hu et al., 2013; Park et al., 2013a).The animal's visual acuity was assessed using the Morris water-maze system (Smart v2.5; Panlab Technology, Barcelona, Spain). That is, a water tank of 1.8 m in diameter was filled with water of 22 ± 2 ° C., and the water tank was divided into four zones, and a platform having a height of 5 cm above the water surface (a diameter of 10 cm) was installed in one zone. On the 14th day after glaucoma induction at the end of the test, the animals were placed in the opposite side of the platform toward the wall of the tank, and the latency time until the platform was found was measured. (Hu et al., 2013; Park et al., 2013a).

정상동물에서 수영을 통해 눈에 보이는 플랫폼을 찾아가는 데에는 약 11초가 소요되었으나 녹내장 유발 후 14일이 지난 동물에서는 플랫폼 도달시간이 약 44초가 소요되었다(도 2). 시험물질을 주사한 경우에는 플랫폼 도달시간이 단축되었다. 즉, 녹내장 유발 4일 후 초자체 내로 혈청을 주사한 경우, 약 35초가 소요되었으며, 단핵구 추출액 투여군에서는 약 23초, 그리고 혈소판 추출액 투여군에서는 약 18초로 플랫폼 도달시간이 현저하게 줄어들었다. 이와 같은 결과는 혈액성분에 의해 시력이 상당한 수준으로 개선되었을 가능성을 나타내는 것이다.
Approximately 11 seconds were required to visit the visible platform through swimming in normal animals, but in the animal 14 days after glaucoma induction, the platform required about 44 seconds to reach the platform (Fig. 2). The time to reach the platform was shortened when the test substance was injected. In other words, when serum was injected into glaucoma 4 days after glaucoma induction, it took about 35 seconds, and the time to reach the platform was remarkably reduced to about 23 seconds in the monocyte extract administration group and about 18 seconds in the platelet extract administration group. These results indicate a possible improvement in visual acuity by blood components.

실시예Example 5 :  5: 망막신경절세포수Number of retinal ganglion cells 측정 Measure

망막신경절세포수를 측정하기 위해 동물을 부검하기 4일 전 상구(superior colliculus, SC) 표면에 fluorogold(Fluorochrome, Denver, CO, USA)를 적용하여 역행성으로 표식(retrograde labeling)을 하였다(Chiu et al., 2008, 2009, 2010). 즉, 랫트의 두피를 정중선에서 절개하고, 두개골의 시상봉합(sagittal suture)과 횡봉합(transverse suture)으로부터 0.5 mm 거리를 두고 좌우 두정골(parietal bone)에 치과용 드릴을 사용하여 직경 2 mm의 구멍을 내었다. 대뇌피질(cerebral cortex)를 제거한 후 수술용 현미경을 통해 네 개의 상구 변연부를 확인한 후 6% fluorogold로 적신 얇은 젤라틴 스폰지(UpJohn, Kalamazoo, MI, USA)를 상구 위에 얹음으로써 fluorogold가 망막신경절세포의 축삭말단으로 흡수되어 역행성으로 양측 망막 내의 신경절세포체로 전달되도록 하였다(Chiu et al., 2008; Hu et al., 2013). 두개골 피부를 봉합하고 5일간 진통제 bupreorphine (100 mg/kg)를 경구로 투여하였다.Retrograde labeling was performed by applying fluorogold (Fluorochrome, Denver, CO, USA) to the superior colliculus (SC) surface 4 days before the autopsy of the animal to determine retinal ganglion cell count al., 2008, 2009, 2010). That is, the scalp of the rat was cut at the midline, and a dental drill was applied to the left and right parietal bone at a distance of 0.5 mm from the sagittal suture and the transverse suture to form a hole having a diameter of 2 mm "He said. After removal of the cerebral cortex, the four marginal margins were identified through a surgical microscope and a thin gelatin sponge (UpJohn, Kalamazoo, MI, USA) moistened with 6% fluorogold was placed on top of the top of the cortex, (Chu et al., 2008; Hu et al., 2010). The skull skin was sutured and bupreorphine (100 mg / kg) was orally administered for 5 days.

부검일에 안구를 적출하고, 60분간 포르말린액에 고정한 후 위아래 안배(eyecups)를 수평으로 절단하였다. 온전한 시신경을 가지고 있는 위쪽 안배를 고정하여 파라핀 절편을 만들었다. 아래쪽 안배에서 밑에 있는 공막(sclera)으로부터 망막을 분리하고, 초자체쪽을 위로 하여 납작하게 압착한 후 fluorescent mounting medium (Dako, Carpentaria, CA, USA)을 사용하여 슬라이드에 부착하였다(Chiu et al., 2009, 2010). Fluorogold 표식 망막신경절세포(세포질 내 fluorogold 과립 확인)를 UV-385 filter (Nikon, Kawasaki, Japan)가 장착된 형광현미경을 이용하여 관찰하였다.Eyes were removed on the day of the autopsy, fixed in formalin solution for 60 minutes, and cut horizontally in the upper eyecups. Paraffin sections were made by fixing the upper optic having the complete optic nerve. The retina was separated from the underlying sclera in the lower compartment, flattened with the vitreous side up, and attached to the slides using a fluorescent mounting medium (Dako, Carpentaria, CA, USA) (Chiu et al. 2009, 2010). Fluorogold-labeled retinal ganglion cells (cytoplasmic fluorogold granule confirmation) were observed using a fluorescence microscope equipped with a UV-385 filter (Nikon, Kawasaki, Japan).

정상동물의 망막신경절세포층에서는 강한 fluorogold 양성반응을 보이는 망막세포들이 명확히 관찰되었으나, 녹내장 유발 동물에서는 형광반응이 현저히 감소하여 망막세포들이 상당 부분 소실되었음을 보여주었다(도 3). 이러한 세포소실은 시험물질 중 혈청을 주사한 경우, 어느정도 약간 회복되었다. 단핵구 추출액 또는 혈소판 추출액을 주사한 경우, 망막세포가 현저하게 보호되는 것을 확인하였다. In the retinal ganglion cell layer of normal animals, retinal cells exhibiting a strong fluorogold-positive response were clearly observed, but fluorescence responses were significantly reduced in glaucoma-induced animals, indicating that much of the retinal cells were lost (Fig. 3). Such cell loss was somewhat restored when the serum of the test material was injected. When the monocyte extract or the platelet extract was injected, it was confirmed that retinal cells were remarkably protected.

이와 같은 망막신경절 내 세포 수의 변화를 정량적으로 분석하였다(도 4), 녹내장을 유발한 경우, 세포수가 정상인 경우 세포 수의 약 51%를 나타내어 50% 가까운 세포들이 소실되었음을 보여주었다. 혈청을 주사한 경우, 세포수가 정상인 경우 세포수가 약 61%를 나타내어 녹내장만을 유발한 경우에 비해 망막세포가 어느 정도 보호되었다는 것을 보여주었다. 단핵구 추출액을 주사한 경우, 세포수가 정상인 경우 세포수의 약 81%를 나타내었다. 혈소판 추출액을 주사한 경우, 세포수가 정상인 경우 세포수의 약 89%를 나타내었다. 이러한 결과는 단핵구 추출액 또는 혈소판 추출액에 의한 망막세포 보호효과가 현저하다는 것을 보여주는 것이다.
The change in the number of cells in the retinal ganglion was quantitatively analyzed (Fig. 4). In the case of glaucoma-induced ganglion cells, approximately 51% of the cells were normal, indicating that nearly 50% of the cells were lost. When serum was injected, the number of cells was normalized to about 61% when the number of cells was normal, indicating that retina cells were protected to some degree compared with the case where only glaucoma was induced. When the monocyte extract was injected, the number of cells was about 81% when the number of cells was normal. When the platelet extract was injected, the number of cells was about 89% when the number of cells was normal. These results show that the protective effect of retinal cells on monocyte extract or platelet extract is remarkable.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 어떤 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

참고문헌references

Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res 2008; 86: 543561.Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res 2008; 86: 543561.

Alvarado J et al. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 1981; 21: 714727.Alvarado J et al. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 1981; 21: 714727.

Alvarado JA et al. Monocyte modulation of aqueous outflow and recruitment to the trabecular meshwork following selective laser trabeculoplasty. Arch Ophthalmol 2010; 128: 731-737.Alvarado JA et al. Monocyte modulation of aqueous outflow and recruitment to the trabecular meshwork following selective laser trabeculoplasty. Arch Ophthalmol 2010; 128: 731-737.

Baleriola J et al. Apoptosis in the trabecular meshwork of glaucomatous patients. Mol Vis 2008; 14: 15131516.Baleriola J et al. Apoptosis in the trabecular meshwork of glaucomatous patients. Mol Vis 2008; 14: 15131516.

Caballero M et al. Proteasome inhibition by chronic oxidative stress in human trabecular meshwork cells. Biochem Biophys Res Commun 2003; 308: 346352.Caballero M et al. Proteasome inhibition by chronic oxidative stress in human trabecular meshwork cells. Biochem Biophys Res Commun 2003; 308: 346352.

Chauhan BC et al. Canadian Glaucoma Study: 3. Impact of risk factors and intraocular pressure reduction on the rates of visual field change. Arch Ophthalmol 2010; 128: 12491255.Chauhan BC et al. Canadian Glaucoma Study: 3. Impact of risk factors and intraocular pressure reduction on the visual field change. Arch Ophthalmol 2010; 128: 12491255.

Chiu K et al. Modulation of microglia by Wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J Ocul Biol Dis Inform 2009; 2: 4756.Chiu K et al. Modulation of microglia by Wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J Ocul Biol Dis Inform 2009; 2: 4756.

Chiu K et al. Modulation of morphological changes of microglia and neuroprotection by monocyte chemoattractant protein-1 in experimental glaucoma. Cell Mol Immunol 2010; 7: 6168.Chiu K et al. Modulation of morphological changes of microglia and neuroprotection by monocyte chemoattractant protein-1 in experimental glaucoma. Cell Mol Immunol 2010 ; 7: 6168.

Chiu K et al. Retrograde labeling of retinal ganglion cells by application of fluoro-gold on the surface of superior colliculus. J Vis Exp 2008; 16: 1-2.Chiu K et al. Retrograde labeling of retinal ganglion cells by application of fluoro-gold on the surface of superior colliculus. J Vis Exp 2008; 16: 1-2.

Clark AF, Yorio T. Ophthalmic drug discovery. Nat Rev Drug Discov 2003; 2: 448459.Clark AF, Yorio T. Ophthalmic drug discovery. Nat Rev Drug Discov 2003; 2: 448459.

Germain ND et al. Teratocarcinoma formation in embryonic stem cell-derived neural progenitor hippocampal transplants. Cell Transplant 2012; 21: 16031611.Germain ND et al. Teratocarcinoma formation in embryonic stem cell-derived neural progenitor hippocampal transplants. Cell Transplant 2012; 21: 16031611.

Grierson I, Howes RC. Age-related depletion of the cell population in the human trabecular meshwork. Eye 1987; 1(pt 2): 204210.Grierson I, Howes RC. Age-related depletion of the cell population in the human trabecular meshwork. Eye 1987; 1 (pt 2): 204210.

He S et al. Involvement of AP-1 and C/EBPb in upregulation of endothelin B (ETB) receptor expression in a rodent model of glaucoma. PLoS One 2013; 11: e79183.He S et al. Invitrovement of AP-1 and C / EBPb in upregulation of endothelin B (ETB) receptor expression in a rodent model of glaucoma. PLoS One 2013; 11: e79183.

Hu Y et al. Bone marrow mesenchymal stem cells protect against retinal ganglion cell lossin aged rats with glaucoma. Clin Intervent Aging 2013; 8: 14671470.Hu Y et al. Bone marrow mesenchymal stem cells protect against retinal ganglion cell lossin aged rats with glaucoma. Clin Intervent Aging 2013; 8: 14671470.

Jang JY et al. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation. Lab Anim Res 2013; 29: 221-225.Jang JY et al. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation. Lab Anim Res 2013; 29: 221-225.

Kwon YH et al. Primary open-angle glaucoma. New Engl J Med 2009; 360: 11131124.Kwon YH et al. Primary open-angle glaucoma. New Engl J Med 2009; 360: 11131124.

Leske MC et al. Nine-year incidence of open-angle glaucoma in the Barbados Eye Studies. Ophthalmology 2007; 114: 10581064.Leske MC et al. Nine-year incidence of open-angle glaucoma in the Barbados Eye Studies. Ophthalmology 2007; 114: 10581064.

Leske MC et al. Risk factors for incident open-angle glaucoma: The Barbados Eye Studies. Ophthalmology 2008; 115: 8593.Leske MC et al. Risk factors for incident open-angle glaucoma: The Barbados Eye Studies. Ophthalmology 2008; 115: 8593.

Lu B et al. Neural stem cells derived by small molecules preserve vision. Transl Vis Sci Technol 2013; 2: 1.Lu B et al. Neural stem cells derived from small molecules preserve vision. Transl Vis Sci Technol 2013; 2: 1.

Luo J et al. Human retinal progenitor cell transplantation preserves vision. J Biol Chem 2014; 289: 6362-6371.Luo J et al. Human retinal progenitor cell transplantation preserves vision. J Biol Chem 2014; 289: 6362-6371.

McKinnon SJ et al. Current management of glaucoma and the need for complete therapy. Am J Manag Care 2008; 14: S20S27.McKinnon SJ et al. Current management of glaucoma and the need for complete therapy. Am J Manag Care 2008; 14: S20S27.

Park D et al. Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 2012a; 234: 521-526.Park D et al. Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 2012a; 234: 521-526.

Park D et al. Improvement of cognitive function and physical activity of ageing mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging 2013a; 34: 2639-2646.Park D et al. Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging 2013a; 34: 2639-2646.

Park D et al. Transplantation of human adipose tissue-derived mesenchymal stem cells restores the neurobehavioral disorders of rats with neonatal hypoxic-ischemic encephalopathy. Cell Med 2013b; 5: 17-28.Park D et al. Transplantation of human adipose tissue-derived mesenchymal stem cells restores the neurobehavioral disorders of rats with neonatal hypoxic-ischemic encephalopathy. Cell Med 2013b; 5: 17-28.

Park HYL et al. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina. Brain Res 2012; 1469: 10-23.Park HYL et al. Stem cell-based delivery of the brain-derived neurotrophic factor gene in the rat retina. Brain Res 2012; 1469: 10-23.

Pigott JH et al. Inflammatory effects of autologous, genetically modified autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Comp Orthop Traumatol. 2013; 26: 453-460.Pigott JH et al. Inflammatory effects of autologous, genetically modified autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Comp Orthop Traumatol . 2013; 26: 453-460.

Quigley E et al. Quantitative studies of elastin in the optic nerve heads of persons with primary open-angle glaucoma. Ophthalmology 1996; 103: 16801685.Quigley E et al. Quantitative studies of elastin in the optic nerve heads of persons with primary open-angle glaucoma. Ophthalmology 1996; 103: 16801685.

Quigley H. Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80: 389393.Quigley H. Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80: 389393.

Quigley HA. Open-angle glaucoma. New Engl J Med 1993; 328: 10971106.Quigley HA. Open-angle glaucoma. New Engl J Med 1993; 328: 10971106.

Robert MC et al. Persistent leak after glaucoma aqueous shunt implantation. J Glaucoma 2013; 22: 647-651.Robert MC et al. Persistent leak after glaucoma aqueous shunt implantation. J Glaucoma 2013; 22: 647-651.

Tamm ER, Fuchshofer R. What increases outflow resistance in primary open-angle glaucoma? Survey Ophthalmol 2007; 52(suppl 2): S101S104.Tamm ER, Fuchshofer R. What increases outflow resistance in primary open-angle glaucoma? Survey Ophthalmol 2007; 52 (suppl 2): S101S104.

Tamm ER. The trabecular meshwork outflow pathways: Structural and functional aspects. Exp Eye Res 2009; 88: 648655.Tamm ER. The trabecular meshwork outflow pathways: Structural and functional aspects. Exp Eye Res 2009; 88: 648655.

Waschbisch A et al. Interferon beta and vitamin D sSynergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. PLoS One 2014; 9: e115488.Waschbische et al. Interferon beta and vitamin D sSynergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. PLoS One 2014; 9: e115488.

Claims (6)

혈소판을 파쇄하여 얻어진 혈소판의 용해성(soluble) 성분(components)을 유효성분으로 포함하는 녹내장의 예방 또는 치료용 약제학적 조성물.
A pharmaceutical composition for preventing or treating glaucoma comprising, as an active ingredient, soluble components of platelets obtained by breaking platelets.
삭제delete 삭제delete 제 1 항에 있어서, 상기 조성물은 녹내장 환자의 안구에 직접 주입하는 것을 특징으로 하는 조성물. 2. The composition of claim 1, wherein the composition is injected directly into the eye of a glaucoma patient. 제 4 항에 있어서, 상기 조성물은 녹내장 환자의 안구의 초자체강내 직접 주입(intravitreal injection)하는 것을 특징으로 하는 조성물.5. The composition of claim 4, wherein said composition is intravitreal injection of intravitreal injection of eye of a glaucoma patient. 제 1 항에 있어서, 상기 조성물은 안압강하 및 망막신경절세포의 보호를 특징으로 하는 조성물.2. The composition of claim 1, wherein the composition is characterized by decreased intraocular pressure and protection of retinal ganglion cells.
KR1020150026931A 2015-02-26 2015-02-26 Pharmaceutical Composition for Preventing or Treating a Glaucoma Comprising Blood Components as Active Ingredients KR101668462B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150026931A KR101668462B1 (en) 2015-02-26 2015-02-26 Pharmaceutical Composition for Preventing or Treating a Glaucoma Comprising Blood Components as Active Ingredients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150026931A KR101668462B1 (en) 2015-02-26 2015-02-26 Pharmaceutical Composition for Preventing or Treating a Glaucoma Comprising Blood Components as Active Ingredients

Publications (2)

Publication Number Publication Date
KR20160104217A KR20160104217A (en) 2016-09-05
KR101668462B1 true KR101668462B1 (en) 2016-10-24

Family

ID=56938676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150026931A KR101668462B1 (en) 2015-02-26 2015-02-26 Pharmaceutical Composition for Preventing or Treating a Glaucoma Comprising Blood Components as Active Ingredients

Country Status (1)

Country Link
KR (1) KR101668462B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046228A (en) 2021-09-27 2023-04-05 (주) 씨드모젠 Composition for preventing or treating a glaucoma comprising AAV2-F11 protein
KR20230046227A (en) 2021-09-27 2023-04-05 (주) 씨드모젠 Composition for preventing or treating a glaucoma comprising AAV2-Trx2-C3 fusion protein

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317446A (en) * 2009-02-20 2012-01-11 斯克利普斯研究院 Isolating monocyte crowd and relevant treatment are used

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문1:Arch Soc Esp Oftalmol. (2007)
논문2:Nippon Ganka Gakkai Zasshi. (2010)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046228A (en) 2021-09-27 2023-04-05 (주) 씨드모젠 Composition for preventing or treating a glaucoma comprising AAV2-F11 protein
KR20230046227A (en) 2021-09-27 2023-04-05 (주) 씨드모젠 Composition for preventing or treating a glaucoma comprising AAV2-Trx2-C3 fusion protein

Also Published As

Publication number Publication date
KR20160104217A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
ES2811085T3 (en) Compositions, uses, and preparation of platelet lysates
US20210236656A1 (en) Methods for screening human blood products comprising plasma using immunocompromised rodent models
JP7022994B2 (en) How to treat eye inflammation and chemical damage to the eye with extracellular vesicles
AU2014364182B2 (en) Methods and compositions for treating aging-associated conditions
KR101859124B1 (en) Adult stem cells/progenitor cells and stem cell proteins for treatment of eye injuries and diseases
JP2009500297A (en) Cell therapy for ocular degeneration
Yu et al. Neurokinin-1 receptor antagonism ameliorates dry eye disease by inhibiting antigen-presenting cell maturation and T helper 17 cell activation
JP7089603B2 (en) Demethylation to treat eye diseases
Royer et al. Complement and CD4+ T cells drive context-specific corneal sensory neuropathy
Nour et al. P2Y2 receptor agonist INS37217 enhances functional recovery after detachment caused by subretinal injection in normal and rds mice
KR20180071030A (en) Composition for preventing or treating ischemic diseases comprising mitochondria
KR101668462B1 (en) Pharmaceutical Composition for Preventing or Treating a Glaucoma Comprising Blood Components as Active Ingredients
WO2014210454A1 (en) Treatment and diagnosis of ocular disease
US20080260644A1 (en) Chloride transport upregulation for the treatment of traumatic brain injury
Ng et al. Thrombospondin-1–mediated regulation of microglia activation after retinal injury
KR102257163B1 (en) Human monocyte sub-population for treatment of eye diseases and disorders
US20210121494A1 (en) Mtor-inhibitor-containing medicine for treating or preventing ophthalmic symptoms, disorders, or diseases, and application thereof
Yang et al. Alpha 1-antitrypsin inhibits microglia activation and facilitates the survival of iPSC grafts in hypertension mouse model
EP2908910A2 (en) Treatment of brain injury or trauma with tsg-6 protein
CN116492462B (en) Application of PAD4 inhibitor in preventing and treating immune rejection after cornea transplantation
WO2023212417A1 (en) Treatment of diseases and conditions of the eye
Sharif Inflammatory and immunological aspects of glaucoma, optic neuritis, and neuromyelitis optica impacting eyesight
WO2021163304A1 (en) Activation of neuropeptide receptors on plasmacytoid dendritic cells to treat or prevent ocular diseases associated with neovascularization and inflammation
US20150374738A1 (en) Compositions and methods for regulating cell growth and development
WO2019064164A1 (en) Pergolide for use in the treatment of eye diseases associated with an elevated level of vascular endothelial growth factor (vegf) and pharmaceutical composition containing pergolide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190820

Year of fee payment: 4