KR101651540B1 - A fast and accurate altitude analysis method for IFF Mode C - Google Patents

A fast and accurate altitude analysis method for IFF Mode C Download PDF

Info

Publication number
KR101651540B1
KR101651540B1 KR1020150020983A KR20150020983A KR101651540B1 KR 101651540 B1 KR101651540 B1 KR 101651540B1 KR 1020150020983 A KR1020150020983 A KR 1020150020983A KR 20150020983 A KR20150020983 A KR 20150020983A KR 101651540 B1 KR101651540 B1 KR 101651540B1
Authority
KR
South Korea
Prior art keywords
altitude
code
gillham
iff mode
information
Prior art date
Application number
KR1020150020983A
Other languages
Korean (ko)
Other versions
KR20160098848A (en
Inventor
한진우
송규하
김산해
이창훈
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020150020983A priority Critical patent/KR101651540B1/en
Publication of KR20160098848A publication Critical patent/KR20160098848A/en
Application granted granted Critical
Publication of KR101651540B1 publication Critical patent/KR101651540B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/882Radar or analogous systems specially adapted for specific applications for altimeters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

본 발명의 고속 IFF Mode C 정밀 고도 분석 방법은 수신기가 수집한 IFF Mode C 신호가 TOA(Time of Arrival), 주파수, 펄스폭, 펄스세기 정보가 포함된 PDW(Pulse Description Word)의 집합으로 구성되도록 수신 펄스열을 정리하고, 상기 수신 펄스열에 포함된 Gillham Code의 A, B, C, D 코드의 각각을 10진화 코드변수인 G코드(D), G코드(A), G코드(B), G코드(C)로 변환하며, 상기 G코드(D), 상기 G코드(A), 상기 G코드(B), 상기 G코드(C)를 순차적으로 계산해 altitude 값으로 저장하며, 계산된 altitude 값을 이용해 최종 고도분석 결과를 추출함으로써 수집된 펄스를 이용하여 IFF Mode C를 구성하는 Gillham Code의 분석으로부터 고도정보가 산출되고, 특히 최종 고도분석 결과 도출이 방대한 크기와 내용을 담은 테이블 방식 대비 신속하고 정확하게 구해지는 특징이 있다.The high-speed IFF Mode C precision altitude analysis method of the present invention is a method in which the IFF Mode C signal collected by the receiver is composed of a set of PDW (Pulse Description Word) including TOA (Time of Arrival), frequency, pulse width, (A), a G code (B), a G code (B), and a G code (B), which are decoded code variables, (C), and sequentially calculates the G code (D), the G code (A), the G code (B), and the G code (C) and stores them as altitude values. In this paper, we propose a method to obtain the altitude information from the analysis of the Gillham Code which constitutes the IFF Mode C using the collected pulses by extracting the final altitude analysis result. Especially, There are features to be found.

Description

고속 IFF MODE C 정밀 고도 분석 방법{A fast and accurate altitude analysis method for IFF Mode C}A fast and accurate altitude analysis method for IFF Mode C

본 발명은 수동형 전자감시체계에 관한 것으로, 특히 수동형 전자감시체계에 적용된 고속 IFF Mode C 정밀 고도 분석 방법에 관한 것이다.The present invention relates to a passive electronic monitoring system, and more particularly, to a high speed IFF Mode C precision altitude analysis method applied to a passive electronic monitoring system.

일반적으로 IFF(Identification friend or foe)신호는 Mode 1, 2, 3/A, 4, C, S 등과 같은 Mode를 가지고 동작하며, 특히 Mode C는 항공기의 고도 정보를 포함한다.In general, IFF (Identification friend or foe) signal operates in modes 1, 2, 3 / A, 4, C, S and so on. Particularly Mode C includes altitude information of the aircraft.

그러므로, 수동형 전자감시체계는 레이더뿐만 아니라 IFF(Identification friend or foe) 신호에 대하여 신호를 수집/분석하고 위치를 탐지함으로써 이동 항공기에 대한 피아식별을 수행한다.Therefore, a passive electronic surveillance system collects / analyzes signals for IFF (Identification friend or foe) signals as well as radar, and performs location identification to perform peer identification on mobile aircraft.

일례로, 지상국의 피아식별기는 이동 항공기에 ID등의 정보를 확인하기 위하여 IFF interrogation(질의) 신호를 보내고, 이에 대한 항공기의 transpond(응답) 신호를 수신해 이동 항공기의 위치를 탐지한다.For example, a ground station's peer identifier sends an IFF interrogation signal to the mobile aircraft to identify information such as an ID, and receives the aircraft's transpond signal to detect the location of the mobile aircraft.

국내특허공개 10-2013-0125216(2013년11월18일)Korean Patent Publication No. 10-2013-0125216 (November 18, 2013)

하지만, 항공기 고도 정보의 코드가 포함된 Mode C를 수신한 지상국은 고도정보 테이블의 고도 정보와 매칭을 통해 고도를 분석함으로써 방대한 크기와 내용을 담은 테이블로 인해 고도분석이 느리면서 정밀성도 낮을 수밖에 없다.However, the ground station receiving the mode C including the code of the aircraft altitude information analyzes the altitude through matching with the altitude information of the altitude information table, so that the altitude analysis is slow and the precision is low due to the table containing the large size and contents .

이에 상기와 같은 점을 감안한 본 발명은 수집된 펄스를 이용하여 IFF Mode C를 구성하는 Gillham Code의 분석으로부터 고도정보가 산출됨으로써 방대한 크기와 내용을 담은 테이블 방식 대비 신속하고 정확한 고도 분석이 이루어질 수 있는 고속 IFF Mode C 정밀 고도 분석 방법을 제공하는데 목적이 있다.In view of the above, according to the present invention, the altitude information is calculated from the analysis of the Gillham Code constituting the IFF Mode C using the collected pulses, so that the rapid and accurate altitude analysis can be performed High Speed IFF Mode C It is aimed to provide a method of accurate altitude analysis.

상기와 같은 목적을 달성하기 위한 본 발명의 고속 IFF Mode C 정밀 고도 분석 방법은 수신기가 수집한 IFF Mode C 신호가 TOA(Time of Arrival), 주파수, 펄스폭, 펄스세기 정보가 포함된 PDW(Pulse Description Word)의 집합으로 구성되도록 수신 펄스열을 정리하고, 상기 수신 펄스열에 포함된 Gillham Code의 A, B, C, D 코드의 각각을 10진화 코드변수인 G코드(D), G코드(A), G코드(B), G코드(C)로 변환하는 제 1단계; 상기 G코드(D)를 계산하고 altitude 값으로 저장하는 제 2단계; 상기 G코드(A)를 계산하고 altitude 값으로 저장하는 제 3단계; 상기 G코드(B)를 계산하고 altitude 값으로 저장하는 제 4단계; 상기 G코드(C)를 계산하고 altitude 값으로 저장하는 제 5단계; 상기 계산된 각각의 altitude 값을 이용해 최종 고도분석 결과로 추출하는 제 6단계; 로 이루어진 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method for analyzing a high-speed IFF Mode C altitude analyzing method, the method comprising the steps of: measuring an IFF Mode C signal collected by a receiver using a pulse width modulation (PDW) (A), B, C, and D codes of the Gillham code included in the received pulse string are classified into G code (D) and G code (A), which are decoded code variables, , A G code (B), and a G code (C); A second step of calculating the G code (D) and storing it as an altitude value; A third step of calculating the G code (A) and storing it as an altitude value; A fourth step of calculating the G code (B) and storing it as an altitude value; A fifth step of calculating the G code (C) and storing it as an altitude value; A sixth step of extracting a result of the final altitude analysis using each of the calculated altitude values; .

상기 Gillham Code의 A, B, C, D 코드는 송신된 신호를 수신한 비행체에서 자신의 고도정보를 알리기 위하여 자신의 고도정보를 A, B, C, D 코드로 매핑한 정보이다.The A, B, C, and D codes of the Gillham code are information obtained by mapping the altitude information of the aircraft to the A, B, C, and D codes in order to inform the altitude information of the aircraft.

상기 최종고도분석 결과는 저장된 고도정보를 이용해 최종비행체의 altitude 값으로 설정된다.The final altitude analysis result is set to the altitude value of the final flight using the stored altitude information.

이러한 본 발명은 수집된 펄스를 이용하여 IFF Mode C를 구성하는 Gillham Code(A,B,C,D)를 분석하고, 이를 바탕으로 비행체의 고도정보를 신속하고 정확하게 분석함으로써 고도분석의 정확도가 높고, 특히 기존 테이블 매칭 방식 대비 적은 메모리 사용량이 적으면서 분석 속도가 빨라서 실시간 위협 탐지가 필요한 수동형 전자감시체계에 직접 적용 가능한 효과가 있다.The present invention analyzes the Gillham code (A, B, C, D) constituting the IFF Mode C using the collected pulses and analyzes the altitude information of the flying object quickly and accurately, Especially, it can be directly applied to a passive electronic monitoring system that requires real time threat detection because the analysis speed is low with less memory usage compared to existing table matching method.

도 1은 본 발명에 따른 고속 IFF Mode C 정밀 고도 분석 방법의 순서도이고, 도 2는 본 발명에 따른 IFF Mode C 신호의 펄스 형태이며, 도 3은 고속 IFF Mode C 정밀 고도 분석 방법의 고도계산 흐름도이다.FIG. 1 is a flowchart of a high-speed IFF Mode C precision altitude analysis method according to the present invention, FIG. 2 is a pulse form of an IFF Mode C signal according to the present invention, to be.

이하 본 발명의 실시예를 첨부된 예시도면을 참조로 상세히 설명하며, 이러한 실시예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which illustrate exemplary embodiments of the present invention. The present invention is not limited to these embodiments.

도 1은 본 발명에 따른 고속 IFF Mode C 정밀 고도 분석 방법의 절차를 도시하고 있다. 이하, 설명되는 IFF 신호탐지방법은 수동형 전자감시체계 또는 수동형 전자감시체계를 구성하는 지상국 피아식별기를 통해 구현됨을 전제로 한다. 수신기는 수동형 전자감시체계 또는 지상국 피아식별기의 구성요소이다.FIG. 1 shows a procedure of a high-speed IFF Mode C precision altitude analysis method according to the present invention. The IFF signal detection method described below is assumed to be implemented through a ground station peer identifier constituting a passive electronic monitoring system or a passive electronic monitoring system. The receiver is a component of a passive electronic surveillance system or a ground station peer identifier.

도시된 바와 같이, 수동형 전자감시체계 또는 지상국 피아식별기에서 수행되는 고도 분석 방법은 S100의 수집펄스를 수신하는 단계, S200의 G코드(D)를 계산하는 단계, S300G의 코드(A)를 계산하는 단계, S400의 G코드(B)를 계산하는 단계, S500의 G코드(C)를 계산하는 단계, S600의 고도분석 결과를 추출하는 단계로 구분된다.As shown, an altitude analysis method performed in a passive electronic surveillance system or a ground station peer identifier includes receiving a collection pulse of S100, calculating G code (D) of S200, calculating code (A) of S300G , Calculating G code (B) in S400, calculating G code (C) in S500, and extracting the altitude analysis result in S600.

이로부터, 고도 분석 방법은 수집된 펄스를 이용하여 IFF Mode C를 구성하는 Gillham Code(A,B,C,D로 구성, 이하 'G코드')를 분석하고 이를 바탕으로 고도정보를 신속하고 정확하게 분석함에 그 특징이 있다.From this, the altitude analysis method analyzes the Gillham Code (composed of A, B, C, D, hereinafter referred to as 'G code') constituting the IFF Mode C using the collected pulses, Analysis has its characteristics.

도 2는 IFF Mode C 신호(1)의 수신 펄스열로서, 수신 펄스열은 F1, C1, A1, C2, A2, C4, X4, X, B1, D1, B2, D2, B4, D4, F2로 구성된다. 도 3은 고속 IFF Mode C 정밀 고도 분석 방법의 고도계산 흐름으로서, Gillham Code_D(10)를 정점으로 해 Gillham Code_A(20-1,20-2), Gillham Code_B(30-1,...,30-4), Gillham Code_C(40-1,...,40-8)가 그 하부 구조를 구성한다.2 is a reception pulse train of the IFF Mode C signal 1 and the reception pulse train is composed of F1, C1, A1, C2, A2, C4, X4, X, B1, D1, B2, D2, B4, D4 and F2 . 3 is an elevation calculation flow chart of the high-speed IFF Mode C precision altitude analysis method. The Gillham Code_A (20-1, 20-2), Gillham Code_B (30-1, ..., 30 -4), and Gillham Code_C (40-1, ..., 40-8) constitute a substructure thereof.

일례로, 상기 Gillham Code_A(20-1,20-2)는 D=0,3으로 정의된 조건의 Gillham Code_A(20-1), D=1,2로 정의된 조건의 Gillham Code_A(20-2)로 구분된다. 상기 Gillham Code_B(30-1,30-2,30-3,30-4)는 D=0,3, A = 0,3,6,5로 정의된 조건의 Gillham Code_B(30-1), D=0,3, A = 1,2,7,4로 정의된 조건의 Gillham Code_B(30-2), D=1,2, A = 4,7,2,1로 정의된 조건의 Gillham Code_B(30-3), D=1,2, A = 5,6,3,0으로 정의된 조건의 Gillham Code_B(30-4)로 구분된다. 상기 Gillham Code_C(40-1,40-2,40-3,40-4,40-5,40-6,40-7,40-8)는 D=0,3, A = 0,3,6,5, B = 0,3,6,5로 정의된 조건의 Gillham Code_C(40-1), D=0,3, A = 0,3,6,5, B = 1,2,7,4로 정의된 조건의 Gillham Code_C(40-2), D=0,3, A = 1,2,7,4, B = 1,2,7,4로 정의된 조건의 Gillham Code_C(40-3), D=0,3, A = 1,2,7,4, B = 0,3,6,5로 정의된 조건의 Gillham Code_C(40-4), D=1,2, A = 4,7,2,1, B = 0,3,6,5로 정의된 조건의 Gillham Code_C(40-5), D=1,2, A = 4,7,2,1, B = 1,2,7,4로 정의된 조건의 Gillham Code_C(40-6), D=1,2, A = 5,6,3,0, B = 1,2,7,4로 정의된 조건의 Gillham Code_C(40-7), D=1,2, A = 5,6,3,0, B = 0,3,6,5로 정의된 조건의 Gillham Code_C(40-8)로 구분된다.For example, the Gillham Code_A (20-1, 20-2) is Gillham Code_A (20-1) with a condition defined as D = 0,3, Gillham Code_A (20-2 ). Gillham Code_B (30-1, 30-2, 30-3, and 30-4) has Gillham Code_B (30-1), D Gillham Code_B (30-2) with the condition defined as A = 1, 0, 3, A = 30-3), Gillham Code_B (30-4) with the condition defined as D = 1,2, A = 5,6,3,0. The Gillham Code_C (40-1, 40-2, 40-3, 40-4, 40-5, 40-6, 40-7, 40-8) is D = 0,3, A = Gillham Code_C (40-1), D = 0,3, A = 0,3,6,5, B = 1,2,7,4 Gillham Code_C (40-3) with the condition defined by Gillham Code_C (40-2), D = 0,3, A = 1,2,7,4, B = Gillham Code_C (40-4), D = 1, 2, A = 4, 7 with the conditions defined as D = 0,3, A = 1,2,7,4, B = 0,3,6,5 , Gillham Code_C (40-5), D = 1, 2, A = 4, 7, 2, 1, B = 1, 2, , Gillham Code_C (40-6) with the condition defined as 4, Dill = 1, 2, A = 5,6,3,0, B = 7), Gillham Code_C (40-8) with the conditions defined as D = 1,2, A = 5,6,3,0, B = 0,3,6,5.

이하, 본 발명의 고도 분석 방법에 대한 실시예를 도 1,2,3을 참조로 상세히 설명한다.Hereinafter, embodiments of the altitude analysis method of the present invention will be described in detail with reference to FIGS.

구체적으로, S100의 수집펄스수신단계는 수신기가 수집한 IFF Mode C 신호의 펄스열을 이용해 고도분석이 이루어지도록 각 펄스들을 정리하는 과정이다. 수신된 결과는 PDW(Pulse Description Word)의 집합으로 구성되며. PDW에는 TOA(Time of Arrival), 주파수, 펄스폭, 펄스세기 정보 등이 포함되어 있다. 도2의 펄스열과 같이, 수신 펄스열은 그 순서대로 F1, C1, A1, C2, A2, C4, X4, X, B1, D1, B2, D2, B4, D4, F2로 구성된다. F1과 F2는 반드시 존재해야 하며, X는 쓰이지 않고, 나머지 A, B, C, D 코드들은 고도정보를 위하여 사용된다.More specifically, in step S100, the reception pulses of the IFF Mode C signals are collected by the receiver so as to perform altitude analysis. The received result consists of a set of PDW (Pulse Description Word). The PDW includes Time of Arrival (TOA), frequency, pulse width, and pulse strength information. 2, the reception pulse train is composed of F1, C1, A1, C2, A2, C4, X4, X, B1, D1, B2, D2, B4, D4 and F2. F1 and F2 must be present, X is not used, and the remaining A, B, C, and D codes are used for altitude information.

이 과정에서, 송신된 신호를 수신한 비행체는 자신의 고도정보를 알리기 위하여 비행체에 탑재된 Encoder가 자신의 고도정보를 A, B, C, D 코드로 매핑시킨다. 이 경우, 매핑은 각 고도에 맞게 해당 펄스(A1~D4)들을 ON(존재) 혹은 OFF(비존재)시켜주는 방식이다. 그러므로, 고도정보를 분석하기 위하여 수신기로 수신된 비행체의 각 펄스들(A1~D4)은 A, B, C, D 4개의 코드변수에 10진화되어 저장된다. 이때, 고도정보인 altitude 변수는 이후의 고도계산을 위하여 altitude = 0으로 설정된다.In this process, the aircraft receiving the transmitted signal maps its altitude information to the A, B, C and D codes in order to inform its altitude information. In this case, the mapping is a method of turning on (present) or turning off (non-existent) corresponding pulses A1 to D4 according to each altitude. Therefore, in order to analyze the altitude information, each pulse (A1 to D4) of the aircraft received by the receiver is decoded and stored in four code variables A, B, C and D. At this time, the altitude variable, which is the altitude information, is set to altitude = 0 for the subsequent altitude calculation.

A, B, C, D코드 십진화 식 :A, B, C, D Code Decimation formula:

Figure 112015014591628-pat00001
Figure 112015014591628-pat00001

Figure 112015014591628-pat00002
Figure 112015014591628-pat00002

Figure 112015014591628-pat00003
Figure 112015014591628-pat00003

Figure 112015014591628-pat00004
Figure 112015014591628-pat00004

이로부터, A = 0,1,2,3,6,7,5,4, A = 4,5,7,6,2,3,1,0으로 산출되고, B = 0,1,3,2,6,5,4, B = 4,5,7,6,2,3,1,0, B = 0,1,3,2,6,7,5,4, B = 4,5,7,6,2,3,1,0으로 산출되며, C = 1,3,2,6,4, C = 4,6,2,3,1, C = 1,3,2,6,4, C = 4,6,2,3,1 C = 1,3,2,6,4, C = 4,6,2,3,1, C = 1,3,2,6,4, C = 4,6,2,3,1로 산출되고, D는 0,1 및 3,4로 산출된다.From this, A = 0,1,2,3,6,7,5,4, A = 4,5,7,6,2,3,1,0, and B = 0,1,3, 2,6,5,4, B = 4,5,7,6,2,3,1,0, B = 0,1,3,2,6,7,5,4, B = 4,5, 2, 3, 1, 0, and C = 1, 3, 2, 6, 4, C = , C = 4,6,2,3,1 C = 1,3,2,6,4, C = 4,6,2,3,1, C = 1,3,2,6,4, C = 4, 6, 2, 3, 1, and D is calculated as 0, 1, and 3,

구체적으로, S200의 G 코드(D)계산단계는 고도값 계산을 위하여 수집펄스수신(S100)에서 정의된 D를 확인하여 altitude 변수를 변경한다. 이는 표 1과 같은 방법으로 D 값을 확인하여 altitude를 변경하며, Gillham Code_D(10)로 정의된다.Specifically, the G code (D) calculation step S200 changes the altitude variable by checking D defined in the collection pulse reception (S100) for the altitude value calculation. This changes the altitude by checking the D value in the same way as Table 1, and is defined as Gillham Code_D (10).

DD altitude 변경 방법How to change altitude 00 변경없음No change 1One altitude = altitude + 32000altitude = altitude + 32000 33 altitude = altitude + 32000x2altitude = altitude + 32000x2 22 altitude = altitude + 32000x3altitude = altitude + 32000x3

S200의 G 코드(D) 계산 결과, G 코드(D) 계산이 적용된 altitude 값을 저장할 수 있다.As a result of the G code (D) calculation of S200, the altitude value to which the G code (D) calculation is applied can be stored.

구체적으로, S300의 G 코드(A) 계산단계는 altitude 값 계산을 위하여 수집펄스 수신(S100)에서 정의된 A를 확인하여 altitude 변수를 변경한다. 이는, 표 2와 같은 방법으로 D, A 값을 동시에 확인하여 altitude를 변경하며, Gillham Code_A(20-1), Gillham Code_A(20-2)로 각각 정의된다.Specifically, the G code (A) calculation step of S300 changes the altitude variable by checking A defined in the collection pulse reception (S100) for altitude value calculation. It is defined as Gillham Code_A (20-1) and Gillham Code_A (20-2), respectively, by checking the D and A values at the same time and changing the altitude in the same manner as in Table 2.

DD AA altitude 변경방법How to change altitude 0,30,3 00 변경없음No change 1One altitude = altitude + 4000altitude = altitude + 4000 33 altitude = altitude + 4000x2altitude = altitude + 4000x2 22 altitude = altitude + 4000x3 altitude = altitude + 4000x3 66 altitude = altitude + 4000x4altitude = altitude + 4000x4 77 altitude = altitude + 4000x5altitude = altitude + 4000x5 55 altitude = altitude + 4000x6altitude = altitude + 4000x6 44 altitude = altitude + 4000x7altitude = altitude + 4000x7 1,21,2 44 변경없음No change 55 altitude = altitude + 4000altitude = altitude + 4000 77 altitude = altitude + 4000x2altitude = altitude + 4000x2 66 altitude = altitude + 4000x3altitude = altitude + 4000x3 22 altitude = altitude + 4000x4altitude = altitude + 4000x4 33 altitude = altitude + 4000x4altitude = altitude + 4000x4 1One altitude = altitude + 4000x6altitude = altitude + 4000x6 00 altitude = altitude + 4000x7altitude = altitude + 4000x7

S300의 G 코드(A) 계산 결과, G 코드(A) 계산이 적용된 altitude 값을 저장할 수 있다.As a result of the calculation of the G code (A) of S300, the altitude value to which the G code (A) calculation is applied can be stored.

구체적으로, S400의 G 코드(B) 계산단계는 고도값 계산을 위하여 수집펄스 수신(S100)에서 정의된 B를 확인하여 altitude 변수를 변경한다. 이는, 표 3과 같은 방법으로 D, A, B 값을 동시에 확인하여 altitude를 변경하며, Gillham Code_B(30-1), Gillham Code_B(30-2), Gillham Code_B(30-3), Gillham Code_B(30-4)로 각각 정의된다.Specifically, the G code (B) calculation step of S400 changes the altitude variable by checking B defined in the collection pulse reception (S100) for the altitude value calculation. This is done by checking the values of D, A, and B at the same time and changing the altitude in the same way as Table 3 and changing the altitude by using the Gillham Code_B (30-1), Gillham Code_B (30-2), Gillham Code_B 30-4), respectively.

DD AA BB altitude 변경방법How to change altitude 0,30,3 0,3,6,50,3,6,5 00 변경없음No change 1One 변경없음No change 33 altitude = altitude + 1000altitude = altitude + 1000 22 altitude = altitude + 1000altitude = altitude + 1000 66 altitude = altitude + 1000x2altitude = altitude + 1000x2 77 altitude = altitude + 1000x2altitude = altitude + 1000x2 55 altitude = altitude + 1000x3altitude = altitude + 1000x3 44 altitude = altitude + 1000x3altitude = altitude + 1000x3 1,2,7,41,2,7,4 44 변경없음No change 55 변경없음No change 77 altitude = altitude + 1000altitude = altitude + 1000 66 altitude = altitude + 1000altitude = altitude + 1000 22 altitude = altitude + 1000x2altitude = altitude + 1000x2 33 altitude = altitude + 1000x2altitude = altitude + 1000x2 1One altitude = altitude + 1000x3altitude = altitude + 1000x3 00 altitude = altitude + 1000x3altitude = altitude + 1000x3 1,21,2 4,7,2,14,7,2,1 00 변경없음No change 1One 변경없음No change 33 altitude = altitude + 1000altitude = altitude + 1000 22 altitude = altitude + 1000altitude = altitude + 1000 66 altitude = altitude + 1000x2altitude = altitude + 1000x2 77 altitude = altitude + 1000x2altitude = altitude + 1000x2 55 altitude = altitude + 1000x3altitude = altitude + 1000x3 44 altitude = altitude + 1000x3altitude = altitude + 1000x3 5,6,3,05,6,3,0 44 변경없음No change 55 변경없음No change 77 altitude = altitude + 1000altitude = altitude + 1000 66 altitude = altitude + 1000altitude = altitude + 1000 22 altitude = altitude + 1000x2altitude = altitude + 1000x2 33 altitude = altitude + 1000x2altitude = altitude + 1000x2 1One altitude = altitude + 1000x3altitude = altitude + 1000x3 00 altitude = altitude + 1000x3altitude = altitude + 1000x3

S400의 G 코드(B) 계산 결과, G 코드(b) 계산이 적용된 altitude 값을 저장할 수 있다.As a result of the calculation of the G code (B) in S400, the altitude value to which the G code (b) calculation is applied can be stored.

구체적으로, S500의 G 코드(C) 계산단계는 고도값 계산을 위하여 수집펄스 수신(S100)에서 정의된 B를 확인하여 altitude 변수를 변경한다. 이는, 표 4와 같은 방법으로 D, A, B, C 값을 동시에 확인하여 altitude를 변경하며, Gillham Code_C(40-1), Gillham Code_C(40-2), Gillham Code_C(40-3), Gillham Code_C(40-4), Gillham Code_C(40-5), Gillham Code_C(40-6), Gillham Code_C(40-7), Gillham Code_C(40-8)로 각각 정의된다.Specifically, the G code (C) calculation step of S500 changes the altitude variable by checking B defined in the collection pulse reception (S100) for the altitude value calculation. This is done by checking the values of D, A, B and C at the same time and changing the altitude in the same manner as Table 4, and changing the altitude by using Gillham Code_C (40-1), Gillham Code_C (40-2), Gillham Code_C (40-4), Gillham Code_C (40-5), Gillham Code_C (40-6), Gillham Code_C (40-7), and Gillham Code_C (40-8), respectively.

DD AA BB CC altitude 변경방법How to change altitude 0,30,3 0,3,6,50,3,6,5 0,3,6,50,3,6,5 1One 변경없음No change 33 altitude = altitude + 100-1200altitude = altitude + 100-1200 22 altitude = altitude + 100x2-1200altitude = altitude + 100x2-1200 66 altitude = altitude + 100x3-1200altitude = altitude + 100x3-1200 44 altitude = altitude + 100x4-1200altitude = altitude + 100x4-1200 1,2,7,41,2,7,4 44 변경없음No change 66 altitude = altitude + 100-700altitude = altitude + 100-700 22 altitude = altitude + 100x2-700altitude = altitude + 100x2-700 33 altitude = altitude + 100x3-700altitude = altitude + 100x3-700 1One altitude = altitude + 100x4-700altitude = altitude + 100x4-700 1,2,7,41,2,7,4 1,2,7,41,2,7,4 1One 변경없음No change 33 altitude = altitude + 100-1200altitude = altitude + 100-1200 22 altitude = altitude + 100x2-1200altitude = altitude + 100x2-1200 66 altitude = altitude + 100x3-1200altitude = altitude + 100x3-1200 44 altitude = altitude + 100x4-1200altitude = altitude + 100x4-1200 0,3,6,50,3,6,5 44 변경없음No change 66 altitude = altitude + 100-700altitude = altitude + 100-700 22 altitude = altitude + 100x2-700altitude = altitude + 100x2-700 33 altitude = altitude + 100x3-700altitude = altitude + 100x3-700 1One altitude = altitude + 100x4-700altitude = altitude + 100x4-700 1,21,2 4,7,2,14,7,2,1 0,3,6,50,3,6,5 1One 변경없음No change 33 altitude = altitude + 100-1200altitude = altitude + 100-1200 22 altitude = altitude + 100x2-1200altitude = altitude + 100x2-1200 66 altitude = altitude + 100x3-1200altitude = altitude + 100x3-1200 44 altitude = altitude + 100x4-1200altitude = altitude + 100x4-1200 1,2,7,41,2,7,4 44 변경없음No change 66 altitude = altitude + 100-700altitude = altitude + 100-700 22 altitude = altitude + 100x2-700altitude = altitude + 100x2-700 33 altitude = altitude + 100x3-700altitude = altitude + 100x3-700 1One altitude = altitude + 100x4-700altitude = altitude + 100x4-700 5,6,3,05,6,3,0 1,2,7,41,2,7,4 1One 변경없음No change 33 altitude = altitude + 100-1200altitude = altitude + 100-1200 22 altitude = altitude + 100x2-1200altitude = altitude + 100x2-1200 66 altitude = altitude + 100x3-1200altitude = altitude + 100x3-1200 44 altitude = altitude + 100x4-1200altitude = altitude + 100x4-1200 0,3,6,50,3,6,5 44 변경없음No change 66 altitude = altitude + 100-700altitude = altitude + 100-700 22 altitude = altitude + 100x2-700altitude = altitude + 100x2-700 33 altitude = altitude + 100x3-700altitude = altitude + 100x3-700 1One altitude = altitude + 100x4-700altitude = altitude + 100x4-700

S500의 G 코드(C) 계산 결과, G 코드(C) 계산이 적용된 altitude 값을 저장할 수 있다.As a result of calculation of the G code (C) of S500, an altitude value to which the G code (C) calculation is applied can be stored.

구체적으로, S600의 고도분석 결과 추출단계는 G코드(D,A,B,C) 계산 과정을 거쳐 계산된 altitude 값을 최종 고도분석의 결과로 추출하는 과정이다. 이를 위해, 고도분석 결과 추출단계에서는 저장된 고도정보를 이용해 최종 고도분석 결과로 추출하고, 그 결과로부터 IFF Mode C 신호를 수신하여 분석한 최종 비행체의 고도가 altitude 값으로 설정된다.Specifically, the step S600 of extracting the altitude analysis result is a process of extracting the altitude value calculated through the calculation of the G code (D, A, B, C) as a result of the final altitude analysis. For this purpose, the altitude analysis result extraction step extracts the altitude information using the stored altitude information, and the altitude of the final flight object analyzed by receiving the IFF Mode C signal is set to the altitude value.

전술된 바와 같이, 본 실시예에 따른 고속 IFF Mode C 정밀 고도 분석 방법은 수신기가 수집한 IFF Mode C 신호가 TOA(Time of Arrival), 주파수, 펄스폭, 펄스세기 정보가 포함된 PDW(Pulse Description Word)의 집합으로 구성되도록 수신 펄스열을 정리하고, 상기 수신 펄스열에 포함된 Gillham Code의 A, B, C, D 코드의 각각을 10진화 코드변수인 G코드(D), G코드(A), G코드(B), G코드(C)로 변환하며, 상기 G코드(D), 상기 G코드(A), 상기 G코드(B), 상기 G코드(C)를 순차적으로 계산해 altitude 값으로 저장하며, 계산된 altitude 값을 이용해 최종 고도분석 결과를 추출함으로써 수집된 펄스를 이용하여 IFF Mode C를 구성하는 Gillham Code의 분석으로부터 고도정보가 산출되고, 특히 최종 고도분석 결과 도출이 방대한 크기와 내용을 담은 테이블 방식 대비 신속하고 정확하게 구해질 수 있다.As described above, in the high-speed IFF Mode C precision altitude analysis method according to the present embodiment, the IFF Mode C signal collected by the receiver includes a Pulse Description (PDW) including Time of Arrival (TOA), frequency, pulse width, (A), a G code (A), and a G code (B), which are decoded code variables, of the Gillham codes included in the received pulse train, (G), the G code (B), and the G code (C) are sequentially calculated and stored as an altitude value by converting the G code (D), the G code The altitude information is calculated from the analysis of the Gillham Code that constructs the IFF Mode C using the collected pulses by extracting the final altitude analysis result using the calculated altitude value. Especially, Filling can be obtained quickly and accurately compared to the table method.

1 : IFF Mode C 신호
10 : Gillham Code_D 20-1,20-2 : Gillham Code_A
30-1,...,30-4 : Gillham Code_B
40-1,...,40-8 : Gillham Code_C
1: IFF Mode C signal
10: Gillham Code_D 20-1, 20-2: Gillham Code_A
30-1, ..., 30-4: Gillham Code_B
40-1, ..., 40-8: Gillham Code_C

Claims (4)

수신기가 수집한 IFF Mode C 신호가 TOA(Time of Arrival), 주파수, 펄스폭, 펄스세기 정보가 포함된 PDW(Pulse Description Word)의 집합으로 구성되도록 수신 펄스열을 정리하고, 상기 수신 펄스열에 포함된 Gillham Code의 A, B, C, D 코드의 각각을 10진화 코드변수인 G코드(D), G코드(A), G코드(B), G코드(C)로 변환하는 제 1단계;
상기 G코드(D)를 계산하고 altitude 값으로 저장하는 제 2단계;
상기 G코드(A)를 계산하고 altitude 값으로 저장하는 제 3단계;
상기 G코드(B)를 계산하고 altitude 값으로 저장하는 제 4단계;
상기 G코드(C)를 계산하고 altitude 값으로 저장하는 제 5단계;
상기 계산된 각각의 altitude 값을 이용해 최종 고도분석 결과로 추출하는 제 6단계;
로 이루어진 것을 특징으로 하는 고속 IFF MODE C 정밀 고도 분석 방법.
The reception pulse train is organized such that the IFF Mode C signal collected by the receiver is composed of a set of PDWs (Pulse Description Word) including Time of Arrival (TOA), frequency, pulse width and pulse strength information, A first step of converting each of the A, B, C and D codes of the Gillham code into G code (D), G code (A), G code (B) and G code (C), which are decoded code variables;
A second step of calculating the G code (D) and storing it as an altitude value;
A third step of calculating the G code (A) and storing it as an altitude value;
A fourth step of calculating the G code (B) and storing it as an altitude value;
A fifth step of calculating the G code (C) and storing it as an altitude value;
A sixth step of extracting a result of the final altitude analysis using each of the calculated altitude values;
And a high-speed IFF MODE C precision altitude analysis method.
청구항 1에 있어서, 상기 Gillham Code의 A, B, C, D 코드는 송신된 신호를 수신한 비행체에서 자신의 고도정보를 알리기 위하여 자신의 고도정보를 A, B, C, D 코드로 매핑한 정보인 것을 특징으로 하는 고속 IFF MODE C 정밀 고도 분석 방법.
The method as claimed in claim 1, wherein the A, B, C, and D codes of the Gillham code are information obtained by mapping the altitude information of the aircraft to A, B, C, and D codes to inform the altitude information of the aircraft, Speed IFF MODE C precision altitude analysis method.
청구항 1에 있어서, 상기 A, B, C, D 코드의 10진화는
Figure 112015014591628-pat00005

Figure 112015014591628-pat00006

Figure 112015014591628-pat00007

Figure 112015014591628-pat00008

로 변환되는 것을 특징으로 하는 고속 IFF MODE C 정밀 고도 분석 방법.
The method of claim 1, wherein the deconvolution of the A, B, C, D code
Figure 112015014591628-pat00005

Figure 112015014591628-pat00006

Figure 112015014591628-pat00007

Figure 112015014591628-pat00008

To a high speed IFF MODE C precision altitude analysis method.
청구항 1에 있어서, 상기 최종고도분석 결과는 저장된 고도정보를 이용해 최종 비행체의 altitude 값으로 설정되는 것을 특징으로 하는 고속 IFF MODE C 정밀 고도 분석 방법.The method of claim 1, wherein the final altitude analysis result is set to an altitude value of the final flight using the stored altitude information.
KR1020150020983A 2015-02-11 2015-02-11 A fast and accurate altitude analysis method for IFF Mode C KR101651540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150020983A KR101651540B1 (en) 2015-02-11 2015-02-11 A fast and accurate altitude analysis method for IFF Mode C

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150020983A KR101651540B1 (en) 2015-02-11 2015-02-11 A fast and accurate altitude analysis method for IFF Mode C

Publications (2)

Publication Number Publication Date
KR20160098848A KR20160098848A (en) 2016-08-19
KR101651540B1 true KR101651540B1 (en) 2016-08-26

Family

ID=56874911

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150020983A KR101651540B1 (en) 2015-02-11 2015-02-11 A fast and accurate altitude analysis method for IFF Mode C

Country Status (1)

Country Link
KR (1) KR101651540B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117375771B (en) * 2023-12-08 2024-05-28 长沙先度科技有限公司 Frame header detection method and device for IFF mode five signals and signal receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010047230A1 (en) 2000-02-03 2001-11-29 Scott Gremmert Device, method and computer program product for altimetry system
US20030102996A1 (en) 2001-11-30 2003-06-05 Sanford Norman Ray Reduced split target reply processor for secondary surveillance radars and identification friend or foe systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041303A (en) * 1998-12-22 2000-07-15 박태진 Friend or foe discriminating method of radar system
KR101378887B1 (en) 2012-05-08 2014-03-28 국방과학연구소 Apparatus and system for identifying friend or foe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010047230A1 (en) 2000-02-03 2001-11-29 Scott Gremmert Device, method and computer program product for altimetry system
US20030102996A1 (en) 2001-11-30 2003-06-05 Sanford Norman Ray Reduced split target reply processor for secondary surveillance radars and identification friend or foe systems

Also Published As

Publication number Publication date
KR20160098848A (en) 2016-08-19

Similar Documents

Publication Publication Date Title
CN109884586A (en) Unmanned plane localization method, device, system and storage medium based on ultra-wide band
ITTO20070623A1 (en) DETECTION OF REPLICATIONS IN A SECONDARY SURVEILLANCE RADAR
CN105681121B (en) A kind of detection method of 1090ES ADS-B message headers
CN203070092U (en) Simulation test system of airborne crashproof unit
CN110378387B (en) Cloud bottom height monitoring method based on wind-cloud-fourth satellite and ground-based millimeter wave radar
WO2020112191A2 (en) System and method for determining geolocation of a signal source
CN102298685A (en) Automotive electronic radio-frequency identification parameter detecting system based on virtual instrument
CN105021887A (en) System for automatically collecting data of electromagnetic environment for testing of data chain of unmanned plane
CN103969631A (en) System delay calibrating method and device for satellite-borne microwave radar
CN112763993A (en) Method and device for calibrating radar parameters, electronic equipment and storage medium
KR101651540B1 (en) A fast and accurate altitude analysis method for IFF Mode C
RU2584689C1 (en) Multistage system for determining location of aircraft
KR101651541B1 (en) A method of detecting Identification friend or foe signal based on sliding window
van der Merwe et al. Low-cost COTS GNSS interference monitoring, detection, and classification system
CN105208345B (en) Transmission facility identification method based on unmanned plane
CN106093924A (en) Communication and the movement state information extracting method of radar collaborative perception
CN108287353A (en) Space-based unmanned plane communications satellite positioning and tracing method
CN105487049A (en) Method and system for detecting and identifying indirect ultra-wideband signal
CN104502936A (en) High-precision positioning and navigation system
KR20190083875A (en) Method for analyzing pulse train of identification friend or foe signal and apparatus thereof
CN105137419B (en) Tracking before a kind of particle filter detection of utilization graing lobe gain
RU136192U1 (en) RADAR DEVICE FOR DETECTION OF UNMANNED AIRCRAFT
JP2013061155A (en) Aircraft noise monitoring method and aircraft noise monitoring device
EP1777674A1 (en) Aircraft takeoff/landing time measuring method and aircraft takeoff/landing management method using the method
US7729658B2 (en) Method and devices for utilizing data in data formats which cannot be directly processed

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant