KR101631104B1 - Method and device for transmitting multimedia data in wireless communication system - Google Patents

Method and device for transmitting multimedia data in wireless communication system Download PDF

Info

Publication number
KR101631104B1
KR101631104B1 KR1020150032359A KR20150032359A KR101631104B1 KR 101631104 B1 KR101631104 B1 KR 101631104B1 KR 1020150032359 A KR1020150032359 A KR 1020150032359A KR 20150032359 A KR20150032359 A KR 20150032359A KR 101631104 B1 KR101631104 B1 KR 101631104B1
Authority
KR
South Korea
Prior art keywords
sdus
rlc
mac pdu
sdu
transmitted
Prior art date
Application number
KR1020150032359A
Other languages
Korean (ko)
Other versions
KR20150042754A (en
Inventor
김성훈
데르 벨데 힘케 반
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020150032359A priority Critical patent/KR101631104B1/en
Publication of KR20150042754A publication Critical patent/KR20150042754A/en
Application granted granted Critical
Publication of KR101631104B1 publication Critical patent/KR101631104B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • H04L65/4076
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/611Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/321Interlayer communication protocols or service data unit [SDU] definitions; Interfaces between layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Abstract

본 발명의 무선 통신 시스템에서 멀티미디어 방송 데이터를 전송하는 방법은 현재 SYNC 기간에 해당하는 MBMS 서브프레임에서 전송하기 위한 MAC PDU를 생성하는 과정에서, RLC PDU 페이로드를 모두 구성하기 이전에 미수신 RLC SDU들이 존재하는지 여부를 판단하는 단계, 상기 미수신 RLC SDU들이 존재하는 경우, 이전 SYNC 프레임에 수납된 POC 또는 PPS를 이용하여 상기 미수신 RLC SDU들의 크기를 계산하는 단계, 상기 미수신 RLC SDU들의 크기를 이용하여 상기 미수신 RLC SDU들이 어떤 MBMS 서브프레임에 대응하는 MAC PDU에 수납되어야 하는지 판단하는 단계, 및 상기 미수신 RLC SDU들이 수납되었어야하는 MAC PDU에 해당하는 MBMS 서브 프레임에서는 전송을 중지하고, 유효한 RLC SDU들만 수납하는 MAC PDU를 구성하여 해당 MBMS 서브프레임에서 전송하는 단계를 포함하는 것을 특징으로 한다.
본 발명인 무선 통신 시스템에서 멀티미디어 방송 데이터를 전송하는 방법 및 장치에 의하면 무선 채널을 통해 전송되는 멀티미디어 방송 데이터의 동질성을 유지하여 데이터를 안정적으로 전송할 수 있다.
In the method of transmitting multimedia broadcasting data in the wireless communication system of the present invention, in the process of generating a MAC PDU for transmission in an MBMS subframe corresponding to a current SYNC period, before the RLC PDU payload is configured, Calculating a size of the non-received RLC SDUs by using a POC or a PPS stored in a previous SYNC frame when the RLC SDUs are not present, Determining which MBMS subframes corresponding to the missing RLC SDUs should be accommodated in the MAC PDU corresponding to the received MBMS subframes and stopping transmission in the MBMS subframe corresponding to the MAC PDUs in which the missing RLC SDUs should be received, And transmitting the MAC PDU in the corresponding MBMS subframe. It shall be.
According to the method and apparatus for transmitting multimedia broadcast data in the wireless communication system of the present invention, it is possible to stably transmit data by maintaining the homogeneity of multimedia broadcast data transmitted over a wireless channel.

Description

무선 통신 시스템에서 멀티미디어 방송 데이터를 전송하는 장치 및 방법{METHOD AND DEVICE FOR TRANSMITTING MULTIMEDIA DATA IN WIRELESS COMMUNICATION SYSTEM } BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an apparatus and a method for transmitting multimedia broadcast data in a wireless communication system,

본 발명은 무선 통신 시스템에 관한 것으로, 특히 무선 통신 시스템에서 멀티미디어 방송 데이터를 생성하고 전송하는 방법 및 장치에 관한 것이다. The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for generating and transmitting multimedia broadcasting data in a wireless communication system.

일반적으로 무선 통신 시스템은 사용자의 이동성을 확보하면서 통신을 제공하기 위한 목적으로 개발되었다. 이러한 무선 통신 시스템은 기술의 비약적인 발전에 힘입어 음성 통신은 물론 고속의 데이터 통신 서비스를 제공할 수 있는 단계에 이르렀다. Generally, a wireless communication system has been developed for providing communication while ensuring user mobility. This wireless communication system has reached the stage of providing high-speed data communication service as well as voice communication due to the breakthrough of the technology.

근래에는 차세대 무선 통신 시스템 중 하나로 3GPP에서 LTE(Long Term Evolution)에 대한 규격 작업이 진행 중이다. LTE는 2010년 정도를 상용화 목표로 해서, 현재 제공되고 있는 데이터 전송률보다 높은 최대 100 Mbps 정도의 전송 속도를 가지는 고속 패킷 기반 통신을 구현하는 기술이다. 이를 위해 여러 가지 방안이 논의되고 있는데, 예를 들어 네트워크의 구조를 간단히 해서 통신로 상에 위치하는 노드의 수를 줄이는 방안이나, 무선 프로토콜들을 최대한 무선 채널에 근접시키는 방안 등이 논의 중이다. Recently, as one of the next generation wireless communication systems, standard works for LTE (Long Term Evolution) are underway in 3GPP. LTE is a technology that realizes high-speed packet-based communication with a transfer rate of up to 100 Mbps, which is higher than the currently available data rate, with the aim of commercialization in 2010 or so. For example, there are discussions on how to reduce the number of nodes on the communication path by simplifying the structure of the network, and to make the wireless protocols as close as possible to the wireless channel.

한편, 데이터 서비스는 음성 서비스와 달리 전송하고자 하는 데이터의 양과 채널 상황에 따라 할당할 수 있는 자원 등이 결정된다. 따라서 무선 통신 시스템과 같은 무선 통신 시스템에서는 스케줄러에서 전송하고자 하는 자원의 양과 채널의 상황 및 데이터의 양 등을 고려하여 전송 자원을 할당하는 등의 관리가 이루어진다. 이는 차세대 무선 통신 시스템 중 하나인 LTE에서도 동일하게 이루어지며 기지국에 위치한 스케줄러가 무선 전송 자원을 관리하고 할당한다. 또한 MAC, RLC 같은 2 계층 프로토콜도 기지국에 위치한다. Unlike the voice service, the data service determines the amount of data to be transmitted and the resources that can be allocated according to the channel status. Therefore, in a wireless communication system such as a wireless communication system, the scheduler manages allocation of transmission resources in consideration of the amount of resources to be transmitted, the channel status, and the amount of data. This is the same in LTE, one of the next generation wireless communication systems, and the scheduler located in the base station manages and allocates wireless transmission resources. A two-layer protocol such as MAC and RLC is also located in the base station.

LTE 무선 통신 시스템과 같이 증대된 무선 용량과 향상된 품질을 제공하는 무선 통신 시스템에서는 멀티미디어 방송 서비스를 제공할 여건이 충분하기 때문에, 멀티미디어 방송 서비스를 무선 통신과 접목하고자 하는 시도가 지속되고 있다. LTE에서는 멀티미디어 방송 서비스를 MBMS(Multimedia Broadcast Multicast Service)라고 하며, MBMS 서버에서 발생한 데이터를 다수의 기지국에서 송출하는 형태로 정의되고 있다. MBMS 서비스를 제공하는 기지국들이 무선으로 동일한 데이터를 송출할 경우, 무선 상의 전송 효율이 극대화된다. 하지만 전술한 바와 같이 MAC(Medium Access Control)이나 RLC(Radio Link Control) 같은 제 2 계층 프로토콜이 기지국에 위치하기 때문에 MBMS 서버에서 발생한 데이터가 기지국의 제 2 계층에서 처리된 후 다른 기지국에서 발생한 데이터와의 동질성이 깨질 수도 있다. In wireless communication systems that provide increased radio capacity and improved quality, such as the LTE wireless communication system, there is a sufficient condition to provide a multimedia broadcasting service, and therefore attempts to combine multimedia broadcasting service with wireless communication have continued. In LTE, the multimedia broadcasting service is referred to as an MBMS (Multimedia Broadcast Multicast Service), and data generated from the MBMS server is defined as being transmitted from a plurality of base stations. When the base stations providing the MBMS service transmit the same data over the radio, the transmission efficiency on the radio is maximized. However, since the second layer protocol such as MAC (Medium Access Control) or RLC (Radio Link Control) is located at the base station as described above, data generated at the MBMS server is processed at the second layer of the base station, May be broken.

본 발명에서는 무선 채널을 통해 전송되는 멀티미디어 방송 데이터의 동질성을 유지하면서 전송하는 방법 및 장치를 제안하는 것을 목적으로 한다.The present invention aims to propose a method and apparatus for transmitting multimedia broadcasting data transmitted through a wireless channel while maintaining homogeneity.

상기와 같은 문제점을 해결하기 위한 본 발명의 무선 통신 시스템에서 멀티미디어 방송 데이터를 전송하는 방법은 현재 SYNC 기간에 해당하는 MBMS(Multimedia Broadcast Multicast Service) 서브프레임에서 전송하기 위한 MAC PDU(Medium Access Control Protocol Data Unit)를 생성하는 과정에서, RLC PDU(Radio Link Control Protocol Data Unit)의 페이로드를 모두 구성하기 이전에 미수신 RLC SDU(Radio Link Control Service Data Unit)들이 불연속적으로 존재하는지 여부를 판단하는 단계, 상기 미수신 RLC SDU들이 불연속적으로 존재하는 경우, 상기 미수신 RLC SDU의 인접 RLC SDU들의 OC(Octet Counter)를 이용하여 상기 미수신 RLC SDU의 크기를 계산하고, 상기 미수신 RLC SDU의 크기를 이용하서 상기 미수신 RLC SDU가 어떤 MBMS 서브프레임에 대응되는 MAC PDU에 수납되어야 하는지 판단하는 단계, 및 상기 미수신 RLC SDU가 수납되었어야하는 MAC PDU에 해당하는 MBMS 서브 프레임에서는 전송을 중지하고, 유효한 RLC SDU들만 수납하는 MAC PDU를 구성하여 해당 MBMS 서브프레임에서 전송하는 단계를 포함하는 것을 특징으로 한다. In order to solve the above problems, a method for transmitting multimedia broadcast data in a wireless communication system according to the present invention includes: receiving a Medium Access Control Protocol Data (MAC PDU) for transmission in a Multimedia Broadcast Multicast Service (MBMS) Determining whether radio link control service data units (RLC SDUs) are discontinuously present before all the payloads of the RLC PDUs are configured in the process of generating the RLC SDUs, Calculating a size of the non-received RLC SDU using an OC (Octet Counter) of neighboring RLC SDUs of the missing RLC SDU if the RLC SDUs are discontinuously present; Determining if an RLC SDU should be stored in a MAC PDU corresponding to which MBMS subframe; In the MBMS sub-frame corresponding to a MAC PDU that should have been lead to stop the transmission, by constructing a MAC PDU for storing only valid RLC SDU it is characterized in that it comprises the step of transmitting from the MBMS subframe.

상기와 같은 문제점을 해결하기 위한 본 발명의 무선 통신 시스템에서 멀티미디어 방송 데이터를 전송하는 다른 방법은 현재 SYNC 기간에 해당하는 MBMS(Multimedia Broadcast Multicast Service) 서브프레임에서 전송하기 위한 MAC PDU(Medium Access Control Protocol Data Unit)를 생성하는 과정에서, RLC PDU(Radio Link Control Protocol Data Unit)의 페이로드를 모두 구성하기 이전에 미수신 RLC SDU(Radio Link Control Service Data Unit)들이 존재하는지 여부를 판단하는 단계, 상기 미수신 RLC SDU들이 존재하는 경우, 이전 SYNC 프레임에 수납된 POC(Previous Octet Count) 또는 PPS(Previous Payload Size)를 이용하여 상기 미수신 RLC SDU들의 크기를 계산하는 단계, 상기 미수신 RLC SDU들의 크기를 이용하여 상기 미수신 RLC SDU들이 어떤 MBMS 서브프레임에 대응하는 MAC PDU에 수납되어야 하는지 판단하는 단계, 및 상기 미수신 RLC SDU들이 수납되었어야하는 MAC PDU에 해당하는 MBMS 서브 프레임에서는 전송을 중지하고, 유효한 RLC SDU들만 수납하는 MAC PDU를 구성하여 해당 MBMS 서브프레임에서 전송하는 단계를 포함하는 것을 특징으로 한다. According to another aspect of the present invention, there is provided a method for transmitting multimedia broadcast data in a wireless communication system including a Medium Access Control Protocol (MAC) PDU (Medium Access Control Protocol) for transmission in a Multimedia Broadcast Multicast Service (MBMS) (RLC SDU) before configuring all the payloads of an RLC PDU in a process of generating RLC SDUs (Data Units), determining whether or not there are RLC SDUs Calculating a size of the non-received RLC SDUs by using a POC (Previous Octet Count) or a PPS (Previous Payload Size) stored in a previous SYNC frame when RLC SDUs are present; Determining whether an unreceived RLC SDU should be stored in a MAC PDU corresponding to which MBMS subframe, And stopping transmission in an MBMS subframe corresponding to an MAC PDU to which RLC SDUs should be stored, and constructing a MAC PDU storing only valid RLC SDUs, and transmitting the MAC PDU in the corresponding MBMS subframe.

상기와 같은 문제점을 해결하기 위한 본 발명의 무선 통신 시스템에서 멀티미디어 방송 데이터를 전송하는 또 다른 방법은 현재 SYNC 기간에 해당하는 MBMS(Multimedia Broadcast Multicast Service) 서브프레임에서 전송하기 위한 MAC PDU(Medium Access Control Protocol Data Unit)를 생성하는 과정에서, RLC PDU(Radio Link Control Protocol Data Unit)의 페이로드를 모두 구성하기 이전에 미수신 RLC SDU(Radio Link Control Service Data Unit)들이 존재하는지 여부를 판단하는 단계, 미수신 RLC SDU들이 존재하는 경우, 상기 SYNC 기간에 대하여 상기 RLC SDU 크기 정보를 수납한 제어 메시지를 수신하였는지 여부를 판단하는 단계, 상기 제어 메시지에 수납된 상기 RLC SDU 크기 정보를 이용하여 상기 미수신 RLC SDU들이 어떤 MBMS 서브프레임에 대응하는 MAC PDU에 수납되어야 하는지 판단하는 단계, 및 상기 미수신 RLC SDU들이 수납되었어야하는 MAC PDU에 해당하는 MBMS 서브 프레임에서는 전송을 중지하고, 유효한 RLC SDU들만 수납하는 MAC PDU를 구성하여 해당 MBMS 서브프레임에서 전송하는 단계를 포함하는 것을 특징으로 한다. According to another aspect of the present invention, there is provided a method for transmitting multimedia broadcast data in a wireless communication system, the method comprising: receiving a MAC PDU (Medium Access Control (MAC) PDU) for transmission in a Multimedia Broadcast Multicast Service (MBMS) Determining whether or not there are RLC SDUs before configuring all the payloads of the RLC PDU in the process of generating the RLC PDUs, Determining whether a control message containing the RLC SDU size information has been received for the SYNC period if RLC SDUs are present, determining whether the RLC SDU size information is included in the RLC SDU size information received in the control message, Determining which MBMS subframe should be accommodated in a MAC PDU corresponding to the MBMS subframe, And stopping the transmission in the MBMS subframe corresponding to the MAC PDU to which the SDUs should be stored, and constructing a MAC PDU storing only the valid RLC SDUs, and transmitting the MAC PDU in the corresponding MBMS subframe.

또한 상기와 같은 문제점을 해결하기 위한 본 발명의 무선 통신 시스템에서 멀티미디어 방송 데이터를 전송하는 장치는 RLC SDU(Radio Link Control Service Data Unit) 혹은 상기 RLC SDU의 일부를 PN(Packet Number)에 따라 저장하고, 미수신 RLC SDU들의 크기를 이용하여 RLC PDU(Radio Link Control Protocol Data Unit)의 페이로드를 생성하는 RLC SDU 저장부, 상기 미수신 RLC SDU의 크기를 산출하여 상기 RLC SDU 저장부로 전송하는 미수신 RLC PDU 크기 산출부, 상기 RLC PDU 페이로드에 수납될 데이터의 양을 결정하고, 해당 크기의 RLC PDU의 페이로드를 생성할 것을 상기 RLC SDU 저장부에 지시하는 RLC PDU 생성부를 포함하고, 상기 미수신 RLC SDU 크기 산출부에서 특정 RLC SDU 이후로는 미수신 RLC SDU의 크기를 산출할 수 없는 경우, 상기 RLC SDU 저장부는 상기 특정 RLC SDU 이후의 RLC SDU로는 더 이상 RLC 페이로드를 생성하지 않으며, 상기 미수신 RLC SDU 크기 산출부에서 미수신 RLC SDU의 크기를 계산한 경우, 상기 RLC SDU 저장부는 상기 미수신 RLC SDU의 크기를 이용하여 상기 RLC PDU 페이로드를 생성할 수 있는 시점부터는 상기 RLC PDU 페이로드를 생성하여 상기 RLC PDU 생성부로 전달하는 것을 특징으로 한다.In order to solve the above problems, the apparatus for transmitting multimedia broadcast data in the wireless communication system of the present invention stores an RLC SDU (Radio Link Control Service Data Unit) or a part of the RLC SDU according to a PN (Packet Number) An RLC SDU storage unit for generating a payload of an RLC PDU using the size of the RLC SDUs, and a RLC SDU storing unit for calculating a size of the RLC SDU, And an RLC PDU generation unit for determining an amount of data to be stored in the RLC PDU payload and instructing the RLC SDU storage unit to generate a payload of an RLC PDU of a corresponding size, If the size of an unreceived RLC SDU can not be calculated after a specific RLC SDU in the calculation unit, the RLC SDU storage unit stores RLC SDUs after the specific RLC SDU in the RLC SDU, When the RLC SDU size calculation unit of the RLC SDU size calculation unit calculates the size of the RLC SDU size, the RLC SDU storage unit stores the size of the RLC SDU, And generates the RLC PDU payload and transfers the payload to the RLC PDU generating unit.

본 발명인 무선 통신 시스템에서 멀티미디어 방송 데이터를 전송하는 방법 및 장치에 의하면 무선 채널을 통해 전송되는 멀티미디어 방송 데이터의 동질성을 유지하여 데이터를 안정적으로 전송할 수 있다.According to the method and apparatus for transmitting multimedia broadcast data in the wireless communication system of the present invention, it is possible to stably transmit data by maintaining the homogeneity of multimedia broadcast data transmitted over a wireless channel.

도 1은 LTE 이동 통신 시스템의 구조를 도시하는 도면.
도 2는 LTE 이동 통신 시스템에서 프로토콜 구조를 도시한 도면.
도 3은 일반적인 MBMS 서비스 제공 방법을 설명하는 도면.
도 4는 MBMS 데이터 중 일부 데이터가 미수신 되었을 경우 일반적인 기지국의 동작을 설명하는 도면.
도 5는 일반적인 SYNC 프레임의 구조를 도시한 도면.
도 6은 SYNC 프레임에서 PN과 OC를 설정하는 일반적인 방법을 설명하는 도면.
도 7은 PN과 OC를 이용해서 미수신된 데이터의 양과 개수를 판단하는 일반적인 방법을 설명하는 도면.
도 8은 본 발명의 제 1 실시예를 설명한 도면.
도 9는 본 발명의 제 1 실시예를 설명한 또 다른 도면.
도 10은 본 발명의 제 1 실시예에 따른 기지국 장치의 동작을 도시하는 순서도.
도 11은 본 발명의 제 2 실시예를 설명한 도면.
도 12는 본 발명의 제 2 실시예에 따른 SYNC 프레임 구조를 도시한 도면.
도 13은 본 발명의 제 2 실시예에 따른 기지국 장치의 동작을 도시하는 순서도.
도 14는 본 발명의 제 3 실시예를 설명한 도면.
도 15는 본 발명의 제 3 실시예에 따른 기지국 장치의 동작을 도시하는 순서도.
도 16은 본 발명의 실시예들에 따른 기지국 장치를 도시한 도면.
Brief Description of the Drawings Fig. 1 shows the structure of an LTE mobile communication system. Fig.
2 is a diagram illustrating a protocol structure in an LTE mobile communication system;
3 is a diagram illustrating a general MBMS service providing method;
4 is a diagram illustrating an operation of a general base station when some data among MBMS data is not received.
5 is a diagram showing a structure of a general SYNC frame;
6 is a diagram for explaining a general method of setting PN and OC in a SYNC frame;
FIG. 7 is a diagram for explaining a general method of determining the amount and the number of data not received using PN and OC. FIG.
8 is a view for explaining a first embodiment of the present invention.
FIG. 9 is another diagram illustrating the first embodiment of the present invention. FIG.
10 is a flowchart showing the operation of the base station apparatus according to the first embodiment of the present invention;
11 is a view for explaining a second embodiment of the present invention.
FIG. 12 illustrates a SYNC frame structure according to a second embodiment of the present invention; FIG.
13 is a flowchart showing the operation of the base station apparatus according to the second embodiment of the present invention;
14 is a view for explaining a third embodiment of the present invention;
15 is a flowchart showing the operation of the base station apparatus according to the third embodiment of the present invention;
16 illustrates a base station apparatus in accordance with embodiments of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의하여야 한다. 또한 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the same components are denoted by the same reference numerals as possible in the accompanying drawings. Further, the detailed description of well-known functions and constructions that may obscure the gist of the present invention will be omitted.

또한 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. Also, the terms and words used in the present specification and claims should not be construed to be limited to ordinary or dictionary meanings, and the inventor is not limited to the concept of terms in order to describe his invention in the best way. It should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be properly defined.

본 발명을 본격적으로 설명하기에 앞서 도 1과 도 2를 통해 LTE 이동 통신 시스템에 대해서 좀 더 자세히 설명한다. Before describing the present invention in full, LTE mobile communication system will be described in more detail with reference to FIG. 1 and FIG.

도 1은 LTE 시스템의 구조를 도시하는 도면이다. 1 is a diagram showing the structure of an LTE system.

도 1을 참조하여 설명하면, LTE 시스템은 차세대 무선 액세스 네트워크(Evolved Radio Access Network, 이하 E-RAN라 한다)(110, 112)는 차세대 기지국(Evolved Node B, 이하 ENB라 한다)(120, 122, 124, 126, 128)과 상위 노드(Access Gateway라 한다)(130, 132)의 2 노드 구조로 단순화된다. 사용자 단말(User Equipment, 이하 UE라 칭한다)(101)은 E-RAN(110, 112)에 의해 인터넷 프로토콜(Internet Protocol, 이하 IP라 한다) 네트워크로 접속한다. Referring to FIG. 1, an LTE system includes an Evolved Radio Access Network (E-RAN) 110 and an Evolved Radio Access Network (hereinafter referred to as E-RAN) , 124, 126, and 128) and an upper node (referred to as an Access Gateway) 130 and 132, respectively. A User Equipment (UE) 101 accesses an Internet Protocol (IP) network by an E-RAN 110 or 112.

ENB(120 내지 128)는 기존 UMTS 시스템의 Node B에 대응된다. ENB(120 내지 128)는 UE(101)와 무선 채널로 연결되며 기존 UMTS 시스템의 Node B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE(101)들의 상황 정보를 취합해서 스케줄링을 하는 장치가 필요하며 이를 ENB(120 내지 128)가 담당한다. 하나의 ENB(120 내지 128)는 통상 다수의 셀들을 제어한다. The ENBs 120 to 128 correspond to the Node B of the existing UMTS system. The ENBs 120 to 128 are connected to the UE 101 through a radio channel and perform a more complex role than the Node B of the existing UMTS system. In the LTE system, all user traffic including a real-time service such as Voice over IP (VoIP) over the Internet protocol is serviced through a shared channel. Therefore, a device for collecting and scheduling situation information of UEs 101 is required And the ENBs 120 to 128 take charge thereof. One ENB 120-128 typically controls a number of cells.

최대 100 Mbps의 전송속도를 구현하기 위해서 LTE는 최대 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. In order to realize a transmission rate of up to 100 Mbps, LTE uses Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology in a bandwidth of up to 20 MHz. In addition, Adaptive Modulation and Coding (AMC) scheme is used to determine a modulation scheme and a channel coding rate in accordance with a channel state of a UE.

도 1에 도시하지는 않았지만, LTE 시스템에는 MBMS(Multimedia Broadcast Multicast Service) 데이터를 생성해서 ENB(120 내지 128)에게 전송하는 MBMS 서버가 존재한다. MBMS 서버와 ENB(120 내지 128)는 IP 네트워크로 연결된다. 1, there is an MBMS server for generating multimedia broadcast multicast service (MBMS) data and transmitting the MBMS data to the ENBs 120 to 128 in the LTE system. The MBMS server and the ENBs 120 to 128 are connected to an IP network.

도 2는 LTE 이동 통신 시스템에서의 프로토콜 구조를 도시한 도면이다.2 is a diagram illustrating a protocol structure in an LTE mobile communication system.

도 2를 참조하여 설명하면, LTE 시스템의 무선 프로토콜은 PDCP(Packet Data Convergence Protocol) 계층(205, 240), RLC(Radio Link Control) 계층(210, 235), MAC(Medium Access Control) 계층(215, 230)으로 이루어진다. 2, a wireless protocol of the LTE system includes Packet Data Convergence Protocol (PDCP) layers 205 and 240, Radio Link Control (RLC) layers 210 and 235, a MAC (Medium Access Control) layer 215 , 230).

PDCP 계층(205, 240)은 IP 헤더 압축/복원 등의 동작을 담당하고, RLC 계층(210, 235)은 PDCP PDU(Protocol Data Unit)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다. 상기 ARQ 동작 등의 수행을 위해 RLC 계층(210, 235)에서는 RLC 헤더가 부가된다.The PDCP layers 205 and 240 perform operations such as IP header compression / decompression and the RLC layers 210 and 235 reconfigure PDCP protocol data units (PDUs) to an appropriate size to perform ARQ operations. In order to perform the ARQ operation or the like, an RLC header is added in the RLC layers 210 and 235.

MAC 계층(215,230)은 한 단말에 구성된 여러 RLC 계층(210, 235)의 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화 한다. 상기 다중화 및 역다중화를 위해서 MAC 계층(215,230)에서는 MAC 헤더가 부가된다. The MAC layers 215 and 230 are connected to the devices of the RLC layers 210 and 235 configured in a terminal, multiplex RLC PDUs into MAC PDUs, and demultiplex RLC PDUs from MAC PDUs. For the multiplexing and demultiplexing, a MAC header is added in the MAC layer 215 and 230.

PHY 계층(220, 225)은 상위 계층의 데이터를 채널 코딩 및 변조하고 OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다. 전송을 기준으로 프로토콜 엔티티로 입력되는 데이터를 SDU(Service Data Unit), 출력되는 데이터를 PDU(Protocol Data Unit)이라고 한다. The PHY layers 220 and 225 perform channel coding and modulation on the data of the upper layer and transmit them to a wireless channel by making OFDM symbols or demodulate OFDM symbols received through a wireless channel, . Data to be input to the protocol entity based on transmission is referred to as SDU (Service Data Unit), and data to be output is referred to as PDU (Protocol Data Unit).

이하에서는 MBMS(Multimedia Broadcast Multicast Service)에 대해서 간략히 설명한다. Hereinafter, Multimedia Broadcast Multicast Service (MBMS) will be briefly described.

도 3은 일반적인 MBMS 서비스 제공 방법을 설명하는 도면이다.3 is a view for explaining a general MBMS service providing method.

도 3을 참조하여 설명하면, MBMS 서버(305)에서는 MBMS 서비스 데이터가 발생하고, 상기 데이터는 MBMS 전송에 참여하는 모든 ENB들(310, 315, 320, 325, 330)에게 전송된다. ENB들(310, 315, 320, 325, 330)은 MBMS 서버(305)로부터 수신한 데이터를 저장해두었다가 약속된 시점에 동시에 전송한다. 3, MBMS service data is generated in the MBMS server 305, and the data is transmitted to all the ENBs 310, 315, 320, 325, and 330 participating in the MBMS transmission. The ENBs 310, 315, 320, 325, and 330 store data received from the MBMS server 305 and simultaneously transmit the received data.

동시에 전송된 데이터들은 동일한 신호이므로 신호 세기가 상호 증폭되는 효과가 나타나며, ENB들(310, 315, 320, 325, 330)의 수신 영역에 위치한 단말들은 여러 ENB들(310, 315, 320, 325, 330)에서 동시에 전송되는 신호를 수신함으로써 하나의 ENB가 전송하는 신호만 수신하는 것에 비해서 훨씬 높은 수신 품질을 향유할 수 있다. 이와 같이 ENB들(310, 315, 320, 325, 330)이 동일한 신호를 전송하기 위해서는 이래와 같은 조건이 전제되어야 한다. 315, 320, 325, and 330, the terminals located in the reception areas of the ENBs 310, 315, 320, 325, and 330 may receive the ENBs 310, 315, 320, 325, 330, it is possible to enjoy a much higher reception quality than that of receiving only a signal transmitted by one ENB. In order for the ENBs 310, 315, 320, 325, and 330 to transmit the same signal, the same conditions as above must be assumed.

첫째, ENB들(310, 315, 320, 325, 330)이 동일한 데이터를 수신하여야 하고, 둘째 ENB들(310, 315, 320, 325, 330)이 수신한 데이터로부터 동일한 데이터를 생성해야 하며, 마지막으로 ENB들(310, 315, 320, 325, 330)은 동일한 데이터를 동시에 전송하여야 한다. First, the ENBs 310, 315, 320, 325 and 330 must receive the same data, the second ENBs 310, 315, 320, 325 and 330 must generate the same data from the received data, The ENBs 310, 315, 320, 325, and 330 must transmit the same data at the same time.

도 4는 MBMS 데이터 중 일부 데이터가 미수신 되었을 경우 일반적인 기지국의 동작을 설명하는 도면이다. 4 is a view for explaining an operation of a general base station when some data among MBMS data is not received.

도 4를 참조하여 설명하면, 통상 MBMS 서버가 ENB에게 전송하는 것은 IP 패킷이 PDCP 처리 과정을 거친 뒤 발생하는 RLC SDU이다. 일반적인 데이터와 달리 MBMS 데이터에 대해서는 헤더 압축이나 비화 등이 적용되지 않기 때문에, RLC SDU는 결국 IP 패킷이다. 본 발명에서는 ENB에 RLC SDU가 입력되는 것으로 기술하지만, 이는 ENB에 IP 패킷이 입력되는 것과 결과적으로 동일하다. Referring to FIG. 4, a normal MBMS server transmits an RLC SDU to an ENB after an IP packet has undergone a PDCP process. RLC SDUs are IP packets because, unlike general data, header compression or non-mapping is not applied to MBMS data. In the present invention, it is described that the RLC SDU is input to the ENB, but this is the same as the IP packet is input to the ENB.

ENB는 MBMS 서버로부터 수신한 RLC SDU를 적절한 크기로 분할하거나 연접한 뒤 RLC 헤더를 부가해서 RLC PDU를 구성하고, 상기 RLC PDU를 다른 RLC PDU와 다중화하고 MAC 헤더를 부가해서 MAC PDU를 구성한다. 무선 채널을 통해서는 상기 MAC PDU가 전송된다. 이를 보다 상세히 설명하면, 하나의 MAC PDU에는 하나의 RLC PDU만 수납되므로, 적절한 크기로 분할되거나 연접된 RLC SDU에 RLC 헤더(415)와 MAC 헤더(410)가 부가되어서 하나의 MAC PDU(420)가 생성되는 것이다. The ENB divides or concatenates the RLC SDUs received from the MBMS server into an appropriate size, forms an RLC PDU by adding an RLC header, multiplexes the RLC PDU with another RLC PDU, and adds a MAC header to the MAC PDU. The MAC PDU is transmitted through a wireless channel. More specifically, since only one RLC PDU is stored in one MAC PDU, an RLC header 415 and a MAC header 410 are added to an RLC SDU divided or concatenated to an appropriate size, Is generated.

모든 ENB는 동일한 버전의 RLC 프로토콜과 MAC 프로토콜을 구비하기 때문에 모든 ENB가 모든 RLC SDU를 빠짐없이 수신한다면, 각 ENB에서 RLC SDU로부터 생성된 MAC PDU들은 정확하게 동일한 내용을 가진다. 그러나 어떤 ENB가 임의의 RLC SDU를 수신하지 못하면 해당 ENB는 상기 수신하지 못한 RLC SDU로부터 MAC PDU를 생성할 수 없다. Since all ENBs have the same version of RLC protocol and MAC protocol, if all ENBs receive all RLC SDUs in full, the MAC PDUs generated from RLC SDUs in each ENB have exactly the same contents. However, if an ENB fails to receive an arbitrary RLC SDU, the ENB can not generate a MAC PDU from the RLC SDU not received.

이러한 문제점을 해결하기 위한 최선의 방법은 상기 RLC SDU가 수납되었을 MAC PDU는 전송하지 않고, 다음 MAC PDU부터 전송하는 것이다. 예를 들어 임의의 ENB가 RLC SDU [m+1](425)을 제외한 나머지 RLC SDU들만 수신하였다면, 상기 ENB는 RLC SDU[m+1]의 일부라도 수납되는 MAC PDU들, 즉 MAC PDU [n] (420)과 MAC PDU [n+1](425)은 전송하지 않고, MAC PDU [n+2](430)부터 전송을 재개한다. The best way to solve this problem is to transmit the MAC PDU to which the RLC SDU has been received, but not the next MAC PDU. For example, if an ENB receives only the remaining RLC SDUs except for the RLC SDU [m + 1] 425, the ENB also receives the MAC PDUs, i.e. MAC PDU [n + 1] N 420] and MAC PDU [n + 1] 425, but resumes transmission from the MAC PDU [n + 2] 430.

한편 ENB가 MAC PDU [n+2] 부터 전송을 재개하기 위해서는, ENB는 MAC PDU [n+2]에 어떤 RLC SDU들의 몇 번째 바이트부터 수납되어야 하는지를 판단하여야 한다. 이 경우 RLC SDU마다 부가되는 MAC 헤더의 오버헤드와 RLC 헤더의 오버헤드가 예측가능하다면, ENB는 미수신된 RLC SDU의 개수와 미수신된 RLC SDU 크기의 총합으로부터 미수신된 RLC SDU들이 몇 바이트의 데이터를 발생시켜 MAC PDU에 포함시켰는지를 계산할 수 있다. 또한 이를 이용하여 전송해서는 안 되는 MAC PDU에 어떤 RLC SDU들이 포함되며, 전송을 시작할 MAC PDU에는 어떤 RLC SDU의 몇 번째 바이트부터 수납되어야 하는지를 판단할 수 있다. On the other hand, in order for the ENB to resume transmission from the MAC PDU [n + 2], the ENB must determine from which byte of the RLC SDUs the MAC PDU [n + 2] should be stored. In this case, if the overhead of the MAC header added to each RLC SDU and the overhead of the RLC header can be predicted, the ENB determines how many bytes of data the RLC SDUs which have not been received from the sum of the number of RLC SDUs that have not been received, And included in the MAC PDU can be calculated. It is also possible to determine which RLC SDUs are included in the MAC PDUs that should not be transmitted and how many bytes in which RLC SDUs should be stored in the MAC PDUs to start transmission.

또한 하나의 RLC SDU로부터 발생하는 RLC 오버 헤더의 양과 MAC 오버 헤더의 양이 예측가능 하다면, 상술한 동작을 수행하기 위해 ENB에게 필요한 정보는 수신하지 못한 RLC SDU들의 크기의 총합과 개수이다. 따라서 수신하지 못한 RLC SDU들의 크기의 총합과 개수를 ENB가 알 수 있도록, MBMS 서버는 RLC SDU를 SYNC 프레임에 수납해서 전송한다. 이하에서는 SYNC 프레임에 관하여는 보다 자세히 설명한다.Also, if the amount of RLC overhead generated from one RLC SDU and the amount of MAC overhead can be predicted, the information required for the ENB to perform the above operation is the sum and the number of the sizes of RLC SDUs that have not been received. Therefore, the MBMS server stores the RLC SDU in the SYNC frame so that the ENB can know the total number and the number of the RLC SDUs that have not been received. Hereinafter, the SYNC frame will be described in more detail.

도 5는 일반적인 SYNC 프레임의 구조를 도시한 도면이다. 5 is a diagram showing a structure of a general SYNC frame.

도 5를 참조하여 설명하면. SYNC 프레임(505)은 헤더(510)와 페이로드(520)로 구성되며, 페이로드(520)에는 하나의 RLC SDU가 수납된다. 이하 설명의 편의를 위해서 SYNC 프레임(505)의 페이로드(520)에 수납된 데이터와 RLC SDU를 혼용한다.Referring to FIG. The SYNC frame 505 includes a header 510 and a payload 520, and one RLC SDU is stored in the payload 520. The data stored in the payload 520 of the SYNC frame 505 and the RLC SDU are mixed for convenience of explanation.

헤더(510)에는 Packet Number, Octet Counter, SYNC 기간 관련 정보 등이 수납된다. Packet Number(이하 PN)는 해당 SYNC 프레임이 몇 번째 SYNC 프레임이지를 지시하는 정보이며, Octet Counter(이하 OC)는 해당 SYNC 프레임 전송 시까지 전송된 SYNC 프레임의 페이로드의 총 양을 지시하는 정보이다. 또한 SYNC 기간 관련 정보는 SYNC 프레임에 수납된 RLC SDU가 어떤 SYNC 기간 동안 전송되어야 하는지를 나타내는 정보이다. 여기서 SYNC 기간이란 무선 채널 상에서 정의되는 소정의 기간이다.Packet Number, Octet Counter, SYNC period related information, and the like are stored in the header 510. Packet Number (PN) is information indicating how many SYNC frames the corresponding SYNC frame is, and Octet Counter (OC) is information indicating the total amount of payloads of the SYNC frame transmitted until the corresponding SYNC frame is transmitted . The SYNC period related information is information indicating which SYNC period the RLC SDU stored in the SYNC frame is to be transmitted. Here, the SYNC period is a predetermined period defined on the radio channel.

하나의 SYNC 기간 동안 하나 이상의 서브 프레임이 MBMS 서브 프레임으로 지정되며, MBMS 서브 프레임에서는 오직 MBMS 데이터를 수납한 MAC PDU만 전송된다. SYNC 기간에 할당된 MBMS 서브 프레임의 개수에 따라 해당 SYNC 기간 동안 전송될 수 있는 MBMS 데이터의 양이 결정된다. 또한 네트워크는 MBMS 서비스의 데이터 전송률 등을 고려해서 SYNC 기간에 할당할 MBMS 서브 프레임의 개수 등을 결정한다. One or more subframes are designated as an MBMS subframe during one SYNC period, and only an MAC PDU containing only MBMS data is transmitted in the MBMS subframe. The amount of MBMS data that can be transmitted during the corresponding SYNC period is determined according to the number of MBMS subframes allocated in the SYNC period. Also, the network determines the number of MBMS subframes to be allocated to the SYNC period in consideration of the data rate of the MBMS service and the like.

한편 MBMS 서버는, PN과 OC의 크기를 적정 수준으로 유지하기 위하여, SYNC 기간을 기준으로 PN과 OC를 관리한다. 예를 들어 MBMS 서버는 한 SYNC 기간 동안 전송될 데이터양을 수납한 SYNC 프레임들을 전송한 후 SYNC 프로토콜의 PN과 OC를 0으로 초기화한다. 그리고 MBMS 서버는 다음 SYNC 기간 동안 전송될 데이터 양 만큼의 SYNC 프레임들을 전송하는 동안 PN과 OC를 증가시키다가 다음 SYNC 기간에 대해서는 PN과 OC를 0으로 초기화하는 동작을 반복한다. Meanwhile, the MBMS server manages the PN and the OC based on the SYNC period in order to maintain the sizes of the PN and the OC at an appropriate level. For example, the MBMS server transmits SYNC frames containing the amount of data to be transmitted during one SYNC period, and initializes PN and OC of the SYNC protocol to zero. Then, the MBMS server repeats the operation of increasing PN and OC while transmitting SYNC frames by the amount of data to be transmitted during the next SYNC period, and initializing PN and OC to 0 for the next SYNC period.

도 6은 SYNC 프레임에서 PN과 OC를 설정하는 일반적인 방법을 설명하는 도면이다.6 is a diagram illustrating a general method of setting PN and OC in a SYNC frame.

도 6을 참조하여 설명하면, SYNC 기간 동안 전송될 데이터의 양이 700 바이트라면 임의의 한 SYNC 기간에 대해서 MBMS 서버는 SYNC 프레임(610)에서 SYNC 프레임(635)까지 700 바이트의 데이터를 수납한 6개의 SYNC 프레임들을 전송한다. 첫 번째 SYNC 프레임(610)의 PN과 OC는 각각 0으로 설정되고, 다섯 번째 SYNC 프레임(630)의 PN과 OC는 각각 4와 500으로 설정된다. 그리고 다음 SYNC 프레임(640)은 새로운 SYNC 기간에 전송되므로, PN과 OC가 각각 0으로 초기화된다. 참고로 한 SYNC 기간 동안 전송될 데이터양은 대체로 일정하다. 상기 예에서 설명의 편의를 위해서 RLC 헤더나 MAC 헤더는 고려하지 않았다.Referring to FIG. 6, if the amount of data to be transmitted during the SYNC period is 700 bytes, the MBMS server stores 700 bytes of data from the SYNC frame 610 to the SYNC frame 635 for any one SYNC period. SYNC frames. PN and OC of the first SYNC frame 610 are set to 0 and PN and OC of the fifth SYNC frame 630 are set to 4 and 500, respectively. Since the next SYNC frame 640 is transmitted in the new SYNC period, PN and OC are initialized to 0, respectively. For reference, the amount of data to be transmitted during one SYNC period is generally constant. In the above example, the RLC header and the MAC header are not considered for convenience of explanation.

ENB는 상기 PN과 OC를 이용해서 수신하지 못한 SYNC 프레임의 개수와 상기 SYNC 프레임에 수납된 RLC SDU들의 크기의 총합을 계산할 수 있으며, 상기 정보를 바탕으로 전송을 재개할 MAC PDU를 재구성할 수 있다. The ENB can calculate the sum of the number of SYNC frames not received using the PN and OC and the size of the RLC SDUs stored in the SYNC frame, and reconstruct the MAC PDU to resume transmission based on the information .

도 7은 PN과 OC를 이용해서 미수신된 데이터의 양과 개수를 판단하는 일반적인 방법을 설명하는 도면이다. 7 is a diagram for explaining a general method of determining the amount and the number of data not received using PN and OC.

도 7을 참조하여 설명하면, ENB가 SYNC 프레임(705)과 SYNC 프레임(710) 사이의 SYNC 프레임들을 수신하지 못한 경우, ENB는 SYNC 프레임(705)과 SYNC 프레임(710)의 PN과 OC를 이용하여 3개의 SYNC 프레임들이 미수신 되었고, 미수신된 데이터의 총합이 400 바이트라는 것을 계산한다. 7, when the ENB fails to receive SYNC frames between the SYNC frame 705 and the SYNC frame 710, the ENB uses the PN and OC of the SYNC frame 705 and the SYNC frame 710 The three SYNC frames are not received, and the sum of the unreceived data is calculated to be 400 bytes.

이 경우 한 RLC SDU당 부가되는 RLC/MAC 오버헤드가 4 바이트라고 가정하면 , ENB는 상기 미수신된 RLC SDU들에 의해서 총 412 바이트의 데이터가 MAC PDU에 수납되어야 함을 알 수 있다. 예를 들어 MAC PDU [n](715)의 50 바이트가 이미 RLC SDU(705)에 의해서 점유된 경우, MAC PDU [n]의 나머지 450 바이트에 상기 412 바이트를 수납하면 38 바이트의 공간이 남음을 알 수 있다. 이 때 여분의 공간에는 RLC SDU(710)의 첫 번째 38 바이트가 수납되므로, MAC PDU [n+1]에는 RLC SDU(710)의 39번째 바이트부터 수납된다. 따라서 ENB는 미수신된 RLC SDU를 수납한 MAC PDU[n]은 전송하지 않고, MAC PDU[n+1]부터는 정상적으로 MAC PDU를 구성해서 전송한다. In this case, if it is assumed that the RLC / MAC overhead added per RLC SDU is 4 bytes, the ENB knows that a total of 412 bytes of data should be stored in the MAC PDU by the RLC SDUs not received. For example, if 50 bytes of the MAC PDU [n] 715 are already occupied by the RLC SDU 705, the 412 bytes are stored in the remaining 450 bytes of the MAC PDU [n] Able to know. At this time, since the first 38 bytes of the RLC SDU 710 are stored in the extra space, the MAC PDU [n + 1] is stored in the 39th byte of the RLC SDU 710. Therefore, the ENB does not transmit the MAC PDU [n] that has received the RLC SDU that has not been received, and constructs and transmits the MAC PDU normally from the MAC PDU [n + 1].

상술한 바와 같이 미수신된 RLC SDU의 개수와 크기의 총합을 이용해서 어떤 MAC PDU부터 전송을 재개하고, 상기 MAC PDU에 어떤 RLC SDU의 몇 번째 바이트부터 수납할지를 계산하기 위해서는 RLC SDU 하나당 부가되는 RLC 오버헤드와 MAC 오버헤드의 크기가 예측 가능해야 한다. 그러나 현재 RLC 프로토콜과 MAC 프로토콜에서는 RLC SDU가 RLC PDU에 어떤 식으로 수납되는지와 RLC PDU의 크기가 특정 값을 초과하는지 여부에 의하여 RLC/MAC 오버헤드의 크기가 달라질 수 있다. 예를 들어 특정 RLC SDU의 마지막 바이트가 RLC PDU의 마지막 바이트와 일치되도록 수납되는 경우에는 LI(Length Indicator)라고 불리는 RLC 필드가 생략된다. In order to resume transmission from certain MAC PDUs using the sum of the number and size of RLC SDUs not received as described above and to calculate the number of bytes of an RLC SDU to be stored in the MAC PDU, The size of the head and MAC overhead should be predictable. However, in the current RLC protocol and the MAC protocol, the size of the RLC / MAC overhead may vary depending on how the RLC SDU is stored in the RLC PDU and whether the size of the RLC PDU exceeds a specific value. For example, if the last byte of a specific RLC SDU is received to match the last byte of the RLC PDU, an RLC field called LI (Length Indicator) is omitted.

또한 RLC PDU에 수납되는 LI의 개수에 따라서 LI에 의해서 발생하는 오버헤드의 크기가 달라진다. LI가 하나만 수납되는 경우 LI에 의한 오버헤드는 2 바이트이지만, LI가 두개 수납되는 경우 LI에 의한 오버헤더는 3 바이트이다. 그러므로 RLC SDU당 부가되는 RLC/MAC 오버헤드의 크기를 예측 가능하도록 만들기 위하여 현재 RLC 규격과 MAC 규격을 변경할 필요가 있다. 그러나 RLC 프로토콜 및 MAC 프로토콜은 MBMS를 지원하지 않는 단말에게도 적용되는 프로토콜이라는 점을 고려하면 MBMS 서비스를 위해서 상기 프로토콜들을 변경하는 것은 바람직하지 않다. The size of the overhead caused by the LI varies depending on the number of LIs stored in the RLC PDU. When only one LI is stored, the overhead due to the LI is 2 bytes. However, when two LIs are stored, the overhead due to the LI is 3 bytes. Therefore, it is necessary to change the current RLC standard and the MAC standard so that the size of the RLC / MAC overhead added per RLC SDU can be predicted. However, considering that the RLC protocol and the MAC protocol are also applied to terminals that do not support MBMS, it is not desirable to change the protocols for the MBMS service.

이러한 문제점을 해결하기 위하여 본 발명에서는 RLC 프로토콜과 MAC 프로토콜을 변경하지 않고도 ENB들이 종래와 동일하게 MAC PDU들을 구성하여 전송할 수 있는 방법 및 장치를 제안하고자 한다. In order to solve such a problem, the present invention proposes a method and an apparatus for enabling ENBs to construct and transmit MAC PDUs in the same manner as conventional ones without changing the RLC protocol and the MAC protocol.

<제 1 실시예>&Lt; Embodiment 1 >

본 발명의 제 1 실시예에서는 ENB가 SYNC 프레임들이 연속적으로 미수신 되지는 않은 경우, ENB는 SYNC 프레임의 PN과 OC 값을 이용하여 미수신된 SYNC 프레임에 수납된 RLC SDU의 크기를 계산하고, 이를 이용하여 어떤 MAC PDU의 전송을 생략하고 어떤 MAC PDU부터 전송을 재개할지, 그리고 상기 전송을 재개할 MAC PDU에 어떤 RLC SDU의 몇 번째 바이트부터 수납되어야 하는지 판단한다. In the first embodiment of the present invention, when the ENB does not consecutively receive SYNC frames, the ENB calculates the size of the RLC SDU received in the SYNC frame not received using the PN and OC values of the SYNC frame, It is determined whether to retransmit a MAC PDU from which MAC PDU is to be transmitted and from which MAC PDU to resume transmission and from which byte of a certain RLC SDU the MAC PDU to be retransmitted to be retransmitted.

또한 ENB가 임의의 SYNC 기간 동안 SYNC 프레임들이 연속적으로 미수신된 것을 감지하는 경우, ENB는 상기 연속적으로 미수신된 SYNC 프레임들을 포함해서 이후에 수신하는 SYNC 프레임들로부터는 MAC PDU를 구성하지 않는다. 즉, 상기 구성되지 않은 MAC PDU가 전송되어야 하는 기간 동안은 MBMS 전송을 중지한다. 그리고 다음 SYNC 기간이 시작되면, MAC PDU 구성과 전송을 재개한다. Also, when the ENB detects that SYNC frames are not received consecutively for a certain SYNC period, the ENB does not construct MAC PDUs from SYNC frames that are subsequently received, including consecutively not received SYNC frames. That is, the MBMS transmission is stopped during the period in which the unconfigured MAC PDU is to be transmitted. When the next SYNC period starts, the MAC PDU configuration and transmission are resumed.

ENB가 미수신된 RLC SDU의 크기를 인지하는 경우에는 해당 RLC SDU가 어떤 RLC PDU에 수납되고 상기 RLC PDU로부터 몇 바이트의 오버 헤드가 발생하지를 계산할 수 있다. 그러나 현재 SYNC 프로토콜에서는 하나의 SYNC 프레임이 미수신 되는 경우에는 미수신된 SYNC 프레임에 수납된 RLC SDU의 크기를 계산할 수 있지만, 하나 이상의 SYNC 프레임이 연속적으로 미수신 되는 경우에는 RLC SDU의 크기를 알 수 없으며, 상기 RLC SDU들로부터 몇 바이트의 오버헤드가 발생할지도 알 수 없다. 따라서 ENB가 SYNC 프레임들이 연속적으로 미수신 한 경우에 대해서는 MAC PDU의 전송을 중지하고, PN과 OC가 0으로 초기화되며, 첫 번째 RLC SDU로부터 MAC PDU가 구성되는 다음 SYNC 기간이 시작되는 시점부터 MAC PDU의 전송을 재개하는 것이다. If the ENB recognizes the size of an RLC SDU that has not been received, it can calculate which RLC PDU the RLC SDU is stored in and how many bytes of overhead are generated from the RLC PDU. However, when one SYNC frame is not received in the current SYNC protocol, the size of the RLC SDU received in the SYNC frame may be calculated. However, if more than one SYNC frame is not received consecutively, It is unknown how many bytes of overhead will occur from the RLC SDUs. Therefore, when the ENB does not consecutively receive the SYNC frames, the transmission of the MAC PDU is stopped, the PN and the OC are initialized to 0, and the MAC PDU is started from the start of the next SYNC period in which the MAC PDU is configured from the first RLC SDU. Lt; / RTI &gt;

도 8에 본 발명의 제 1 실시예를 설명하는 도면이다. 특히 도 8은 SYNC 프레임이 연속적으로 미수신 되지 않는 경우의 ENB의 동작을 도시하고 있다. 8 is a view for explaining the first embodiment of the present invention. In particular, FIG. 8 shows the operation of the ENB when the SYNC frame is not received consecutively.

도 8을 참조하여 설명하면, 임의의 SYNC 기간에 대하여 5개의 RLC SDU들 (810 내지 830) 중 RLC SDU(820)를 제외한 나머지 RLC SDU들을 성공적으로 수신하였다. ENB는 성공적으로 수신한 RLC SDU들은 종래의 RLC 프로토콜과 MAC 프로토콜을 이용해서 RLC PDU 및 MAC PDU로 구성하고 소정의 MBMS 서브 프레임에 상기 MAC PDU(865)를 전송한다. Referring to FIG. 8, RLC SDUs 810 through 830 of the five RLC SDUs 820 are successfully received for any SYNC period except for the RLC SDU 820. The ENB constructs RLC PDUs and MAC PDUs successfully received RLC SDUs using the conventional RLC protocol and MAC protocol, and transmits the MAC PDUs 865 to a predetermined MBMS subframe.

수신하지 못한 RLC SDU(820)의 크기는 SYNC 프레임의 PN과 OC를 이용해서 산출하고, 해당 크기의 RLC SDU가 수신된 것처럼 RLC PDU 및 MAC PDU 구성을 계속 진행한다. 이는 여러 방법으로 구현이 가능하며, 예를 들어 수신하지 못한 RLC SDU와 동일한 크기의 RLC SDU를 임의로 생성한 뒤, 상기 임의로 생성된 RLC SDU를 이용해서 RLC PDU 구성과 MAC PDU 구성을 지속하는 것도 한 방법이다. 그리고 수신하지 못하였지만 임의로 생성된 RLC SDU가 수납된 MAC PDU(870)는 해당 MBMS 서브 프레임에서 전송하지 않고 폐기한다. The size of the RLC SDU 820 that has not been received is calculated using the PN and OC of the SYNC frame, and the RLC PDU and the MAC PDU configuration are continued as if the corresponding RLC SDU was received. For example, it is possible to arbitrarily generate an RLC SDU having the same size as an RLC SDU that has not been received, and to continue the RLC PDU configuration and the MAC PDU configuration using the randomly generated RLC SDU. Method. The MAC PDU 870, which has received the randomly generated RLC SDU, does not transmit in the corresponding MBMS subframe but discards it.

결과적으로 상기 MBMS 서브 프레임에서는 MAC PDU가 전송되지 않는다. ENB는 수신하지 못한 RLC SDU의 영향을 받지 않는, 즉 수신한 RLC SDU만을 수납한 MAC PDU(875)부터 소정의 MBMS 서브 프레임에서 전송을 재개한다. 이를 보다 상세히 설명하면, ENB는 SYNC 프레임이 미수신 되더라도 미수신된 SYNC 프레임에 수납된 RLC SDU의 크기를 계산할 수 있는 경우에는 상기 미수신된 RLC SDU의 크기를 고려해서 RLC PDU 및 MAC PDU 구성을 지속하고, 상기 미수신된 RLC SDU가 포함되지 않은 MAC PDU들은 소정의 MBMS 서브 프레임에서 전송하며, 미수신된 RLC SDU를 포함하였을 MAC PDU들이 전송되어야 할 MBMS 서브 프레임에서는 상기 MAC PDU를 전송하지 않는다. As a result, the MAC PDU is not transmitted in the MBMS subframe. The ENB resumes transmission in a predetermined MBMS subframe from the MAC PDU 875 that is not affected by the RLC SDU that it has not received, i.e., only the received RLC SDU has been received. In more detail, if the size of the RLC SDU received in the SYNC frame is not calculated even if the SYNC frame is not received, the ENB continues the RLC PDU and MAC PDU configuration considering the size of the RLC SDU not received, The MAC PDUs that do not include the RLC SDUs not received are transmitted in a predetermined MBMS subframe and the MAC PDUs that do not include the RLC SDUs that have not been received are not transmitted in the MBMS subframe to which the MAC PDUs are to be transmitted.

도 9는 본 발명의 제 1 실시예를 설명하는 다른 도면이다. 특히 도 9는 하나 이상의 RLC SDU들이 연속적으로 미수신된 경우 ENB의 동작을 도시하였다. 9 is another drawing for explaining the first embodiment of the present invention. In particular, Figure 9 illustrates the operation of the ENB when one or more RLC SDUs are not received in succession.

도 9를 참조하여 설명하면, 임의의 SYNC 기간에 대한 5개의 RLC SDU들(910 내지 930) 중, RLC SDU(920)와 RLC SDU(925)가 미수신 되었다. ENB는 성공적으로 수신한 RLC SDU(910)과 RLC SDU(915)를 종래의 RLC 프로토콜과 MAC 프로토콜을 이용해서 RLC PDU(945) 및 MAC PDU(965)로 구성하고 소정의 서브 프레임에 상기 MAC PDU(965)를 전송한다. ENB는 RLC SDU(915)와 RLC SDU(930)의 PN과 OC를 해석해서, 두개의 RLC SDU가 연속적으로 미수신 되었으며, 미수신된 RLC SDU의 크기의 합이 몇 바이트라는 것을 인지한다. Referring to FIG. 9, among the 5 RLC SDUs 910 to 930 for an arbitrary SYNC period, the RLC SDU 920 and the RLC SDU 925 are not received. The ENB successfully configures RLC SDU 910 and RLC SDU 915 as RLC PDU 945 and MAC PDU 965 using the conventional RLC protocol and MAC protocol and transmits the MAC PDU (965). The ENB interprets the PN and OC of the RLC SDU 915 and the RLC SDU 930 and recognizes that the sum of the sizes of the RLC SDUs that have not been received consecutively since the two RLC SDUs are not received consecutively.

하나 이상의 RLC SDU가 연속적으로 미수신 되는 경우 ENB는 미수신된 RLC SDU들의 개별적인 크기를 알 수 없으므로, 상기 미수신된 RLC SDU들이 MAC PDU의 공간을 얼마나 차지할지 계산할 수 없고, 결과적으로 이 후에 RLC SDU들이 성공적으로 수신된다고 하더라도, 상기 RLC SDU들로부터 MAC PDU를 정확하게 구성할 수 없다. 그러므로 ENB는 RLC SDU가 연속적으로 미수신된 것을 감지하면, 다음 SYNC 기간이 시작될 때까지 MAC PDU 구성을 중지한다. 그리고 구성되지 않은 MAC PDU들이 전송되기로 예정되어 있던 MBMS 서브프레임에서 전송을 수행하지 않는다. ENB는 다음 SYNC 기간이 시작되면 MBMS 데이터의 전송을 재개한다. In the case where one or more RLC SDUs are not received consecutively, the ENB can not know the individual sizes of the RLC SDUs that have not been received. Therefore, the RLC SDUs can not calculate how much of the space the MAC PDUs will occupy, The MAC PDU can not be correctly configured from the RLC SDUs. Therefore, if the ENB detects that the RLC SDU is not received consecutively, it stops configuring the MAC PDU until the next SYNC period starts. And does not perform transmission in the MBMS subframe in which unconfigured MAC PDUs are scheduled to be transmitted. The ENB resumes the transmission of the MBMS data when the next SYNC period starts.

도 10은 본 발명의 제 1 실시예에 따른 기지국 장치의 동작을 도시하는 순서도이다.10 is a flowchart showing the operation of the base station apparatus according to the first embodiment of the present invention.

도 10을 참조하여 설명하면, 단계 1005에서 임의의 SYNC 기간이 시작되면, ENB는 단계 1010로 진행하여 상기 SYNC 기간 동안 할당된 MBMS 서브프레임 중 아직 MAC PDU가 구성되지 않은 첫 번째 MBMS 서브프레임에 대한 MAC PDU 구성을 위한 동작을 시작한다. ENB는 상기 MAC PDU에 수납될 RLC PDU의 크기에 맞춰 아직 MAC PDU에 수납된 적이 없는 RLC SDU 혹은 RLC SDU의 일부를 순차적으로 분할하거나 연접한다. Referring to FIG. 10, when an arbitrary SYNC period starts in step 1005, the ENB proceeds to step 1010 and determines whether or not a first MBMS subframe among the MBMS subframes allocated during the SYNC period, And starts an operation for configuring the MAC PDU. The ENB sequentially segments or concatenates a part of the RLC SDU or the RLC SDU that has not yet been stored in the MAC PDU according to the size of the RLC PDU to be stored in the MAC PDU.

이 때 ENB는 단계 1015에서 상기 RLC PDU의 페이로드를 모두 채우기 전에 미수신 RLC SDU가 발견되는지 검사한다. 미수신 RLC SDU 없이 RLC PDU의 페이로드를 모두 채우면 단계 1020로 진행하고, RLC PDU의 페이로드를 채우기 전에 미수신 RLC SDU가 발견되면 단계 1030로 진행한다. 단계 1015에서 미수신 RLC SDU가 존재한다는 것은 인접한 두 RLC SDU의 PN이 연속적이지 않다는 것을 의미한다.In step 1015, the ENB checks whether an unreceived RLC SDU is found before all payloads of the RLC PDU are filled. If all the payloads of the RLC PDUs are filled without the missing RLC SDUs, the process proceeds to step 1020, and if an RLC SDU is detected before the payload of the RLC PDUs is found, the process proceeds to step 1030. The presence of an unreceived RLC SDU in step 1015 means that the PNs of two adjacent RLC SDUs are not contiguous.

단계 1020에서 ENB는 RLC SDU들이 분할/연접된 RLC 페이로드에 소정의 헤더를 부가해서 RLC PDU를 구성하고 상기 RLC PDU를 다중화해서 MAC PDU를 구성한다. 또한 ENB는 단계 1025에서 상기 구성된 MAC PDU를 해당하는 MBMS 서브프레임에서 전송하고 단계 1055로 진행한다. In step 1020, the ENB constructs an RLC PDU by adding a predetermined header to an RLC payload segmented / concatenated by the RLC SDUs, and multiplexes the RLC PDUs to form a MAC PDU. In step 1025, the ENB transmits the configured MAC PDU in the corresponding MBMS subframe and proceeds to step 1055.

한편 RLC PDU의 페이로드를 모두 채우기 전에 미수신 RLC SDU가 발견되었다면, ENB는 단계 1030으로 진행하여 상기 미수신 RLC SDU가 하나인지 혹은 하나 이상의 RLC SDU가 연속적으로 손실된 것인지 검사한다. 이는 상기 미수신 RLC SDU들과 인접한 RLC SDU들의 PN을 검사함으로써 판단 가능하다. 미수신 RLC SDU가 하나라면 ENB는 단계 1030에서 단계 1035로 진행한다. On the other hand, if an unreceived RLC SDU is found before the payload of the RLC PDU is completely filled, the ENB proceeds to step 1030 to check whether one of the RLC SDUs is missing or one or more RLC SDUs are continuously lost. This can be determined by examining the PNs of RLC SDUs adjacent to the missing RLC SDUs. If there is one unreceived RLC SDU, the ENB proceeds from step 1030 to step 1035.

단계 1035에서 ENB는 상기 수신하지 못한 RLC SDU의 인접 RLC SDU들의 OC를 이용해서 상기 수신하지 못한 RLC SDU의 크기를 산출하고, 상기 수신하지 못한 RLC SDU의 크기를 고려해서 상기 수신하지 못한 RLC SDU가 어떤 MBMS 서브프레임에 대응되는 MAC PDU에 수납되어야 하는지 판단한다. 이는 미수신 RLC SDU와 동일한 크기의 RLC SDU를 임의로 생성해서 통상적인 MAC PDU 생성 과정을 진행하고, 미수신 RLC SDU와 동일한 크기의 RLC SDU가 어떤 MAC PDU에 수납되는지를 이용하여 판단 가능하다. 또한 ENB는 단계 1040에서 수신하지 못한 RLC SDU가 수납되었을 MAC PDU에 해당하는 MBMS 서브 프레임에서는 전송을 중지하고, 단계 1045에서 유효한 RLC SDU들만 수납하는 첫 번째 MAC PDU를 구성해서 해당 MBMS 서브프레임에서 전송한다. 예를 들어 미수신 RLC SDU와 동일한 크기의 RLC SDU를 임의로 생성해서, 상기 미수신 RLC SDU와 동일한 크기의 RLC SDU가 수납되지 않는 첫 번째 MAC PDU가 생성될 때까지 통상적인 MAC PDU 생성 과정을 진행하면 가능하다. In step 1035, the ENB calculates the size of the RLC SDU that has not been received by using the OCs of neighboring RLC SDUs of the RLC SDUs that have not been received, and determines the RLC SDU that has not been received in consideration of the size of the RLC SDU It is determined which MAC PDU corresponding to which MBMS subframe should be stored. It is possible to arbitrarily generate an RLC SDU having the same size as that of an unreceived RLC SDU to proceed with a normal MAC PDU generation process and to determine which MAC PDU the RLC SDU having the same size as that of an unreceived RLC SDU is received. Also, the ENB stops transmission in the MBMS subframe corresponding to the MAC PDU in which the RLC SDU not received in step 1040 has been received, configures the first MAC PDU storing only the valid RLC SDUs in step 1045, and transmits do. For example, an RLC SDU having the same size as an unreceived RLC SDU may be arbitrarily generated, and a normal MAC PDU generation process may be performed until a first MAC PDU that does not contain an RLC SDU of the same size as the RLC SDU of the unreceived RLC SDU is generated Do.

단계 1030에서 하나 이상의 연속적인 미수신 RLC SDU가 존재하다고 판단한 경우, ENB는 단계 1050에서 지금까지 생성된 MAC PDU들만 해당 MBMS 서브 프레임에서 전송하고 더 이상의 MAC PDU 생성을 중지한다. 생성되지 않은 MAC PDU에 해당하는 MBMS 서브프레임에서는 전송을 중지하고, 단계 1060에서 다음 SYNC 기간이 시작될 때까지 대기한다. If it is determined in step 1030 that one or more consecutive unsent RLC SDUs are present, the ENB transmits only the MAC PDUs generated so far in step 1050 in the corresponding MBMS subframe and ceases to generate further MAC PDUs. Transmission is stopped in the MBMS subframe corresponding to the MAC PDU that has not been generated and waits until the next SYNC period starts in step 1060. [

단계 1055에서 ENB는 SYNC 기간 종료 여부를 판단한다. 미수신 RLC SDU때문에 생성되지 않은 MAC PDU를 제외하면 해당 SYNC 기간에 할당된 MBMS 서브프레임에서 전송할 MAC PDU들이 모두 생성된다면 ENB는 단계 1060로 진행한다. 아직 생성되지 않은 MAC PDU가 있다면 ENB는 단계 1010로 복귀한다. In step 1055, the ENB determines whether the SYNC period has expired. If the MAC PDUs not generated due to the missing RLC SDUs are excluded, the ENB proceeds to step 1060 if all the MAC PDUs to be transmitted in the MBMS subframe allocated in the corresponding SYNC period are generated. If there are MAC PDUs not yet generated, the ENB returns to step 1010.

<제 2 실시예>&Lt; Embodiment 2 >

본 발명의 제 2 실시예에서는 하나 이상의 RLC SDU가 연속적으로 미수신 되더라도, 미수신된 RLC SDU들에 대응되는 MAC PDU를 제외한 나머지 MAC PDU들은 정상적으로 생성할 수 있는 방법 및 장치를 제시한다. 상술한 바와 같이, 하나 이상의 RLC SDU가 연속적으로 미수신 되었을 때 ENB가 MAC PDU를 정상적으로 생성할 수 없는 이유는 미수신된 RLC SDU들의 개별적인 크기를 모르기 때문이다. 만약 미수신된 RLC SDU의 크기를 계산할 수 있는 정보를 RLC SDU와 함께 전송한다면, ENB는 여러 개의 RLC SDU들이 연속적으로 미수신 되더라도 수신한 RLC SDU들에 대해서는 정상적인 MAC PDU를 생성할 수 있다. In the second embodiment of the present invention, a method and apparatus for normally generating MAC PDUs other than MAC PDUs corresponding to non-received RLC SDUs, even if one or more RLC SDUs are not received consecutively. As described above, the reason why the ENB can not normally generate the MAC PDU when one or more RLC SDUs are not received consecutively is because the individual sizes of the RLC SDUs not received are unknown. If the RLC SDU is transmitted together with the RLC SDU information, the ENB can generate a normal MAC PDU for the received RLC SDUs even if several RLC SDUs are not received consecutively.

미수신된 RLC SDU의 크기를 계산할 수 있는 정보는 이전 SYNC 프레임의 Octet Count(Previous Octet Count, 이하 POC), 혹은 이전 SYNC 프레임의 페이로드에 수납된 데이터의 크기를 지시하는 정보(Previous Payload Size, 이하 PPS)가 될 수 있다. 예를 들어 임의의 [n+3] 번째 RLC SDU가 수납된 SYNC 프레임에 [n+2] 번째 RLC SDU의 크기를 계산할 수 있는 정보를 수납한다면, [n+1] 번째 RLC SDU가 수납된 SYNC 프레임과 [n+2] 번째 RLC SDU가 수납된 SYNC 프레임이 연속적으로 미수신 되더라도 ENB는 상기 미수신된 RLC SDU들의 개별적인 크기를 산출할 수 있다. 이하에서는 SYNC 프레임이 연속적으로 미수신된 경우, 미수신된 RLC SDU들의 개별적인 크기를 산출하는 방법을 보다 자세히 설명한다.Information that can calculate the size of an RLC SDU that has not been received may include information indicating an octet count (hereinafter, referred to as POC) of a previous SYNC frame or information indicating a size of data stored in a payload of a previous SYNC frame PPS). For example, if information for calculating the size of the [n + 2] -th RLC SDU is stored in the SYNC frame containing an arbitrary [n + 3] -th RLC SDU, And the [n + 2] -th RLC SDU are not received consecutively, the ENB can calculate the individual sizes of the RLC SDUs not received. Hereinafter, a method of calculating the individual sizes of the RLC SDUs not received when the SYNC frames are not received consecutively will be described in more detail.

도 11은 본 발명의 제 2 실시예를 설명한 도면이다.11 is a view for explaining a second embodiment of the present invention.

도 11을 참조하여 설명하면, 현재 SYNC 프레임에는 직전 SYNC 프레임의 OC가 함께 전송되고. 각 SYNC 프레임에 수납된 정보들이 참조번호 1105 내지 1120과 같다. 특히 참조번호 1105 내지 1120은 SYNC 프레임에 이전 SYNC 프레임의 Octet Count(POC)가 수납된 것으로 가정한다. Referring to FIG. 11, the current SYNC frame is transmitted together with the OC of the immediately preceding SYNC frame. Information contained in each SYNC frame is the same as reference numeral 1105 to 1120. In particular, reference numerals 1105 to 1120 assume that the Octet Count (POC) of the previous SYNC frame is stored in the SYNC frame.

이 경우 RLC SDU [n]과 RLC SDU [n+3]이 수신되고 RLC SDU [n+1]과 RLC SDU [n+2]는 미수신된 경우, RLC SDU [n+2]의 크기는 RLC SDU [n+3]의 OC(y4)에서 RLC SDU [n+2]의 OC(y3)를 뺀 값이므로, RLC SDU [n+3]에 수납된 정보만으로도 RLC SDU [n+2]의 크기(y4-y3)의 계산이 가능하다. 마찬가지로 RLC SDU [n+1]의 크기는 RLC SDU [n+2]의 OC(y3)에서 RLC SDU [n+1]의 OC(y2)를 뺀 값이다. In this case, when the RLC SDU [n + 2] is received and the RLC SDU [n + 2] is not received, the size of the RLC SDU [n + 2] (n + 3) of the RLC SDU [n + 3] is obtained by subtracting the OC (y3) of the RLC SDU [n + 2] from the OC y4-y3) can be calculated. Similarly, the size of the RLC SDU [n + 1] is a value obtained by subtracting OC (y2) of RLC SDU [n + 1] from OC (y3) of RLC SDU [n + 2].

만약 참조번호 1125 내지 1140과 같이 SYNC 프레임에 직전 SYNC 프레임의 페이로드에 수납된 데이터의 크기(PPS), 즉 RLC SDU의 크기가 함께 전송된다면, RLC SDU [n+2]의 크기는 RLC SDU [n+3]의 PPS(z4)이다. If the size (PPS) of the data stored in the payload of the SYNC frame immediately before the SYNC frame, that is, the size of the RLC SDU, is transmitted together with the size of the RLC SDU [n + 2] n + 3].

이 경우 RLC SDU [n+1]의 OC는 RLC SDU [n]의 OC에 RLC SDU [n]의 크기를 합산한 값이므로, RLC SDU [n]과 RLC SDU [n+3]에 주어진 정보만으로 RLC SDU [n+1] 크기의 계산이 가능하다. 즉, RLC SDU [n+1]의 크기는 RLC SDU [n+1]과 RLC SDU [n+2]를 합산한 크기, 즉 RLC SDU [n+3]의 OC에서 RLC SDU [n+1]의 OC와 RLC SDU [n+1]의 크기를 합산한 값을 뺀 것에서 RLC SDU [n+2]의 크기를 뺀 것이다. In this case, since OC of RLC SDU [n + 1] is a value obtained by summing the size of RLC SDU [n] with the OC of RLC SDU [n], only information given to RLC SDU [n] and RLC SDU [n + 3] RLC SDU [n + 1] size calculation is possible. That is, the size of the RLC SDU [n + 1] is the sum of the RLC SDU [n + 1] and the RLC SDU [n + 2] And the size of the RLC SDU [n + 1] minus the size of the RLC SDU [n + 2].

상술한 바와 같이, SYNC 프레임에 이전 n개의 SYNC 프레임의 POC 혹은 PPS를 수납하면, [n+1]개의 SYNC 프레임이 연속적으로 미수신 되더라도 상기 미수신된 RLC SDU들의 크기는 계산이 가능하다.As described above, if the POC or the PPS of the previous n SYNC frames are stored in the SYNC frame, the size of the RLC SDUs not received may be calculated even if [n + 1] SYNC frames are not received consecutively.

RLC SDU [n+1]에서 RLC SDU [n+m]까지 m개의 RLC SDU들이 연속적으로 미수신 되었을 때, POC를 이용하여 미수신된 RLC SDU들의 크기를 산출하는 방법을 일반화하면 아래와 같다. 단 OC_[x]는 x 번째 RLC SDU의 OC, rlc sdu size_[x]는 x 번째 RLC SDU의 크기를 의미한다. A method for calculating the sizes of RLC SDUs not received using POC when m RLC SDUs are successively received from RLC SDU [n + 1] to RLC SDU [n + m] is as follows. OC_ [x] denotes the size of the x-th RLC SDU, and OC_ [x] denotes the size of the x-th RLC SDU.

우선 RLC SDU [n+m+1]이 수납된 SYNC 프레임에는 직전 [m-1]개의 RLC SDU들의 OC들, 즉 OC_[n+2] 내지 OC_[n+m]이 수납되어 있다고 가정할 경우, 아래 표 1과 같이 정리할 수 있다. Assuming that the OCs of the previous [m-1] RLC SDUs, that is, OC_ [n + 2] to OC_ [n + m] are stored in the SYNC frame in which the RLC SDU [n + m + 1] , Can be summarized as shown in Table 1 below.

RLC SDU [n+m]의 크기 = OC_[n+m+1] - OC_[n+m]The size of the RLC SDU [n + m] = OC_ [n + m + 1] - OC_ [n + m] RLC SDU [n+m-1]의 크기 = OC_[n+m] - OC_[n+m-1]The size of the RLC SDU [n + m-1] = OC_ [n + m] - OC_ [n + m- ...................... RLC SDU [n+2]의 크기 = OC_[n+3] - OC_[n+2]The size of the RLC SDU [n + 2] = OC_ [n + 3] - OC_ [n + 2] RLC SDU [n+1]의 크기 = 미수신된 RLC SDU들의 크기의 총합 - (OC_[n+m+1] - OC_[n+2])(OC_ [n + m + 1] - OC_ [n + 2]) of the sizes of RLC SDU [n + 미수신된 RLC SDU들의 크기의 총합 = OC_[n+m+1] - OC_[n] + rlc sdu size_[n]OC_ [n] + rlc sdu size_ [n] = sum of the sizes of RLC SDUs that have not been received = OC_ [n +

표 1에서 OC_[n+m+1] - OC_[n+2]는 RLC SDU [n+2]에서 RLC SDU [n+m]까지의 모든 RLC SDU들의 크기를 합산한 값이다. In Table 1, OC_ [n + m + 1] - OC_ [n + 2] is the sum of the sizes of all RLC SDUs from RLC SDU [n + 2] to RLC SDU [n + m].

다음으로 RLC SDU [n+m+1]이 수납된 SYNC 프레임에는 직전 [m-1]개의 RLC SDU들의 크기들, 즉 rlc sdu size_[n+2] ~ rlc sdu size_[n+m]이 수납되어 있다고 가정할 경우, 각각의 RLC SDU의 크기는 아래 표 2와 같이 정리할 수 있다. The sizes of the immediately preceding [m-1] RLC SDUs, that is, rlc sdu size_ [n + 2] to rlc sdu size_ [n + m] are stored in the SYNC frame in which the RLC SDU [n + m + The size of each RLC SDU can be summarized as shown in Table 2 below.

RLC SDU [n+m]의 크기 = rlc sdu size_[n+m]Size of RLC SDU [n + m] = rlc sdu size_ [n + m] RLC SDU [n+m-1]의 크기 = rlc sdu size_[n+m-1]Size of RLC SDU [n + m-1] = rlc sdu size_ [n + m-1] ...................... RLC SDU [n+2]의 크기 = rlc sdu size_[n+2]Size of RLC SDU [n + 2] = rlc sdu size_ [n + 2] RLC SDU [n+1]의 크기 = 미수신된 RLC SDU들의 크기의 총합 - RLC SDU [n+2]에서
RLC SDU [n+m]까지의 모든 RLC SDU들의 크기의 총합
The size of RLC SDU [n + 1] = the sum of sizes of RLC SDUs not received - RLC SDU [n + 2]
The sum of the sizes of all RLC SDUs up to RLC SDU [n + m]

도 12에 본 발명의 제 2 실시예에 따른 SYNC 프레임 구조를 도시한 도면이다12 is a diagram illustrating a SYNC frame structure according to a second embodiment of the present invention

도 12를 참조하여 설명하면. SYNC 프레임(1205)에는 종래와 마찬가지로 PN, OC 등의 정보(1210)와 RLC SDU(1220)가 수납된다. 또한 직전 RLC SDU들의 크기 계산을 위한 정보가 수납되는데, 이러한 정보에는 직전 n개의 SYNC 프레임에 수납되었던 OC 혹은 직전 n개의 SYNC 프레임의 페이로드에 수납되었던 데이터(즉 RLC SDU)의 크기가 순차적으로 수납된다. Referring to FIG. In the SYNC frame 1205, PN and OC information 1210 and an RLC SDU 1220 are stored. In addition, information for calculating the size of the immediately preceding RLC SDUs is stored. The size of the data (i.e., the RLC SDUs) accommodated in the payload of the immediately preceding n SYNC frames or the OCs previously stored in n SYNC frames is stored sequentially do.

임의의 RLC SDU에 n 개의 직전 SYNC 프레임들의 OC 값들이 수납되거나 n 개의 직전 SYNC 프레임들의 페이로드에 수납된 데이터의 크기들이 수납되면, ENB는 상기 임의의 RLC SDU 직전에 [n+1]개의 SYNC 프레임들이 연속적으로 미수신 되더라도, 상기 [n+1]개의 SYNC 프레임들에 수납되어 있었을 [n+1]개의 RLC SDU들의 크기를 개별적으로 산출할 수 있다. If the OC values of n previous SYNC frames are stored in an arbitrary RLC SDU or the sizes of data stored in payloads of n previous SYNC frames are accommodated, the ENB stores [n + 1] SYNC It is possible to individually calculate the sizes of [n + 1] RLC SDUs to be accommodated in the [n + 1] SYNC frames, even if the frames are not received consecutively.

'직전 RLC SDU들의 크기 계산을 위한 정보'에 수납될 수 있는 POC 혹은 PPS의 개수는 MBMS 서버와 ENB 사이의 링크의 안정성과 연관이 있다. 예를 들어 상기 링크가 충분히 양호하여 패킷 미수신 비율이 아주 낮다면 두 개 이상의 연속적인 패킷 미수신이 발생할 가능성은 거의 없다. 이 경우에는 '직전 RLC SDU들의 크기 계산을 위한 정보'에 하나의 직전 POC 혹은 PSS만을 수납하여 연속적으로 2개의 SYNC 프레임이 미수신 되는 경우만 대비하는 것도 가능하다. 또는 링크의 성능이 불안정하다면 가능한 많은 수의 POC 혹은 PSS를 수납하여 많은 수의 SYNC 프레임들이 연속적으로 미수신 되는 경우에 대비할 수도 있다. The number of POCs or PPSs that can be stored in the 'information for calculating the size of previous RLC SDUs' is related to the stability of the link between the MBMS server and the ENB. For example, if the link is sufficiently good that the rate of packet not received is very low, there is little chance of two or more consecutive packet not received. In this case, it is also possible to accommodate only one immediately preceding POC or PSS in the 'information for calculating the size of the immediately preceding RLC SDUs', and prepare only when two SYNC frames are not received consecutively. Or if the performance of the link is unstable, a large number of POCs or PSSs may be accommodated to prepare for the case where a large number of SYNC frames are not received consecutively.

SYNC 프레임에 수납하고자 하는 POC 혹은 PSS의 수는 MBMS 서버와 ENB들 사이에서 소정의 값으로 미리 설정될 수도 있을 뿐만 아니라, MBMS 서버가 필요에 따라 그 값을 임의로 조절할 수도 있을 것이다. 예를 들어 MBMS 서버는 통상적인 경우에는 하나의 POC 혹은 PSS만 수납하지만, 링크의 부하가 낮아지면 여러 개의 POC나 PSS를 수납할 수도 있을 것이다. The number of POCs or PSSs to be stored in the SYNC frame may be preset to a predetermined value between the MBMS server and the ENBs, and the MBMS server may arbitrarily adjust the value as needed. For example, an MBMS server typically accommodates only one POC or PSS, but may store multiple POCs or PSSs when link load is low.

도 13에 본 발명의 제 2 실시예에 따른 기지국 장치의 동작을 도시하는 순서도이다.13 is a flowchart showing the operation of the base station apparatus according to the second embodiment of the present invention.

도 13을 참조하여 설명하면, 단계 1305에서 임의의 SYNC 기간이 시작되면, ENB는 단계 1310로 진행하여 상기 임의의 SYNC 기간 동안 할당된 MBMS 서브프레임 중 아직 MAC PDU가 구성되지 않은 첫 번째 MBMS 서브프레임에 대한 MAC PDU 구성을 위한 동작을 시작한다. 즉, ENB는 상기 MAC PDU에 수납될 RLC PDU의 크기에 맞춰 아직 MAC PDU에 수납된 적이 없는 RLC SDU 혹은 RLC SDU의 일부를 순차적으로 분할하거나 연접한다. Referring to FIG. 13, when an arbitrary SYNC period starts in step 1305, the ENB proceeds to step 1310, where the first MBMS subframe in which the MAC PDU is not yet configured among the MBMS subframes allocated during the arbitrary SYNC period Lt; RTI ID = 0.0 &gt; MAC PDU &lt; / RTI &gt; That is, the ENB sequentially divides or concatenates a part of the RLC SDU or the RLC SDU that has not yet been stored in the MAC PDU according to the size of the RLC PDU to be stored in the MAC PDU.

이 때 ENB는 단계 1315에서 RLC PDU의 페이로드를 모두 채우기 전에 미수신 RLC SDU가 발견되는지 검사하며, 미수신 RLC SDU 없이 RLC PDU의 페이로드를 모두 채우면 단계 1320로 진행하고, RLC PDU의 페이로드를 채우기 전에 미수신 RLC SDU가 발견되면 단계 1330로 진행한다. In step 1315, the ENB checks whether an unreceived RLC SDU is found before the payload of the RLC PDU is completely filled. If the payload of the RLC PDU is filled up with no RLC SDU, the ENB proceeds to step 1320. In step 1320, If an unreceived RLC SDU is found previously, the process proceeds to step 1330.

단계 1320에서 ENB는 RLC SDU들이 분할/연접된 RLC 페이로드에 소정의 헤더를 부가해서 RLC PDU를 구성하고 상기 RLC PDU를 다중화해서 MAC PDU를 구성한다. 또한, 단계 1325에서 ENB는 상기 구성된 MAC PDU를 해당하는 MBMS 서브프레임에서 전송하고 단계 1355로 진행한다. In step 1320, the ENB constructs an RLC PDU by adding a predetermined header to the RLC payload of the RLC SDUs, and constructs a MAC PDU by multiplexing the RLC PDUs. In step 1325, the ENB transmits the configured MAC PDU in the corresponding MBMS subframe and proceeds to step 1355.

RLC PDU의 페이로드를 모두 채우기 전에 미수신 RLC SDU가 발견되었다면 ENB는 단계 1315에서 단계 1330로 진행한다. 또한 단계 1330에서 ENB는 상기 미수신 RLC SDU들의 크기를 모두 계산할 수 있는지 검사한다. 연속적인 미수신 RLC SDU의 개수가 n이고 마지막 미수신 RLC SDU 다음의 RLC SDU의 SYNC 프레임에 수납된 POC 혹은 PSS의 개수가 m일 때, n이 m+1보다 크다면 ENB는 미수신 RLC SDU들 중 일부 SDU의 크기는 계산할 수 없으며, n이 m+1보다 작거나 같다면 ENB는 모든 미수신 RLC SDU들의 크기를 계산할 수 있다. 모든 미수신 RLC SDU들의 크기를 계산할 수 있다면 ENB는 단계 1335로 진행하고 일부 미수신 RLC SDU들의 크기를 계산할 수 없다면 단계 1350로 진행한다. If an unreceived RLC SDU is found before filling the payload of the RLC PDU, the ENB proceeds from step 1315 to step 1330. Also, in step 1330, the ENB checks whether the sizes of the above-mentioned missing RLC SDUs can be calculated. If n is greater than m + 1 when the number of consecutive missing RLC SDUs is n and the number of POC or PSS received in the SYNC frame of the RLC SDU next to the last missing RLC SDU is m, then the ENB may include some of the missing RLC SDUs The size of the SDU can not be computed, and if n is less than or equal to m + 1, the ENB can calculate the size of all missing RLC SDUs. If it is possible to calculate the size of all missing RLC SDUs, the ENB proceeds to step 1335 and proceeds to step 1350 if it can not calculate the size of some missing RLC SDUs.

단계 1335로 진행한 ENB는 수신하지 못한 RLC SDU의 크기를 고려해서 상기 수신하지 못한 RLC SDU가 어떤 MBMS 서브프레임에 대응되는 MAC PDU에 수납되었어야 하는지 판단한다. 이는 미수신 RLC SDU와 동일한 크기의 RLC SDU를 임의로 생성하여 통상적인 MAC PDU 생성 과정을 진행해고 상기 미수신 RLC SDU와 동일한 크기의 RLC SDU가 어떤 MAC PDU에 수납되는지를 이용하여 판단 할 수 있다. 단계 1340 에서 ENB는 수신하지 못한 RLC SDU가 수납되었을 MAC PDU에 해당하는 MBMS 서브 프레임에서는 전송을 중지하고 단계 1345로 진행한다. The ENB that has proceeded to step 1335 determines whether the RLC SDU that has not been received should be received in the MAC PDU corresponding to which MBMS subframe in consideration of the size of the RLC SDU that it has not received. It is possible to arbitrarily generate an RLC SDU having the same size as that of an unreceived RLC SDU to proceed with a normal MAC PDU generation process and determine based on which MAC PDU the RLC SDU having the same size as the non-received RLC SDU is received. In step 1340, the ENB stops the transmission in the MBMS subframe corresponding to the MAC PDU in which the RLC SDU that has not been received is received, and proceeds to step 1345.

계속하여 ENB는 단계 1345에서 유효한 RLC SDU들만 수납하는 첫 번째 MAC PDU를 구성해서 해당 MBMS 서브프레임에서 전송한다. 이는 예를 들어 미수신 RLC SDU와 동일한 크기의 RLC SDU를 임의로 생성해서, 상기 미수신 RLC SDU와 동일한 크기의 RLC SDU가 수납되지 않는 첫 번째 MAC PDU가 생성될 때까지 통상적인 MAC PDU 생성 과정을 진행하면 가능하다. Subsequently, in step 1345, the ENB constructs a first MAC PDU containing only valid RLC SDUs and transmits it in the corresponding MBMS subframe. For example, an RLC SDU having the same size as an unreceived RLC SDU is arbitrarily generated, and a normal MAC PDU is generated until a first MAC PDU is received, the RLC SDU having the same size as the non-received RLC SDU is generated It is possible.

일부 미수신 RLC SDU의 크기를 계산할 수 없다면 ENB는 단계 1330에서 단계 1350로 진행한다. 단계 1350에서 ENB는 지금까지 생성된 MAC PDU들만 해당 MBMS 서브 프레임에서 전송하고 더 이상의 MAC PDU 생성을 중지한다. 생성되지 않은 MAC PDU에 해당하는 MBMS 서브프레임에서는 전송을 중지하고, 단계 1360로 진행한다. If the size of some missing RLC SDUs can not be computed, the ENB proceeds from step 1330 to step 1350. In step 1350, the ENB transmits only the MAC PDUs generated so far in the corresponding MBMS subframe and stops further MAC PDU generation. In the MBMS subframe corresponding to the non-generated MAC PDU, transmission is stopped, and the process proceeds to step 1360.

단계 1355에서 ENB는 SYNC 기간 종료 여부를 판단한다. 미수신 RLC SDU때문에 생성되지 않은 MAC PDU를 제외하면 해당 SYNC 기간에 할당된 MBMS 서브프레임에서 전송할 MAC PDU들이 모두 생성된다면 ENB는 단계 1360로 진행한다. 아직 생성되지 않은 MAC PDU가 있다면 ENB는 단계 1310로 복귀한다.In step 1355, the ENB determines whether the SYNC period has expired. If the MAC PDUs not generated due to the missing RLC SDUs are excluded, the ENB proceeds to step 1360 if all the MAC PDUs to be transmitted in the MBMS subframe allocated in the corresponding SYNC period are generated. If there are MAC PDUs not yet generated, the ENB returns to step 1310.

<제 3 실시예>&Lt; Third Embodiment >

본 발명의 제 3 실시예에서는, MBMS 서버가 ENB에게 소정의 SYNC 기간에 대응되는 SYNC 프레임들에 수납된 페이로드의 크기 정보를 수납한 별도의 제어 메시지를 전송한다. ENB는 상기 제어 메시지를 수신하면 해당 SYNC 기간에 대해서는 모든 RLC SDU들의 크기를 파악할 수 있기 때문에 아무리 많은 SYNC 프레임들이 연속으로 미수신 되더라도, 수신한 RLC SDU들에 대응되는 MAC PDU들을 정상적으로 생성할 수 있다.In the third embodiment of the present invention, the MBMS server transmits to the ENB a separate control message containing the size information of the payload stored in the SYNC frames corresponding to the predetermined SYNC period. When receiving the control message, the ENB can grasp the size of all the RLC SDUs in the corresponding SYNC period. Therefore, even when a large number of SYNC frames are not received consecutively, the ENB can normally generate MAC PDUs corresponding to the received RLC SDUs.

도 14는 본 발명의 제 3 실시예를 설명한 도면이다.14 is a view for explaining a third embodiment of the present invention.

도 14를 참조하여 설명하면. MBMS 서버(1410)는 임의의 SYNC 기간 x에 전송될 RLC SDU들이 수납한, PN이 0인 SYNC 프레임 (1415)에서 PN이 n인 SYNC 프레임 (1425)까지의 n개의 SYNC 프레임을 ENB(1405)에게 전송한다. 그리고 임의의 시점에 상기 SYNC 프레임들에 수납된 페이로드의 크기, 혹은 수납된 RLC SDU들의 크기를 지시하는, SYNC 기간 x에 대한 제어 메시지(1430)를 ENB에게 전송한다. Referring to Fig. The MBMS server 1410 transmits n SYNC frames from the SYNC frame 1415 with PN = 0 to the SYNC frame 1425 with PN = n stored in the RLC SDUs to be transmitted in an arbitrary SYNC period x to the ENB 1405, Lt; / RTI &gt; And transmits to the ENB a control message 1430 for the SYNC period x indicating the size of the payload stored in the SYNC frames or the size of the received RLC SDUs at an arbitrary point in time.

상기 제어 메시지(1430)에는 SYNC 기간 x에 대한 SYNC 프레임에 수납된 RLC SDU들의 크기가 각각 수납된다. 예컨대 SYNC 프레임 [0]에 수납된 RLC SDU [0]의 크기, SYNC 프레임 [1]에 수납된 RLC SDU [1]의 크기 등, SYNC 기간 x에 대한 SYNC 프레임에 수납된 모든 RLC SDU들의 크기가 수납될 수 있다. In the control message 1430, the sizes of the RLC SDUs stored in the SYNC frame for the SYNC period x are stored. The size of all the RLC SDUs stored in the SYNC frame for the SYNC period x, such as the size of the RLC SDU [0] stored in the SYNC frame [0] and the size of the RLC SDU [1] stored in the SYNC frame [ Can be accommodated.

이처럼 RLC SDU의 크기를 알려주는 별도의 제어 메시지(1430)가 제공된다면, SYNC 프레임들에 OC 정보를 따로 수납할 필요가 없기 때문에 본 발명의 제 3 실시예에서는 RLC SDU를 수납한 SYNC 프레임들의 헤더에 OC 정보를 수납하지 않는다. 그러므로 RLC SDU의 크기를 알려주는 별도의 제어 메시지(1430)를 수신하지 못한 ENB는 단 하나의 미수신 RLC SDU가 발생하더라도 상기 미수신 RLC SDU 이 후로는 MAC PDU를 정확하게 생성할 수 없기 때문에 다음 SYNC 기간이 시작될 때까지 MBMS 서브프레임에서의 전송을 중지한다. If a separate control message 1430 indicating the size of the RLC SDU is provided, it is not necessary to separately store the OC information in the SYNC frames. Therefore, in the third embodiment of the present invention, the header of the SYNC frames containing the RLC SDU The OC information is not stored. Therefore, an ENB that has not received a separate control message 1430 indicating the size of the RLC SDU can not correctly generate a MAC PDU after the missing RLC SDU even if only one missing RLC SDU is generated, And stops transmission in the MBMS subframe until it is started.

반면 RLC SDU의 크기를 알려주는 별도의 제어 메시지(1430)를 수신한다면 ENB는 미수신 RLC SDU가 몇 개가 발생하더라, 제대로 수신한 RLC SDU로부터 MAC PDU를 생성할 수 있으며 미수신 RLC SDU에 대응되는 MAC PDU를 제외한 나머지 MAC PDU들은 해당하는 MBMS 서브프레임에서 전송을 실행한다.On the other hand, if a separate control message 1430 indicating the size of the RLC SDU is received, the ENB can generate MAC PDUs from the correctly received RLC SDUs, regardless of how many unreceived RLC SDUs are generated, The MAC PDUs are transmitted in the corresponding MBMS subframe.

도 15에 본 발명의 제 3 실시예에 따른 기지국 장치의 동작을 도시하는 순서도이다. 15 is a flowchart showing the operation of the base station apparatus according to the third embodiment of the present invention.

도 15를 참조하여 설명하면, 단계 1505에서 임의의 SYNC 기간이 시작되면, ENB는 단계 1510로 진행해서 상기 임의의 SYNC 기간 동안 할당된 MBMS 서브프레임 중, 아직 MAC PDU가 구성되지 않은 첫 번째 MBMS 서브프레임에 대한 MAC PDU 구성을 위한 동작을 시작한다. ENB는 상기 MAC PDU에 수납될 RLC PDU의 크기에 맞춰 아직 MAC PDU에 수납된 적이 없는 RLC SDU 혹은 RLC SDU의 일부를 순차적으로 분할하거나 연접한다. Referring to FIG. 15, when an arbitrary SYNC period starts in step 1505, the ENB proceeds to step 1510 and selects one of the MBMS subframes allocated for the arbitrary SYNC period, the first MBMS sub- And starts an operation for configuring the MAC PDU for the frame. The ENB sequentially segments or concatenates a part of the RLC SDU or the RLC SDU that has not yet been stored in the MAC PDU according to the size of the RLC PDU to be stored in the MAC PDU.

이 때 ENB는 단계 1515에서 상기 RLC PDU의 페이로드를 모두 채우기 전에 미수신 RLC SDU가 발견되는지 검사하며, 미수신 RLC SDU 없이 RLC PDU의 페이로드를 모두 채우면 단계 1520로 진행하고, RLC PDU의 페이로드를 채우기 전에 미수신 RLC SDU가 발견되면 단계 1530로 진행한다. In step 1515, the ENB checks if an unreceived RLC SDU is found before all the payloads of the RLC PDU are found. If the payload of the RLC PDU is not filled with an unreceived RLC SDU, the ENB proceeds to step 1520, If an unreceived RLC SDU is found before filling, the process proceeds to step 1530.

단계 1520에서 ENB는 RLC SDU들이 분할/연접된 RLC 페이로드에 소정의 헤더를 부가해서 RLC PDU를 구성하고 상기 RLC PDU를 다중화해서 MAC PDU를 구성한다. 단계 1525에서 ENB는 상기 구성된 MAC PDU를 해당하는 MBMS 서브프레임에서 전송하고 단계 1555로 진행한다. RLC PDU의 페이로드를 모두 채우기 전에 미수신 RLC SDU가 발견되었다면 ENB는 단계 1515에서 단계 1530로 진행한다. In step 1520, the ENB constructs an RLC PDU by adding a predetermined header to an RLC payload segmented / concatenated by the RLC SDUs, and multiplexes the RLC PDUs to form a MAC PDU. In step 1525, the ENB transmits the configured MAC PDU in the corresponding MBMS subframe and proceeds to step 1555. If an unreceived RLC SDU is found before the payload of the RLC PDU is filled, the ENB proceeds from step 1515 to step 1530.

단계 1530에서 ENB는 상기 SYNC 기간에 대해서 RLC SDU들의 크기 정보를 수납한 제어 메시지가 가용한지 검사한다. 만약 상기 제어 메시지가 가용하다면 ENB는 단계 1535로 진행하고, 가용하지 않다면 단계 1550로 진행한다. In step 1530, the ENB determines whether a control message containing the size information of the RLC SDUs is available for the SYNC period. If the control message is available, the ENB proceeds to step 1535, and if not, proceeds to step 1550.

단계 1535로 진행한 ENB는 상기 제어 메시지에 수납된 정보를 이용해서 수신하지 못한 RLC SDU의 크기를 파악하고, 상기 수신하지 못한 RLC SDU의 크기를 고려해서 상기 수신하지 못한 RLC SDU가 어떤 MBMS 서브프레임에 대응되는 MAC PDU에 수납되었어야 하는지 판단한다. 이는 예를 들어 미수신 RLC SDU와 동일한 크기의 RLC SDU를 임의로 생성해서 통상적인 MAC PDU 생성 과정을 진행해서 상기 미수신 RLC SDU와 동일한 크기의 RLC SDU가 어떤 MAC PDU에 수납되는지를 보면 판단 가능하다. 단계 1540에서 ENB는 수신하지 못한 RLC SDU가 수납되었을 MAC PDU에 해당하는 MBMS 서브 프레임에서는 전송을 중지하고 단계 1545로 진행한다. In step 1535, the ENB determines the size of the RLC SDU that has not been received using the information stored in the control message, and determines, based on the size of the RLC SDU that has not been received, It is determined whether the MAC PDU has been received. For example, it is possible to arbitrarily generate an RLC SDU having the same size as that of an unreceived RLC SDU and to perform a normal MAC PDU generation process to determine which MAC PDU the RLC SDU having the same size as the non-received RLC SDU is stored in. In step 1540, the ENB stops transmission in the MBMS subframe corresponding to the MAC PDU in which the RLC SDU that it has not received is received, and proceeds to step 1545.

계속하여 ENB는 단계 1545에서 유효한 RLC SDU들만 수납하는 첫 번째 MAC PDU를 구성해서 해당 MBMS 서브프레임에서 전송한다. 이는 예를 들어 미수신 RLC SDU와 동일한 크기의 RLC SDU를 임의로 생성해서, 상기 미수신 RLC SDU와 동일한 크기의 RLC SDU가 수납되지 않는 첫 번째 MAC PDU가 생성될 때까지 통상적인 MAC PDU 생성 과정을 진행하면 가능하다. Subsequently, in step 1545, the ENB constructs a first MAC PDU containing only valid RLC SDUs and transmits the MAC PDU in the corresponding MBMS subframe. For example, an RLC SDU having the same size as an unreceived RLC SDU is arbitrarily generated, and a normal MAC PDU is generated until a first MAC PDU is received, the RLC SDU having the same size as the non-received RLC SDU is generated It is possible.

해당 SYNC 기간에 대한 RLC SDU들의 크기를 알려주는 제어 메시지가 가용하지 않다면 ENB는 단계 1530에서 단계 1550로 진행한다. 단계 1550에서 ENB는 지금까지 생성된 MAC PDU들만 해당 MBMS 서브 프레임에서 전송하고 더 이상의 MAC PDU 생성을 중지한다. 생성되지 않은 MAC PDU에 해당하는 MBMS 서브프레임에서는 전송을 중지하고, 단계 1560로 진행한다. If a control message informing the size of the RLC SDUs for the corresponding SYNC period is not available, the ENB proceeds from step 1530 to step 1550. In step 1550, the ENB transmits only the MAC PDUs generated so far in the corresponding MBMS subframe and stops further MAC PDU generation. In the MBMS subframe corresponding to the MAC PDU that has not been generated, the transmission is stopped and the process proceeds to step 1560.

단계 1555에서 ENB는 SYNC 기간 종료 여부를 판단한다. 미수신 RLC SDU때문에 생성되지 않은 MAC PDU를 제외하면 해당 SYNC 기간에 할당된 MBMS 서브프레임에서 전송할 MAC PDU들이 모두 생성된다면 ENB는 단계 1560로 진행한다. 아직 생성되지 않은 MAC PDU가 있다면 ENB는 단계 1510로 복귀한다.In step 1555, the ENB determines whether or not the SYNC period has expired. If the MAC PDUs not generated due to the non-received RLC SDUs are excluded, the ENB proceeds to step 1560 if all the MAC PDUs to be transmitted in the MBMS subframe allocated in the corresponding SYNC period are generated. If there are MAC PDUs not yet generated, the ENB returns to step 1510.

도 16에 본 발명의 실시예에 따른 기지국 장치를 도시한 도면이다.16 is a diagram illustrating a base station apparatus according to an embodiment of the present invention.

도 16을 참조하여 설명하면, L1 수신 장치(1605)는 MBMS 서버에서 전송된 데이터를 수신하는 장치이다. ENB와 연결된 유선 링크의 종류에 따라 L1 수신 장치(1605)는 Ethernet 수신 장치가 될 수도 있고, 광수신 장치가 될 수도 있다. L1 수신 장치(1605)에서 수신된 데이터는 역다중화 장치(1607)로 입력된다. 역다중화 장치(1607)는 수신된 데이터를 적절한 상위 계층 장치로 분배하는 역할을 한다. 역다중화 장치(1607)는 특정 MBMS 서비스에 대응되는 SYNC 프레임은 해당 MBMS 서비스의 SYNC 프레임 처리부로 전달한다. Referring to FIG. 16, the L1 receiving apparatus 1605 is an apparatus for receiving data transmitted from an MBMS server. Depending on the type of the wired link connected to the ENB, the L1 receiving apparatus 1605 may be an Ethernet receiving apparatus or an optical receiving apparatus. The data received by the L1 receiving apparatus 1605 is input to the demultiplexer 1607. [ The demultiplexer 1607 serves to distribute the received data to a suitable upper layer device. The demultiplexer 1607 transfers the SYNC frame corresponding to the specific MBMS service to the SYNC frame processor of the corresponding MBMS service.

SYNC 프레임 처리부(1615)는 SYNC 프레임을 수신하여, 페이로드에 수납된 RLC SDU 및 관련 정보, 예컨대 PN, OC 등을 RLC SDU 저장부(1620)로 전달한다. 또한 SYNC 프레임 처리부(1615)는 상기 SYNC 프레임에 수납되어 있는 POC혹은 PPS를 미수신 RLC SDU 크기 산출부(1610)로 전달한다. 또한 SYNC 프레임 처리부(1615)는 또한 'RLC SDU 크기 정보를 수납한 제어 메시지'를 수신하면 상기 제어 정보 역시 미수신 RLC SDU 크기 산출부(1610)로 전달한다. The SYNC frame processing unit 1615 receives the SYNC frame and delivers the RLC SDU and related information, for example, PN, OC, etc., stored in the payload to the RLC SDU storage unit 1620. In addition, the SYNC frame processing unit 1615 transfers the POC or PPS stored in the SYNC frame to the RLC SDU size calculation unit 1610. The SYNC frame processing unit 1615 also receives the control message containing the RLC SDU size information, and transmits the control information to the not-received RLC SDU size calculation unit 1610. [

RLC SDU 저장부(1620)에는 아직 전송되지 않은 RLC SDU 혹은 RLC SDU의 일부가 PN의 순서에 따라 저장된다. 만약 인접한 두 RLC SDU의 PN이 연속적이지 않다면, RLC SDU 저장부(1620)는 상기 연속적이지 않은 PN들과 상기 PN에 대응되는 OC들을 미수신 RLC SDU 크기 산출부(1610)로 전달한다. 그리고 미수신 RLC SDU 크기 산출부(1610)가 알려주는 미수신 RLC SDU들의 크기를 고려해서 향후 RLC PDU 페이로드 생성 동작을 수행한다. RLC SDU 저장부(1620)는 RLC PDU 생성부(1625)가 요구하는 크기로 RLC SDU 혹은 RLC SDU의 일부를 분할/연접하여 RLC PDU 페이로드를 구성하고 이를 RLC PDU 생성부(1625)로 전달한다. In the RLC SDU storage unit 1620, a portion of the RLC SDU or RLC SDU that has not yet been transmitted is stored in the order of PN. If the PNs of two adjacent RLC SDUs are not consecutive, the RLC SDU storage unit 1620 delivers the non-consecutive PNs and the OCs corresponding to the PNs to the missing RLC SDU size calculation unit 1610. And performs RLC PDU payload generation operation in consideration of the size of non-received RLC SDUs reported by the missing RLC SDU size calculation unit 1610. [ The RLC SDU storage unit 1620 divides / concatenates a part of the RLC SDU or the RLC SDU into a size required by the RLC PDU generation unit 1625 to form an RLC PDU payload, and transmits the payload to the RLC PDU generation unit 1625 .

만약 미수신 RLC SDU 때문에 상기 RLC PDU 페이로드를 채울 수 없다면, RLC SDU 저장부(1620)는 RLC PDU 생성부(1625)에게 전달할 데이터가 없음을 통보한다. 미수신 RLC SDU 크기 산출부(1610)에서 RLC SDU 저장부(1620)로 특정 RLC SDU 이후로는 미수신 RLC SDU의 크기를 산출할 수 없음을 통보하면, RLC SDU 저장부(1620)는 상기 특정 RLC SDU 이후의 RLC SDU로는 더 이상 RLC 페이로드를 생성하지 않고, RLC PDU 생성부(1625)에게 전달할 데이터가 없음을 통보한다. 반면 미수신 RLC SDU 크기 산출부(1610)에서 RLC SDU 저장부(1620)로 미수신 RLC SDU의 크기를 알려주면, RLC SDU 저장부(1620)는 상기 미수신 RLC SDU의 크기를 고려해서 RLC PDU 페이로드를 생성할 수 있는 시점부터는 RLC PDU 페이로드를 생성해서 RLC PDU 생성부(1625)로 전달한다. If the RLC PDU payload can not be filled due to an unreceived RLC SDU, the RLC SDU storage unit 1620 notifies the RLC PDU generation unit 1625 that there is no data to be transmitted. If the RLC SDU size calculation unit 1610 notifies the RLC SDU storage unit 1620 that the size of an unreceived RLC SDU can not be calculated after a specific RLC SDU, the RLC SDU storage unit 1620 stores the specific RLC SDU size In the subsequent RLC SDU, the RLC PDU generation unit 1625 does not generate an RLC payload any more and notifies that there is no data to be transmitted. On the other hand, if the RLC SDU size calculation unit 1610 notifies the RLC SDU storage unit 1620 of the size of the non-received RLC SDU, the RLC SDU storage unit 1620 stores the RLC PDU payload in consideration of the size of the non- The RLC PDU generation unit 1625 generates an RLC PDU payload from the generation time point.

미수신 RLC SDU 크기 산출부(1610)는 SYNC 프레임 처리부(1615)와 RLC SDU 저장부(1620)가 전달한 정보를 바탕으로 미수신 RLC SDU의 크기를 산출하고, 이를 RLC SDU 저장부(1620)로 전달한다. 또한 미수신 RLC SDU 크기 산출부(1610)는 미수신 RLC SDU의 크기를 산출할 수 없다는 정보를 RLC SDU 저장부(1620)에 이를 통보한다.The unreceived RLC SDU size calculation unit 1610 calculates the size of an unreceived RLC SDU based on the information transmitted from the SYNC frame processing unit 1615 and the RLC SDU storage unit 1620 and transmits the calculated size to the RLC SDU storage unit 1620 . The unreceived RLC SDU size calculation unit 1610 notifies the RLC SDU storage unit 1620 of information indicating that the size of an unreceived RLC SDU can not be calculated.

RLC PDU 생성부(1625)는 전송 제어부(1635)가 지시하는 크기의 RLC PDU를 생성한다. RLC PDU 생성부(1625)는 전송 제어부(1635)가 지시한 크기에 맞춰 RLC PDU 페이로드에 수납될 데이터의 양을 결정하고 RLC SDU 저장부(1620)에게 해당 크기의 페이로드를 만들어서 전달할 것을 지시한다. RLC PDU 생성부(1625)는 RLC SDU 저장부(1620)에서 전달한 페이로드에 RLC 헤더를 붙여서 RLC PDU를 만든 뒤 MAC PDU 생성부(1630)로 전달한다. RLC SDU 저장부(1620)에서 RLC PDU 페이로드를 전달하지 않으면, RLC PDU 생성부(1625) 역시 MAC PDU 생성부(1630)에게 RLC PDU를 전달하지 않는다. The RLC PDU generation unit 1625 generates an RLC PDU of a size indicated by the transmission control unit 1635. The RLC PDU generation unit 1625 determines the amount of data to be stored in the RLC PDU payload in accordance with the size instructed by the transmission control unit 1635 and instructs the RLC SDU storage unit 1620 to create and deliver a payload of a corresponding size do. The RLC PDU generation unit 1625 attaches an RLC header to the payload delivered from the RLC SDU storage unit 1620, creates an RLC PDU, and transmits the RLC PDU to the MAC PDU generation unit 1630. If the RLC PDU generation unit 1625 does not transmit the RLC PDU payload in the RLC SDU storage unit 1620, the RLC PDU generation unit 1625 does not transmit the RLC PDU to the MAC PDU generation unit 1630.

MAC PDU 생성부(1630)는 RLC PDU 생성부(1625)에서 전달한 RLC PDU를 페이로드에 수납하고 소정의 MAC 헤더를 부가해서 MAC PDU를 구성한다. 그리고 전송 제어부(1635)가 지시하는 시점에 상기 MAC PDU 생성부(1630)를 L1 송신 장치(1640)로 전달한다. RLC PDU 생성부(1625)에서 RLC PDU를 전달하지 않으면, MAC PDU 역시 MAC PDU를 생성하지 않는다. The MAC PDU generation unit 1630 stores the RLC PDU received from the RLC PDU generation unit 1625 in the payload and adds a predetermined MAC header to the MAC PDU. And transfers the MAC PDU generation unit 1630 to the L1 transmission apparatus 1640 at a timing indicated by the transmission control unit 1635. If the RLC PDU generation unit 1625 does not forward the RLC PDU, the MAC PDU does not generate the MAC PDU.

L1 송신 장치(1640)는 전송 제어부(1635)가 전송을 지시하는 시점에 MAC PDU 생성부(1630)가 전달한 MAC PDU를 미리 정해진 전송 자원에 미리 정해진 변조/채널 코딩 방식으로 전송한다. 전송 제어부(1635)가 전송을 지시한 시점에 MAC PDU 생성부(1630)가 전달한 MAC PDU가 없다면 L1 송신 장치(1640)는 상기 시점에는 전송을 수행하지 않는다.The L1 transmission apparatus 1640 transmits the MAC PDUs delivered by the MAC PDU generation unit 1630 to the predetermined transmission resources in a predetermined modulation / channel coding scheme at the time when the transmission control unit 1635 instructs transmission. If there is no MAC PDU delivered by the MAC PDU generation unit 1630 at the time the transmission control unit 1635 instructs the transmission, the L1 transmission apparatus 1640 does not perform transmission at this point in time.

전송 제어부(1635)는 MBMS 서브 프레임을 인지하고, MBMS 서브 프레임이 시작되기 이전의 적절한 시점에 RLC PDU 생성부(1625), MAC PDU 생성부(1630), L1 송신 장치(1640)를 제어해서 상기 MBMS 서브 프레임에 MAC PDU가 전송되도록 한다. The transmission control unit 1635 recognizes the MBMS subframe and controls the RLC PDU generation unit 1625, the MAC PDU generation unit 1630, and the L1 transmission apparatus 1640 at an appropriate time before the start of the MBMS subframe, Thereby allowing the MAC PDU to be transmitted to the MBMS subframe.

한편 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.
It should be noted that the embodiments of the present invention disclosed in the present specification and drawings are only illustrative examples of the present invention and are not intended to limit the scope of the present invention in order to facilitate understanding of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention are possible in addition to the embodiments disclosed herein.

Claims (24)

기지국의 MBMS(multimedia broadcast multicast service) 데이터 전송 방법에 있어서,
MBMS 서브프레임에서 전송될 SDU(service data unit)들을 코어 네트워크 노드로부터 수신하는 단계;
상기 코어 네트워크 노드에서 상기 기지국으로 전송된 각 SDU의 길이 정보를 포함하는 제어 메시지를 수신하는 단계;
상기 제어 메시지에 포함된 길이 정보를 사용하여 상기 SDU들을 처리하는 단계를 포함하고,
상기 SDU들이 상기 코어 네트워크 노드에서 상기 기지국으로 전송된 이후에 상기 제어 메시지가 상기 코어네트워크 노드에서 상기 기지국으로 전송되는 것을 특징으로 하는 방법.
A method of transmitting a multimedia broadcast multicast service (MBMS) data of a base station,
Receiving service data units (SDUs) to be transmitted in an MBMS subframe from a core network node;
Receiving a control message including length information of each SDU transmitted from the core network node to the base station;
And processing the SDUs using length information included in the control message,
Wherein the control message is transmitted from the core network node to the base station after the SDUs are transmitted from the core network node to the base station.
제1항에 있어서, 상기 SDU들을 처리하는 단계는,
적어도 하나의 SDU 손실을 확인하는 단계,
상기 적어도 하나의 손실된 SDU에 대한 MAC PDU(protocol data unit)를 포함하는 MBMS 서브프레임을 결정하는 단계, 그리고
상기 결정된 MBMS 서브프레임에서 상기 MAC PDU의 전송을 막는 단계를 포함하는 것을 특징으로 하는 방법.
2. The method of claim 1, wherein processing the SDUs comprises:
Identifying at least one SDU loss,
Determining an MBMS subframe including a MAC PDU (protocol data unit) for the at least one lost SDU, and
And blocking transmission of the MAC PDU in the determined MBMS subframe.
제2항에 있어서,
유효한 SDU를 포함하는 MAC PDU를 생성하는 단계; 및
상기 생성된 MAC PDU를 대응하는 MBMS 서브프레임에서 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
3. The method of claim 2,
Generating a MAC PDU comprising a valid SDU; And
And transmitting the generated MAC PDU in a corresponding MBMS subframe.
제1항에 있어서, 상기 SDU들과 상기 제어 메시지는 별도로 수신되는 것을 특징으로 하는 방법.2. The method of claim 1, wherein the SDUs and the control message are received separately. 제1항에 있어서, 상기 SDU들을 처리하는 단계는,
상기 각 SDU에 포함된 각 SDU의 길이 지시자를 이용하여 상기 SDU들을 처리하거나,
연속된 SDU들의 손실이 발생하면, 상기 제어 메시지에 포함된 길이 정보를 사용하여 처리하는 것을 특징으로 하는 방법.
2. The method of claim 1, wherein processing the SDUs comprises:
Processes the SDUs using a length indicator of each SDU included in each SDU,
When loss of consecutive SDUs occurs, processing using length information included in the control message.
제1항에 있어서, 상기 SDU들을 처리하는 단계는,
적어도 두 개의 연속된 SDU들의 손실을 확인하는 단계,
상기 길이 정보를 이용하여 상기 적어도 두 개의 SDU들에 대한 MAC PDU를 포함하는 MBMS 서브프레임을 확인하는 단계, 그리고
상기 확인된 MBMS 서브프레임에서 상기 MAC PDU의 전송을 막는 단계를 포함하는 것을 특징으로 하는 방법.
2. The method of claim 1, wherein processing the SDUs comprises:
Identifying a loss of at least two consecutive SDUs,
Confirming an MBMS subframe including a MAC PDU for the at least two SDUs using the length information, and
And blocking transmission of the MAC PDU in the identified MBMS subframe.
제1항에 있어서, 상기 제어 메시지는 한 동기 구간에서 상기 코어 네트워크 노드로부터 전송되는 다른 SDU들 각각에 대한 길이 정보를 더 포함하는 것을 특징으로 하는 방법.2. The method of claim 1, wherein the control message further comprises length information for each of the other SDUs transmitted from the core network node in one synchronization period. 기지국에 있어서,
신호를 송신 및 수신하는 송수신부; 및
MBMS(multimedia broadcast multicast service) 서브프레임에서 전송될 SDU(service data unit)들을 코어 네트워크 노드로부터 수신하고, 상기 코어 네트워크 노드에서 상기 기지국으로 전송된 각 SDU의 길이 정보를 포함하는 제어 메시지를 수신하며, 상기 제어 메시지에 포함된 길이 정보를 사용하여 상기 SDU들을 처리하도록 제어하는 제어부를 포함하고,
상기 SDU들이 상기 코어 네트워크 노드에서 상기 기지국으로 전송된 이후에 상기 제어 메시지가 상기 코어네트워크 노드에서 상기 기지국으로 전송되는 것을 특징으로 하는 기지국.
In the base station,
A transmitting and receiving unit for transmitting and receiving signals; And
Receiving from a core network node SDUs (service data units) to be transmitted in a MBMS subframe, receiving a control message including length information of each SDU transmitted from the core network node to the base station, And a control unit for controlling the SDUs to be processed using the length information included in the control message,
Wherein the control message is transmitted from the core network node to the base station after the SDUs are transmitted from the core network node to the base station.
제8항에 있어서, 상기 제어부는,
적어도 하나의 SDU 손실을 확인하고, 상기 적어도 하나의 손실된 SDU에 대한 MAC PDU(protocol data unit)를 포함하는 MBMS 서브프레임을 결정하며, 상기 결정된 MBMS 서브프레임에서 상기 MAC PDU의 전송을 막아 상기 SDU들을 처리하도록 제어하는 것을 특징으로 하는 기지국.
9. The apparatus according to claim 8,
Determining at least one SDU loss, determining an MBMS subframe including a MAC PDU (protocol data unit) for the at least one lost SDU, preventing transmission of the MAC PDU in the determined MBMS subframe, To the base station.
제9항에 있어서, 상기 제어부는,
유효한 SDU를 포함하는 MAC PDU를 생성하고, 상기 생성된 MAC PDU를 대응하는 MBMS 서브프레임에서 전송하도록 제어하는 것을 특징으로 하는 기지국.
10. The apparatus according to claim 9,
Generates an MAC PDU including a valid SDU, and controls the generated MAC PDU to be transmitted in a corresponding MBMS subframe.
제8항에 있어서, 상기 SDU들과 상기 제어 메시지는 별도로 수신되는 것을 특징으로 하는 기지국.9. The base station of claim 8, wherein the SDUs and the control message are received separately. 제8항에 있어서, 상기 제어부는,
상기 각 SDU에 포함된 각 SDU의 길이 지시자를 이용하여 상기 SDU들을 처리하거나,
연속된 SDU들의 손실이 발생하면, 상기 제어 메시지에 포함된 길이 정보를 사용하여 처리하도록 제어하는 것을 특징으로 하는 기지국.
9. The apparatus according to claim 8,
Processes the SDUs using a length indicator of each SDU included in each SDU,
And controls to process using the length information included in the control message if a loss of consecutive SDUs occurs.
제8항에 있어서, 상기 제어부는,
적어도 두 개의 연속된 SDU들의 손실을 확인하고, 상기 길이 정보를 이용하여 상기 적어도 두 개의 SDU들에 대한 MAC PDU를 포함하는 MBMS 서브프레임을 확인하며, 상기 확인된 MBMS 서브프레임에서 상기 MAC PDU의 전송을 막아 상기 SDU들을 처리하도록 제어하는 것을 특징으로 하는 기지국.
9. The apparatus according to claim 8,
Confirms a loss of at least two consecutive SDUs, identifies an MBMS subframe including a MAC PDU for the at least two SDUs using the length information, and transmits the MAC PDU in the confirmed MBMS subframe And to process the SDUs.
제8항에 있어서, 상기 제어 메시지는 한 동기 구간에서 상기 코어 네트워크 노드로부터 전송되는 다른 SDU들 각각에 대한 길이 정보를 더 포함하는 것을 특징으로 하는 기지국.The base station of claim 8, wherein the control message further comprises length information for each of the other SDUs transmitted from the core network node in one synchronization period. 코어 네트워크 노드의 MBMS(multimedia broadcast multicast service) 데이터 전송 방법에 있어서,
MBMS 서브프레임에서 전송될 SDU(service data unit)들을 기지국으로 전송하는 단계; 및
각 SDU들의 길이 정보를 포함하는 제어 메시지를 상기 기지국으로 전송하는 단계를 포함하고,
상기 제어 메시지는 상기 SDU들이 전송된 이후에 전송되는 것을 특징으로 하는 방법.
A method of transmitting a multimedia broadcast multicast service (MBMS) data of a core network node,
Transmitting service data units (SDUs) to be transmitted in an MBMS subframe to a base station; And
And transmitting a control message including length information of each SDU to the base station,
Wherein the control message is transmitted after the SDUs are transmitted.
제15항에 있어서, 상기 SDU들과 상기 제어 메시지는 별도로 전송되는 것을 특징으로 하는 방법.16. The method of claim 15, wherein the SDUs and the control message are transmitted separately. 제15항에 있어서, 상기 길이 정보는 상기 기지국에서 동기화 구간에서의 SDU의 손실을 확인하면 상기 동기화 구간에서 동기화를 위해 사용되고,
상기 기지국에서 상기 손실된 SDU에 대한 MAC PDU(protocol data unit)를 포함하는 MBMS 서브프레임은 상기 길이 정보에 기반하여 확인되고,
상기 확인된 MBMS 서브프레임에서 상기 기지국에 의하여 상기 MAC PDU의 전송이 금지되는 것을 특징으로 하는 방법.
16. The method of claim 15, wherein the length information is used for synchronization in the synchronization interval if the base station checks loss of an SDU in a synchronization interval,
The MBMS subframe including the MAC PDU (protocol data unit) for the lost SDU is confirmed on the basis of the length information,
Wherein the transmission of the MAC PDU is prohibited by the base station in the identified MBMS subframe.
제17항에 있어서, 상기 제어 메시지는,
상기 기지국에서 유효한 SDU를 포함하는 MAC PDU를 생성 및 상기 생성된 MAC PDU를 대응하는 MBMS 서브프레임에서 상기 MAC PDU의 전송에 이용되는 것을 특징으로 하는 방법.
18. The method of claim 17,
Wherein the base station generates an MAC PDU including a valid SDU and uses the generated MAC PDU for transmission of the MAC PDU in a corresponding MBMS subframe.
삭제delete 코어 네트워크 노드에 있어서,
신호를 송신 및 수신하는 송수신부; 및
MBMS(multimedia broadcast multicast service) 서브프레임에서 전송될 SDU(service data unit)들을 기지국으로 전송하고, 각 SDU들의 길이 정보를 포함하는 제어 메시지를 상기 기지국으로 전송하도록 제어하는 제어부를 포함하고,
상기 제어 메시지는 상기 SDU들이 전송된 이후에 전송되는 것을 특징으로 하는 코어 네트워크 노드.
In a core network node,
A transmitting and receiving unit for transmitting and receiving signals; And
A control unit for transmitting service data units (SDUs) to be transmitted in a MBMS subframe to a base station and transmitting a control message including length information of each SDU to the base station,
Wherein the control message is transmitted after the SDUs are transmitted.
제20항에 있어서, 상기 SDU들과 상기 제어 메시지는 별도로 전송되는 것을 특징으로 하는 코어 네트워크 노드.21. The core network node of claim 20, wherein the SDUs and the control message are transmitted separately. 제20항에 있어서, 상기 길이 정보는 상기 기지국에서 동기화 구간에서의 SDU의 손실을 확인하면 상기 동기화 구간에서 동기화를 위해 사용되고,
상기 기지국에서 상기 손실된 SDU에 대한 MAC PDU(protocol data unit)를 포함하는 MBMS 서브프레임은 상기 길이 정보에 기반하여 확인되고,
상기 확인된 MBMS 서브프레임에서 상기 기지국에 의하여 상기 MAC PDU의 전송이 금지되는 것을 특징으로 하는 코어 네트워크 노드.
21. The method of claim 20, wherein the length information is used for synchronization in the synchronization interval if the base station identifies loss of an SDU in the synchronization interval,
The MBMS subframe including the MAC PDU (protocol data unit) for the lost SDU is confirmed on the basis of the length information,
Wherein the transmission of the MAC PDU is prohibited by the BS in the identified MBMS subframe.
제20항에 있어서, 상기 제어 메시지는,
상기 기지국에서 유효한 SDU를 포함하는 MAC PDU를 생성 및 상기 생성된 MAC PDU를 대응하는 MBMS 서브프레임에서 상기 MAC PDU의 전송에 이용되는 것을 특징으로 하는 코어 네트워크 노드.
21. The method of claim 20,
Wherein the base station generates a MAC PDU including a valid SDU and uses the generated MAC PDU to transmit the MAC PDU in a corresponding MBMS subframe.
삭제delete
KR1020150032359A 2015-03-09 2015-03-09 Method and device for transmitting multimedia data in wireless communication system KR101631104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150032359A KR101631104B1 (en) 2015-03-09 2015-03-09 Method and device for transmitting multimedia data in wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150032359A KR101631104B1 (en) 2015-03-09 2015-03-09 Method and device for transmitting multimedia data in wireless communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR2020150001114 Division 2015-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160071521A Division KR101714511B1 (en) 2016-06-09 2016-06-09 Method and device for transmitting multimedia data in wireless communication system

Publications (2)

Publication Number Publication Date
KR20150042754A KR20150042754A (en) 2015-04-21
KR101631104B1 true KR101631104B1 (en) 2016-06-16

Family

ID=53035699

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150032359A KR101631104B1 (en) 2015-03-09 2015-03-09 Method and device for transmitting multimedia data in wireless communication system

Country Status (1)

Country Link
KR (1) KR101631104B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116868A1 (en) * 2007-03-23 2008-10-02 Nokia Corporation Distributed operation
WO2008155332A2 (en) * 2007-06-18 2008-12-24 Nokia Corporation A method for providing a plurality of services

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050095419A (en) * 2004-03-26 2005-09-29 삼성전자주식회사 Method for efficiently utilizing radio resources of voice over internet protocol in a mobile telecommunication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116868A1 (en) * 2007-03-23 2008-10-02 Nokia Corporation Distributed operation
WO2008155332A2 (en) * 2007-06-18 2008-12-24 Nokia Corporation A method for providing a plurality of services

Also Published As

Publication number Publication date
KR20150042754A (en) 2015-04-21

Similar Documents

Publication Publication Date Title
US11089576B2 (en) Sidelink resource scheduling method, apparatus, and system
EP2163105B1 (en) A method for providing a plurality of services
US9444638B2 (en) Method and apparatus for transmitting multimedia broadcast data in wireless communication system
KR20150090815A (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobilre communication system
US9629019B2 (en) Enhanced multiplexing for single RLC entity
KR101714511B1 (en) Method and device for transmitting multimedia data in wireless communication system
CN114698018B (en) Method and user equipment for initiating PDCP (packet data Condition protocol) status report process
KR101631104B1 (en) Method and device for transmitting multimedia data in wireless communication system
CN117062141A (en) Method and user equipment for initiating PDCP (packet data Condition protocol) status report process
CN115836538A (en) Reliable multicast transmission with uplink feedback
WO2023063323A1 (en) Communication method, user equipment, and base station
WO2009102166A2 (en) Method and apparatus for transmitting data by using prioritized bit rate in mobile communication system
KR101579752B1 (en) Apparatus and method for receiving and transmitting control message of multimedia broadcasting service in mobile communication system
WO2011020403A1 (en) Method and apparatus for joint scheduling with plurality of scheduling periods in multimedia boadcast multicast service
KR20090086033A (en) Apparatus and method for consisting transmission packet in a mobile communication system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190530

Year of fee payment: 4