KR101630832B1 - Novel strain for efficient simultaneous saccharification and fermentation at high temperature and Bio-ethanol production method using the novel strain - Google Patents

Novel strain for efficient simultaneous saccharification and fermentation at high temperature and Bio-ethanol production method using the novel strain Download PDF

Info

Publication number
KR101630832B1
KR101630832B1 KR1020140111378A KR20140111378A KR101630832B1 KR 101630832 B1 KR101630832 B1 KR 101630832B1 KR 1020140111378 A KR1020140111378 A KR 1020140111378A KR 20140111378 A KR20140111378 A KR 20140111378A KR 101630832 B1 KR101630832 B1 KR 101630832B1
Authority
KR
South Korea
Prior art keywords
saccharomyces cerevisiae
fermentation
ethanol
cerevisiae
biomass
Prior art date
Application number
KR1020140111378A
Other languages
Korean (ko)
Other versions
KR20160025113A (en
Inventor
차영록
안종웅
문윤호
윤영미
유경단
안기홍
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020140111378A priority Critical patent/KR101630832B1/en
Publication of KR20160025113A publication Critical patent/KR20160025113A/en
Application granted granted Critical
Publication of KR101630832B1 publication Critical patent/KR101630832B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • C12N1/185Saccharomyces isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 동시 당화 발효 효능이 우수한 고온내성 신규 균주 및 이를 이용한 바이오에탄올 생산방법에 관한 것이다. 본 발명은 사카로마이세스 세레비제(Saccharomyces cerevisiae)에 결손 돌연변이를 유발하여 고온 내열성 균주를 분리하였으며 분리된 균주는 40 내지 45℃의 고온에서 우수한 성장률과 에탄올 생성율을 나타내므로, 이를 고온에서의 동시 당화 발효법을 이용한 바이오에탄올 생산에 적용할 수 있다.The present invention relates to a novel high temperature tolerant strain having excellent simultaneous saccharification fermentation efficiency and a method for producing bioethanol using the same. The present invention relates to the use of Saccharomyces cerevisiae S. cerevisiae . The isolated strain has excellent growth rate and ethanol production rate at a high temperature of 40 to 45 ° C. Therefore, it can be applied to the production of bioethanol using the simultaneous saccharification and fermentation method at high temperature have.

Description

동시 당화 발효 효능이 우수한 고온내성 신규 균주 및 이를 이용한 바이오에탄올 생산방법{Novel strain for efficient simultaneous saccharification and fermentation at high temperature and Bio-ethanol production method using the novel strain} TECHNICAL FIELD [0001] The present invention relates to a novel high-temperature resistant strain having excellent simultaneous saccharification fermentation efficiency and a method for producing bioethanol using the same,

본 발명은 동시 당화 발효 효능이 우수한 고온내성 신규 균주 및 이를 이용한 바이오에탄올 생산방법에 관한 것이다.
The present invention relates to a novel high temperature tolerant strain having excellent simultaneous saccharification fermentation efficiency and a method for producing bioethanol using the same.

리그노셀룰로오스계 바이오매스로부터 바이오에탄올 생산은 최근 특히 환경적, 경제적 관점에서 주목을 끌어 왔다 (비특허문헌 1). 리그노셀룰로오스계 바이오매스는 주로 40~50% 셀룰로오스, 25~30% 헤미셀룰로오스 그리고 15~20% 리그닌으로 구성되어 있다(비특허문헌 2). 셀룰로오스는 글루코오스의 선형 폴리머이며, 헤미셀룰로오스는 가지가 있는 헤테로폴리머로 예를 들면 글루코오스, 자일로오스, 아라비노오스 그리고 갈락토오스가 있다. 리그닌은 교차-결합된 방향족 폴리머의 소수성 복합체이다. 셀룰로오스 폴리머가 헤미셀룰로오스와 리그닌의 복합체 내에 단단하게 끼워져 있기 때문에, 복잡한 복합체로부터 셀룰로오스 폴리머를 유리하기 위하여 전처리가 수행되어야 한다(비특허문헌 3, 4). 따라서, 전처리의 결과는 리그닌과 헤미셀룰로오스의 물리적, 화학적, 열적 가수분해를 통한 효과적인 제거에 의하여 결정된다(비특허문헌 5, 6). 전처리 이후, 효소 가수분해를 통해 셀룰로오스와 헤미셀룰로오스를 발효성 당으로 전환시킨다.(비특허문헌 7, 8). 최종적으로, 에탄올 생산을 위해 발효성 당을 이용한 미생물 발효가 수행된다. 이러한 일련의 과정은 분리 당화 발효법(separate hydrolysis and fermentation, SHF)이라 한다(비특허문헌 9). The production of bioethanol from lignocellulosic biomass has recently attracted attention particularly from the environmental and economic standpoints (Non-Patent Document 1). Lignocellulosic biomass is composed mainly of 40-50% cellulose, 25-30% hemicellulose and 15-20% lignin (Non-Patent Document 2). Cellulose is a linear polymer of glucose, and hemicellulose is a branched heteropolymer such as glucose, xylose, arabinose and galactose. Lignin is a hydrophobic complex of cross-linked aromatic polymers. Since the cellulose polymer is firmly embedded in the complex of hemicellulose and lignin, pretreatment must be carried out in order to obtain the cellulose polymer from the complex complex (Non-Patent Documents 3 and 4). Therefore, the result of the pretreatment is determined by effective elimination by physical, chemical, and thermal hydrolysis of lignin and hemicellulose (Non-Patent Documents 5 and 6). After the pretreatment, cellulose and hemicellulose are converted into fermentable sugars through enzymatic hydrolysis (Non-Patent Documents 7 and 8). Finally, microbial fermentation using a fermentable sugar is performed for ethanol production. This process is called separate hydrolysis and fermentation (SHF) (Non-Patent Document 9).

분리 당화 발효법과 대조적으로, 미생물 발효와 효소 가수분해를 함께 수행하는 것을 동시 당화 발효법(simultaneous saccharification and fermentation, SSF)이라 한다(비특허문헌 10). 동시 당화 발효법은 분리 당화 발효법에 비해 발효시간이 짧고 사용되는 장비도 절감되므로 비용 절감(최소 20%) 둥 장점을 지닌다(비특허문헌 11, 12). 그러나 동시 당화 발효의 주요한 애로사항은 효소반응이 최적 효소 온도조건에서 수행되지 않는다는 점이다(비특허문헌 13, 14). 이러한 이유로, 동시 당화 발효법은 장기간의 반응 시간을 필수로 하고 발효에 필요한 당의 수율이 낮으며 동시 당화 발효법 적용 시 효소를 대량 투입하지 않는 한 낮은 에탄올 수율을 보였다(비특허문헌 15). 따라서, 기존의 동시 당화 발효 기술의 한계를 극복하기 위하여 호열성 또는 고온내열성 미생물의 개발이 지속적으로 요구되어 왔다(비특허문헌 16). 비록 효소 가수분해를 위한 적정 온도가 50℃이나, 40~50℃ 범위는 당 수율에 크게 영향을 미치지 않는다(비특허문헌 11). 특히, 미생물 오염의 최소화(비특허문헌 17), 추가적인 냉각 장치의 불필요(비특허문헌 18), 기존 에탄올 추출의 편리성(비특허문헌 17)과 같은 고온 발효의 잠재적 몇 가지 이점들이 보고되었다. Nonklang 등(비특허문헌 19)은 발효 온도가 5℃ 증가한다면 연료 에탄올 생산 비용이 크게 절감될 것으로 예측하였다(30,000 kL 규모의 에탄올 공장에서 연간 $ 30,000 절감).In contrast to the isolated saccharification fermentation method, the simultaneous saccharification and fermentation (SSF) is called microbial fermentation and enzyme hydrolysis together (Non-Patent Document 10). The simultaneous saccharification fermentation method has advantages in cost reduction (at least 20%) since the fermentation time is short and the equipment to be used is reduced as compared with the separation saccharification fermentation method (Non-Patent Documents 11 and 12). However, the main difficulties in simultaneous saccharification fermentation are that the enzyme reaction is not performed at the optimum enzyme temperature condition (Non-Patent Documents 13 and 14). For this reason, the simultaneous saccharification fermentation method requires a long reaction time, and the yield of sugar required for fermentation is low, and when the simultaneous saccharification fermentation method is applied, the yield of ethanol is low unless a large amount of enzyme is added (Non-Patent Document 15). Therefore, the development of thermostable or high-temperature resistant microorganisms has been continuously required to overcome the limitations of the conventional simultaneous saccharification fermentation technology (Non-Patent Document 16). Although the optimum temperature for the enzymatic hydrolysis is 50 占 폚, the range of 40 to 50 占 폚 does not greatly affect the sugar yield (Non-Patent Document 11). In particular, several potential advantages of high temperature fermentation have been reported, such as minimization of microbial contamination (non-patent document 17), the need for additional cooling devices (non-patent document 18), and convenience of conventional ethanol extraction (non-patent document 17). Nonklang et al. (Non-patent document 19) predicted that the cost of producing ethanol would be greatly reduced if the fermentation temperature increased by 5 ° C ($ 30,000 annually in a 30,000 kL ethanol plant).

단일유전자 조작(비특허문헌 20~22), 총괄 전사기계공학(global transcription machinery engineering, gTME)을 포함하는 복수유전자 동시조절(비특허문헌 23, 24), 진화공학(비특허문헌 25) 그리고 게놈 셔플링(genome shuffling)(비특허문헌 26)을 포함하는 바이오에탄올 생산에 적합한 스트레스-내성 효모 균주에 대한 몇 가지 방법이 제시되었다. 특히, 세 개의 연구(비특허문헌 27~29)논문은 바이오에탄올 생성을 위한 에탄올내성, 저해제내성, 고온내성을 갖는 효모균주에서 활성산소(Reactive Oxygen Species, ROS) 수준을 감소시킨다는 것을 보고하였다. 산화적 스트레스와 열충격과 같은 환경적 스트레스의 주요한 표적은 미토콘드리아이다(비특허문헌 30). 특히, 미토콘드리아 손상에 의한 활성산소 유도는 산화 환원 반응의 균형을 무너뜨려 효모 세포를 사멸시킨다(비특허문헌 30). 따라서, 미토콘드리아 돌연변이 유발을 통해 효모 균주를 개량할 때는, 대부분의 환경 스트레스에 대한 내성과 관련된 활성산소 수준을 감소시키는 것을 고려해야 할 것이다.Simultaneous regulation of multiple genes (non-patent documents 23 and 24), evolutionary engineering (non-patent document 25), and genome manipulation (including non-patent documents 20 to 22) and global transcription machinery engineering (gTME) Several methods for stress-resistant yeast strains suitable for bioethanol production including genome shuffling (non-patent document 26) have been proposed. In particular, three studies (non-patent references 27-29) have reported that reactive oxygen species (ROS) levels are reduced in yeast strains with ethanol tolerance, inhibitor resistance and high temperature tolerance for bioethanol production. A major target for environmental stresses such as oxidative stress and thermal shock is mitochondria (Non-Patent Document 30). In particular, induction of active oxygen by mitochondrial damage destroys the balance of redox reactions and kills yeast cells (Non-Patent Document 30). Therefore, when improving yeast strains through mitochondrial mutagenesis, it is necessary to consider reducing the levels of active oxygen associated with resistance to most environmental stresses.

이에 본 발명자들은 연구를 계속하여 고온에서 동시 당화 발효 효능이 우수한 신규 균주를 개발하고 본 발명을 완성하였다.
Accordingly, the present inventors have continued the present invention and developed a novel strain having excellent simultaneous saccharification fermentation efficiency at high temperature, and completed the present invention.

Limayen A, Ricke SC. (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science. 38, 449-467.Limayene, Ricke SC. (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science. 38, 449-467. Halherbe S, Cloete TE. (2002) Lignocellulose biodegradation: fundamentals and applications. Review in Environmental Science and BioTechnology 1, 105-114.Halherbe S, Cloete TE. (2002) Lignocellulose biodegradation: fundamentals and applications. Review in Environmental Science and BioTechnology 1, 105-114. Gong CS, Cao NJ, Du J, Tsao GT. (1999) Ethanol production from renewable resources. Advances in Biochemical Engineering/Biotechnology 65, 207-241.Gong CS, Cao NJ, Du J, Tsao GT. (1999) Ethanol production from renewable resources. Advances in Biochemical Engineering / Biotechnology 65, 207-241. Sanchez OJ, Cardona CA. (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99, 1270-5295.Sanchez OJ, Cardona CA. (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99, 1270-5295. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. (2011) Biomass pretreatment: fundamentals toward application. Biotechnology Advances 29, 675-685.Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. (2011) Biomass pretreatment: fundamentals toward application. Biotechnology Advances 29, 675-685. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuels production. Industrial and Engineering Chemical Research 48, 3713-3729.Kumar P, Barrett DM, Delwiche MJ, Stroeve P. (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuels production. Industrial and Engineering Chemical Research 48, 3713-3729. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering/Biotechnology 108, 67-93.Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering / Biotechnology 108, 67-93. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96, 673-686.Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. (2005). Bioresource Technology 96, 673-686. Saha BC, Nichols NN, Qureshi N, Cotta MA. (2011) Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Applied Microbiology and Biotechnology 92, 865-874.Saha BC, Nichols NN, Qureshi N, Cotta MA. (2011) Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Applied Microbiology and Biotechnology 92, 865-874. Olofsson K, Bertilsson M, Liden G. (2008) A short review on SSF an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels 1, 7Olofsson K, Bertilsson M, Liden G. (2008) A short review on SSF an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels 1, 7 Kishna SH, Reddy TJ, Chowdary GV. (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresource Technology 77, 193-196.Kishna SH, Reddy TJ, Chowdary GV. (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresource Technology 77, 193-196. Nguyen QA, Saddler JN. (1991) An integrated model for the technical and economic evaluation of an enzymatic biomass conversion process. Bioresource Technology 35, 275-282.Nguyen QA, Saddler JN. (1991) An integrated model for the technical and economic evaluation of an enzymatic biomass conversion process. Bioresource Technology 35, 275-282. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. (2013) Improved lignocellulosic conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology 128, 751-759.Bhallae, Bansal N, Kumar S, Bischoff KM, Sani RK. (2013) Improved lignocellulosic conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology 128, 751-759. Sun Y, Cheng J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83, 1-11.Sun Y, Cheng J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83, 1-11. Suyawati L, Wilkins MR, Bellmer DD, Huhnke RK, Maness NO, Banat IM. (2008) Simultaneous saccharification and fermentation of kanlow switchglass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnology and Bioengineering 101, 894-902.Suyawati L, Wilkins MR, Bellmer DD, Huhnke RK, Maness NO, Banat IM. (2008) Simultaneous saccharification and fermentation of kanlow switchglass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnology and Bioengineering 101, 894-902. Castro RCA, Roberto IC. (2013) Selection of thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology (In press)Castro RCA, Roberto IC. (2013) Selection of thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology (In press) Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R. (2010) High-temperature fermentation: how can processes for ethanol production at high temperature become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology 85, 861-867.Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, and Akada R. (2010) High-temperature fermentation: how can processes for ethanol production? Applied Microbiology and Biotechnology 85, 861-867. Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK. (2013) Cooling system economy in ethanol production using thermotolerant yeast Kluyveromyces sp. IIPE453. American Journal of Microbiological Research 1, 39-44.Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK. (2013) Cooling system economy in ethanol production using thermotolerant yeast Kluyveromyces sp. IIPE453. American Journal of Microbiological Research 1, 39-44. Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R. (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Applied Microbiology and Biotechnology 74, 7514-7521.Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, . Applied Microbiology and Biotechnology 74, 7514-7521. Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H. (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alchohols. FEMS Yeast Research 6, 744-750.Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H. (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alchohols. FEMS Yeast Research 6, 744-750. Gorsich SE, Dien BS, Nichols NN, Slinginger PJ, Lui ZL, Skory CD. (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1 and TLK1 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 71, 339-349.Gorsich SE, Dien BS, Nichols NN, Slinginger PJ, Lui ZL, Skory CD. (2006) Tolerance to furfural-induced stress associated with pentose phosphate pathway genes ZWF1, GND1, RPE1 and TLK1 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 71, 339-349. Kim HS, Kim NR, Yang J, Choi W. (2011) Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 91, 1159-72.Kim HS, Kim NR, Yang J, Choi W. (2011) Identification of novel genes responsible for ethanol and / or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 91, 1159-72. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565-1568.Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565-1568. Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W. (2011) Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnology and Bioengineering. 108, 1776-1787. (2011) Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of TATA-binding protein gene and identification. Kim, WY; Kim, of novel genes associated with ethanol tolerance. Biotechnology and Bioengineering. 108, 1776-1787. Cakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U. (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast research 5, 569-578.Cakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U. (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast research 5, 569-578. Shi DJ, Wang CL, Wang KM. (2009) Genome shuffling to improve thermotolerance, ethanol tolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology. 36, 139-147.Shi DJ, Wang CL, Wang KM. (2009) Genome shuffling to improve thermotolerance, ethanol tolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology. 36,139-147. Kim HS, Kim NR, Kim W, Choi W. (2012) Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 95, 531-540. Kim, HS, Kim, W, Choi, W. (2012) Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 95, 531-540. Kim NR, Yang J, Kwon H, An J, Choi W, Kim W. (2013) Mutation of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 97, 8227-8238. Mutation of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae. Kim, JH, Yang J, Kwon H, An J, Choi W, Kim W. Applied Microbiology and Biotechnology 97, 8227-8238. Yang KM, Lee NR, Woo JM, Choi W, Zimmermann M, Blank LM, Park JB. (2012) Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Research 12, 675-684. Yang KM, Lee NR, Woo JM, Choi W, Zimmerman M, Blank LM, Park JB. (2012) Ethanol reduced mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Research 12, 675-684. Perrone GG, Tan S, Dawes IW. (2008) Reactive oxygen species and yeast apoptosis. Biochimica et Biophysica Acta 1783, 1354-1368.Perrone GG, Tan S, Dawes IW. (2008) Reactive oxygen species and yeast apoptosis. Biochimica et Biophysica Acta 1783, 1354-1368.

본 발명의 목적은 고온에서 에탄올 생산능이 있는 사카로마이세스 세레비제(Saccharomyces cerevisiae) 변이 균주를 제공하기 위한 것이다.It is an object of the present invention to provide a process for the production of ethanolic saccharomyces cerevisiae cerevisiae ) variant strains.

본 발명의 다른 목적은 상기 사카로마이세스 세레비제(Saccharomyces cerevisiae) 변이 균주를 이용하여 에탄올을 제조하는 방법을 제공하기 위한 것이다.
Another object of the present invention is to provide a method for producing ethanol using Saccharomyces cerevisiae mutant strain.

본 발명은 사카로마이세스 세레비제(Saccharomyces cerevisiae)에 결손 돌연변이를 유발하여 제조된 에탄올 생산능이 있는 사카로마이세스 세레비제(Saccharomyces cerevisiae) 변이 균주를 제공한다.The invention saccharide as MY unrestricted access serenity (Saccharomyces cerevisiae) ability saccharide as MY unrestricted access serenity (Saccharomyces that the ethanol produced by causing a defect mutation in the cerevisiae mutant strains.

상기 변이 균주는 기탁번호 KACC93194P로 수탁되었고 변이 균주의 생육 온도 또는 에탄올 발효 적정 온도는 40 내지 45℃일 수 있다.The mutant strain was deposited with the accession number KACC93194P, and the growth temperature or ethanol fermentation temperature of the mutant strains may be 40 to 45 캜.

또한, 본 발명은 상기 사카로마이세스 세레비제(Saccharomyces cerevisiae) 변이 균주를 바이오매스에 처리하여 당화 및 발효하는 단계를 포함하는 에탄올 제조방법을 제공한다.The present invention also relates to the aforementioned Saccharomyces cerevisiae cerevisiae mutant strain to biomass and saccharification and fermentation.

상기 바이오매스는 알칼리 전처리 과정을 거친 거대 억새를 포함하는 섬유질계 바이오매스일 수 있다. The biomass may be a fibrous biomass including a large anthracite after an alkali pretreatment.

상기 섬유질계 바이오매스는 억새, 거대 억새, 수수대, 갈대, 볏짚 및 낙엽을 포함하는 초본류로부터 선택되는 것일 수 있다.The fibrous biomass may be selected from herbaceous plants including herbaceous plants, giant aphids, caterpillars, reeds, rice straw and litters.

상기 당화 및 발효하는 단계는 40℃ 내지 45℃에서 24 내지 72시간 동안 동시에 수행될 수 있다. The saccharification and fermentation may be performed simultaneously at 40 ° C to 45 ° C for 24 to 72 hours.

상기 바이오매스 내 글루칸 함량은 3 내지 20 중량%일 수 있다. The amount of glucan in the biomass may be 3 to 20 wt%.

상기 에탄올 제조방법은 회분식 공정, 반연속식 공정 또는 연속식 공정으로 이루어진 군에서 선택될 수 있다.
The ethanol production process may be selected from the group consisting of a batch process, a semi-continuous process or a continuous process.

본 발명에 따른 사카로마이세스 세레비제에(Saccharomyces cerevisiae) 변이 균주는 40 내지 45℃의 고온에서 우수한 성장률과 에탄올 생성율을 나타내므로, 이를 고온에서의 동시 당화 발효법을 이용한 바이오에탄올 생산에 적용할 수 있다.
The strain Saccharomyces cerevisiae according to the present invention exhibits an excellent growth rate and an ethanol production rate at a high temperature of 40 to 45 DEG C and can be applied to the production of bioethanol using a simultaneous saccharification and fermentation method at a high temperature have.

도 1은 0.5μg/l 브롬화에티듐에 의한 사카로마이세스 세레비제(Saccharomyces cerevisiae) 돌연변이 유도를 나타낸 개요도이다.
도 2는 30℃와 42℃에서 사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928와 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 1 내지 4에 대한 스팟 어세이(a)와 글리세롤 기반 아가 배지에서의 배양(b)을 나타낸 도이다.
도 3은 30℃(a)와 42℃(b)의 복합 배지에서 사카로마이세스 세레비제에(S. cerevisiae) KCTC 7928와 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 1 내지 4의 발효속도 및 에탄올 생성능을 나타낸 도이다.(도면 설명 - 사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928(●), mbc 1(x), mbc 2(▲), mbc 3(■), mbc 4(◆), 에러 바는 두 독립적인 실험의 표준편차를 나타냄)
도 4는 억새 전처리 전(회색)과 전처리 후(검정색)에 대한 조성변화(a), 발효성 당의 전환(b), SEM 사진(x100)(c)을 나타낸 도이다(에러 바는 두 독립적인 실험의 표준편차를 나타냄).
도 5는 42℃에서 사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928(a)와 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2(b)에 의한 전처리된 억새로부터의 동시 당화 발효를 통한 바이오에탄올 생성 결과를 나타낸 도이다(도면 설명 - 에탄올(●), 글루코오스(▲), 자일로오스(■), 아라비노오스(◆). 에러 바는 두 독립적인 실험의 표준편차를 나타냄).
도 6은 전처리된 억새의 고형물이 고농도로 투입되고 42℃에서 48시간 동안 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2를 이용한 동시당화발효의 에탄올 생성 결과를 나타낸 도이다(도면 설명 - 최종 에탄올 농도(막대)와 에탄올 수율(●), 에러 바는 두 독립적인 실험의 표준편차를 나타냄).
도 7은 사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928와 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2의 6시간후 30℃와 42℃ 에서의 세포내 활성산소 농도를 나타내는 그림이다. 세포내의 활성산소는 도 7(a)와 같이 형광현미경을 통해서 확인할 수 있었으며, 이를 세포수에 대하여 상대적 값 (Relative DCF fluorescence)으로 나타내었다(b). 30℃에서는 사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928와 mbc2에서 차이가 없었으나, 스트레스 조건인 42℃에서는 mbc2의 활성산소가 상대적으로 낮음을 확인할 수 있었다. 그래프의 바는 2번의 독립적 실험의 평균값을 나타낸다.
Figure 1 is a graph showing the effect of saccharomyces cerevisiae ( Saccharomyces < RTI ID = 0.0 > cerevisiae ) mutation.
Figure 2 is a saccharide at the 30 ℃ and 42 ℃ My process serenity non-zero (Saccharomyces cerevisiae) and KCTC 7928 saccharose as MY unrestricted access serenity (Saccharomyces cerevisiae ) mbc 1 to 4 and culture (b) in a glycerol-based agar medium.
3 is 30 ℃ (a) and 42 ℃ (b) in the complex media in my process to a non-zero celebrity Saccharomyces (S. cerevisiae) KCTC 7928 and the saccharide in my process serenity non-zero (in Saccharomyces cerevisiae ) mbc 1 to 4. (Drawing Description - Saccharomyces cerevisiae) The error bars represent the standard deviations of two independent experiments: KCTC 7928 (), mbc 1 (x), mbc 2 (), mbc 3 (), mbc 4
FIG. 4 is a graph showing changes in composition (a), conversion of fermentable sugars (b), and SEM photograph (x100) (c) (before and after pretreatment (gray) and after pretreatment Indicating the standard deviation of the experiment).
FIG. 5 is a graph showing the activity of Saccharomyces < RTI ID = 0.0 > S. cerevisiae ) KCTC 7928 (a) and Saccharomyces cerevisiae cerevisiae) mbc 2 (b) shows the bio-ethanol production results through the Simultaneous Saccharification and Fermentation from pretreated thatched it is also due to (drawing Description ethanol (●), glucose (▲), xylene as agarose (■), arabinose The error bars represent the standard deviation of two independent experiments).
Figure 6 shows that the pretreated solids are fed at high concentrations and are incubated at 42 < 0 > C for 48 hours with Saccharomyces cerevisiae (final ethanol concentration (bar) and ethanol yield (●), error bars represent the standard deviations of two independent experiments). Fig. 2 shows the results of the ethanol production of the simultaneous saccharification fermentation using S. cerevisiae mbc 2.
Figure 7 is a graph showing the effect of saccharomyces cerevisiae cerevisiae ) KCTC 7928 and Saccharomyces cerevisiae cerevisiae ) mbc 2 at 30 < 0 > C and 42 < 0 > C after 6 hours. Active oxygen in the cells was confirmed by fluorescence microscopy as shown in FIG. 7 (a), and was expressed by relative DCF fluorescence relative to the number of cells (b). At 30 < 0 > C, saccharomyces cerevisiae cerevisiae) were not significantly different from KCTC 7928 and mbc2, in stress conditions of 42 ℃ radicals of mbc2 was confirmed that relatively low. The bar in the graph represents the mean value of two independent experiments.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 사카로마이세스 세레비제에(Saccharomyces cerevisiae)에 호흡 결손 돌연변이를 유발하여 제조된 에탄올 생산능이 있는 사카로마이세스 세레비제(Saccharomyces cerevisiae) 변이 균주를 제공한다. The present invention is a capability that is manufactured by causing a respiratory deficient mutation in the non-restricting my process celebrity in Saccharomyces (Saccharomyces cerevisiae) Ethanol production Saccharomyces My process serenity non-zero (Saccharomyces cerevisiae mutant strains.

상기 변이 균주는 기탁번호 KACC93194P로 농업유전자원센터에 수탁되었다.The mutant strain was deposited with the National Center for Agricultural Genetic Resources under accession number KACC93194P.

사카로마이세스 세레비제에(Saccharomyces cerevisiae)는 자낭균류에 속하는 대표적인 효모이다. 빵효모(baker's yeast)나 맥주효모(brewery yeast)를 비롯하여, 양조에 사용하는 효모의 대부분은 이 종의 근연이다. Saccharomyces cerevisiae is a representative yeast belonging to the carrot fungus. Most of the yeasts used for brewing, including baker's yeast and brewery yeast, are closely related to this species.

용어 "호흡 결손 돌연변이"란, 호흡능이 상대적으로 작거나 거의 없으며, 정상적인 집락보다도 작은 집락을 이루는 효모의 돌연변이체로, 세포질성 호흡 결손 돌연변이와 핵성 호흡 결손 돌연변이로 분류된다. 세포질성 호흡 결손 돌연변이는 미토콘드리아 DNA의 결손에 의해 야기되며, 이는 미토콘드리아 DNA가 완전히 없어지는 양태 또는 미토콘드리아 DNA의 큰 결실과 그것에 이어지는 잔여부분이 중복되는 양태로 분류된다. 세포질성 호흡 결손 돌연변이는 배양 중 500개 세포에 1개 정도의 비율로 자연 발생하며, 아크리플라빈 혹은 브롬화에티듐을 함유하는 배지에서 증식시켜 인위적으로 유도할 수 있다. The term "respiratory deficit mutation" refers to a mutant of yeast that has a relatively small or almost no respiratory capacity and is smaller than a normal colony, and is classified as a cytosolic respiratory deficit mutation and a nuclear respiratory deficit mutation. The cytosolic respiratory deficit mutation is caused by the deficiency of mitochondrial DNA, which is classified as a mode in which the mitochondrial DNA is completely lost or a large deletion of mitochondrial DNA and the subsequent residue are overlapped. The cytosolic respiratory deficit mutation occurs naturally at a rate of about 1 in 500 cells in culture and can be artificially induced by proliferation in medium containing acriflavine or ethidium bromide.

본 발명의 일실시예에서는 브롬화에티듐으로 호흡 결손 돌연변이를 유도하였으나, 상기와 같은 방법으로 돌연변이 유도가 제한되지는 않으며 이 기술분야에 널리 이용되는 돌연변이 유도 방법은 모두 사용될 수 있다.In one embodiment of the present invention, induction of respiratory deficit mutation was induced with ethidium bromide. However, mutation induction is not limited by the above-mentioned method, and mutation induction methods widely used in this technical field can be used.

상기 변이 균주의 생육 온도 또는 에탄올 발효 적정 온도는 40 내지 42℃이다.
The growth temperature or the ethanol fermentation temperature of the mutant strain is 40 to 42 캜.

또한, 본 발명은 상기 사카로마이세스 세레비제에(Saccharomyces cerevisiae)변이 균주를 바이오매스에 처리하여 당화 및 발효하는 단계를 포함하는 에탄올 제조방법을 제공한다. In addition, the present invention provides a method for producing ethanol, comprising saccharifying and fermenting Saccharomyces cerevisiae mutant strains by treating biomass.

본 발명의 바이오매스에서 에탄올을 제조하는 방법은 섬유질계 바이오매스에서 에탄올을 제조하기 위하여 알칼리 전처리 과정을 수행하고 이를 당화 및 발효하는 단계에 참여시켜 에탄올의 생산 수율을 현저히 개선한 것이다.The method for producing ethanol in the biomass of the present invention is an alkaline pretreatment process for producing ethanol in a fibrous biomass and participating in the saccharification and fermentation step to remarkably improve the production yield of ethanol.

상기 섬유질계 바이오매스는 억새, 거대 억새, 수수대, 갈대, 볏짚 및 낙엽을 포함하는 초본류로부터 선택되는 것일 수 있으나, 반드시 이로 제한되는 것은 아니며 모든 섬유질계 바이오매스를 포함한다.The fibrous biomass may be selected from herbaceous crops including but not limited to herbaceous plants, giant aquifers, caterpillars, reeds, rice straw and litters, but is not limited to and includes all fibrous biomass.

상기 섬유질계 바이오매스는 셀룰로스, 헤미셀룰로스 및 리그닌으로 구성된 거대 억새(Miscanthus)를 포함할 수 있으며, 섬유질계 바이오매스 내 글루칸 함량은 20중량% 이내인 것이 바람직하며, 3 내지 20 중량%인 것이 더욱 바람직하다. The fiber-based biomass may include Miscanthus composed of cellulose, hemicellulose and lignin, and the content of glucan in the fibrous biomass is preferably 20 wt% or less, more preferably 3 to 20 wt% desirable.

상기 당화 및 발효하는 단계는 40℃ 내지 45℃에서 12 내지 72 시간 동안 동시에 수행된다.The saccharification and fermentation step is performed simultaneously at 40 ° C to 45 ° C for 12 to 72 hours.

상기 에탄올 제조방법은 회분식 공정, 반연속식 공정 또는 연속식 공정으로 이루어진 군에서 선택된다. 상기 방법들은 이 기술분야에 널리 공지되어 있다.The ethanol production process is selected from the group consisting of a batch process, a semi-continuous process, or a continuous process. Such methods are well known in the art.

필요에 따라, 당업자는 기타 추가단계 및/또는 공정을 수행할 수 있는 바, 예를 들어, 상기 발효과정에 의해 수득한 발효액을 당업계에 공지된 방법에 따라, 정제하는 정제과정을 등을 들 수 있다.
If necessary, those skilled in the art can perform other additional steps and / or processes. For example, the fermentation liquid obtained by the fermentation process may be purified according to a method known in the art, .

본 발명의 일실시예에서, 본 발명자들은 0.5μg/ml의 브롬화에티듐(ethidium bromide, EtBr)으로 유도한 호흡 결손 돌연변이로부터 고온내성 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 1 내지 4 균주를 선별하였다. 이 균주는 숙주인 사카로마이세스 세레비제에(S. cerevisiae) KCTC 7928에 비하여 42℃의 YPD 배지(1% 효모 추출물, 2% 펩톤 2% 글루코오스, 1.5% 아가)에서 성장률 증대와 발효성을 나타내었다. 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2(KACC93194P)는 42 ℃에서 바이오에탄올 생산에 가장 적합한 것으로 확인되었다. In one embodiment of the present invention, we have shown that respiratory deficit mutations induced by 0.5 μg / ml of ethidium bromide (EtBr) lead to high temperature resistant Saccharomyces cerevisiae cerevisiae mbc strains 1 to 4 were selected. This strain has an increased growth rate and fermentability in YPD medium (1% yeast extract, 2% peptone 2% glucose, 1.5% agar) at 42 ° C compared to the host S. cerevisiae KCTC 7928 Respectively. Saka access to my serenity Wiese (Saccharomyces cerevisiae mbc 2 (KACC93194P) was found to be most suitable for bioethanol production at 42 ° C.

회분식 고온/고압 반응기를 통하여 억새(Miscanthus)는 150℃의 1.5M 수산화나트륨 용기 내에서 30분간의 체류시간을 거쳐 전처리되었으며 결과적으로, 77.9%의 셀룰로오스를 함유하는 42.6%의 전처리 고형분을 수득하였다. 그 후, 42℃에서 3%의 글루칸을 함유하는 고형분을 사용한 동시 당화 발효법을 통하여 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2에 의한 바이오에탄올 생산 및 대조구의 결과를 추산하였다. 48시간 동안 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2로부터의 에탄올 농도와 수율은 각각 15.3±0.223g/L와 0.46±0.007g/g (90.1%)이었으며, 대조구는 각각 8.3±0.90g/L와 0.25±0.006g/g (49.0%)으로 나타났다. 더하여, 42℃에서 48시간 동안 배양 후 전처리된 억새(Miscanthu)의 6 중량%와 9 중량% 글루칸 함유 고형분에서 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2에 의한 최종 에탄올 농도는 29.5±1.991g/L와 41.9±0.462g/L에 달하였다. 에탄올 수율은 각각 0.44±0.029g/g (86.3%)와 0.42±0.005g/g (82.4%)으로 나타났다.
Through a batch high temperature / high pressure reactor, Miscanthus was pretreated in a 1.5M sodium hydroxide vessel at 150 占 폚 for a residence time of 30 minutes, resulting in 42.6% pretreated solids containing 77.9% cellulose. Then, a saccharide through a simultaneous saccharification fermentation process using a solid component containing a 3% glucan at 42 ℃ My process serenity non-zero (Saccharomyces cerevisiae mbc 2 and the results of the control. The ethanol concentration and yields from Saccharomyces cerevisiae mbc 2 were 15.3 ± 0.223 g / L and 0.46 ± 0.007 g / g (90.1%) for 48 hours, respectively, and the control was 8.3 ± 0.90 g / L and 0.25 ± 0.006 g / g (49.0%), respectively. In addition, 6% by weight of Miscanthu pretreated after incubation at 42 [deg.] C for 48 hours, and Saccharomyces cerevisiae at 9% The final ethanol concentration by cerevisiae mbc 2 was 29.5 ± 1.991 g / L and 41.9 ± 0.462 g / L. The ethanol yields were 0.44 ± 0.029 g / g (86.3%) and 0.42 ± 0.005 g / g (82.4%), respectively.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 실시예Example 1>  1> 고온내성 High Temperature Resistance 사카로마이세스Sakaromayses 세레비제Serebiza (( SaccharomycesSaccharomyces cerevisiaecerevisiae ) mbc 1 내지 4 균주 선별) mbc 1 to 4 strain selection

<1-1> <1-1> 사카로마이세스Sakaromayses 세레비제Serebiza (( SaccharomycesSaccharomyces cerevisiaecerevisiae ) ) KCTCKCTC 7928 배양 7928 Culture

사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928는 30℃의 YPD 배지(1% 효모 추출물, 2% 펩톤 2% 글루코오스, 1.5% 아가)에서 배양되었으며 호흡 결손 돌연변이 유도를 위한 숙주 균주로 사용되었다. 숙주 균주와 돌연변이는 호흡 결손을 확인하기 위하여 30℃의 글리세롤 기반 아가 배지(glycerol-based agar, GBA)에서 배양되었다. 글리세롤 기반 아가 배지는 2% 글리세롤, 2% 효모 추출물, 1.5% 아가를 함유하였다.
Saka access to my serenity Wiese (Saccharomyces cerevisiae), KCTC 7928 was cultured in YPD medium (1% yeast extract, 2% peptone, 2% glucose, 1.5% agar) of 30 ℃ was used as a host strain for respiratory deficient mutation induction. Host strains and mutants were cultured in glycerol-based agar (GBA) at 30 ° C to identify respiratory defects. The glycerol-based agar medium contained 2% glycerol, 2% yeast extract, 1.5% agar.

<1-2> 무작위 호흡 결손 돌연변이 유발 및 고온내성 돌연변이 선별<1-2> Random breathing deficiency mutation induction and high temperature resistant mutation selection

무작위 호흡 결손 돌연변이를 유도하기 위해 브롬화에티듐(ethidium bromide, EtBr)을 사용하였다. 도 1과 같이, 하룻밤 동안 배양한 사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928을 새로운 YPD 배지에 옮겼으며, 초기 세포밀도를 0.2 OD600으로 조정하였다. 세포밀도가 1.0 OD600에 도달했을 때, 0.5μg/ml 브롬화에티듐을 배지에 첨가하였다. 그 후, 접종물 100μl를 YPD 배양접시에 퍼트린 뒤 42℃에서 배양하였다(도 1). Ethidium bromide (EtBr) was used to induce a randomized respiratory deficit mutation. As shown in Fig. 1, saccharomyces cerevisiae S. cerevisiae KCTC 7928 was transferred to fresh YPD medium and the initial cell density was adjusted to 0.2 OD 600 . When the cell density reached 1.0 OD 600 , 0.5 μg / ml of ethidium bromide was added to the medium. Then, 100 μl of the inoculum was put into a YPD culture dish and cultured at 42 ° C. (FIG. 1).

42℃에서 큰 크기의 콜로니 규모를 따라 고온내성 돌연변이를 초기 선별한 후, 스팟 어세이(spot assay)를 이용하여 고온내성 돌연변이를 선별하였다. 간략하게, 1.0 OD600까지 배양한 돌연변이의 4-μl 부분 표본(aliquots)과 대조군 세포를 10-배수 연속 희석하고 고체 YPD 배양접시에 떨어뜨렸다. 배양접시는 2~3일간 30℃와 42℃에서 배양하였다.High-temperature tolerance mutations were initially screened at 42 ° C along a large size colony scale, and high-temperature tolerance mutants were selected using spot assays. Briefly, 4-μl aliquots of mutants cultured to 1.0 OD 600 and control cells were serially diluted 10-fold and plated onto solid YPD culture dishes. Cultures were incubated at 30 ° C and 42 ° C for 2 to 3 days.

이에 따라, 총 81개의 돌연변이들이 분리되었으며 최종적으로 42℃에서 성장한 4개의 큰 콜로니들이 고온내성 돌연변이로 분리되었다. 선택된 사카로마이세스 세레비제(Saccharomyces cerevisiae) 돌연변이들이 고온내성이 있는지 확인하기 위하여, 스팟 어세이를 수행하였다. 그 결과, 4개 균주들 모두 42℃에서 대조구 균주보다 우수한 성장률을 나타내었다(도 2, (a)). 호흡 결손 돌연변이는 글리세롤 기반 배지에서는 성장할 수 없기 때문에 선택된 돌연변이가 호흡 결손인지를 결정하기 위한 돌연변이의 성장은 글리세롤을 통해서도 평가할 수 있었으며, 모든 돌연변이들은 호흡 결손과 고온 내성을 지닌 것으로 확인되었다(도 2, (b)).Thus, a total of 81 mutants were isolated, and finally, four large colonies grown at 42 ° C were separated into high temperature resistant mutants. The selected Saccharomyces cerevisiae To determine if the S. cerevisiae mutants were resistant to high temperatures, spot assays were performed. As a result, all of the four strains showed a growth rate superior to the control strain at 42 ° C (FIG. 2, (a)). Because respiratory deficit mutations can not grow in glycerol-based media, the growth of mutants to determine if the selected mutation is a respiratory deficit could be assessed through glycerol, and all mutants were found to have respiratory defects and high temperature tolerance (Figure 2, (b).

발명자들의 주요한 관심사는 고온내성 돌연변이들의 에탄올 수율 개선 여부와 전처리된 억새를 이용한 동시 당화 발효법으로의 적용 가능 여부였으므로, 분리된 4개의 균주를 42℃ YPD배지에서의 성장능과 글루코오스 발효능으로 선별하였다. The major concern of the inventors was whether the improvement of ethanol yield of the high temperature resistant mutants and the applicability to the simultaneous saccharification fermentation method using the pretreated wheat germ were possible. Therefore, the four isolated strains were selected by the growth ability and the glucose efficacy in the 42 ° C YPD medium .

예상대로, 42℃에서 돌연변이들의 전반적인 성장률과 에탄올 생성은 대조구에 비하여 명확하게 높았다(도 3, (b)). 돌연변이들은 대조구에서 생성된 에탄올 농도보다 2.2배 높은 평균 9.7g/L 에탄올을 생산하였다. 최대 에탄올 농도는 10.2g/L로, 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2 균주에 의해 생성되었다(도 3, (b)). 따라서, 돌연변이들 중 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc2가 목표 균주로 선택되었다.
As expected, the overall growth rate and ethanol production of the mutants at 42 캜 were clearly higher than in the control (Fig. 3, (b)). The mutants produced an average of 9.7 g / L ethanol 2.2 times higher than the ethanol concentration in the control. The maximum ethanol concentration was 10.2 g / L, and saccharomyces cerevisiae cerevisiae mbc 2 strain (Fig. 3, (b)). Thus, my process to the saccharide of the mutant non-limiting serenity (Saccharomyces cerevisiae mbc2 was selected as the target strain.

<< 실시예Example 2> 억새( 2> MiscanthusMiscanthus )의 알칼리 전처리와 조성 분석) Alkali Pretreatment and Composition Analysis

전처리는 온도와 압력 센서를 갖춘 800-ml 고온/고압 반응장치를 사용하여 수행되었다. 억새(Miscanthus)와 1.5M NaOH (1 : 9, 500ml 작업량)을 혼합한 후, 800-ml 장비에 투입하였고, 150℃에서 30분간 120rpm으로 반응되었다. 전처리된 억새(Miscanthus)가 사이클론 시스템을 통해 분리기에 수집되기 전에 질소 가스를 반응장치에 6MPa이 되도록 투입하였다. 10-μm 나일론 필터를 갖춘 부흐너 깔때기를 사용하여 고형물을 수득하고 수돗물을 이용하여 중화하였다. 전처리된 억새(Miscanthus)의 구조탄수화물 조성분석은 고성능 액체 크로마토그래피(HPLC, Waters, USA)를 사용하여 수행되었다. 시료는 65℃로 설정된 HPX-87H 컬럼(Bio-Rad, Hercules, CA, USA)에 투입되었다. 당은 0.5ml/min의 일정 유속에서 5mM 황산으로부터 추출되었다. 피크는 보류시간으로 확인된 굴절율(refractory index, RI)을 통하여 확인되었으며 각 당에 대한 검정곡선에 따라 정량화하였다. 그 후, 각 당의 농도에 따라 전처리된 억새(Miscanthus) 고형물의 각 당 농도에 따라 적정하게 정량되어 동시 당화 발효(simultaneous saccharification and fermentation, SSF)에 사용되었다.Pretreatment was carried out using an 800-ml high temperature / high pressure reactor equipped with temperature and pressure sensors. Miscanthus was mixed with 1.5 M NaOH (1: 9, 500 ml working volume) and then added to 800-ml equipment and reacted at 150 ° C for 30 minutes at 120 rpm. Before the pretreated Miscanthus was collected in the separator through the cyclone system, nitrogen gas was introduced into the reactor to a pressure of 6 MPa. Solids were obtained using a Buchner funnel equipped with a 10-μm nylon filter and neutralized with tap water. Structural carbohydrate composition analysis of pretreated Miscanthus was performed using high performance liquid chromatography (HPLC, Waters, USA). The sample was loaded onto a HPX-87H column (Bio-Rad, Hercules, CA, USA) set at 65 ° C. The sugar was extracted from 5 mM sulfuric acid at a constant flow rate of 0.5 ml / min. The peaks were identified by the refractory index (RI) identified as retention time and quantified according to the calibration curve for each sugar. After that, it was appropriately determined according to the sugar concentration of pretreated Miscanthus solids according to the concentration of each sugar and used for simultaneous saccharification and fermentation (SSF).

원시료인 억새는 주로 40.5%의 셀룰로오스, 23.8%의 헤미셀룰로오스 그리고 24.1%의 리그닌으로 구성되어 있다(도 4, (a)). The raw sample, which consists of 40.5% cellulose, 23.8% hemicellulose and 24.1% lignin (Fig. 4 (a)).

알칼리 전처리된 억새의 조성을 분석한 결과, 66.6%의 수분을 함유한 전처리된 고형물 42.6%를 수득하였다. 전처리된 억새의 셀룰로오스 함량은 40.5%에서 77.9%로 급격하게 증가하였다. 이와 대조적으로, 헤미셀룰로오스는 억새로부터 약간 분해되고 제거된 것으로 보여졌다. 리그닌 함량은 전처리로 인하여 24.1%에서 8.0%로 현저하게 감소하였다. 전처리된 억새에서 탈리그닌화 정도는 알칼리 전처리와 그로 인한 효소 가수분해로 인해 결정되는 것으로 판단하였다(도 4, (a)). 더하여, 고온내성 돌연변이 mbc 2는 글루코오스와 같은 6탄당만을 소비할 수 있기 때문에 셀룰로오스 함량의 명백한 증가는 전처리가 효과적이었음을 시사했다.
Analysis of the composition of the alkali pretreated soleus resulted in 42.6% of pretreated solids containing 66.6% of water. Cellulosic content of pretreated soymilk rapidly increased from 40.5% to 77.9%. By contrast, hemicelluloses were seen to be slightly degraded and removed from the supernovae. Lignin content was significantly decreased from 24.1% to 8.0% due to pretreatment. It was judged that the degree of delignification in the pretreated lettuce was determined by the alkaline pretreatment and the enzymatic hydrolysis thereof (FIG. 4, (a)). In addition, the apparent increase in cellulose content suggests that pretreatment was effective, since the high temperature resistant mutant mbc2 could only consume the same six sugar groups as glucose.

<< 실시예Example 3>  3> 전처리된Preprocessed 억새( The MiscanthusMiscanthus )의 효소 가수분해) &Lt; / RTI &gt;

전처리의 결과는 전처리된 바이오매스 내 셀룰로오스와 헤미셀룰로오스로부터 발효성 당질 단량체가 방출되는 효소 가수분해에 의하여 결정된다. 따라서, 50℃에서 48시간 동안 3% 글루코오스 함유 고형물(g/L)을 이용한 효소당화법을 수행하고 20FPU 효소 칵테일을 사용하여 전처리 효과를 측정하였다. 그 결과, 전처리된 억새로부터 92.4%의 글루코오스 수율이 수득되었으며, 글루코오스 농도는 30.7g/L인 반면, 음성대조구인 무처리 억새로부터는 3.9g/L 글루코오스가 전환되었다(도 4, (b)). 따라서, 전처리된 억새 가수분해물은 고온에서 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc2에 따른 동시 당화 발효법에 적용되었다.
The results of the pretreatment are determined by enzymatic hydrolysis, in which the fermentable carbohydrate monomer is released from cellulose and hemicellulose in the pretreated biomass. Therefore, enzyme pretreatment using 3% glucose solids (g / L) was carried out at 50 ° C for 48 hours and the pretreatment effect was measured using a 20FPU enzyme cocktail. As a result, a glucose yield of 92.4% was obtained from the pretreated herringbone, and the glucose concentration was 30.7 g / L, whereas the 3.9 g / L glucose was converted from the untreated control group (FIG. 4, . Thus, the preprocessed crude hydrolyzate is saccharomyces cerevisiae ( Saccharomyces &lt; RTI ID = 0.0 &gt; cerevisiae mbc2. &lt; / RTI &gt;

<< 실시예Example 4>  4> 전처리된Preprocessed 억새( The MiscanthusMiscanthus )의 주사전자현미경 분석) Scanning electron microscopy

전처리된 억새(Miscanthus)의 구조 변화를 실험하기 위하여, 주사전자현미경(Scanning Electron Microscope, SEM) 이미지를 분석하였다(TM-100, Hitachi, Tokyo, Japan). 시료를 알루미늄 제물대(stub)에 장착하고 진공 상태에서 15kV의 가속 전압으로 이미지화하였다.Scanning electron microscope (SEM) images were analyzed (TM-100, Hitachi, Tokyo, Japan) to examine the structural changes of pretreated Miscanthus . The sample was mounted on an aluminum stub and imaged under vacuum at an accelerating voltage of 15 kV.

도 4의 (c)에서 주사전자현미경 이미지는 무처리 또는 처리된 억새 시료를 나타내었다. 촘촘하고 온전한 구조는 원시료 억새에서 보이는 것으로, 입자가 깨지고 기공이 노출된 상태가 관찰되었다. 이와 대조적으로, 전처리된 억새에서는 세포벽 복합체의 파괴로 인한 뒤틀리고 분리된 섬유와 다발들이 존재하였다. 따라서, 전처리된 억새에서는 외내부 표면적 증가에 따른 당화효소의 접근성이 증가 될 것으로 판단하였다.
In FIG. 4 (c), the scanning electron microscope image shows the untreated or treated untreated sample. The dense and intact structure was visible in the raw sample, and the particles were broken and the pores were exposed. In contrast, there were twisted and disjointed fibers and bundles due to the destruction of the cell wall complex in pretreated itch. Therefore, it was concluded that the accessibility of glycosylation enzyme was increased with the increase of external surface area in pretreated itch.

<< 실시예Example 5>  5> 전처리된Preprocessed 억새( The MiscanthusMiscanthus )로부터 바이오에탄올 생산) To produce bioethanol

<5-1> <5-1> 사카로마이세스Sakaromayses 세레비제Serebiza (( SaccharomycesSaccharomyces cerevisiaecerevisiae ) ) KCTCKCTC 7928과 사카로마이세스  7928 and saccharomyces 세레비제Serebiza (( SaccharomycesSaccharomyces cerevisiaecerevisiae ) ) mbcmbc 2에 의해 생성된 에탄올 농도 비교 Comparison of ethanol concentration produced by 2

동시 당화 발효법의 실현 가능성을 실험하기에 앞서, 발효는 42℃의 인공배지에서 이루어졌다. 지수 성장기에 접어든 건강한 효모 세포를 수확하고 5% 글루코오스를 첨가한 200ml YPD 배지로 옮겼다. 초기 세포밀도는 0.6 OD600으로 조정하였다. 세포는 30℃와 42℃에서 150rpm으로 진탕하였다. 시료를 12시간 간격으로 획득한 후, 600nm에서 세포밀도를 측정하고 HP-INNOWaX 19091N-133 컬럼과 15 ml/min 유속의 담체 헬륨 가스를 이용한 가스 크로마토그래피(GC; Agilent 6980N, Wilmington, DE, USA)를 사용하여 세포 성장률 및 에탄올 농도를 밝혀내었다.Prior to experimenting with the realization of the simultaneous saccharification fermentation method, fermentation was carried out in an artificial medium at 42 ° C. The healthy yeast cells that reached the exponential growth period were harvested and transferred to 200 ml YPD medium supplemented with 5% glucose. The initial cell density was adjusted to 0.6 OD 600 . The cells were shaken at 30 ° C and 42 ° C at 150 rpm. Samples were collected at intervals of 12 hours and then the cell density was measured at 600 nm and analyzed by gas chromatography (GC (Agilent 6980N, Wilmington, DE, USA) using a carrier helium gas at a flow rate of 15 ml / min and HP-INNOWaX 19091N- ) Was used to determine cell growth rate and ethanol concentration.

동시 당화 발효법은 3~9% 글루칸(g/g)을 포함한 전처리된 억새(Miscanthus)를 250-ml 플라스크에 투입하고 pH 4.8의 1M 시트르산 버퍼 10ml, 20FPU/g 셀룰라아제(Novozymes, Cellic Ctec II), YP(20% 펩톤, 10% 효모 추출물 1L) 10 ml을 첨가하고 발효 혼합물이 90ml가 되도록 멸균수를 첨가하였다. 동시에, 효모 세포를 4℃에서 10분간 15,000rpm으로 원심분리하여 수확하였다. 수확된 세포는 멸균수로 세척하여 원심분리로부터 세포 펠렛을 수득하였다. 농축된 세포는 10ml의 멸균수로 재부유하였다. 세포를 90ml 혼합물에 첨가하여, 결과적으로 100ml의 작업량을 생성하였다. 마지막으로, 동시 당화 발효는 42℃ 조건 하에서 72시간 동안 150rpm으로 교반하여 수행되었다. 이후 가스 크로마토그래피와 고성능 액체 크로마토그래피를 이용하여 주기적으로 시료의 에탄올과 당 농도를 각각 분석하였다.Simultaneous saccharification fermentation was performed by adding 10 ml of 1 M citric acid buffer (pH 4.8), 20 FPU / g cellulase (Novozymes, Cellic Ctec II), and 10 ml of pre-treated Miscanthus containing 3-9% 10 ml of YP (20% peptone, 10% yeast extract 1 L) was added and sterile water was added to make the fermentation mixture 90 ml. At the same time, the yeast cells were harvested by centrifugation at 15,000 rpm for 10 minutes at 4 占 폚. The harvested cells were washed with sterile water and cell pellets were obtained from the centrifugation. The concentrated cells were resuspended in 10 ml of sterile water. Cells were added to the 90 ml mixture resulting in a working volume of 100 ml. Finally, simultaneous saccharification fermentation was carried out by stirring at 150 rpm for 72 hours under the condition of 42 캜. Then, the ethanol and sugar concentration of the sample were analyzed periodically using gas chromatography and high performance liquid chromatography.

그 결과, 글루코오스 전환율은 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2와 대조구 모두에서 12시간까지 글루코오스 발효보다 높은 것으로 나타났다(도 5b). 글루코오스 농도는 48시간 동안 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2에서 현저하게 감소하는 데에 비하여, 대조구에서는 48시간까지 지속적으로 증가하였다(도 5a). 이때, 대조구의 잔여 글루코오스는 14.52±0.406g/L였으며 대조구가 온도-감수성에 의하여 12시간 이후 발효성을 상실함을 반영하는 것으로 판단되었다. 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2에서는 36시간 이상까지 끊임없이 에탄올 생산이 지속되며, 당화와 발효는 48시간 이후 거의 멈추는 것으로 나타났다(도 5b). 그에 따라서, 글루코오스 농도는 항상 거의 0(0.73±0.320 g/L)에 가까웠다. 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2에 의해 생성된 에탄올의 농도와 수율은 각각 15.3±0.223 g/L와 0.46±0.007 g/g였다. 이와 대조적으로, 대조구의 최대 에탄올 농도와 수율은 각각 8.3±0.190 g/L와 0.25±0.006 g/g였다. 따라서, 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2는 고온에서 억새로부터 에탄올 대량 생산이 가능함을 알 수 있다.
As a result, the glucose conversion was higher in Saccharomyces cerevisiae mbc 2 and in the control than in glucose fermentation until 12 hours (Fig. 5b). Glucose concentration was determined for 48 hours using saccharomyces cerevisiae cerevisi ae) mbc 2, but increased continuously up to 48 hours in the control (Fig. 5A). At this time, the residual glucose of the control was 14.52 ± 0.406 g / L, and it was judged that the control lost the fermentability after 12 hours due to temperature - sensitivity. In Saccharomyces cerevisiae mbc 2, ethanol production persisted for more than 36 hours, and saccharification and fermentation almost stopped after 48 hours (FIG. 5b). Accordingly, the glucose concentration was almost always close to 0 (0.73 ± 0.320 g / L). Saka access to my serenity Wiese (Saccharomyces The concentration and yield of ethanol produced by S. cerevisiae mbc 2 were 15.3 ± 0.223 g / L and 0.46 ± 0.007 g / g, respectively. In contrast, the maximum ethanol concentration and yield of the control were 8.3 ± 0.190 g / L and 0.25 ± 0.006 g / g, respectively. Thus, my process as Saccharomyces celebrity non-zero (Saccharomyces cerevisiae mbc 2 can be mass-produced from ethanol at high temperatures.

<5-2> 고농도 기질과 <5-2> High concentration of substrate 사카로마이세스Sakaromayses 세레비제에Serevise (( SaccharomycesSaccharomyces cerevisiaecerevisiae ) mbc 2의 ) of mbc 2 피칭율(pitching rate)에서의At the pitching rate 동시   The same time 당화Glycation 발효 Fermentation

실용적인 동시 당화 발효를 위하여, 접종물 양에 일치하는 기질과 효소 농도는 중요한 조건들을 고려하여 결정되어야 하나, 본 실시예에서 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2의 접종양에 따라 42℃에서 고형물을 다량 투입하는 동시 당화 발효를 선택되었다. 20 FPU 셀룰라아제가 사용되었으며 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2의 초기 피칭율은 세포 부피(g/L): 1.0~4.0 g/L를 기준으로 조정되었고 6 중량%와 9 중량% 글루칸을 포함하는 고형물이 사용되었다. 66 중량%의 수분과 78 중량%의 셀룰로오스를 바탕으로, 9 중량% 글루칸을 함유하는 고형물의 총 습윤중량은 약 36g이었다. 9 중량% 글루칸을 함유하는 고형물은 플라스크 하나에 거의 가득 차며, 그 때문에 효소들과 효모 세포를 적절하게 혼합하지 못했다. 따라서, 9 중량% 글루칸을 함유하는 고형물은 본 발명에서 고형물 다량 투입을 수반하는 고온 동시 당화 발효의 가능성을 판단하기 위한 적정 농도로 간주되었다.For practical simultaneous saccharification fermentation, the substrate and enzyme concentrations consistent with the amount of the inoculum should be determined in view of the critical conditions, but in this example Saccharomyces cerevisiae According to the amount of mbc 2 inoculum, a simultaneous saccharification fermentation was conducted in which a large amount of solids was added at 42 ° C. 20 FPU cellulase was used and Saccharomyces cerevisiae The initial pitching rate of S. cerevisiae mbc 2 was adjusted on the basis of cell volume (g / L): 1.0-4.0 g / L and a solid containing 6% by weight and 9% by weight glucan was used. Based on 66 wt% water and 78 wt% cellulose, the total wet weight of the 9 wt% glucan containing solids was about 36 g. The solids containing 9 wt% glucan were almost full in one flask, so that the enzymes and yeast cells could not mix properly. Thus, solids containing 9 wt% glucan were considered to be the appropriate concentration for determining the likelihood of high temperature simultaneous saccharification fermentation with high solids loading in the present invention.

도 6과 같이, 동시 당화 발효는 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2에 의하여 42℃에서 48시간 동안 이루어졌다. 4.11g/L 세포중량에서 6 중량%와 9 중량% 글루칸을 함유하는 고체로부터 최대 각각 29.5±1.991g/L와 41.9±0.462 g/L의 에탄올 농도를 수득하였다. 해당 에탄올 수율은 각각 0.44±0.029 g/g (86.1%)와 0.42±0.005 g/g (82.1%)였다. 그러나, 3.08g/L 이하 세포중량의 발효는 낮은 에탄올 농도(7.3~36.9g/L)와 그에 따른 비교적 낮은 에탄올 수율(0.1~0.38g/g)을 나타내었다. 이 결과는 42℃에서 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2의 발효 용량이 세포중량을 4.0g/L을 초과하지 않는 한 고형물 다량 투입에서 제한됨을 시사하였다. 에탄올 생산성(g/L/h)은 9% 초기 글루칸에서 48시간 동안 0.87g/L/h이었다. As shown in Fig. 6, simultaneous saccharification fermentation was carried out by Saccharomyces cerevisiae mbc 2 at 42 ° C for 48 hours. From the solids containing 6 wt.% And 9 wt.% Glucan at 4.11 g / L cell weight, a maximum ethanol concentration of 29.5. + -. 1.991 g / L and 41.9. 0.462 g / L respectively was obtained. The ethanol yields were 0.44 ± 0.029 g / g (86.1%) and 0.42 ± 0.005 g / g (82.1%), respectively. However, fermentation with a cell weight of 3.08 g / L or less exhibited a low ethanol concentration (7.3 to 36.9 g / L) and a relatively low ethanol yield (0.1 to 0.38 g / g). The result is a saccharide at 42 ℃ My process serenity non-zero (Saccharomyces suggesting that the fermentation capacity of S. cerevisiae mbc 2 is limited by the massive addition of solids unless the cell weight exceeds 4.0 g / L. The ethanol productivity (g / L / h) was 0.87 g / L / h in 9% initial glucan for 48 hours.

이에 따라, 고온내성 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2는 고온에서 전처리된 억새로부터 바이오에탄올 생성을 위한 균주로 고려될 수 있다.Accordingly, high temperature resistant Saccharomyces cerevisiae cerevisiae mbc 2 can be considered as a strain for the production of bioethanol from pretreated wheat germ at high temperature.

<< 실시예Example 6>  6> 세포내Intracellular 잔류 활성 산소의 측정 Measurement of residual free oxygen

상기 도 1의 결과에 의거 세포내의 활성산소는 6시간 이후에 가장 차이가 뚜렷할 것이라 판단하여 지수성장기의 사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928과 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2를 각각 30℃와 42℃에 나누어 배양을 한 후 6시간 후에 활성산소의 농도를 비교하였다. 초기 두 효모의 세포수는 세포밀도가 0.4 OD600으로 동일하게 하였다. 활성산소의 측정을 위한 시약으로는 활성산소와 결합하여 초록형광을 띠는 5,6-chloromethyl-2’7’-dichlorodihydrofluorescein diacetate (CM-H2DCFDA)를 사용하였다. 초록형광의 여기(exitation)는 자외선 파장 493나노미터(nm), 그리고 발광(emission)의 측정에는 521nm의 파장이 사용되었다. 배양 초기의 두 효모와 30℃와 42℃에 각각 6시간 배양된 두 효모를 원심분리를 통해 수거후 100μl PBS (phosphate buffered saline)에 혼탁한 뒤 최종농도 10μM의 CM-H2DCFDA 를 세포혼탁액에 첨가하여 30분간 30℃에 배양한 후 활성산소를 측정하였다. 그 결과 초기 배양 (0시간)에서는 상대적 형광값 (활성산소량)이 36% 으로 차이가 없었으며, 6시간 배양 후에는 전반적으로 증가함을 알 수 있었다. 증가된 활성산소량은 스트레스가 없었던 30℃에서는 사카로마이세스 세레비제(Saccharomyces cerevisiae) KCTC 7928과 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2가 각각 상대적 활성산소량이 63% 과 60% 으로 차이가 거의 없었다. 그러나, 42℃에서 배양된 두 효모는 100% 과 71%로써 사카로마이세스 세레비제(Saccharomyces cerevisiae) mbc 2에서 약 30% 낮은 활성 산소의 축적을 보였다. 이로써 mbc의 고온 내성이 EtBr에 의한 미토콘드리아의 돌연변이에 의해 낮은 활성 산소의 축적임이 증명되었다.
FIG radicals in the cell based on the results of 1 is the most that would My process serenity of non-zero indices in Saccharomyces growth phase is determined to be distinct differences (Saccharomyces cerevisiae) and KCTC 7928 Saccharomyces after 6 hours My process serenity non-zero (Saccharomyces cerevisiae mbc 2 were cultured at 30 ° C and 42 ° C, respectively, and the concentrations of active oxygen were compared after 6 hours. The cell numbers of the first two yeasts were the same at a cell density of 0.4 OD 600 . 5,6-Chloromethyl-2'7'-dichlorodihydrofluorescein diacetate (CM-H 2 DCFDA) was used as a reagent for measuring reactive oxygen species. The excitation of green fluorescence was 493 nanometers (nm) in ultraviolet wavelength and 521 nm in wavelength of emission. Two yeasts were incubated for 6 hours at 30 ° C and 42 ° C for 6 hrs. After harvesting, the yeast cells were harvested by centrifugation and then suspended in 100 μl of PBS (phosphate buffered saline). A final concentration of 10 μM of CM-H 2 DCFDA was added to the cell suspension , And incubated at 30 ° C for 30 minutes. Then, active oxygen was measured. As a result, the relative fluorescence value (active oxygen amount) did not differ by 36% in the initial culture (0 hour), and it was increased after 6 hours culture. The increased amount of active oxygen was measured at 30 ° C., which was not stressed, by using Saccharomyces cerevisiae cerevisiae ) KCTC 7928 and Saccharomyces cerevisiae cerevisiae ) mbc 2, respectively, the relative amounts of active oxygen were 63% and 60%, respectively. However, the two yeasts cultured at 42 &lt; 0 &gt; C were 100% and 71%, respectively. Saccharomyces cerevisiae cerevisiae ) mbc 2 showed about 30% lower accumulation of active oxygen. This demonstrates that the high temperature tolerance of mbc is an accumulation of low active oxygen by the mutation of mitochondria by EtBr.

국립농업과학원 농업유전자원센터National Institute of Agricultural Science KACC93194PKACC93194P 2014021420140214

Claims (14)

사카로마이세스 세레비제에(Saccharomyces cerevisiae)에 결손 돌연변이를 유발하여 제조된 에탄올 생산능이 있는 기탁번호 KACC93194P로 수탁된 사카로마이세스 세레비제에(Saccharomyces cerevisiae) 변이 균주로,
상기 변이 균주의 에탄올 발효 적정 온도는 40 내지 45℃인 사카로마이세스 세레비제(Saccharomyces cerevisiae) 변이 균주.
In my process to the non-zero in serenity (Saccharomyces cerevisiae) (Saccharomyces cerevisiae) the deposit number in the saccharide entrusted to KACC93194P My process serenity non-limiting capability in the ethanol produced by causing the defect mutation in the mutant strain Saccharomyces,
Wherein said mutant strains have an appropriate temperature for ethanol fermentation of 40 to 45 DEG C for Saccharomyces cerevisiae mutant strain.
삭제delete 제 1항에 있어서, 상기 변이 균주의 생육 온도는 40 내지 45℃인 사카로마이세스 세레비제(Saccharomyces cerevisiae) 변이 균주.2. The method according to claim 1, wherein the growth temperature of the mutant strains is 40-45 DEG C, saccharomyces cerevisiae S. cerevisiae mutant strains. 삭제delete 제 1항에 따른 사카로마이세스 세레비제(Saccharomyces cerevisiae) 변이 균주를 바이오매스에 처리하여 40 내지 45℃에서 12 내지 72시간 동안 당화 및 발효하는 단계를 포함하는 에탄올 제조방법.A process for producing ethanol comprising treating saccharomyces cerevisiae mutant strain according to claim 1 with biomass and saccharifying and fermenting at 40 to 45 ° C for 12 to 72 hours. 제 5항에 있어서, 상기 바이오매스는 섬유질계 바이오매스인 에탄올 제조방법.6. The method of claim 5, wherein the biomass is fibrous biomass. 제 6항에 있어서, 상기 섬유질계 바이오매스는 억새, 거대 억새, 수수대, 갈대, 볏짚 및 낙엽을 포함하는 초본류로부터 선택되는 것인 에탄올 제조방법.7. The method according to claim 6, wherein the fibrous biomass is selected from herbaceous plants including herbaceous plants, giant aphids, caterpillars, reed, rice straw and litter. 제 7항에 있어서, 상기 거대 억새는 전처리 과정을 거친 거대 억새인 에탄올 제조방법.8. The method according to claim 7, wherein the giant aqueducts are pretreated. 제 8항에 있어서, 상기 전처리는 알칼리 전처리인 에탄올 제조방법.The method according to claim 8, wherein the pretreatment is an alkaline pretreatment. 제 5항에 있어서, 상기 당화 및 발효는 동시에 수행되는 것인 에탄올 제조방법.6. The method according to claim 5, wherein the saccharification and fermentation are performed simultaneously. 삭제delete 삭제delete 제 5항에 있어서, 상기 바이오매스 내 글루칸 함량은 3 내지 20 중량%인 에탄올 제조방법.6. The method of claim 5, wherein the biomass has a glucan content of 3 to 20% by weight. 제 5항에 있어서, 상기 에탄올 제조방법은 회분식 공정, 반연속식 공정 또는 연속식 공정으로 이루어진 군에서 선택된 공정으로 수행하는 것인 에탄올 제조방법. 6. The method according to claim 5, wherein the ethanol production process is carried out by a process selected from the group consisting of a batch process, a semi-continuous process or a continuous process.
KR1020140111378A 2014-08-26 2014-08-26 Novel strain for efficient simultaneous saccharification and fermentation at high temperature and Bio-ethanol production method using the novel strain KR101630832B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140111378A KR101630832B1 (en) 2014-08-26 2014-08-26 Novel strain for efficient simultaneous saccharification and fermentation at high temperature and Bio-ethanol production method using the novel strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140111378A KR101630832B1 (en) 2014-08-26 2014-08-26 Novel strain for efficient simultaneous saccharification and fermentation at high temperature and Bio-ethanol production method using the novel strain

Publications (2)

Publication Number Publication Date
KR20160025113A KR20160025113A (en) 2016-03-08
KR101630832B1 true KR101630832B1 (en) 2016-06-17

Family

ID=55534186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140111378A KR101630832B1 (en) 2014-08-26 2014-08-26 Novel strain for efficient simultaneous saccharification and fermentation at high temperature and Bio-ethanol production method using the novel strain

Country Status (1)

Country Link
KR (1) KR101630832B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478023A (en) * 2022-06-29 2022-12-16 北京英惠尔生物技术有限公司 High-biomass saccharomyces cerevisiae strain EnhSa-13 and breeding method and application thereof
CN116355768A (en) * 2023-04-11 2023-06-30 河北斐默特生物科技有限公司 Method for producing yeast culture by using high-temperature resistant yeast

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262999B1 (en) 2011-01-13 2013-05-09 고려대학교 산학협력단 Recombinant yeast by overexpression of pyruvate decarboxylase and alcohol dehydrogenase for improving productivity of bioethanol and Method for producing ethanol using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955945B1 (en) * 2007-12-28 2010-05-03 주식회사 창해에탄올 A highly productive saccaromyces cerevisiae and method of preparing ethanol using by the same
KR20110116438A (en) * 2010-04-19 2011-10-26 고려대학교 산학협력단 Recombinant yeast by interruption of glycerol production for improving productivity of bio-ethanol and method for producing ethanol using the same
KR101230638B1 (en) * 2010-09-17 2013-02-06 주식회사 창해에탄올 Kluyveromyces marxianus having superior heat resistance and ethanol productivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262999B1 (en) 2011-01-13 2013-05-09 고려대학교 산학협력단 Recombinant yeast by overexpression of pyruvate decarboxylase and alcohol dehydrogenase for improving productivity of bioethanol and Method for producing ethanol using the same

Also Published As

Publication number Publication date
KR20160025113A (en) 2016-03-08

Similar Documents

Publication Publication Date Title
Choudhary et al. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass
Kuhad et al. Bioethanol production from pentose sugars: Current status and future prospects
CN102791858B (en) Xylose isomerase and use thereof
Costa et al. Physiological characterization of thermotolerant yeast for cellulosic ethanol production
JP2013539655A (en) Pentose and glucose fermenting yeast cells
Cha et al. Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants
ES2755680T3 (en) Yeast cell consuming acetate
Kosaka et al. Potential of thermotolerant ethanologenic yeasts isolated from ASEAN countries and their application in high-temperature fermentation
KR101630832B1 (en) Novel strain for efficient simultaneous saccharification and fermentation at high temperature and Bio-ethanol production method using the novel strain
CN108603179A (en) Tunning produces increased eukaryocyte
Sehnem et al. Bioconversion of soybean and rice hull hydrolysates into ethanol and xylitol by furaldehyde-tolerant strains of Saccharomyces cerevisiae, Wickerhamomyces anomalus, and their cofermentations
US8859248B2 (en) Method for producing ethanol using recombinant yeast strain
US11702678B2 (en) Mutant gene associated with improvement in ethanol productivity via ethanol fermentation and method for producing ethanol using the same
CN106554924B (en) Recombinant saccharomyces cerevisiae strain for producing ethanol, construction method thereof and method for producing ethanol by using strain
US10017788B2 (en) Recombinant yeast and method for producing ethanol using the same
Das et al. Engineered yeasts for lignocellulosic bioethanol production
JP6249391B2 (en) Method of fermenting xylose at high temperature
US20230227861A1 (en) Gene duplications for crabtree-warburg-like aerobic xylose fermentation
WO2016088278A1 (en) Highly efficient ethanol-fermentative bacteria
US10011853B2 (en) Yeast having xylose assimilation ability and ethanol production ability
De Canio Paola et al. Latest frontiers in the biotechnologies for ethanol production from lignocellulosic biomass
Martín Yeast immobilization systems for second-generation ethanol production: actual trends and future perspectives
EP4022076A1 (en) Expression of beta-glucosidase in yeast for improved ethanol production
EP3633031A1 (en) A transgenic yeast and method for producing ethanol using the same
JP2022058406A (en) Mutant genes participating in improvement of ethanol productivity by ethanol fermentation and methods of ethanol production using same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant