KR101629783B1 - Surface-modified carbon nanotube electrodes for supercapacitor and method for manufacturing the same - Google Patents

Surface-modified carbon nanotube electrodes for supercapacitor and method for manufacturing the same Download PDF

Info

Publication number
KR101629783B1
KR101629783B1 KR1020150006889A KR20150006889A KR101629783B1 KR 101629783 B1 KR101629783 B1 KR 101629783B1 KR 1020150006889 A KR1020150006889 A KR 1020150006889A KR 20150006889 A KR20150006889 A KR 20150006889A KR 101629783 B1 KR101629783 B1 KR 101629783B1
Authority
KR
South Korea
Prior art keywords
mwnt
carbon nanotube
electrode
carbon
formula
Prior art date
Application number
KR1020150006889A
Other languages
Korean (ko)
Inventor
최성호
최지은
김영석
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020150006889A priority Critical patent/KR101629783B1/en
Application granted granted Critical
Publication of KR101629783B1 publication Critical patent/KR101629783B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a technology which provides a manufacturing method for converting a phenyl monomer into a diazonium salt, and after that, modifying the phenyl monomer in a carbon nanotube with a radical reaction, and a conductive polymer (R-Ph)/multi-wall carbon nanotube complex manufactured by the manufacturing method. Therefore, the conductive polymer (R-Ph)/multi-wall carbon nanotube complex can be used as an electrode for a supercapacitor.

Description

슈퍼캐퍼시터 전극용으로 표면 개질된 탄소나노튜브 전극 및 이의 제조방법 {Surface-modified carbon nanotube electrodes for supercapacitor and method for manufacturing the same}TECHNICAL FIELD [0001] The present invention relates to a surface-modified carbon nanotube electrode for a super capacitor electrode and a method for manufacturing the same.

본 발명은 초고용량 캐퍼시터 전극으로 이용되는 탄소나노소재 전극에 관한 것으로, 더욱 상세하게는 전극으로써 전기전도도가 향상되도록 하기 위하여 탄소나노소재 표면을 개질한 탄소나노소재 전극 및 이를 제조하는 방법에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a carbon nanomaterial electrode used as an ultra-high capacity capacitor electrode, and more particularly, to a carbon nanomaterial electrode having a carbon nanomaterial surface modified in order to improve electric conductivity as an electrode and a method of manufacturing the same .

고출력 전기 저장을 위한 캐퍼시터 기술은 현재 상용화되고 있는 리튬계 2차 전지에 이어 각광받고 있는 신기술 분야이다. 현재 사용되는 대부분의 2차 전지는 단위무게 또는 부피당 축적할 수 있는 에너지 밀도에 있어서 우수한 성능을 지니고 있으나 사용시간, 충전시간, 출력 등에서 아직 보완되어야 할 점이 많다. 전기 화학적 캐퍼시터는 에너지 밀도 측면에서 2차 전지에 비해 작으나, 사용 및 충전시간, 출력 등에서 2차 전지에 비해 우수한 특성을 보이고 있다. 일반적으로 슈퍼 캐퍼시터는 정전기적 특성을 이용하기 때문에 전기화학적 반응을 이용하는 배터리에 비하여 충방전횟수가 반영구적으로 사용 가능하고 충전시간이 빠르며 출력 밀도도 배터리의 수 십배 이상을 보인다.Capacitor technology for high output electric storage is a new technology area that is getting popular next to lithium-based secondary battery which is currently being commercialized. Most of the currently used secondary batteries have excellent performance in terms of energy density that can be accumulated per unit weight or volume, but there are still many points to be supplemented in terms of use time, charging time, and output. Although the electrochemical capacitor is smaller than the secondary battery in terms of energy density, it exhibits superior characteristics to the secondary battery in use, charging time, and output. In general, supercapacitors use electrostatic characteristics, so that the number of charging and discharging cycles can be used semi-permanently, charging time is fast, and output density is several tens times higher than that of a battery using an electrochemical reaction.

이러한 슈퍼캐퍼시터는 비표면적이 크고 유전율이 높을수록 큰 축전용량을 얻을 수 있다. 이러한 조건을 만족시키기 위해서 활성탄소분말, 카본블랙, 활성탄소섬유 등을 이용한 연구들이 많이 발표되었다. 최근에는 슈퍼캐퍼시터의 일종인 전기이중층 캐퍼시터(electric double-layer capacitor, EDLC)가 새로운 소재와 기술이 접목되어 실용화 단계에 있다. 전기이중층 캐퍼시터에서 에너지 저장은 전극재질과 전해질 용액 사이의 경계면에서 전자와 이온전하의 축적으로부터 발생한다.Such a super capacitor has a larger specific surface area and a higher dielectric constant, so that a larger capacitance can be obtained. Many studies using activated carbon powder, carbon black, activated carbon fiber, etc. have been published to satisfy these conditions. In recent years, electric double-layer capacitors (EDLC), which is a type of super capacitor, are being put to practical use by combining new materials and technologies. Energy storage in an electric double layer capacitor results from the accumulation of electrons and ionic charges at the interface between the electrode material and the electrolyte solution.

이러한 전기이중층 캐퍼시터 소자의 용량은 전극의 표면적과 전극단위 면적당 전기이중층에 의해서 결정되기 때문에 용량밀도의 향상을 위해서는 충진밀도와 비표면적이 큰 재료를 사용하여야 한다. 최근에, 매우 큰 표면적을 갖는 탄소와 금속 산화물, 그리고 전도성 고분자 세 가지 종류의 물질들이 전기화학적 캐패시터를 위하여 개발되고 있으며, 특히 전기이중층 캐퍼시터는 전극물질 자체가 갖는 뛰어난 안정성과 함께 친환경적인 탄소재료를 기반으로 하고 있다. 탄소전극물질에는 탄소나노튜브(carbon nano tube ; CNT), 탄소나노섬유, 카본블랙 등이 사용되고 있다.Since the capacity of such an electric double layer capacitor is determined by the surface area of the electrode and the electric double layer per unit area of the electrode, a material having a large packing density and specific surface area should be used for improving the capacity density. In recent years, three kinds of materials, carbon, metal oxide and conductive polymer having very large surface area have been developed for electrochemical capacitors, and in particular, electric double layer capacitors have been developed to have excellent stability of electrode material itself, . Carbon nano tube (CNT), carbon nanofiber, and carbon black are used as the carbon electrode material.

이 중에 탄소나노튜브는 sp2 결합으로 되어 있는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 흑연면이 나노 크기의 지름으로 둥글게 말린 형태의 구조를 갖는 탄소 동소체를 말한다. 일반적으로 탄소나노튜브는 수 ㎚ 내지 수십 ㎚의 지름과 수 ㎛에서 수백 ㎛의 길이를 가지며, 종횡비가 수십에서 수천에 달하는 극히 미세한 원통형을 이룬다. 이러한 원통형을 이루는 결합 구조에 따라 일부러 불순물을 넣지 않아도 튜브와 튜브가 상호 작용하면서 도체에서 반도체로 변한다. 탄소나노튜브는 말려진 형태에 따라, 하나의 흑연면을 말아서 생긴 탄소나노튜브를 단일벽 나노튜브(Single walled carbon nanotube, SWNT)라고 하고, 여러 층의 흑연면을 말아서 생긴 탄소나노튜브를 다중벽 나노튜브(Multi-walled carbon nanotube, MWNTs)라고 한다. The carbon nanotube refers to a carbon isotope having a hexagonal honeycomb graphite surface in which one carbon atom in sp 2 bond is bonded to three different carbon atoms and is rounded to a diameter of nano-size. Generally, carbon nanotubes have a diameter of several nanometers to several tens of nanometers, a length of several micrometers to several hundreds of micrometers, and an extremely minute cylindrical shape with an aspect ratio of several tens to several thousands. According to this cylindrical bonding structure, the tube and the tube interact with each other without converting the conductor into a semiconductor without deliberately adding impurities. Carbon nanotubes are called single walled carbon nanotubes (SWNTs), which are formed by rolling a single graphite surface according to the shape of the curled carbon nanotubes. Called multi-walled carbon nanotubes (MWNTs).

탄소나노튜브의 특이한 구조 및 물성이 보여주는 다기능성은 정보통신기기의 필수인 평면표시소자, 고집적 메모리소자, 2차 전지 및 초고용량 캐패시터(supercapacitor), 수소저장 물질, 화학 sensor, 고강도/초경량 복합재료, 정전기 제거 복합재료, 전자파차폐(EMI/RFI shielding) 물질 등에 응용성이 뛰어나며 기존의 소자가 갖는 한계를 넘어설 가능성을 갖고 있다.The multifunctionality of carbon nanotubes' unique structure and physical properties shows that they are essential for information communication devices such as flat display devices, highly integrated memory devices, secondary batteries and supercapacitors, hydrogen storage materials, chemical sensors, high strength / , Electrostatic discharge composite materials, electromagnetic interference shielding (EMI / RFI shielding) materials, etc., and have the possibility of exceeding the limit of existing devices.

이외 탄소나노튜브를 이용한 슈퍼캐퍼시터용 나노복합체와 관련된 선행기술들을 살펴보면, 공개특허 제10-2013-0047885호에 화학침전법으로 제조된 NiOOH/MWNT(산화수산화니켈-탄소나노튜브) 나노복합체 전극을 제조하는 방법에 관한 것으로써, 니켈수산화물(Ni(NO3)26H2O)이 용해된 수용액에 다공성 구조의 탄소나노튜브를 침적시킨 후에 화학침전법을 이용하여 NiOOH(산화수산화니켈)에 나노미터 두께의 탄소나노튜브를 형성시킨 나노복합체 전극을 제조하는 방법이 개시되어 있고, 공개특허 제10-2013-0047879호는 TiO2의 나노입자에 Fe와 Ni 금속 촉매를 코팅한 후, 화학기상증착법을 이용하여 TiO2의 나노입자 표면에 탄소나노튜브를 성장시켜 나노복합체 전극을 제조하는 공정이 공지되어 있다. Other prior art related to super-capacitor nanocomposites using carbon nanotubes is NiOOH / MWNT (nickel oxide-carbon nanotube) nanocomposite electrode manufactured by chemical precipitation method in Japanese Patent Application Laid-Open No. 10-2013-0047885 (Ni (NO3) 26H2O) dissolved in an aqueous solution of nickel hydroxide (Ni (NO3) 26H2O) is deposited on the surface of a carbon nanotube having a porous structure, Open No. 10-2013-0047879 discloses a method of manufacturing a nanocomposite electrode having nanotubes formed thereon. The method disclosed in Japanese Patent Application Laid-Open No. 10-2013-0047879 discloses a method of forming TiO 2 nanoparticles by coating Fe and Ni metal catalyst on TiO 2 nanoparticles, 2 nanoparticles by growing carbon nanotubes on the surface of the nanoparticles.

공개특허공보 제10-2010-0039136호에는 탄소나노튜브의 개질로 수반되는 탄소나노튜브의 고유 물성 저하를 최소화하면서, 탄소나노튜브의 분산성 및 접착성을 증대를 얻기 위하여, 리빙 라디칼 중합으로 리빙 라디칼 말단기를 지니고 있는 고분자를 탄소나노튜브에 라디칼 그라프트 반응시켜 개질된 탄소나노튜브를 이용하여 탄소나노튜브 전극 및 이를 이용한 염료감응형 태양전지가 개시되어 있다. [Patent Document 1] Japanese Unexamined Patent Application Publication No. 10-2010-0039136 DISCLOSURE OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION In order to obtain an increase in the dispersibility and adhesion of carbon nanotubes while minimizing deterioration of inherent physical properties of carbon nanotubes accompanied by modification of carbon nanotubes, A carbon nanotube electrode and a dye-sensitized solar cell using the carbon nanotube electrode using a modified carbon nanotube by radical grafting a polymer having a radical end group to the carbon nanotube have been disclosed.

반면 대한민국 특허등록 제10-0689866호에는 "비닐계 고분자가 그래프팅된 탄소나노튜브의 제조방법 및 그 전구체"에서는 표면에 비닐기가 도입된 탄소나노튜브를 제조하고 이를 비닐계 단량체와 중합시킴으로써 비닐계 고분자를 탄소나노튜브 표면에서 쉽게 성장시키는 방법 및 그 전구체를 개시하고 있다. On the other hand, in Korean Patent Registration No. 10-0689866, "a method for producing a vinyl-based polymer-grafted carbon nanotube and its precursor", a carbon nanotube having a vinyl group on its surface is prepared and polymerized with a vinyl monomer, Discloses a method for easily growing a polymer on the surface of a carbon nanotube and a precursor thereof.

또한 공개특허 제10-2010-0003777호에 탄소나노튜브의 표면 개질 방법 및 이에 의해 표면 개질된 탄소나노튜브가 개시되어 있는데, 이에 따르면 탄소나노튜브의 고유한 특성을 손상시키지 않으면서 탄소나노튜브의 강한 반데르발스 인력을 감소시켜 고분자에 탄소나노튜브를 균일하게 분산시킬 수 있으므로, 우수한 물성을 지닌 고분자/탄소나노튜브 나노복합재료의 제조방법으로 크게 활용될 수 있다. 하지만, 상기 공지기술에는 전도성고분자를 사용하지 않으므로 전도도를 저하시켜 연료전지 전극으로 이용할 수 없다는 단점을 가지고 있다. Also, a method for modifying the surface of a carbon nanotube and a carbon nanotube surface-modified by the method are disclosed in Japanese Patent Application Laid-Open No. 10-2010-0003777. According to this method, The carbon nanotubes can be uniformly dispersed in the polymer by reducing the strong Van der Waals attractive force. Therefore, the method can be widely utilized as a method for producing a polymer / carbon nanotube nanocomposite material having excellent physical properties. However, the known technology does not use a conductive polymer and thus has a disadvantage in that it can not be used as a fuel cell electrode because the conductivity is lowered.

이와 같이 상기 공지된 기술에는 탄소나노튜브 표면에 전하가 용이하게 이동할 수 있는 전도성고분자가 고르게 분산되도록 개질된 탄소나노소재 또는 이의 제조방법이 개시되어 있지 않고, 슈퍼캐퍼시터로 적용할 정도의 충분한 효율을 보여주고 있지 않다. 따라서 본 발명에서는 캐패시터의 비정전용량을 향상시키는 핵심기술 중에 하나인 그래프트법을 이용하여 슈퍼캐퍼시터 전극으로 사용할 수 있는 표면 개질된 탄소나노소재 전극 및 이를 제조하는 방법을 제공하고자 한다.
As described above, the known technology does not disclose a carbon nanomaterial modified to uniformly disperse a conductive polymer capable of moving charges on the surface of the carbon nanotube, or a method for manufacturing the carbon nanomaterial, and the method has a sufficient efficiency to be applied to a super capacitor It is not showing. Accordingly, it is an object of the present invention to provide a surface-modified carbon nanomaterial electrode that can be used as a supercapacitor electrode by grafting, which is one of the key technologies for improving the non-discharge capacity of a capacitor, and a method of manufacturing the carbon nanomaterial electrode.

KRKR 10201300478851020130047885 AA KRKR 10201300478791020130047879 AA KRKR 10201000391361020100039136 AA KRKR 10-068986610-0689866 B1B1 KRKR 10201000037771020100003777 AA

본 발명은 상기 종래 기술의 문제점을 해결하기 위한 것으로서, 탄소나노튜브 표면에 다양한 작용기가 도입된 전도성고분자로 개질시키기 위해 전도성고분자를 이루기 위한 단량체인 페닐다이아조늄(phenyl diazonium)염을 이용하여 전도성을 가지는 고분자를 그래프트 시켰으며, 상기 전도성 페닐계 단량체가 그래프트된 탄소나노튜브의 직경이 정제 탄소나노튜브보다 커짐을 확인하고 본 발명을 완성하였다.
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems of the prior art, and it is an object of the present invention to provide a method for modifying a conductive polymer by introducing various functional groups onto a surface of a carbon nanotube, using a phenyl diazonium salt as a monomer for forming a conductive polymer, And that the diameter of the grafted carbon nanotubes of the conductive phenyl-based monomer is larger than that of the purified carbon nanotubes, thereby completing the present invention.

본 발명은 페닐계 단량체를 디아조늄염(diazonium salt)으로 합성하는 단계; 및 정제된 탄소나노튜브와 상기 합성된 디아조늄염을 라디칼 개시제를 이용하여 탄소나노튜브의 표면에 페닐계 단량체를 그래프트 시키는 단계; 를 포함하는 탄소나노튜브 전극의 제조방법을 제공한다. The present invention relates to a process for preparing a polyaromatic compound, which comprises synthesizing a phenyl-based monomer as a diazonium salt; And grafting the purified carbon nanotube and the synthesized diazonium salt to the surface of the carbon nanotube by using a radical initiator; The present invention also provides a method of manufacturing a carbon nanotube electrode.

보다 구체적인 예를 들면, 상기 제조방법에서 상기 정제된 탄소나노튜브는 탄소나노튜브를 황산 : 질산 부피비가 2 : 1 내지 3 : 1의 범위에서 선택된 비율로 혼합된 용액에서 초음파 처리한 것을 사용하는 것이 바람직하다. More specifically, for example, the purified carbon nanotubes obtained by ultrasonic treatment of the purified carbon nanotubes in a mixed solution of carbon nanotubes in a ratio of sulfuric acid: nitric acid in a volume ratio of 2: 1 to 3: 1 desirable.

또한 상기 정제된 탄소나노튜브는 다중벽 탄소나노튜브(MWNT) 또는 단일벽 탄소나노튜브(SWNT) 일 수 있으며, 바람직하게는 다중벽 탄소나노튜브가 적합하다고 볼 수 있다. The purified carbon nanotube may be a multi-walled carbon nanotube (MWNT) or a single-walled carbon nanotube (SWNT), preferably a multi-walled carbon nanotube.

또한, 상기 제조방법에서 디아조늄염은 하기 화학식 1 내지 6으로 표시되는 화합물 중 하나인 단량체를 사용하여 그래프트 시킬 수 있으나 이에 제한되지는 않는다. The diazonium salt may be grafted using a monomer which is one of the compounds represented by the following general formulas (1) to (6), but the present invention is not limited thereto.

<화학식 1> <화학식 2> &Lt; Formula 1 > < EMI ID =

Figure 112015003937664-pat00001
Figure 112015003937664-pat00002
Figure 112015003937664-pat00001
Figure 112015003937664-pat00002

<화학식 3> <화학식 4> &Lt; Formula 3 > < Formula 4 >

Figure 112015003937664-pat00003
Figure 112015003937664-pat00004
Figure 112015003937664-pat00003
Figure 112015003937664-pat00004

<화학식 5> <화학식 6>    &Lt; Formula 5 > < EMI ID =

Figure 112015003937664-pat00005
Figure 112015003937664-pat00006
Figure 112015003937664-pat00005
Figure 112015003937664-pat00006

(상기 화학식 1 내지 6에서 X는 할로겐 원소를 나타낸다)(In the above Chemical Formulas 1 to 6, X represents a halogen element)

또한, 상기 상기 라디칼 개시제는 일반적인 페닐계 분자의 라디칼 반응을 위해 선택할 수 있는 라디칼 개시제를 선택적으로 사용가능하며, 바람직하게는 아조비스이소부티로나이트릴 (Asobis-iso-butyronitrile ; AIBN) 또는 포타슘퍼설페이트(potassium persulfate)를 사용하는 것이 적합하나 이에 제한되지는 않는다.The radical initiator may be selected from radical initiators that can be selected for the radical reaction of general phenyl-based molecules, and may be selected from the group consisting of Asobis-iso-butyronitrile (AIBN) The use of potassium persulfate is suitable, but not limited thereto.

상기 그래프트시키는 단계는 일반적으로 50℃ 내지 90℃로 가열하여 진행될 수 있으나, 이는 라디칼 개시제의 종류와 용매의 종류에 따라 선택적으로 조절할 수 있다.The grafting may be carried out by heating at 50 ° C to 90 ° C, but may be selectively controlled depending on the kind of the radical initiator and the kind of the solvent.

<화학식 7>&Lt; Formula 7 >

Figure 112015003937664-pat00007
Figure 112015003937664-pat00007

(상기 화학식 7에서 R은 COOH, B(OH)2, SH, NH2, N+(CH3)4 또는 SO3H를 나타낸다)(Wherein R represents COOH, B (OH) 2 , SH, NH 2 , N + (CH 3 ) 4 or SO 3 H)

상기한 제조방법에 의해 제조된 탄소나노튜브는, 탄소나노튜브 표면에 상기 화학식 7로 표시되는 페닐계 고분자가 그래프트된 탄소나노튜브를 제공할 수 있으며, 상기 화학식 1 내지 6으로 표시되는 단량체 외에도 동일한 방법으로 작용기가 도입된 다양한 페닐계 고분자가 그래프트된 탄소나노튜브를 제공한다. 이러한 탄소나노튜브는 슈퍼캐퍼시터 전극용으로 사용할 수 있는 탄소나노튜브 전극이며, 따라서 본 발명은 전도성 고분자가 그래프트된 우수한 성능의 탄소나노튜브 전극을 제공한다.
The carbon nanotubes produced by the above-described method can provide the carbon nanotubes grafted with the phenyl polymer represented by the above formula (7) on the surface of the carbon nanotubes. In addition to the monomers represented by the above formulas (1) to To provide a carbon nanotube grafted with various phenyl-based polymers into which a functional group is introduced. Such a carbon nanotube is a carbon nanotube electrode that can be used for a super capacitor electrode. Accordingly, the present invention provides a carbon nanotube electrode having excellent performance in which a conductive polymer is grafted.

본 발명에 따른 슈퍼캐퍼시터 전극용으로 표면 개질된 탄소나노소재 전극은 전기자동차의 전력원, 가전제품, 연료전지, 신재생 에너지 분야의 에너지 저장장치, 그리고 중장비에 필요한 에너지 저장장치로 사용할 수 있다. 또한 배터리 수명을 향상시키는 장치로서 모바일 장치로서 휴대전화, 휴대용 컴퓨터를 위한 장치로도 사용할 수 있다.
The carbon nanomaterial electrode, which is surface-modified for the super capacitor electrode according to the present invention, can be used as an electric energy source for an electric vehicle, an energy storage device for a fuel cell, a fuel cell, an energy storage device for a renewable energy field, and an energy storage device for a heavy equipment. It can also be used as a device for mobile phones and portable computers as a device for improving battery life.

도 1은 R-Ph-grafted MWNT의 슈퍼캐패시터용 MEA를 나타낸다.
도 2는 MWNT, -COOH/MWNT, -SH/MWNT, -B(OH)2/MWNT, -NH2/MWNT의 주사전자현미경 이미지 (SEM) 나타내고 있다.
도 3는 MWNT, -COOH/MWNT, -SH/MWNT, -B(OH)2/MWNT, -NH2/MWNT의 원소분석 (EDS) 결과를 나타내고 있다.
도 4는 MWNT, -COOH/MWNT, -SH/MWNT, -B(OH)2/MWNT, -NH2/MWNT의 열 중량 분석 (TGA)측정결과를 나타내고 있다.
1 shows an MEA for an R-Ph-grafted MWNT supercapacitor.
FIG. 2 shows a scanning electron microscope (SEM) image of MWNT, -COOH / MWNT, -SH / MWNT, -B (OH) 2 / MWNT, and -NH 2 / MWNT.
FIG. 3 shows elemental analysis (EDS) results of MWNT, -COOH / MWNT, -SH / MWNT, -B (OH) 2 / MWNT and -NH 2 / MWNT.
FIG. 4 shows thermogravimetric (TGA) measurement results of MWNT, -COOH / MWNT, -SH / MWNT, -B (OH) 2 / MWNT and -NH 2 / MWNT.

이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, embodiments of the present invention will be described in detail. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명에서 사용하고 있는 "SWNT"는 단일벽 탄소나노튜브를 나타내고, "MWNT"는 다중벽 탄소나노튜브를 뜻하고, "-COOH/MWNT" 는 다중벽 탄소나노튜브에 카르복실기가 치환된 페닐 단량체로 개질된 것을 뜻하며, "-SH/MWNT"는 페닐기에 thiol기가 치환된 것을, "-B(OH)2/MWNT"은 보란산기가 치환된 것을, "-NH2/MWNT"는 아민이 치환된 것을 뜻한다."MWNT" refers to a multi-walled carbon nanotube. "-COOH / MWNT" refers to a compound having a carboxyl-substituted carboxyl group in a multiwalled carbon nanotube. The term "SWNT" used in the present invention refers to single-walled carbon nanotubes, , "-SH / MWNT" means that the thiol group is substituted for the phenyl group, "-B (OH) 2 / MWNT" means the substitution of the borane acid group, "-NH 2 / MWNT" .

하기 반응식 1에 나타난 바와 같이 페닐계 단량체를 디아조늄염(diazonium salt)로 만든 후에, 하기 반응식 2와 같이 디아조늄염을 탄소나노튜브 표면에 라디칼 개시제를 이용하여 그래프트시켜 고르게 분산되도록 하였다. 일 예로 페닐카르복실산 단량체로 개질 탄소 나노튜브 나노복합체의 합성을 실시예를 통하여 하기와 같이 설명한다.The diazonium salt was grafted onto the surface of the carbon nanotube by using a radical initiator to make the diazonium salt uniformly dispersed as shown in the following Reaction Scheme 1, after the phenyl monomer was converted into a diazonium salt. For example, the synthesis of a modified carbon nanotube nanocomposite with a phenylcarboxylic acid monomer will be described as follows.

<반응식 1><Reaction Scheme 1>

Figure 112015003937664-pat00008
Figure 112015003937664-pat00008

<반응식 2><Reaction Scheme 2>

Figure 112015003937664-pat00009
Figure 112015003937664-pat00009

(상기 반응식 7에서 R은 COOH, B(OH)2, SH, NH2, N+(CH3)4 또는 SO3H를 나타낸다)(Wherein R represents COOH, B (OH) 2 , SH, NH 2 , N + (CH 3 ) 4 or SO 3 H)

<실시예 1>&Lt; Example 1 >

먼저 MWNT는 질산과 황산으로 전처리 하였다. 왕수는 1L의 메스실린더에 황산(slfuric acid) 300mL와 질산(nitric acid) 120mL를 섞어 제조하였다. 3g의 MWNT을 3L의 flask에 넣고 여기에 앞에서 만든 왕수는 열이 발생하므로 아주 천천히 부어준다. flask의 입구를 호일로 막고 90분 동안 초음파처리(sonication) 시켜준다. 용액을 pH 7이 될 때까지 증류수로 washing 해주며 감압시킨 후 건조시켜 검은색 파우더 형태의 MWNT를 얻는다.
First, MWNT was pretreated with nitric acid and sulfuric acid. The water was prepared by mixing 300 mL of slurric acid and 120 mL of nitric acid in a 1 L measuring cylinder. 3g of MWNT is put into a 3L flask, and the above-mentioned water is poured slowly because it generates heat. Cover the flask inlet with a foil and sonicate for 90 minutes. The solution is washed with distilled water to a pH of 7, dried under reduced pressure, and dried to give a black powder-like MWNT.

<실시예 2> -COOH/MWNT의 합성Example 2 Synthesis of -COOH / MWNT

4-aminobenzoic acid 0.055g을 10mL 증류수에 녹인 후, NaNO2 (25 mmol, 0.007g), HCl 수용액 20mL(HCl 3mL, H2O 17mL)을 round bottom flask에서 2시간 동안 ice bath에서 교반시킨다. 이후 이를 건조시켜 diazonium salt를 얻는다. 그리고 condenser를 이용하여 two-neck flask에 앞에서 만든 diazonium salt 1g, azobisisobutyronitrile 0.15g, MWNT 0.2g, acetonitrile 40mL를 넣고 질소를 주입하며 60℃에서 6시간 동안 stirring 시켜준 후에 건조시켜 -COOH/MWNT 파우더를 얻는다.4-aminobenzoic acid (0.055 g) is dissolved in 10 mL of distilled water, and NaNO 2 (25 mmol, 0.007 g) and 20 mL of aqueous HCl (3 mL of HCl, 17 mL of H 2 O) are stirred in an ice bath for 2 hours in a round bottom flask. It is then dried to obtain the diazonium salt. Then, add 1 g of diazonium salt, 0.15 g of azobisisobutyronitrile, 0.2 g of MWNT and 40 mL of acetonitrile to the two-neck flask using a condenser. The mixture was stirred at 60 ° C. for 6 hours and then dried to prepare -COOH / MWNT powder .

Figure 112015003937664-pat00010

Figure 112015003937664-pat00010

<실시예 3> R-Ph 단량체의 디아조늄염 제조Example 3 Preparation of Diazonium Salt of R-Ph Monomer

상기 실시예 2와 동일한 방법으로, 4-aminothiol phenol, 4-aminoboronic acid, 1,4-phenylene diamine 0.01mol을 각각 0.22M HCl 수용액 20mL에 녹이고, 0.011M NaNO2 수용액 20mL를 ice bath에서 교반시켜 주면서 천천히 넣어준다. 2시간 동안 교반 시켜 준 후 수용액 상태의 diazonium salt를 얻는다. 이후에 condenser를 이용하여 two-neck flask에 상기 디아조늄염(diazonium salt) 0.25g, 포타슘퍼설페이트(photassiumpersulfate) 0.01g, 다중벽 탄소나노튜브(MWNT) 0.05g, 증류수 40mL를 넣고 질소를 주입하며 85℃에서 12시간 동안 교반 시켜준 후에 건조시켜 R-Ph/MWNT 파우더를 얻는다.
In the same manner as in Example 2, 0.01 mol of 4-aminothiol phenol, 4-aminoboronic acid and 1,4-phenylene diamine were dissolved in 20 mL of a 0.22 M aqueous solution of HCl and 20 mL of 0.011 M NaNO 2 aqueous solution was stirred in an ice bath Slowly. After stirring for 2 hours, an aqueous solution of diazonium salt is obtained. Then, 0.25 g of diazonium salt, 0.01 g of potassium persulfate, 0.05 g of multi-walled carbon nanotubes (MWNT) and 40 mL of distilled water were placed in a two-neck flask using a condenser, Followed by stirring at 85 ° C for 12 hours, followed by drying to obtain R-Ph / MWNT powder.

<실시예 4> MEA(membrane electrode assembly) 제작Example 4 Preparation of MEA (membrane electrode assembly)

MEA의 제작을 위하여 두 개의 10mL vial에 각각 activated carbon과 R-Ph/MWNT (R은 COOH, B(OH)2, SH, NH2, N+(CH3)4 또는 SO3H이고, Ph는 페닐을 나타냄)를 3mg씩 넣고 nafion을 3mL씩 넣어준 후에 점성이 생길 때까지 약 48시간 동안 덮개를 씌우고 교반(stirring) 시켜준다. 코팅용액(coating solution)이 만들어지면, 두 개의 1x1 크기 carbon paper에 여러 번 hand painting하고 건조시키는 과정을 반복한 뒤 membrane과 함께 carbon paper를 compressor를 사용하여 90℃에서 30분 동안 압축시켜주어 MEA를 제작한다. 도 1 참조.
For the preparation of MEA, activated carbon and R-Ph / MWNT (R is COOH, B (OH) 2 , SH, NH 2 , N + (CH 3 ) 4 or SO 3 H) Phenyl), add 3 ml of nafion, and then cover with a cover for about 48 hours until the viscosity develops. Once the coating solution is prepared, it is repeatedly hand-painted on two 1 × 1 carbon paper and dried. The carbon paper is compressed with a membrane using a compressor at 90 ° C. for 30 minutes, And make them. See FIG.

도 2은 주사전자현미경 (SEM)을 통한 (a) MWNT, (b) -COOH/MWNT, (c) -SH/MWNT, (d) -B(OH)2/MWNT, (e) -NH2/MWNT의 표면을 보여준다. (a) MWNT에서는 매끄러운 MWNT의 표면을 나타내고 있고, (b) COOH/MWNT, (c) -SH/MWNT, (d) -B(OH)2/MWNT, (e) -NH2/MWNT에서는 MWNT에 전도성 고분자가 각각 성공적으로 개질되었음을 확인할 수 있다. MWNT, (b) -COOH / MWNT, (c) -SH / MWNT, (d) -B (OH) 2 / MWNT, (e) -NH 2 / Show the surface of the MWNT. (a) indicates the surface of the MWNT and the smooth MWNT, (b) COOH / MWNT , (c) -SH / MWNT, (d) -B (OH) 2 / MWNT, (e) -NH 2 / MWNT the MWNT And the conductive polymer was successfully modified.

도 3은 원소분석기(EDS)를 통한 (a) MWNT, (b) -COOH/MWNT, (c) -SH/MWNT, (d) -B(OH)2/MWNT, (e) -NH2/MWNT의 데이터 결과를 나타내고 있다. (a) MWNT에서는 탄소 C와 소량의 산소 O만이 존재하고, (b) COOH/MWNT에서는 (a) MWNT보다 탄소 C와 산소 O의 비율이 증가 하였고, (c) -SH/MWNT에서는 탄소 C와 산소 O와 황 S, (d) -B(OH)2/MWNT에서는 탄소 C와 산소 O와 붕소 B, (e) -NH2/MWNT에서는 탄소 C와 산소 O와 질소 N이 복합체에 존재한다는 것을 확인할 수 있다.Figure 3 (a) MWNT, (b) -COOH / MWNT, (c) -SH / MWNT, (d) -B (OH) 2 / MWNT, (e) -NH 2 / through the elemental analyzer (EDS) The results of the MWNT are shown. (b) COOH / MWNT, (a) the ratio of carbon C to oxygen O is higher than that of MWNT, (c) in the case of -SH / MWNT, carbon C and (O) and S (D) -B (OH) 2 / MWNT, carbon C, oxygen O and boron B, and (e) -NH 2 / MWNT, carbon C, oxygen O and nitrogen N are present in the complex Can be confirmed.

도 4은 10℃/min의 승온 속도로 0~800℃의 온도범위 내에서 열 중량 분석 (TGA)를 통한 (a) MWNT, (b) -COOH/MWNT, (c) -SH/MWNT, (d) -B(OH)2/MWNT, (e) -NH2/MWNT의 측정 결과를 나타내고 있다. 각각 (a) MWNT는 550℃ ~ 680℃에서, (b) -COOH/MWNT는 380℃ ~ 600℃에서, (c) -SH/MWNT는 350℃ ~ 550℃에서, (d) -B(OH)2/MWNT는 350℃ ~ 590℃에서, (e) -NH2/MWNT는 300℃ ~ 530℃ 열화가 발생하는 것을 확인할 수 있고, (a) MWNT, (b) -COOH/MWNT, (c) -SH/MWNT, (d) -B(OH)2/MWNT에서는 약 15%, (e) -NH2/MWNT에서는 약 5%가 무게손실이 일어나지 않고 남아있는 것을 알 수 있다.
4 shows the results of (a) MWNT, (b) -COOH / MWNT, (c) -SH / MWNT, d) -B (OH) 2 / MWNT, and (e) -NH 2 / MWNT. (B) -COOH / MWNT at 380 ° C to 600 ° C, (c) -SH / MWNT at 350 ° C to 550 ° C, (d) -B (OH) ) 2 / MWNT is from 350 ℃ ~ 590 ℃, (e ) -NH 2 / MWNT may be confirmed that the 300 ℃ ~ 530 ℃ degradation occurs, (a) MWNT, (b ) -COOH / MWNT, (c ) -SH / MWNT, (d) -B (OH) 2 / MWNT and about 5% in (e) -NH 2 / MWNT.

이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 한다.The foregoing description is merely illustrative of the present invention, and various modifications may be made without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed herein are intended to be illustrative rather than limiting, and the spirit and scope of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all techniques within the scope of the same should be construed as being included in the scope of the present invention.

Claims (8)

페닐계 단량체를 디아조늄염(diazonium salt)으로 합성하는 단계; 정제된 다중벽 탄소나노튜브MWNT)와 상기 합성된 디아조늄염을 라디칼 개시제를 이용하여 탄소나노튜브의 표면에 페닐계 단량체를 그래프트 시키는 단계; 를 포함하는 다중벽 탄소나노튜브 전극의 제조방법에 있어서,
상기 정제된 다중벽 탄소나노튜브는 황산 : 질산 부피비가 2 : 1 내지 3 : 1의 범위에서 선택된 비율로 혼합된 용액에서 초음파 처리하여 정제되었고, 상기 디아조늄염은 하기 화학식 1 내지 4로 표시되는 화합물 중 하나이고, 상기 라디칼 개시제는 아조비스이소부티로나이트릴 (Asobis-iso-butyronitrile ; AIBN) 또는 포타슘퍼설페이트(potassium persulfate)이고, 상기 그래프트시키는 단계는 50℃ 내지 90℃로 가열하는 것을 특징으로 하는 다중벽 탄소나노튜브 전극의 제조방법
<화학식 1> <화학식 2>
Figure 112016002563557-pat00022
Figure 112016002563557-pat00023

<화학식 3> <화학식 4>
Figure 112016002563557-pat00024
Figure 112016002563557-pat00025

(상기 화학식 1 내지 4에서 X는 할로겐 원소를 나타낸다)
Synthesizing a phenyl-based monomer with a diazonium salt; And a step of grafting a phenyl-based monomer onto the surface of the carbon nanotubes using the synthesized diazonium salt with a radical initiator; A method of manufacturing a multi-walled carbon nanotube electrode,
The purified multi-walled carbon nanotubes were purified by ultrasonication in a solution mixed in a ratio of sulfuric acid: nitric acid volume ratio of 2: 1 to 3: 1, and the diazonium salt was purified by the following general formula Wherein the radical initiator is Asobis-iso-butyronitrile (AIBN) or potassium persulfate, and the grafting step is characterized by heating to 50 ° C to 90 ° C For producing multi-walled carbon nanotube electrode
&Lt; Formula 1 >< EMI ID =
Figure 112016002563557-pat00022
Figure 112016002563557-pat00023

&Lt; Formula 3 &gt;&lt; Formula 4 &gt;
Figure 112016002563557-pat00024
Figure 112016002563557-pat00025

(In the above formulas 1 to 4, X represents a halogen element)
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 다중벽 탄소나노튜브 표면에 하기 화학식 7로 표시되는 페닐기가 그래프트된 다중벽 탄소나노튜브
<화학식 7>
Figure 112016002563557-pat00017

(상기 화학식 7에서 R은 COOH, B(OH)2, SH 또는 NH2를 나타낸다)
Walled carbon nanotubes grafted with a phenyl group represented by the following formula (7) on the surface of a multiwall carbon nanotube
&Lt; Formula 7 >
Figure 112016002563557-pat00017

(Wherein R represents COOH, B (OH) 2 , SH or NH 2 )
제 7항에 따른 다중벽 탄소나노튜브를 포함하는 슈퍼캐퍼시터 전극용 다중벽 탄소나노튜브 전극


A multi-wall carbon nanotube electrode for a super capacitor electrode comprising the multi-wall carbon nanotube according to claim 7


KR1020150006889A 2015-01-14 2015-01-14 Surface-modified carbon nanotube electrodes for supercapacitor and method for manufacturing the same KR101629783B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150006889A KR101629783B1 (en) 2015-01-14 2015-01-14 Surface-modified carbon nanotube electrodes for supercapacitor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150006889A KR101629783B1 (en) 2015-01-14 2015-01-14 Surface-modified carbon nanotube electrodes for supercapacitor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR101629783B1 true KR101629783B1 (en) 2016-06-13

Family

ID=56191446

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150006889A KR101629783B1 (en) 2015-01-14 2015-01-14 Surface-modified carbon nanotube electrodes for supercapacitor and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101629783B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856666B1 (en) * 2018-02-05 2018-05-10 현상우 Heatsink for LED and fabrication method thereof
KR101856665B1 (en) * 2018-02-05 2018-05-10 현상우 Heat-radiating coating composition and preparation method thereof
KR20210012805A (en) * 2019-07-26 2021-02-03 한국과학기술연구원 Electrode, Supercapacitors comprising the same, and secondary battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689866B1 (en) 2005-10-12 2007-03-09 인하대학교 산학협력단 Process for synthesizing polymer-grafted carbon nanotubes and its precursor
KR20100003777A (en) 2008-07-02 2010-01-12 한남대학교 산학협력단 Method for modifying surface of carbon nanotube and surface-modified carbon nanotube thereby
KR20100039136A (en) 2008-10-07 2010-04-15 한국과학기술연구원 Modified carbon nanotube grafted by living polymer, carbon nanotube electrode and dye-sensitized solar cell using the same, and each preparation method thereof
KR20130047885A (en) 2011-11-01 2013-05-09 강릉원주대학교산학협력단 Method for fabrication of charge storage in multi-walled carbon nanotube-niooh nano composites
KR20130047879A (en) 2011-11-01 2013-05-09 강릉원주대학교산학협력단 Method for fabrication of charge storage in multi-walled carbon nanotube-tio2 nano composites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689866B1 (en) 2005-10-12 2007-03-09 인하대학교 산학협력단 Process for synthesizing polymer-grafted carbon nanotubes and its precursor
KR20100003777A (en) 2008-07-02 2010-01-12 한남대학교 산학협력단 Method for modifying surface of carbon nanotube and surface-modified carbon nanotube thereby
KR20100039136A (en) 2008-10-07 2010-04-15 한국과학기술연구원 Modified carbon nanotube grafted by living polymer, carbon nanotube electrode and dye-sensitized solar cell using the same, and each preparation method thereof
KR20130047885A (en) 2011-11-01 2013-05-09 강릉원주대학교산학협력단 Method for fabrication of charge storage in multi-walled carbon nanotube-niooh nano composites
KR20130047879A (en) 2011-11-01 2013-05-09 강릉원주대학교산학협력단 Method for fabrication of charge storage in multi-walled carbon nanotube-tio2 nano composites

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. Gao et al., ‘High dispersion and delectrochemical capacitive performance of NiO on benzenesulfonic functionalized carbon nanotubes,’ Electrochimica Acta 54(2009) 3561-3567 (online :2009.01.14.) *
D. Yan et al., ‘Production of a high dispersion of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes using an electrostatic technique,’ Materials Letters 63(2009) 171-173 *
J. L. Bahr and J. M. Tour, ‘Highly Functionalized Carbon Nanotubes Using in Situe Generated Diazonium Compounds,’ Chemistry of Materials, 2001, 13 (11), 3823-3824 (Published on Web: 2001.10.24.) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856666B1 (en) * 2018-02-05 2018-05-10 현상우 Heatsink for LED and fabrication method thereof
KR101856665B1 (en) * 2018-02-05 2018-05-10 현상우 Heat-radiating coating composition and preparation method thereof
KR20210012805A (en) * 2019-07-26 2021-02-03 한국과학기술연구원 Electrode, Supercapacitors comprising the same, and secondary battery comprising the same
KR102214570B1 (en) * 2019-07-26 2021-02-09 한국과학기술연구원 Electrode, Supercapacitors comprising the same, and secondary battery comprising the same

Similar Documents

Publication Publication Date Title
Qi et al. Construction of metal–organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor
Samy et al. High-performance supercapacitor electrodes prepared from dispersions of tetrabenzonaphthalene-based conjugated microporous polymers and carbon nanotubes
Shabani-Nooshabadi et al. Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications
Kumar et al. Electrochemical supercapacitors from conducting polyaniline–graphene platforms
Mondal et al. Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor
Zhu et al. Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor
Wu et al. Fe 3 O 4-based core/shell nanocomposites for high-performance electrochemical supercapacitors
Xie et al. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method
Huang et al. Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode
Rantho et al. Symmetric supercapacitor with supercapattery behavior based on carbonized iron cations adsorbed onto polyaniline
Adusei et al. A scalable nano-engineering method to synthesize 3D-graphene-carbon nanotube hybrid fibers for supercapacitor applications
Chen et al. Preparation of polyaniline onto dl-tartaric acid assembled MXene surface as an electrode material for supercapacitors
Ramesh et al. A nanocrystalline Co 3 O 4@ polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors
Bilal et al. Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder
Yang et al. Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach
Sun et al. Interfacial synthesis and supercapacitive performance of hierarchical sulfonated carbon nanotubes/polyaniline nanocomposites
Xie et al. High-performance supercapacitor with faster energy storage and long cyclic life based on CuO@ MnO2 nano-core–shell array on carbon fiber surface
Wang et al. Novel three-dimensional polyaniline nanothorns vertically grown on buckypaper as high-performance supercapacitor electrode
Rajeshkhanna et al. In situ grown nano-architectures of Co 3 O 4 on Ni-foam for charge storage application
Padalkar et al. 2D-2D nanohybrids of Ni–Cr-layered double hydroxide and graphene oxide nanosheets: Electrode for hybrid asymmetric supercapacitors
Dawouda et al. A brief overview of flexible CNT/PANI super capacitors
Huang et al. Quaternized chitosan-assisted in situ synthesized CuS/cellulose nanofibers conductive paper for flexible electrode
Wang et al. Self-supported hierarchical bead-chain graphite felt@ FePO4@ polyaniline: a flexible electrode for all-solid-state supercapacitors with ultrahigh energy density
Cherusseri et al. Nanotechnology advancements on carbon nanotube/polypyrrole composite electrodes for supercapacitors
KR101629783B1 (en) Surface-modified carbon nanotube electrodes for supercapacitor and method for manufacturing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant