KR101606853B1 - 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치 - Google Patents

영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치 Download PDF

Info

Publication number
KR101606853B1
KR101606853B1 KR1020140058649A KR20140058649A KR101606853B1 KR 101606853 B1 KR101606853 B1 KR 101606853B1 KR 1020140058649 A KR1020140058649 A KR 1020140058649A KR 20140058649 A KR20140058649 A KR 20140058649A KR 101606853 B1 KR101606853 B1 KR 101606853B1
Authority
KR
South Korea
Prior art keywords
unit
encoding
depth
mode
current
Prior art date
Application number
KR1020140058649A
Other languages
English (en)
Other versions
KR20140066151A (ko
Inventor
송학섭
민정혜
니콜라이 쉬라코프
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140058649A priority Critical patent/KR101606853B1/ko
Publication of KR20140066151A publication Critical patent/KR20140066151A/ko
Application granted granted Critical
Publication of KR101606853B1 publication Critical patent/KR101606853B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes

Abstract

현재 픽처를 다양한 크기의 블록들로 분할하고, 분할된 블록의 크기에 따라서 적용되는 인트라 예측 모드들의 개수를 다양하게 설정하는 영상의 부호화, 복호화 방법 및 장치가 개시된다.

Description

영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치{Method and apparatus for image encoding, and method and apparatus for image decoding}
본 발명은 영상의 부호화 및 복호화에 관한 것으로, 보다 구체적으로는 다양한 방향의 인트라 예측 모드를 선택하여 인트라 예측을 수행하는 영상의 부호화, 복호화 방법 및 장치에 관한 것이다.
MPEG-1, MPEG-2, MPEG-4, H.264/MPEG-4 AVC(Advanced Video Coding)와 같은 영상 압축 방식에서는 영상을 부호화하기 위해서 하나의 픽처를 매크로 블록으로 나눈다. 그리고, 인터 예측 및 인트라 예측에서 이용가능한 모든 부호화 모드에서 각각의 매크로 블록을 부호화한 다음, 매크로 블록의 부호화에 소요되는 비트율과 원 매크로 블록과 복호화된 매크로 블록과의 왜곡 정도에 따라서 부호화 모드를 하나 선택하여 매크로 블록을 부호화한다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로블록에 기반하여 제한된 예측 모드에 따라 부호화되고 있다.
본 발명은 다양한 크기의 계층적 부호화 단위에 기반하여 다양한 방향성을 갖는 인트라 예측 방법을 적용하는 영상 부호화. 복호화 방법 및 장치를 제공한다.
본 발명의 일 실시예에 따른 영상 부호화 장치는 상기 영상을 최대 크기의 최대 부호화 단위로 분할하고, 상기 최대 부호화 단위를 계층 구조의 부호화 단위들로 분할하는 분할부; 상기 부호화 단위들 중 부호화되는 현재 부호화 단위의 예측을 수행하기 위한 예측 단위의 인트라 예측 모드를 결정하고, 상기 결정된 인트라 예측 모드에 따라서 상기 예측 단위에 대한 인트라 예측을 수행하는 인트라 예측부를 포함하며, 상기 인트라 예측 모드는 복수 개의 방향들 중 특정 방향을 가리키며, 상기 특정 방향은 수평 방향의 픽셀들의 개수를 나타내는 dx(dx는 정수) 개의 픽셀들 및 수직 방향의 픽셀들의 개수를 나타내는 dy(dy는 정수) 개의 픽셀들 중 하나에 의하여 가리켜지며, 상기 인트라 예측부는 상기 예측 단위의 현재 픽셀의 위치 및 상기 인트라 예측 모드에 의하여 가리켜지는 상기 특정 방향에 따라서, 상기 예측 단위의 좌측 및 상측 중 하나에 위치한 적어도 하나의 주변 픽셀을 획득하고, 상기 획득된 주변 픽셀을 이용하여 상기 현재 픽셀의 예측값을 획득하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 영상 복호화 장치는 비트스트림으로부터 부호화 단위의 최대 크기에 대한 정보 및 현재 심도의 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타내는 분할 정보를 추출하고, 상기 분할 정보에 기초하여, 최대 부호화 단위에 포함된 계층 구조의 부호화 단위들을 결정하며, 상기 부호화 단위들 중 복호화되는 현재 심도의 부호화 단위의 예측을 수행하기 위한 예측 단위를 결정하며, 상기 비트스트림으로부터 상기 예측 단위의 인트라 예측 모드 정보를 추출하는 엔트로피 복호화부; 및 상기 추출된 인트라 예측 모드에 따라서 상기 예측 단위에 대한 인트라 예측을 수행하는 인트라 예측부를 포함하며, 상기 인트라 예측 모드는 복수 개의 방향들 중 특정 방향을 가리키며, 상기 특정 방향은 수평 방향의 픽셀들의 개수를 나타내는 dx(dx는 정수) 개의 픽셀들 및 수직 방향의 픽셀들의 개수를 나타내는 dy(dy는 정수) 개의 픽셀들 중 하나에 의하여 가리켜지며, 상기 인트라 예측부는 상기 예측 단위의 현재 픽셀의 위치 및 상기 인트라 예측 모드에 의하여 가리켜지는 상기 특정 방향에 따라서, 상기 예측 단위의 좌측 및 상측 중 하나에 위치한 적어도 하나의 주변 픽셀을 획득하고, 상기 획득된 주변 픽셀을 이용하여 상기 현재 픽셀의 예측값을 획득하는 것을 특징으로 한다.
본 발명에 따르면 다양한 크기의 부호화 단위에 대하여 보다 다양한 방향으로 인트라 예측 부호화를 수행함으로써 영상의 압축 효율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 영상 부호화 장치의 블록도이다.
도 2 는 본 발명의 일 실시예에 따른 영상 복호화 장치의 블록도를 도시한다.
도 3은 본 발명의 일 실시예에 따른 계층적 부호화 단위를 도시한다.
도 4 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 나타낸 것이다.
도 5 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 예측 단위를 도시한다.
도 7은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
도 8은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 9 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
도 10a 내지 10c는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 주파수 변환 단위의 관계를 도시한다.
도 11 은 본 발명의 일 실시예에 따른 부호화 단위별 부호화 정보를 도시한다.
도 12는 본 발명의 일 실시예에 따른 부호화 단위의 크기에 따른 인트라 예측 모드들의 개수를 도시한다.
도 13a 내지 도 13c는 본 발명의 일 실시예에 따른 소정 크기의 부호화 단위에 적용되는 인트라 예측 모드의 일 예를 설명하기 위한 도면이다.
도 14는 본 발명의 일 실시예에 따른 소정 크기의 부호화 단위에 적용되는 인트라 예측 모드의 다른 예를 설명하기 위한 도면이다.
도 15는 본 발명의 일 실시예에 따른 다양한 방향성을 갖는 인트라 예측 모드들을 설명하기 위한 참조도이다.
도 16은 본 발명의 일 실시예에 따른 쌍선형 모드를 설명하기 위한 참조도이다.
도 17은 본 발명의 일 실시예에 따라서 현재 부호화 단위의 인트라 예측 모드의 예측값을 생성하는 과정을 설명하기 위한 도면이다.
도 18은 본 발명의 일 실시예에 따라서 서로 다른 크기를 갖는 부호화 단위들 사이의 인트라 예측 모드의 매핑 과정을 설명하기 위한 참조도이다.
도 19는 본 발명의 일 실시예에 따라서 주변 부호화 단위의 인트라 예측 모드들을 대표 인트라 예측 모드들 중 하나로 매핑하는 과정을 설명하기 위한 참조도이다.
도 20은 본 발명의 일 실시예에 따른 영상의 인트라 예측 장치를 나타낸 블록도이다.
도 21은 본 발명의 일 실시예에 따른 영상 부호화 방법을 나타낸 플로우 차트이다.
도 22는 본 발명의 일 실시예에 따른 영상 복호화 방법을 나타낸 플로우 차트이다.
이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 본 발명의 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다. 이러한 최대 부호화 단위 및 최대 심도는 픽처 또는 슬라이스 단위로 설정될 수 있다. 즉, 픽처 또는 슬라이스마다 상이한 최대 부호화 단위 및 최대 심도를 갖을 수 있으며, 최대 심도에 따라 최대 영상 부호화 단위에 포함된 최소 부호화 단위 크기를 가변적으로 설정할 수 있다. 이와 같이 픽처 또는 슬라이스마다 최대 부호화 단위 및 최대 심도를 가변적으로 설정할 수 있게 함으로써, 평탄한 영역의 영상은 보다 큰 최대 부호화 단위를 이용하여 부호화함으로써 압축률을 향상시키고, 복잡도가 큰 영상은 보다 작은 크기의 부호화 단위를 이용하여 영상의 압축 효율을 향상시킬 수 있다.
부호화 심도 결정부(120)는 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 심도 결정부(120)는, 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 부호화 심도로 결정한다. 부호화 심도는 R-D 코스트(Rate-Distortion Cost) 계산에 기초해 결정될 수 있다. 결정된 부호화 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 부호화 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 축소되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 부호화 심도가 달리 결정될 수 있다. 다시 말해, 최대 부호화 단위는 상이한 심도에 따라 상이한 크기의 서브 부호화 단위로 분할될 수 있다. 하나의 최대 부호화 단위에 대해 부호화 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 부호화 심도의 부호화 단위에 따라 분할될 수 있다.
또한, 최대 부호화 단위에 포함된 상이한 크기의 서브 부호화 단위들은 상이한 크기의 처리 단위에 기초해 예측 또는 주파수 변환될 수 있다. 다시 말해, 영상 부호화 장치(100)는 영상 부호화를 위한 복수의 처리 단계들을 다양한 크기 및 다양한 형태의 처리 단위에 기초해 수행할 수 있다. 영상 데이터의 부호화를 위해서는 예측, 주파수 변환, 엔트로피 부호화 등의 처리 단계를 거치는데, 모든 단계에 걸쳐서 동일한 크기의 처리 단위가 이용될 수도 있으며, 단계별로 상이한 크기의 처리 단위를 이용할 수 있다.
예를 들어 영상 부호화 장치(100)는 부호화 단위를 예측하기 위해, 부호화 단위와 다른 처리 단위를 선택할 수 있다. 일 예로, 부호화 단위의 크기가 2Nx2N(단, N은 양의 정수)인 경우, 예측을 위한 처리 단위는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 다시 말해, 부호화 단위의 높이 또는 너비 중 적어도 하나를 반분하는 형태의 처리 단위를 기반으로 예측 부호화가 수행될 수도 있다. 이하, 예측 부호화의 기초가 되는 데이터 단위는 '예측 단위'라 한다.
예측 모드는 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있으며, 특정 예측 모드는 특정 크기 또는 형태의 예측 단위에 대해서만 수행될 수 있다. 예를 들어, 인트라 모드는 정방형인 2Nx2N, NxN 크기의 예측 단위에 대해서만 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 예측 단위에 대해서만 수행될 수 있다. 부호화 단위 내부에 복수의 예측 단위가 있다면, 각각의 예측 단위에 대해 예측을 수행하여 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 영상 부호화 장치(100)는 부호화 단위와 다른 크기의 처리 단위에 기초해 영상 데이터를 주파수 변환할 수 있다. 부호화 단위의 주파수 변환을 위해서 부호화 단위보다 작거나 같은 크기의 데이터 단위를 기반으로 주파수 변환이 수행될 수 있다. 이하, 주파수 변환의 기초가 되는 처리 단위를 '변환 단위'라 한다.
부호화 심도 결정부(120)는 라그랑자 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 심도별 부호화 단위의 부호화 오차를 측정하여 최적의 부호화 오차를 갖는 최대 부호화 단위의 분할 형태를 결정할 수 있다. 다시 말해, 부호화 심도 결정부(120)는 최대 부호화 단위가 어떠한 형태의 복수의 서브 부호화 단위로 분할되는지 결정할 수 있는데, 여기서 복수의 서브 부호화 단위는 심도에 따라 크기가 상이하다.
출력부(130)는, 부호화 심도 결정부(120)에서 결정된 적어도 하나의 부호화 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 부호화 모드에 관한 정보를 비트스트림 형태로 출력한다.
심도별 부호화 모드에 관한 정보는, 부호화 심도 정보, 부호화 심도의 부호화 단위의 예측 단위의 파티션 타입 정보, 예측 단위별 예측 모드 정보, 변환 단위의 크기 정보 등을 포함할 수 있다.
부호화 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 부호화 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 부호화 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 부호화 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 적어도 하나의 부호화 심도가 결정되며 부호화 심도마다 적어도 하나의 부호화 모드에 관한 정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 부호화 모드에 관한 정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 분할되어 위치 별로 부호화 심도가 다를 수 있으므로, 데이터에 대해 부호화 심도 및 부호화 모드에 관한 정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 최소 부호화 단위마다 해당 부호화 정보를 설정할 수 있다. 즉, 부호화 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 최소 부호화 단위를 하나 이상 포함하고 있다. 이를 이용하여, 인근 최소 부호화 단위들이 동일한 심도별 부호화 정보를 갖고 있다면, 동일한 최대 부호화 단위에 포함되는 최소 부호화 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호하 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다. 또한, 픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더에 삽입될 수 있다.
영상 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도(k)의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도(k+1)의 부호화 단위의 크기는 NxN 이다. 따라서, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 일 실시예에 따른 영상 복호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 분할 형태를 결정할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 주파수 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 종래의 16x16 크기의 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 본 발명의 일 실시예에 따른 영상 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 2 는 본 발명의 일 실시예에 따른 영상 복호화 장치의 블록도를 도시한다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 영상 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱(parsing)한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정부 추출부(220)는 현재 픽처 또는 슬라이스에 대한 헤더로부터 현재 픽처 또는 슬라이스의 최대 부호화 단위에 대한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보를 추출한다. 추출된 부호화 심도 및 부호화 모드에 관한 정보는 영상 데이터 복호화부(230)로 출력된다.
최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 하나 이상의 부호화 심도 정보에 대해 설정될 수 있으며, 부호화 심도별 부호화 모드에 관한 정보는, 부호화 단위별 예측 단위의 파티션 타입 정보, 예측 모드 정보 및 변환 단위의 크기 정보 등을 포함할 수 있다. 또한, 부호화 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
최대 부호화 단위의 분할 형태에 대한 정보는 최대 부호화 단위에 포함된 심도에 따라 상이한 크기의 서브 부호화 단위에 대한 정보를 포함할 수 있으며, 부호화 모드에 관한 정보는 서브 부호화 단위별 예측 단위에 대한 정보, 예측 모드에 대한 정보 및 변환 단위에 대한 정보 등을 포함할 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 최대 부호화 단위의 분할 형태에 대한 정보에 기초하여, 영상 데이터 복호화부(230)는 최대 부호화 심도의 부호화 단위에 포함된 서브 부호화 단위를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정 및 주파수 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 부호화 단위별 예측을 위해 부호화 심도별 부호화 단위의 예측 단위의 분할 타입 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 예측 단위 및 예측 모드로 인트라 예측 또는 움직임 보상을 수행할 수 있다. 또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 심도별 부호화 단위의 변환 단위의 크기 정보에 기초하여, 부호화 단위마다 각각의 변환 단위로 역변환을 수행할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하는 현재 최대 부호화 단위의 부호화 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도로 복호화할 것을 나타내고 있다면 현재 심도가 부호화 심도이다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 타입, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다. 즉, 최소 부호화 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 최소 부호화 단위를 모아, 하나의 데이터 단위로 복호화할 수 있다.
일 실시예에 따른 영상 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 영상 데이터의 복호화가 가능해진다. 따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 부호화 모드에 관한 정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 3은 본 발명의 일 실시예에 따른 계층적 부호화 단위를 도시한다.
도 3을 참조하면, 본 발명에 따른 계층적 부호화 단위는 너비x높이가 64x64인 부호화 단위부터, 32x32, 16x16, 8x8, 및 4x4를 포함할 수 있다. 정사각형 형태의 부호화 단위 이외에도, 너비x높이가 64x32, 32x64, 32x16, 16x32, 16x8, 8x16, 8x4, 4x8인 부호화 단위들이 존재할 수 있다.
도 3에서 비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 최대 부호화 단위의 크기는 64, 최대 심도가 2로 설정되어 있다. 또한, 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 4로 설정되어 있다. 또한, 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 2로 설정되어 있다.
해상도가 높거나 데이터량이 많은 경우 압축률 향상뿐만 아니라 영상 특성을 정확히 반영하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
최대 심도는 계층적 부호화 단위에서 총 계층수를 나타낸다. 따라서, 비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 2이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 심도가 두 계층 깊어져서 장축 크기가 8, 4인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 4이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 심도가 네 계층 깊어져서 장축 크기가 32, 16, 8, 4인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 더 작은 서브 부호화 단위에 기초해 영상을 부호화하므로 보다 세밀한 장면을 포함하고 있는 영상을 부호화하는데 적합해진다.
도 4 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 나타낸 것이다.
본 발명의 일 실시예에 따른 영상 부호화부(400)는, 도 1의 영상 부호화 장치(100)의 부호화 심도 결정부(120)에서 부호화 심도를 결정하기 위하여 거쳐야 되는 영상 데이터 부호화 작업들을 수행한다.
도 4를 참조하면, 인트라 예측부(410)는 현재 프레임(405) 중 인트라 모드의 예측 단위에 대해 인트라 예측을 수행하고, 움직임 추정부(420) 및 움직임 보상부(425)는 인터 모드의 예측 단위에 대해 현재 프레임(405) 및 참조 프레임(495)을 이용해 인터 예측 및 움직임 보상을 수행한다.
인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)로부터 출력된 예측 단위에 기초해 레지듀얼 값들이 생성되고, 생성된 레지듀얼 값들은 주파수 변환부(430) 및 양자화부(440)를 거쳐 양자화된 변환 계수로 출력된다.
양자화된 변환 계수는 역양자화부(460), 주파수 역변환부(470)를 통해 다시 레지듀얼 값으로 복원되고, 복원된 레지듀얼 값들은 디블로킹부(480) 및 루프 필터링부(490)를 거쳐 후처리되어 참조 프레임(495)으로 출력된다. 양자화된 변환 계수는 엔트로피 부호화부(450)를 거쳐 비트스트림(455)으로 출력될 수 있다.
본 발명의 일 실시예에 따른 영상 부호화 방법에 따라 부호화하기 위해, 영상 부호화부(400)의 구성 요소들인 인트라 예측부(410), 움직임 추정부(420), 움직임 보상부(425), 주파수 변환부(430), 양자화부(440), 엔트로피 부호화부(450), 역양자화부(460), 주파수 역변환부(470), 디블로킹부(480) 및 루프 필터링부(490)는 모두 최대 부호화 단위, 심도에 따른 서브 부호화 단위, 예측 단위 및 변환 단위에 기초해 영상 부호화 과정들을 처리할 수 있다. 특히, 인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)는 부호화 단위의 최대 크기 및 심도를 고려하여 부호화 단위 내의 예측 단위 및 예측 모드를 결정하며, 주파수 변환부(430)는 부호화 단위의 최대 크기 및 심도를 고려하여 변환 단위의 크기를 고려할 수 있다.
도 5 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 나타낸 것이다.
도 5를 참조하면, 비트스트림(505)이 파싱부(510)를 거쳐 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보가 파싱된다. 부호화된 영상 데이터는 엔트로피 복호화부(520) 및 역양자화부(530)를 거쳐 역양자화된 데이터로 출력되고, 주파수 역변환부(540)를 거쳐 레지듀얼 값들로 복원된다. 레지듀얼 값들은 인트라 예측부(550)의 인트라 예측의 결과 또는 움직임 보상부(560)의 움직임 보상 결과와 가산되어 부호화 단위 별로 복원된다. 복원된 부호화 단위는 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 다음 부호화 단위 또는 다음 픽처의 예측에 이용된다.
본 발명의 일 실시예에 따른 영상 복호화 방법에 따라 복호화하기 위해 영상 복호화부(400)의 구성 요소들인 파싱부(510), 엔트로피 복호화부(520), 역양자화부(530), 주파수 역변환부(540), 인트라 예측부(550), 움직임 보상부(560), 디블로킹부(570) 및 루프 필터링부(580)가 모두 최대 부호화 단위, 심도에 따른 서브 부호화 단위, 예측 단위 및 변환 단위에 기초해 영상 복호화 과정들을 처리할 수 있다. 특히, 인트라 예측부(550), 움직임 보상부(560)는 부호화 단위의 최대 크기 및 심도를 고려하여 부호화 단위 내의 예측 단위 및 예측 모드를 결정하며, 주파수 역변환부(540)는 부호화 단위의 최대 크기 및 심도를 고려하여 변환 단위의 크기를 고려할 수 있다.
도 6은 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 예측 단위를 도시한다.
일 실시예에 따른 영상 부호화 장치(100) 및 일 실시예에 따른 영상 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수도 있다.
본 발명의 일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 4인 경우를 도시하고 있다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할된다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 기반이 되는 부분적 데이터 단위인 예측 단위가 도시되어 있다.
최대 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640), 크기 4x4인 심도 4의 부호화 단위(650)가 존재한다. 크기 4x4인 심도 4의 부호화 단위(650)는 최소 부호화 단위이다.
또한 도 6을 참조하면, 각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위로서, 부분적 데이터 단위들이 도시되어 있다. 즉, 심도 0의 크기 64x64의 최대 부호화 단위(610)의 예측 단위는, 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 부분적 데이터 단위(610), 크기 64x32의 부분적 데이터 단위들(612), 크기 32x64의 부분적 데이터 단위들(614), 크기 32x32의 부분적 데이터 단위들(616)일 수 있다.
심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 부분적 데이터 단위(620), 크기 32x16의 부분적 데이터 단위들(622), 크기 16x32의 부분적 데이터 단위들(624), 크기 16x16의 부분적 데이터 단위들(626)일 수 있다.
심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 부분적 데이터 단위(630), 크기 16x8의 부분적 데이터 단위들(632), 크기 8x16의 부분적 데이터 단위들(634), 크기 8x8의 부분적 데이터 단위들(636)일 수 있다.
심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 부분적 데이터 단위(640), 크기 8x4의 부분적 데이터 단위들(642), 크기 4x8의 부분적 데이터 단위들(644), 크기 4x4의 부분적 데이터 단위들(646)일 수 있다.
마지막으로, 심도 4의 크기 4x4의 부호화 단위(650)는 최소 부호화 단위이며 최하위 심도의 부호화 단위이고, 해당 예측 단위도 크기 4x4의 데이터 단위(650)이다.
일 실시예에 따른 영상 부호화 장치의 부호화 심도 결정부(120)는, 최대 부호화 단위(610)의 부호화 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도가 최대 부호화 단위(610)의 부호화 심도 및 파티션 타입으로 선택될 수 있다.
도 7은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
본 발명의 일 실시예에 따른 영상 부호화 장치(100) 및 영상 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 분할하여 부호화하거나 복호화한다. 부호화 과정 중 주파수 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다. 예를 들어, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 주파수 변환이 수행될 수 있다. 또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 주파수 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 8은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
본 발명의 일 실시예에 따른 영상 부호화 장치(100)의 부호화 정보 부호화부는 부호화 모드에 관한 정보로서, 각각의 부호화 심도의 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 타입에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 예측 단위로서, 현재 부호화 단위가 분할된 타입에 대한 정보를 나타낸다. 예를 들어, 심도 0 및 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 예측 단위(802), 크기 2NxN의 예측 단위(804), 크기 Nx2N의 예측 단위(806), 크기 NxN의 예측 단위(808) 중 어느 하나의 타입으로 분할되어 예측 단위로 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 타입에 관한 정보(800)는 크기 2Nx2N의 예측 단위(802), 크기 2NxN의 예측 단위(804), 크기 Nx2N의 예측 단위(806) 및 크기 NxN의 예측 단위(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 예측 단위의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 타입에 관한 정보(800)가 가리키는 예측 단위가 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 주파수 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인트라 변환 단위 크기(828) 중 하나일 수 있다.
본 발명의 일 실시예에 따른 영상 복호화 장치(200)의 부호화 정보 추출부는, 각각의 심도별 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 9 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 타입(912), 2N_0xN_0 크기의 파티션 타입(914), N_0x2N_0 크기의 파티션 타입(916), N_0xN_0 크기의 파티션 타입(918)을 포함할 수 있다.
파티션 타입마다, 한 개의 2N_0x2N_0 크기의 예측 단위, 두 개의 2N_0xN_0 크기의 예측 단위, 두 개의 N_0x2N_0 크기의 예측 단위, 네 개의 N_0xN_0 크기의 예측 단위마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0, 크기 2N_0xN_0 및 크기 N_0xN_0의 예측 단위에 대해서는, 인트라 모드 및 인터 모드로 움직임 예측이 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 예측 단위에 대해서만 수행될 수 있다.
크기 N_0xN_0의 파티션 타입(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하고(920), 심도 2 및 크기 N_0xN_0의 파티션 타입의 부호화 단위들(922, 924, 926, 928)에 대해 반복적으로 최소 부호화 오차를 검색해 나갈 수 있다.
동일한 심도의 부호화 단위들(922, 924, 926, 928)에 대해 부호화가 반복적으로 수행되므로, 이중 하나만 예를 들어 심도 1의 부호화 단위의 부호화를 설명한다. 심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위의 예측 부호화를 위한 예측 단위(930)는, 크기 2N_1x2N_1의 파티션 타입(932), 크기 2N_1xN_1의 파티션 타입(934), 크기 N_1x2N_1의 파티션 타입(936), 크기 N_1xN_1의 파티션 타입(938)을 포함할 수 있다. 파티션 타입마다, 한 개의 크기 2N_1x2N_1의 예측 단위, 두 개의 크기 2N_1xN_1의 예측 단위, 두 개의 크기 N_1x2N_1의 예측 단위, 네 개의 크기 N_1xN_1의 예측 단위마다 반복적으로 예측 부호화가 수행되어야 한다.
또한, 크기 N_1xN_1 크기의 파티션 타입(938)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하면서(940), 심도 2 및 크기 N_2xN_2의 부호화 단위들(942, 944, 946, 948)에 대해 반복적으로 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 분할 정보는 심도 d-1일 때까지 설정될 수 있다. 즉, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위의 예측 부호화를 위한 예측 단위(950)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 타입(952), 크기 2N_(d-1)xN_(d-1)의 파티션 타입(954), 크기 N_(d-1)x2N_(d-1)의 파티션 타입(956), 크기 N_(d-1)xN_(d-1)의 파티션 타입(958)을 포함할 수 있다.
파티션 타입마다, 한 개의 크기 2N_(d-1)x2N_(d-1)의 예측 단위, 두 개의 크기 2N_(d-1)xN_(d-1)의 예측 단위, 두 개의 크기 N_(d-1)x2N_(d-1)의 예측 단위, 네 개의 크기 N_(d-1)xN_(d-1)의 예측 단위마다 반복적으로 예측 부호화가 수행되어야 한다. 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)는 더 이상 분할 과정을 거치지 않는다.
본 발명의 일 실시예에 따른 영상 부호화 장치(100)는 부호화 단위(912)를 위한 부호화 심도를 결정하기 위해, 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택한다. 예를 들어, 심도 0의 부호화 단위에 대한 부호화 오차는 파티션 타입(912, 914, 916, 918)마다 예측 부호화를 수행한 후 가장 작은 부호화 오차가 발생하는 예측 단위가 결정된다. 마찬가지로 심도 0, 1, ..., d-1 마다 부호화 오차가 가장 작은 예측 단위가 검색될 수 있다. 심도 d에서는, 크기 2N_dx2N_d의 부호화 단위이면서 예측 단위(960)를 기반으로 한 예측 부호화를 통해 부호화 오차가 결정될 수 있다. 이와 같이 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 부호화 심도로 결정될 수 있다. 부호화 심도 및 해당 심도의 예측 단위는 부호화 모드에 관한 정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 부호화 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 부호화 심도의 분할 정보만이 '0'으로 설정되고, 부호화 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
본 발명의 일 실시예에 따른 영상 복호화 장치(200)의 부호화 정보 추출부(220)는 부호화 단위(912)에 대한 부호화 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 영상 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 부호화 심도로 파악하고, 해당 심도에 대한 부호화 모드에 관한 정보를 이용하여 복호화에 이용할 수 있다.
도 10a, 10b 및 10c는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 주파수 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 영상 부호화 장치(100)가 결정한 부호화 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 부호화 심도별 부호화 단위의 예측 단위들이며, 변환 단위(1070)는 각각의 부호화 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 타입이다. 즉, 예측 단위(1014, 1022, 1050, 1054)는 2NxN의 파티션 타입이며, 예측 단위(1016, 1048, 1052)는 Nx2N의 파티션 타입, 예측 단위(1032)는 NxN의 파티션 타입이다. 즉, 심도별 부호화 단위들(1010)의 예측 단위는 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 주파수 변환 또는 주파수 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 본 발명의 일 실시예에 따른 영상 부호화 장치(100) 및 영상 복호화 장치(200)는 동일한 부호화 단위에 대한 예측 및 주파수 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
도 11 은 본 발명의 일 실시예에 따른 부호화 단위별 부호화 정보를 도시한다.
본 발명의 일 실시예에 따른 영상 부호화 장치(100)의 출력부(130)는 부호화 단위별 부호화 정보를 출력하고, 본 발명의 일 실시예에 따른 영상 복호화 장치(200)의 부호화 정보 추출부(220)는 부호화 단위별 부호화 정보를 추출할 수 있다.
부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 타입 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 도 11에 도시되어 있는 부호화 정보들은 본 발명의 일 실시예에 따른 영상 부호화 장치(100) 및 영상 복호화 장치(200)에서 설정할 수 있는 일 예에 불과하며, 도시된 것에 한정되지 않는다.
분할 정보는 해당 부호화 단위의 부호화 심도를 나타낼 수 있다. 즉, 분할 정보에 따라 더 이상 분할되지 않는 심도가 부호화 심도이므로, 부호화 심도에 대해서 파티션 타입 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 상위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
파티션 타입 정보는, 부호화 심도의 부호화 단위의 변환 단위의 파티션 타입을 2Nx2N, 2NxN, Nx2N 및 NxN 중 하나로 나타낼 수 있다. 예측 모드는, 움직임 예측 모드를 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 파티션 타입 2Nx2N, 2NxN, Nx2N 및 NxN에서 정의될 수 있으며, 스킵 모드는 파티션 타입 2Nx2N에서만 정의될 수 있다. 변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다.
부호화 단위 내의 최소 부호화 단위마다, 소속되어 있는 부호화 심도의 부호화 단위별 부호화 정보를 수록하고 있을 수 있다. 따라서, 인접한 최소 부호화 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 부호화 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 최소 부호화 단위가 보유하고 있는 부호화 정보를 이용하면 해당 부호화 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 부호화 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 최소 부호화 단위의 부호화 정보가 직접 이용됨으로써 최소 부호화 단위의 데이터가 참조될 수 있다.
또 다른 실시예로, 심도별 부호화 단위의 부호화 정보가 심도별 부호화 단위 내 중 대표되는 최소 부호화 단위에 대해서만 저장되어 있을 수 있다. 이 경우 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 참조될 수도 있다.
이하, 도 4의 본 발명의 일 실시예에 따른 영상 부호화 장치(100)의 인트라 예측부(410) 및 도 5의 영상 복호화 장치(200)의 인트라 예측부(550)에서 수행되는 인트라 예측에 대하여 구체적으로 설명한다. 이하의 설명에서, 부호화 단위는 영상의 부호화 단계에서 현재 부호화되는 블록을 지칭하는 용어이며, 복호화 단위는 영상의 복호화 단계에서 현재 복호화되는 블록을 지칭하는 용어이다. 부호화 단위와 복호화 단위라는 용어는 영상의 부호화 단계 및 복호화 단계 중 어느 단계에서 지칭되느냐의 차이만 있을 뿐이며 부호화 단계에서의 부호화 단위는 복호화 단계에서의 복호화 단위로 불리울 수 있다. 용어의 통일성을 위하여 특별한 경우를 제외하고는 부호화 단계 및 복호화 단계에서 동일하게 부호화 단위로 통일하여 부르기로 한다. 또한, 본 발명의 일 실시예에 따른 인트라 예측 방법 및 장치는 일반적인 영상 코덱에서의 인트라 예측에도 적용될 수 있음을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 명세서를 통해 이해할 수 있을 것이다.
도 12는 본 발명의 일 실시예에 따른 부호화 단위의 크기에 따른 인트라 예측 모드들의 개수를 도시한다.
본 발명의 일 실시예에 따르면 부호화 단위(복호화 단계에서는 복호화 단위)의 크기에 따라서 부호화 단위에 적용할 인트라 예측 모드들의 개수를 다양하게 설정할 수 있다. 일 예로 도 12를 참조하면 인트라 예측되는 부호화 단위의 크기를 NxN이라고 할 때, 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128x128 크기의 부호화 단위 각각에 대하여 실제 수행되는 인트라 예측 모드의 개수는 각각 5, 9, 9, 17, 33, 5, 5개(Example 2의 경우)로 설정될 수 있다. 이와 같이 부호화 단위의 크기에 따라서 실제 수행되는 인트라 예측 모드의 개수를 차별화하는 이유는 부호화 단위의 크기에 따라서 예측 모드 정보를 부호화하기 위한 오버헤드가 다르기 때문이다. 다시 말해서, 작은 크기의 부호화 단위의 경우 전체 영상에서 차지하는 부분이 작음에도 불구하고 이러한 작은 부호화 단위의 예측 모드 등의 부가 정보를 전송하기 위한 오버헤드가 증가할 수 있다. 따라서, 작은 부호화 단위를 너무 많은 예측 모드로 부호화하는 경우 비트량이 증가하여 압축 효율이 저하될 수 있다. 또한, 큰 크기를 갖는 부호화 단위, 예를 들어 64x64 이상의 크기를 갖는 부호화 단위는 일반적으로 영상의 평탄한 영역에 대한 부호화 단위로서 선택되는 경우가 많기 때문에, 이러한 평탄한 영역을 부호화하는데 많이 선택되는 큰 크기의 부호화 단위를 너무 많은 예측 모드로 부호화하는 것 역시 압축 효율 측면에서 비효율적일 수 있다.
따라서, 본 발명의 일 실시예에 따르면, 부호화 단위가 크게 N1xN1(2≤N1≤8, N1은 정수), N2xN2(16≤N2≤32, N2는 정수), N3xN3(64≤N3, N3는 정수)의 적어도 3종류의 크기로 분류되며, N1xN1 크기를 갖는 부호화 단위마다 수행될 인트라 예측 모드의 개수를 A1(A1은 양의 정수), N2xN2 크기를 갖는 부호화 단위마다 수행될 인트라 예측 모드의 개수를 A2(A2는 양의 정수), N3xN3 크기를 갖는 부호화 단위마다 수행될 인트라 예측 모드의 개수를 A3(A3는 양의 정수)라고 할 때, A3≤A1≤A2 관계를 만족하도록 각 부호화 단위의 크기에 따라서 수행될 인트라 예측 모드의 개수를 설정하는 것이 바람직하다. 즉, 현재 픽처가 작은 크기의 부호화 단위, 중간 크기의 부호화 단위, 큰 크기의 부호화 단위로 크게 분류된다고 할 때, 중간 크기의 부호화 단위가 가장 많은 수의 예측 모드를 갖으며, 작은 크기의 부호화 단위 및 큰 크기의 부호화 단위는 상대적으로 보다 작은 수의 예측 모드를 갖도록 설정하는 것이 바람직하다. 다만, 이에 한정되지 않고 작은 크기 및 큰 크기의 부호화 단위에 대하여도 보다 많은 수의 예측 모드를 갖도록 설정할 수도 있을 것이다. 도 12에 도시된 각 부호화 단위의 크기에 따른 예측 모드의 개수는 일 실시예에 불과하며, 각 부호화 단위의 크기에 따른 예측 모드의 개수는 변경될 수 있다.
도 13a는 본 발명의 일 실시예에 따른 소정 크기의 부호화 단위에 적용되는 인트라 예측 모드의 일 예를 설명하기 위한 도면이다.
도 12 및 도 13a를 참조하면, 일 예로 4×4 크기를 갖는 부호화 단위의 인트라 예측시에 수직(Vertical) 모드(모드 0), 수평(Horizontal) 모드(모드 1), DC(Direct Current) 모드(모드 2), 대각선 왼쪽(Diagonal Down-Left) 모드(모드 3), 대각선 오른쪽(Diagonal Down-Right) 모드(모드 4), 수직 오른쪽(Vertical-Right) 모드(모드 5), 수평 아래쪽(Horizontal-Down) 모드(모드 6), 수직 왼쪽( Vertical-Left) 모드(모드 7) 및 수평 위쪽(Horizontal-Up) 모드(모드 8)를 갖을 수 있다.
도 13b는 도 13a의 인트라 예측 모드들의 방향을 나타내는 도면이다. 도 13b에서 화살표의 끝에 있는 숫자는 그 방향으로 예측을 수행할 경우 해당 모드값을 나타낸다. 여기서 모드 2는 방향성이 없는 DC 예측 모드로서 도시되어 있지 않다.
도 13c는 도 13a에 도시된 부호화 단위에 대한 인트라 예측 방법을 도시한 도면이다.
도 13c를 참조하면, 부호화 단위의 크기에 의하여 결정된 이용가능한 인트라 예측 모드에 따라서 현재 부호화 단위의 주변 화소인 A - M을 이용하여 예측 부호화 단위를 생성한다. 예를 들어, 도 13a의 모드 0, 즉 수직 모드에 따라, 4×4 크기의 현재 부호화 단위를 예측 부호화하는 동작을 설명한다. 먼저 4×4 크기의 현재 부호화 단위의 위쪽에 인접한 화소 A 내지 D의 화소값을 4×4 현재 부호화 단위의 화소값으로 예측한다. 즉, 화소 A의 값을 4×4 현재 부호화 단위의 첫 번째 열에 포함된 4개의 화소값으로, 화소 B의 값을 4×4 현재 부호화 단위의 두 번째 열에 포함된 4개의 화소값으로, 화소 C의 값을 4×4 현재 부호화 단위의 세 번째 열에 포함된 4개의 화소값으로, 화소 D의 값을 4×4 현재 부호화 단위의 네 번째 열에 포함된 4개의 화소값으로 예측한다. 다음, 상기 화소 A 내지 D를 이용하여 예측된 4×4 현재 부호화 단위와 원래의 4×4 현재 부호화 단위에 포함된 화소의 실제값을 감산하여 오차값을 구한 후 그 오차값을 부호화한다.
도 14는 본 발명의 일 실시예에 따른 소정 크기의 부호화 단위에 적용되는 인트라 예측 모드의 다른 예를 설명하기 위한 도면이다.
도 12 및 도 14를 참조하면, 일 예로 2×2 크기를 갖는 부호화 단위의 인트라 예측시에 수직(Vertical) 모드, 수평(Horizontal) 모드, DC(Direct Current) 모드, 플레인(plane) 모드 및 대각선 오른쪽(Diagonal Down-Right) 모드의 총 5개의 모드가 존재할 수 있다.
한편, 도 12에 도시된 바와 같이 32x32 크기를 갖는 부호화 단위가 33개의 인트라 예측 모드를 갖는다고 할 때, 33개의 인트라 예측 모드의 방향을 설정할 필요가 있다. 본 발명의 일 실시예에서는 도 13 및 도 14에 도시된 바와 같은 인트라 예측 모드 이외에, 다양한 방향의 인트라 예측 모드를 설정하기 위하여 부호화 단위 내의 픽셀을 중심으로 참조 픽셀로서 이용될 주변 픽셀을 선택하기 위한 예측 방향을 dx, dy 파라메터를 이용하여 설정한다. 일 예로, 33개의 예측 모드들을 각각 mode N(N은 0부터 32까지의 정수)이라고 정의할 때, mode 0은 수직 모드, mode 1은 수평 모드, mode 2는 DC 모드, mode 3는 플레인 모드로 설정하고 mode 4 ~ mode31 각각은 다음의 표 1에 표기된 바와 같은 (1,-1), (1,1), (1,2), (2,1), (1,-2), (2,1), (1,-2), (2,-1), (2,-11), (5,-7), (10,-7), (11,3), (4,3), (1,11), (1,-1), (12,-3), (1,-11), (1,-7), (3,-10), (5,-6), (7,-6), (7,-4), (11,1), (6,1), (8,3), (5,3), (5,7), (2,7), (5,-7), (4,-3) 중 하나의 값으로 표현되는 (dx, dy)를 이용하여 tan-1(dy/dx)의 방향성을 갖는 예측 모드로 정의할 수 있다.
mode # dx dy mode # dx dy
mode 4 1 -1 mode 18 1 -11
mode 5 1 1 mode 19 1 -7
mode 6 1 2 mode 20 3 -10
mode 7 2 1 mode 21 5 -6
mode 8 1 -2 mode 22 7 -6
mode 9 2 -1 mode 23 7 -4
mode 10 2 -11 mode 24 11 1
mode 11 5 -7 mode 25 6 1
mode 12 10 -7 mode 26 8 3
mode 13 11 3 mode 27 5 3
mode 14 4 3 mode 28 5 7
mode 15 1 11 mode 29 2 7
mode 16 1 -1 mode 30 5 -7
mode 17 12 -3 mode 31 4 -3
mode 0은 수직 모드, mode 1은 수평 모드, mode 2는 DC 모드, mode 3는 플레인 모드, mode 32는 Bi-linear 모드임.
마지막 mode 32는 도 16을 이용하여 후술되는 바와 같이 쌍선형(bilinear) 보간을 이용하는 쌍선형 모드로 설정될 수 있다.
도 15는 본 발명의 일 실시예에 따른 다양한 방향성을 갖는 인트라 예측 모드들을 설명하기 위한 참조도이다.
표 1을 참조하여 전술한 바와 같이, 본 발명의 일 실시예에 따른 인트라 예측 모드들은 복수 개의 (dx, dy) 파라메터들을 이용하여 tan-1(dy/dx)의 다양한 방향성을 갖을수 있다.
도 15를 참조하면, 현재 부호화 단위 내부의 예측하고자 하는 현재 픽셀(P)을 중심으로 표 1에 표기된 모드별 (dx, dy)의 값에 따라 정해지는 tan-1(dy/dx)의 각도를 갖는 연장선(150) 상에 위치한 주변 픽셀(A, B)를 현재 픽셀(P)의 예측자로 이용할 수 있다. 이 때, 예측자로서 이용되는 주변 픽셀은 이전에 부호화되고 복원된, 현재 부호화 단위의 상측 및 좌측의 이전 부호화 단위의 픽셀인 것이 바람직하다. 또한, 연장선(150)이 정수 위치의 주변 픽셀이 아닌 정수 위치 주변 픽셀의 사이를 통과하는 경우 연장선(150)에 더 가까운 주변 픽셀을 현재 픽셀(P)의 예측자로 이용할 수 있다. 또한, 도시된 바와 같이 연장선(150)과 만나는 상측의 주변 픽셀(A) 및 좌측의 주변 픽셀(B)의 두 개의 주변 픽셀이 존재하는 경우 상측의 주변 픽셀(A) 및 좌측의 주변 픽셀(B)의 평균값을 현재 픽셀(P)의 예측자로 이용하거나, 또는 dx*dy 값이 양수인 경우에는 상측의 주변 픽셀(A)을 이용하고 dx*dy 값이 음수인 경우에는 좌측의 주변 픽셀(B)을 이용할 수 있다.
표 1에 표기된 바와 같은 다양한 방향성을 갖는 인트라 예측 모드는 부호화단과 복호화단에서 미리 설정되어서, 각 부호화 단위마다 설정된 인트라 예측 모드의 해당 인덱스만이 전송되도록 하는 것이 바람직하다.
도 16은 본 발명의 일 실시예에 따른 쌍선형 모드를 설명하기 위한 참조도이다.
도 16을 참조하면, 쌍선형(Bi-linear) 모드는 현재 부호화 단위 내부의 예측하고자 하는 현재 픽셀(P)를 중심으로 현재 픽셀(P)와 그 상하좌우 경계의 픽셀값, 현재 픽셀(P)의 상하좌우 경계까지의 거리를 고려한 기하 평균값을 계산하여 그 결과값을 현재 픽셀(P)의 예측자로 이용하는 것이다. 즉, 쌍선형 모드에서는 현재 픽셀(P)의 예측자로서 현재 픽셀(P)의 상하좌우 경계에 위치한 픽셀 A(161), 픽셀 B(162), 픽셀 D(166) 및 픽셀 E(167)과 현재 픽셀(P)의 상하좌우 경계까지의 거리의 기하 평균값을 이용한다. 이 때, 쌍선형 모드 역시 인트라 예측 모드 중의 하나이므로 예측시의 참조 픽셀로서 이전에 부호화된 후 복원된 상측과 좌측의 주변 픽셀을 이용하여야 한다. 따라서, 픽셀 A(161) 및 픽셀 (B)로서 현재 부호화 단위 내부의 해당 픽셀값을 그대로 이용하는 것이 아니라 상측 및 좌측의 주변 픽셀을 이용하여 생성된 가상의 픽셀값을 이용한다.
구체적으로, 먼저 다음의 수학식 1과 같이 현재 부호화 단위에 인접한 상측 최좌측의 주변 픽셀(RightUpPixel, 164) 및 좌측 최하측의 주변 픽셀(LeftDownPixel,165)의 평균값을 계산함으로써 현재 부호화 단위의 우측 최하단 위치의 가상의 픽셀 C(163)을 계산한다.
Figure 112014045905282-pat00001
다음 현재 픽셀(P)의 좌측 경계까지의 거리(W1) 및 우측 경계까지의 거리(W2)를 고려하여 현재 픽셀(P)를 하단으로 연장하였을 때 최하측 경계선에 위치하는 가상의 픽셀 A(161)의 값을 다음의 수학식 2와 같이 계산한다.
Figure 112014045905282-pat00002
유사하게 현재 픽셀(P)의 상측 경계까지의 거리(h1) 및 하측 경계까지의 거리(h2)를 고려하여 현재 픽셀(P)를 우측으로 연장하였을 때 최우측 경계선에 위치하는 가상의 픽셀 B(162)의 값을 다음의 수학식 3과 같이 계산한다.
Figure 112014045905282-pat00003
수학식 1 내지 3을 이용하여 현재 픽셀 P(160)의 하측 경계선상의 가상의 픽셀 A(161) 및 우측 경계선상의 가상의 픽셀 B(162)의 값이 결정되면 A+B+D+E의 평균값을 현재 픽셀 P(160)의 예측자로서 이용할 수 있다. 이와 같은 쌍선형 예측 과정은 현재 부호화 단위 내부의 모든 픽셀에 대하여 적용되어, 쌍선형 예측 모드에 따른 현재 부호화 단위의 예측 부호화 단위가 생성된다.
본 발명의 일 실시예에 따르면 부호화 단위의 크기에 따라서 다양하게 설정된 인트라 예측 모드들에 따라서 예측 부호화를 수행함으로써 영상의 특성에 따라서 보다 효율적인 압축을 가능하게 한다.
본 발명의 일 실시예에 따르면 부호화 단위의 크기에 따라서 종래 codec에서 이용되는 인트라 예측 모드의 개수에 비하여 많은 개수의 인트라 예측 모드를 이용하기 때문에 종래 codec과 호환성이 문제될 수 있다. 종래 기술에 따르면 도 13a 및 13b에 도시된 바와 같이 최대 9개의 인트라 예측 모드가 이용 가능하다. 따라서, 본 발명의 일 실시예에 따라서 선택된 다양한 방향의 인트라 예측 모드를, 더 작은 개수의 인트라 예측 모드 중 하나와 매핑시킬 필요가 있다. 즉, 현재 부호화 단위의 이용가능한 인트라 예측 모드의 개수를 N1(N1은 정수)이라고 할 때, 현재 부호화 단위의 이용가능한 인트라 예측 모드와 다른 N2(N2는 정수)개의 인트라 예측 모드를 갖는 소정 크기의 부호화 단위의 호환을 위해서 현재 부호화 단위의 인트라 예측 모드를 N2개의 인트라 예측 모드들 중 가장 유사한 방향의 인트라 예측 모드로 매핑할 수 있다. 예를 들어, 현재 부호화 단위에 대하여 전술한 표 1과 같이 총 33개의 인트라 예측 모드가 이용가능하며, 현재 부호화 단위에 최종적으로 적용된 인트라 예측 모드는 mode 14, 즉 (dx,dy)=(4,3)인 경우로서 tan-1(3/4)≒36.87(도)의 방향성을 갖는다고 가정한다. 이 경우 현재 블록에 적용된 인트라 예측 모드를, 도 13a 및 13b에 도시된 바와 같은 9개의 인트라 예측 모드 중 하나로 매칭시키기 위하여 36.87(도)의 방향성과 가장 유사한 방향을 갖는 mode 4(down_right) 모드가 선택될 수 있다. 즉, 표 1의 mode 14는 도 13a에 도시된 mode 4로 매핑될 수 있다. 유사하게, 현재 부호화 단위에 적용된 인트라 예측 모드가 표 1의 총 33개의 이용가능한 인트라 예측 모드 중 mode 15, 즉 (dx,dy)=(1,11)인 경우로 선택된 경우, 현재 부호화 단위에 적용된 인트라 예측 모드의 방향성은 tan-1(11) ≒84.80(도)를 갖으므로 이러한 방향성과 가장 유사한 도 13b의 mode 0(vertical)모드로 매핑될 수 있다.
한편, 인트라 예측을 통해 부호화된 부호화 단위를 복호화하기 위해서는 현재 부호화 단위가 어떠한 인트라 예측 모드를 통해 부호화되었는지에 대한 예측 모드 정보가 필요하다. 따라서, 영상의 부호화시에 현재 부호화 단위의 인트라 예측 모드에 관한 정보를 비트스트림에 부가하는데, 각 부호화 단위마다 인트라 예측 모드 정보를 그대로 비트스트림에 부가하는 경우 오버헤드가 증가되어 압축 효율이 낮아질 수 있다.
따라서, 본 발명의 일 실시예에서는 현재 부호화 단위의 부호화 결과 결정된 현재 부호화 단위의 인트라 예측 모드에 관한 정보를 그대로 전송하는 것이 아니라, 주변 부호화 단위로부터 예측된 인트라 예측 모드의 예측값과 실제 인트라 예측 모드의 차이값만을 전송한다.
도 17은 본 발명의 일 실시예에 따라서 현재 부호화 단위의 인트라 예측 모드의 예측값을 생성하는 과정을 설명하기 위한 도면이다.
도 17을 참조하면, 현재 부호화 단위를 A(170)라고 할 때, 현재 부호화 단위 A(170)의 인트라 예측 모드는 주변 부호화 단위들에서 결정된 인트라 예측 모드로부터 예측될 수 있다. 예를 들어, 현재 부호화 단위 A(170)의 좌측 부호화 단위 B(171)의 결정된 인트라 예측 모드가 mode 3이며, 상측 부호화 단위 C(172)의 인트라 예측 모드가 mode 4라고 하면, 현재 부호화 단위 A(170)의 인트라 예측 모드는 상측 부호화 단위 C(172) 및 좌측 부호화 단위 B(171)의 예측 모드 중 작은값을 갖는 mode 3으로 예측될 수 있다. 만약, 현재 부호화 단위 A(170)에 대한 실제 인트라 예측 부호화 결과 결정된 인트라 예측 모드가 mode 4라면, 인트라 예측 모드 정보로서 주변 부호화 단위들로부터 예측된 인트라 예측 모드의 값인 mode 3과의 차이인 1만을 전송하고, 복호화시 전술한 바와 동일한 방법으로 현재 복호화 단위의 인트라 예측 모드의 예측값을 생성하고 비트스트림을 통해 전송된 모드 차이값을 인트라 예측 모드의 예측값에 가산하여 현재 복호화 단위에 실제 적용된 인트라 예측 모드 정보를 획득할 수 있다. 전술한 설명에서는 현재 부호화 단위의 상측 및 좌측에 위치한 주변 부호화 단위만을 이용하는 것을 중심으로 설명하였으나, 이외에도 도 17의 E 및 D와 같은 다른 주변 부호화 단위를 이용하여 현재 부호화 단위 A(170)의 인트라 예측 모드를 예측할 수 있을 것이다.
한편, 부호화 단위들의 크기에 따라서 실제 수행되는 인트라 예측 모드들이 다르기 때문에 주변 부호화 단위들로부터 예측된 인트라 예측 모드는 현재 부호화 단위의 인트라 예측 모드와 매칭되지 않을 수 있다. 따라서, 서로 다른 크기를 갖는 주변 부호화 단위들로부터 현재 부호화 단위의 인트라 예측 모드를 예측하기 위해서는 서로 다른 인트라 예측 모드를 갖는 부호화 단위들 사이의 인트라 예측 모드들을 통일시키는 매핑(mapping) 과정이 필요하다.
도 18은 본 발명의 일 실시예에 따라서 서로 다른 크기를 갖는 부호화 단위들 사이의 인트라 예측 모드의 매핑 과정을 설명하기 위한 참조도이다.
도 18을 참조하면, 현재 부호화 단위 A(180)는 16x16 크기, 좌측 부호화 단위 B(181)는 8x8 크기, 상측 부호화 단위 C(182)는 4x4의 크기를 갖는다고 가정한다. 또한, 전술한 도 12의 제 1 예와 같이, 4x4, 8x8, 16x16 크기의 부호화 단위들에서 이용가능한 인트라 예측 모드의 개수는 각각 9, 9, 33개로 차이가 난다고 가정한다. 이 경우, 좌측 부호화 단위 B(181) 및 상측 부호화 단위 C(182)에서 이용가능한 인트라 예측 모드와 현재 부호화 단위 A(180)에서 이용가능한 인트라 예측 모드는 다르기 때문에, 좌측 부호화 단위 B(181) 및 상측 부호화 단위 C(182)들로부터 예측된 인트라 예측 모드는 현재 부호화 단위 A(180)의 인트라 예측 모드의 예측값으로 이용하기에 적합하지 않다. 따라서, 본 발명의 일 실시예에 따르면, 주변 부호화 단위들 B 및 C(181,182)의 인트라 예측 모드를 소정 개수의 대표 인트라 예측 모드들 중 가장 유사한 방향의 제 1 및 제 2 대표 인트라 예측 모드들로 각각 변경하고 제 1 및 제 2 대표 인트라 예측 모드 중 더 작은 모드값을 갖는 최종적인 대표 인트라 예측 모드로 선택한다. 그리고, 현재 부호화 단위 A(180)의 크기에 따라 이용가능한 인트라 예측 모드들 중 선택된 대표 인트라 예측 모드와 가장 유사한 방향을 갖는 인트라 예측 모드를 현재 부호화 단위의 인트라 예측 모드로 예측한다.
도 19는 본 발명의 일 실시예에 따라서 주변 부호화 단위의 인트라 예측 모드들을 대표 인트라 예측 모드들 중 하나로 매핑하는 과정을 설명하기 위한 참조도이다. 도 19에서는 대표 인트라 예측 모드들로서 수직 모드, 수평 모드, DC(Direct Current) 모드, 대각선 왼쪽 모드, 대각선 오른쪽 모드, 수직 오른쪽 모드, 수직 왼쪽 모드, 수평 위쪽 모드 및 수평 아래쪽 모드들이 설정된 경우를 도시하고 있다. 그러나, 대표 인트라 예측 모드는 도시된 바에 한정되지 않고 다양한 개수의 방향성을 갖도록 설정될 수 있다.
도 19를 참조하면, 미리 소정 개수의 대표 인트라 예측 모드들을 설정하고, 주변 부호화 단위의 인트라 예측 모드를 가장 유사한 방향의 대표 인트라 예측 모드로 매핑한다. 예를 들어, 상측 부호화 단위(A)의 결정된 인트라 예측 모드가 MODE_A(190)로 도시된 방향성을 갖으면, 상측 부호화 단위(A)의 인트라 예측 모드 MODE_A(190)는 9개의 미리 설정된 대표 인트라 예측 모드 1 내지 9 중에서 가장 유사한 방향을 갖는 MODE 1로 매핑된다. 유사하게 좌측 부호화 단위(B)의 결정된 인트라 예측 모드가 MODE_B(191)로 도시된 방향성을 갖으면, 좌측 부호화 단위(B)의 인트라 예측 모드 MODE_B(191)는 9개의 미리 설정된 대표 인트라 예측 모드 1 내지 9 중에서 가장 유사한 방향을 갖는 MODE 5로 매핑된다.
다음 제 1 대표 인트라 예측 모드 및 제 2 대표 인트라 예측 모드 중에서 더 작은 모드값을 갖는 인트라 예측 모드가 최종적인 주변 부호화 단위의 대표 인트라 예측 모드로 선택된다. 이와 같이 더 작은 모드값을 갖는 대표 인트라 예측 모드를 선택하는 이유는 일반적으로 더 자주 발생하는 인트라 예측 모드들에게 더 작은 모드값이 설정되어 있기 때문이다. 즉, 주변 부호화 단위들로부터 서로 다른 인트라 예측 모드가 예측된 경우 더 작은 모드값을 갖는 인트라 예측 모드가 더 발생 확률이 큰 예측 모드이기 때문에, 서로 다른 예측 모드가 경합하는 경우 현재 부호화 단위의 예측 모드의 예측자로서 더 작은 모드값을 갖는 예측 모드를 선택하는 것이 바람직하다.
주변 부호화 단위로부터 대표 인트라 예측 모드가 선택되더라도 대표 인트라 예측 모드를 현재 부호화 단위의 인트라 예측 모드의 예측자로서 그대로 이용할 수 없는 경우가 있다. 전술한 도 18과 같이 현재 부호화 단위 A(180)가 33개의 인트라 예측 모드를 갖으며 대표 인트라 예측 모드는 오직 9개의 인트라 예측 모드를 갖는다면, 대표 인트라 예측 모드에 대응되는 현재 부호화 단위 A(180)의 인트라 예측 모드는 존재하지 않는다. 이와 같은 경우, 전술한 주변 부호화 단위의 인트라 예측 모드를 대표 인트라 예측 모드로 매핑하는 것과 유사하게, 현재 부호화 단위의 크기에 따른 인트라 예측 모드들 중 선택된 대표 인트라 예측 모드와 가장 유사한 방향을 갖는 인트라 예측 모드를 현재 부호화 단위의 인트라 예측 모드 예측자로서 최종적으로 선택할 수 있다. 예를 들어, 도 19에서 주변 부호화 단위로부터 최종적으로 선택된 대표 인트라 예측 모드가 mode 1이라고 한다면, 현재 부호화 단위의 크기에 따라 이용가능한 인트라 예측 모드들 중 mode 1과 가장 유사한 방향성을 갖는 인트라 예측 모드가 현재 부호화 단위의 인트라 예측 모드의 예측자로 최종 선택된다.
도 20은 본 발명의 일 실시예에 따른 영상의 인트라 예측 장치를 나타낸 블록도이다. 본 발명의 일 실시예에 따른 영상의 인트라 예측 장치(2000)는 도 4의 영상 부호화 장치(400)의 인트라 예측부(410) 및 도 5의 영상 복호화 장치(500)의 인트라 예측부(550)로서 동작할 수 있다.
도 20을 참조하면, 인트라 예측 모드 결정부(2010)는 전술한 바와 같이 최대 부호화 단위 및 심도에 기초하여 분할된 각 부호화 단위의 크기에 따라서 현재 부호화 단위에 적용할 인트라 예측 모드를 결정한다. 즉, 인트라 예측 모드 결정부(2010)는 다양한 방향의 인트라 예측 모드들 중에서 현재 부호화 단위의 크기에 따라서 적용될 인트라 예측 모드 후보들을 선택한다.
인트라 예측 모드 수행부(2020)는 결정된 인트라 예측 모드들을 적용하여 각 부호화 단위에 대한 인트라 예측을 수행한다. 인트라 예측 모드 수행부(2020)에서 인트라 예측 결과 생성된 예측 부호화 단위와 원래 부호화 단위 사이의 오차값에 기초하여 최소 오차값을 갖는 최적의 인트라 예측 모드가 부호화 단위의 최종 인트라 예측 모드로 결정된다.
한편, 도 20에 도시된 인트라 예측 장치(2000)가 복호화 장치에 이용되는 경우, 인트라 예측 모드 결정부(2010)는 도 5의 엔트로피 복호화부(520)에 의하여 부호화된 비트스트림으로부터 추출된 최대 부호화 단위, 최대 부호화 단위의 계층적 분할 정보인 심도 정보를 이용하여 현재 복호화 단위의 크기를 결정하고, 현재 복호화 단위에 적용된 인트라 예측 모드 정보를 이용하여 수행될 인트라 예측 모드를 결정한다. 또한, 인트라 예측 모드 수행부(2020)은 추출된 인트라 예측 모드에 따라서 복호화 단위에 대한 인트라 예측를 수행하여 예측 복호화 단위를 생성한다. 예측 복호화 단위는 비트스트림으로부터 복원된 레지듀얼 데이터와 더하여져서 복호화 단위에 대한 복호화가 수행된다.
도 21은 본 발명의 일 실시예에 따른 영상 부호화 방법을 나타낸 플로우 차트이다.
도 21을 참조하면, 단계 2110에서 현재 픽처를 적어도 하나의 블록으로 분할한다. 전술한 바와 같이, 현재 픽처는 최대 크기를 갖는 부호화 단위인 최대 부호화 단위 및 최대 부호화 단위의 계층적 분할 정보인 심도에 기초하여 분할될 수 있다.
단계 2120에서, 분할된 현재 블록의 크기에 따라서 현재 블록에 대하여 수행될 인트라 예측 모드를 결정한다. 전술한 바와 같이, 본 발명의 일 실시예에 따르면 인트라 예측 모드는 현재 블록 내부의 각 픽셀을 중심으로 tan-1(dy/dx) 의 각도를 갖는 연장선 상에 위치하거나 연장선에 가장 가까운 주변 블록의 픽셀을 이용하여 예측을 수행하는 예측 모드를 포함한다.
단계 2130에서, 결정된 인트라 예측 모드에 따라서 현재 블록에 대한 인트라 예측을 수행한다. 인트라 예측 모드들 중에서 가장 작은 예측 오차값을 갖는 인트라 예측 모드는 현재 블록의 최종적인 인트라 예측 모드로 선택된다.
도 22는 본 발명의 일 실시예에 따른 영상 복호화 방법을 나타낸 플로우 차트이다.
도 22를 참조하면, 단계 2210에서 현재 픽처를 소정 크기의 적어도 하나의 블록으로 분할한다. 여기서, 현재 픽처는 비트스트림으로부터 추출된 최대 크기를 갖는 복호화 단위인 최대 복호화 단위 및 최대 복호화 단위의 계층적 분할 정보인 심도 정보에 기초하여 분할될 수 있다.
단계 2220에서, 비트스트림으로부터 현재 블록에 적용된 인트라 예측 모드 정보를 추출한다. 인트라 예측 모드는, 현재 블록의 각 픽셀을 중심으로 tan-1(dy/dx) (dx, dy는 정수)의 각도를 갖는 연장선 상에 위치하거나 상기 연장선에 가장 가까운 주변 블록의 화소를 이용하여 예측을 수행하는 예측 모드를 포함한다. 도 17 내지 19를 참조하여 전술한 바와 같이, 주변 복호화 단위의 인트라 예측 모드들로부터 예측된 인트라 예측 모드 예측자를 이용하는 경우, 현재 복호화 단위의 주변 복호화 단위들이 갖는 인트라 예측 모드들을 대표 인트라 예측 모드들로 매핑한 다음, 대표 인트라 예측 모드들 중에서 더 작은 모드값을 갖는 대표 인트라 예측 모드를 최종 대표 인트라 예측 모드로 선택한다. 그리고, 현재 복호화 단위의 크기에 따라서 결정되는 이용가능한 인트라 예측 모드들 중에서 최종 대표 인트라 예측 모드와 가장 유사한 방향을 갖는 인트라 예측 모드를 현재 복호화 단위의 인트라 예측 모드의 예측자로 선택하고, 비트스트림에 구비된 실제 인트라 예측 모드와 인트라 예측 모드의 예측자 사이의 차이값을 추출하여 이를 인트라 예측 모드의 예측자에 가산함으로써 현재 복호화 단위의 인트라 예측 모드를 결정할 수 있다.
단계 2230에서 추출된 인트라 예측 모드에 따라서 복호화 단위에 대한 인트라 예측를 수행하여 복호화 단위를 복호화한다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (4)

  1. 삭제
  2. 현재 블록에 적용된 인트라 예측 모드를 비트스트림으로부터 추출하는 엔트로피 복호화부; 및
    상기 추출된 인트라 예측 모드에 따라서 상기 현재 블록에 대한 인트라 예측을 수행하는 인트라 예측부를 포함하며,
    상기 인트라 예측 모드는
    복수 개의 방향들 중 특정 방향을 가리키며, 상기 특정 방향은 수평 방향의 dx(dx는 정수) 및 수직 방향의 dy(dy는 정수) 중 하나에 의하여 지시되며,
    상기 인트라 예측부는
    상기 인트라 예측 모드에 따라서 상기 현재 블록의 좌측의 주변 픽셀 및 상측의 주변 픽셀 중 한쪽에 위치한 적어도 하나의 주변 픽셀을 획득하고, 상기 적어도 하나의 주변 픽셀을 이용하여 현재 픽셀의 예측값을 획득하며,
    영상은 최대 부호화 단위의 크기에 관한 정보에 따라 복수의 최대 부호화 단위로 분할되고,
    복수의 최대 부호화 단위 중 현재 최대 부호화 단위는 분할 정보에 기초하여 심도를 갖는 다수의 부호화 단위들로 계층적으로 분할되고,
    현재 심도의 부호화 단위는 상위 심도의 부호화 단위로부터 분할된 정사각 데이터 단위들 중 하나이고,
    상기 분할 정보가 상기 현재 심도에서 분할됨을 나타내는 경우에, 상기 현재 심도의 부호화 단위는 주변 부호화 단위들과 독립적으로, 하위 심도의 부호화 단위들로 분할되고,
    상기 분할 정보가 상기 현재 심도에서 분할되지 않음을 나타내는 경우에, 적어도 하나의 예측 단위가 상기 현재 심도의 부호화 단위로부터 획득되며,
    상기 현재 블록은 상기 현재 심도의 부호화 단위로부터 획득된 예측 단위인 것을 특징으로 하는 영상 복호화 장치.
  3. 삭제
  4. 현재 블록에 적용된 인트라 예측 모드를 비트스트림으로부터 추출하는 단계; 및
    상기 추출된 인트라 예측 모드에 따라서 상기 현재 블록에 대한 인트라 예측을 수행하는 단계를 포함하며,
    상기 인트라 예측 모드는
    복수 개의 방향들 중 특정 방향을 가리키며, 상기 특정 방향은 수평 방향의 dx(dx는 정수) 및 수직 방향의 dy(dy는 정수) 중 하나에 의하여 지시되며,
    상기 인트라 예측을 수행하는 단계는
    상기 인트라 예측 모드에 따라서 상기 현재 블록의 좌측의 주변 픽셀 및 상측의 주변 픽셀 중 한쪽에 위치한 적어도 하나의 주변 픽셀을 획득하고, 상기 적어도 하나의 주변 픽셀을 이용하여 현재 픽셀의 예측값을 획득하며,
    영상은 최대 부호화 단위의 크기에 관한 정보에 따라 복수의 최대 부호화 단위로 분할되고,
    복수의 최대 부호화 단위 중 현재 최대 부호화 단위는 분할 정보에 기초하여 심도를 갖는 다수의 부호화 단위들로 계층적으로 분할되고,
    현재 심도의 부호화 단위는 상위 심도의 부호화 단위로부터 분할된 정사각 데이터 단위들 중 하나이고,
    상기 분할 정보가 상기 현재 심도에서 분할됨을 나타내는 경우에, 상기 현재 심도의 부호화 단위는 주변 부호화 단위들과 독립적으로, 하위 심도의 부호화 단위들로 분할되고,
    상기 분할 정보가 상기 현재 심도에서 분할되지 않음을 나타내는 경우에, 적어도 하나의 예측 단위가 상기 현재 심도의 부호화 단위로부터 획득되며,
    상기 현재 블록은 상기 현재 심도의 부호화 단위로부터 획득된 예측 단위인 것을 특징으로 하는 영상 복호화 방법.
KR1020140058649A 2014-05-15 2014-05-15 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치 KR101606853B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140058649A KR101606853B1 (ko) 2014-05-15 2014-05-15 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140058649A KR101606853B1 (ko) 2014-05-15 2014-05-15 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020090075854A Division KR101452860B1 (ko) 2009-08-17 2009-08-17 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020140148715A Division KR101607611B1 (ko) 2014-10-29 2014-10-29 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20140066151A KR20140066151A (ko) 2014-05-30
KR101606853B1 true KR101606853B1 (ko) 2016-04-11

Family

ID=50892827

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140058649A KR101606853B1 (ko) 2014-05-15 2014-05-15 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치

Country Status (1)

Country Link
KR (1) KR101606853B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177352A (ja) 2008-01-22 2009-08-06 Canon Inc 動画像符号化装置及びその制御方法、並びに、コンピュータプログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177352A (ja) 2008-01-22 2009-08-06 Canon Inc 動画像符号化装置及びその制御方法、並びに、コンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Video coding technology and proposal by BBC (and Samsung), T.Davies et al, JCTVC-A125. 2010.4.15~23.

Also Published As

Publication number Publication date
KR20140066151A (ko) 2014-05-30

Similar Documents

Publication Publication Date Title
KR101452860B1 (ko) 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR101995551B1 (ko) 영상 복호화 방법 및 장치
KR101503269B1 (ko) 영상 부호화 단위에 대한 인트라 예측 모드 결정 방법 및 장치, 및 영상 복호화 단위에 대한 인트라 예측 모드 결정 방법 및 장치
KR101510108B1 (ko) 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
KR20150009500A (ko) 영상의 인트라 예측 부호화, 복호화 방법 및 장치
KR101989160B1 (ko) 영상 부호화 방법 및 장치
KR101624659B1 (ko) 영상의 복호화 방법 및 장치
KR101607613B1 (ko) 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR101671935B1 (ko) 영상 복호화 방법 및 장치
KR101761278B1 (ko) 영상 복호화 방법 및 장치
KR20150045980A (ko) 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR101607614B1 (ko) 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR101883430B1 (ko) 영상 부호화 방법 및 장치, 그 기록매체
KR101607611B1 (ko) 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR101606683B1 (ko) 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR101725287B1 (ko) 영상 복호화 방법 및 장치
KR101886259B1 (ko) 영상 부호화 방법 및 장치, 및 부호화된 비트스트림을 포함하는 기록 매체
KR101606853B1 (ko) 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR101775030B1 (ko) 영상 복호화 방법 및 장치
KR101671934B1 (ko) 영상 복호화 방법 및 장치
KR20150035932A (ko) 영상 부호화 단위에 대한 인트라 예측 모드 결정 방법 및 장치, 및 영상 복호화 단위에 대한 인트라 예측 모드 결정 방법 및 장치
KR101671933B1 (ko) 영상 복호화 방법 및 장치
KR101618764B1 (ko) 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
KR101624660B1 (ko) 영상의 복호화 방법 및 장치
KR101604460B1 (ko) 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
A107 Divisional application of patent
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200227

Year of fee payment: 5