KR101602575B1 - 임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나 - Google Patents

임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나 Download PDF

Info

Publication number
KR101602575B1
KR101602575B1 KR1020140141885A KR20140141885A KR101602575B1 KR 101602575 B1 KR101602575 B1 KR 101602575B1 KR 1020140141885 A KR1020140141885 A KR 1020140141885A KR 20140141885 A KR20140141885 A KR 20140141885A KR 101602575 B1 KR101602575 B1 KR 101602575B1
Authority
KR
South Korea
Prior art keywords
substrate
patch
impedance
antenna
feed line
Prior art date
Application number
KR1020140141885A
Other languages
English (en)
Inventor
김부균
곽은혁
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to KR1020140141885A priority Critical patent/KR101602575B1/ko
Application granted granted Critical
Publication of KR101602575B1 publication Critical patent/KR101602575B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Landscapes

  • Waveguide Aerials (AREA)

Abstract

임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나가 개시된다. 개시된 패치 안테나는 급전 기판; 상기 급전 기판 상에 위치하며, 제1 폭을 가지는 급전 선로; 상기 급전 기판 상에 위치하여 상기 급전 선로와 연결되며, 제2 폭을 가지는 임피던스 정합기; 상기 급전 선로 상에 위치하는 패치 기판; 및 상기 패치 기판 상에 위치하는 방사 패치;를 포함하되, 상기 제1 폭과 상기 제2 폭은 서로 다르다.

Description

임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나{Wide-band proximity coupled patch antenna using impedance matching network}
본 발명의 실시예들은 기판의 두께나 유전상수를 바꾸지 않고 대역폭을 확장할 수 있는 임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나에 관한 것이다.
마이크로스트립 패치 안테나는 두께가 얇고 가벼우며 면 구조를 가지므로 집적에 용이하다는 장점을 가진다. 또한 프린트 회로 기술을 이용하여 쉽고 저렴하게 제작할 수 있어서 널리 사용되고 있다. 그러나 마이크로스트립 패치 안테나는 공진형 안테나 중 하나로 대역폭이 좁다는 단점을 가진다. 따라서, 패치 안테나의 대역폭을 증가시키기 위한 방법으로 많은 연구가 진행되었다.
도 1은 대역폭을 늘리기 위한 종래의 패치 안테나를 도시한 도면이다.
먼저, 도 1의 (a)는 안테나 기판의 두께와 유전상수를 이용하여 대역폭을 확장하는 종래의 패치 안테나를 도시한 도면이다. 그러나, 도 1의 (a)의 종래의 패치 안테나는 대역폭이 수 %에 불과하다는 제약이 존재한다. 또한, MMIC(Monolithic Microwave Integrated Circuit)의 front-end에 집적하기 위해서는 큰 유전상수를 가지는 기판이 필요하며 이 경우 대역폭이 감소한다는 단점이 있다. 그리고, 기판의 두께를 증가시키는 경우 표면파가 증가하여 방사패턴이 변형되며 인접한 소자에 미치는 영향이 증가한다는 문제점이 있다.
다음으로, 도 1의 (b)는 근접 결합 급전 방식을 이용한 패치 안테나의 급전 선로에 병렬 스터브를 삽입한 종래의 패치 안테나를 도시한 도면이다. 여기서, 안테나 기판과 급전 기판은 유전상수가 2.2의 작은 기판을 이용하였고 이 경우 13%의 대역폭 특성을 나타내었다. 그러나, 근접 결합 급전 선로에 병렬 스터브를 삽입하는 경우 안테나의 입력 임피던스의 실수부가 50Ω 근처가 되는 지점에 병렬 스터브를 삽입해야 하므로 안테나의 크기가 증가하는 단점을 가진다. 또한 병렬 스터브로 인해 교차 편파가 크게 증가하는 단점을 가진다.
계속하여, 도 1의 (c)는 상호 공진을 이용한 대역폭 확장 방식을 이용한 종래의 패치 안테나를 도시한 도면이다. 여기서, 패치 안테나의 대역폭 확장을 위해 안테나 기판과 급전 기판으로 유전상수 2.2로 작은 기판을 이용하고 유전상수가 1에 가까운 foam을 이용한 기생 패치를 적층하였다. 그러나, 안테나의 적층 방법은 제작을 위한 추가적인 공정과 비용의 증가를 가져온다. 적층된 안테나는 두께가 크게 증가하고 무거워진다는 단점을 가진다. 또한 foam을 사용하는 경우 안테나 제작 공정 중 열 접합 방식을 이용할 수 없으므로 제작의 복잡성이 증가한다는 단점이 있다.
상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 본 발명에서는 기판의 두께나 유전상수를 바꾸지 않고 대역폭을 확장할 수 있는 임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나를 제안하고자 한다.
또한, 본 발명의 다른 목적은 다른 안테나를 적층하지 않고 안테나의 방사 특성이 크게 변하지 않으며 간단한 구조를 가질 수 있는 광대역 근접 결합 급전 패치 안테나를 제공하는 것이다.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 도출될 수 있을 것이다.
상기한 목적을 달성하기 위해 본 발명의 바람직한 일 실시예에 따르면, 급전 기판; 상기 급전 기판 상에 위치하며, 제1 폭을 가지는 급전 선로; 상기 급전 기판 상에 위치하여 상기 급전 선로와 연결되며, 제2 폭을 가지는 임피던스 정합기; 상기 급전 선로 상에 위치하는 패치 기판; 및 상기 패치 기판 상에 위치하는 방사 패치;를 포함하되, 상기 제1 폭과 상기 제2 폭은 서로 다른 것을 특징으로 하는 패치 안테나가 제공된다.
상기 급전 선로과 상기 임피던스 정합기는 길이 방향으로 연결될 수 있다. 되는 것을 특징으로 하는 패치 안테나.
상기 패치 안테나는 상기 급전 기판의 아래에 위치하는 접지면;을 더 포함할 수 있다.
상기 패치 안테나는 상기 임피던스 정합기와 연결되는 커넥터;를 더 포함할 수 있다.
상기 방사 패치는 상기 패치 기판의 중앙부 상에 위치하며, 상기 패치 기판이 길이는 상기 급전 기판의 길이보다 작고, 평면도 상에서, 상기 임피던스 정합기는 상기 급전 기판의 일단과 상기 패치 기판 일단 사이에 위치할 수 있다.
평면도 상에서, 상기 급전 선로의 적어도 일부분은 상기 방사 패치와 오버랩될 수 있다.
상기 급전 선로는, 상기 임피던스 정합기와 연결되는 접합부를 포함할 수 있다.
상기 접합부는 삼각형의 형상을 가질 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 접지면; 상기 접지면 상에 위치하는 급전 기판; 상기 급전 기판 상에 위치하며, 제1 폭을 가지는 급전 선로; 상기 급전 기판 상에 위치하여 상기 급전 선로와 연결되며, 제2 폭을 가지는 임피던스 정합기; 상기 급전 선로 상에 위치하는 패치 기판; 및 상기 패치 기판 상에 위치하는 방사 패치;를 포함하되, 상기 제1 폭은 상기 제2 폭보다 넓거나 좁은 것을 특징으로 하는 패치 안테나가 제공된다.
본 발명에 따른 광대역 근접 결합 급전 패치 안테나는 기판의 두께나 유전상수를 바꾸지 않고 대역폭을 확장할 수 있다.
또한, 본 발명에 따른 광대역 근접 결합 급전 패치 안테나는 다른 안테나를 적층하지 않고 안테나의 방사 특성이 크게 변하지 않으며 간단한 구조를 가질 수 있다.
도 1은 대역폭을 늘리기 위한 종래의 패치 안테나를 도시한 도면이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 패치 안테나의 개략적인 구성을 도시한 도면이다.
도 4 내지 도 16은 본 발명의 일 실시예에 따른 패치 안테나의 동작 및 성능을 설명하기 위한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
"제1", "제2" 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
도 2는 본 발명의 일 실시예에 따른 패치 안테나의 개략적인 구성을 도시한 도면이다.
보다 상세하게, 본 발명의 일 실시예에 따른 패치 안테나는 근접 결합 급전을 이용한 패치 안테나로서, 도 2의 (a)는 패치 안테나(200)의 평면도를 도시하고 있고, 도 2의 (b)는 패치 안테나(200)의 단면도를 도시하고 있다.
도 2를 참조하면, 본 발명의 일 실시예에 다른 패치 안테나(200)는 접지판(210), 급전 기판(220), 급전 선로(230), 임피던스 정합기(240), 패치 기판(250), 방사 패치(260) 및 커넥터(270)를 포함한다.
도 2를 참조하면, 패치 안테나(200)의 구조는, 근접 결합의 급전 선로(230)를 기준으로, 상판은 안테나의 방사 패치(260)와 패치 기판(안테나 기판)(250)으로 이루어져 있고, 하판은 급전 기판(220)과 접지면(210)으로 구성된다. 그리고, 급전 선로(230)는 임피던스 정합기(240)와 길이 방향으로 연결되며, 커넥터(270)는 임피던스 정합기(240)와 연결된다.
여기서, 급전 기판(220)는 h1의 두께와 ε1의 유전상수를 가지며, 패치 기판(250)의 h2의 두께가 ε2의 유전상수를 가진다.
그리고, 방사 패치(260)는 Lp의 길이와 Wp의 폭을 가지며, 패치 기판(250)의 중앙부 상에 위치한다. 패치 기판(250)과 급전 기판(220)은 각각 패치의 -x, +y, -y축 방향의 가장자리보다 Lg 만큼 크게 설계하였다. 커넥터(270)를 이용하여 외부에서 전력을 급전하므로, 급전 기판(220)은 패치 기판(250)보다 x축 방향의 길이를 더 길게 설계하였다. 즉, 패치 기판(250)이 길이는 급전 기판(220)의 길이보다 작으며, 임피던스 정합기(240) 및 접합부(231)는 급전 기판(220)의 일단과 패치 기판(250) 일단 사이(즉, 더 길게 설계된 사이 공간)에 위치할 수 있다.
또한, 임피던스 정합기(240)는 Ws의 폭(이하, "제2 폭"이라고 함)과 ls의 길이를 가진다. 급전 선로(230)는 Wf의 폭(이하, "제1 폭"이라 함)을 가지며, 급전 선로(230)의 길이는 △L와 Lm과 Lf로 구성된다.
여기서, △L는 방사 패치(260)의 한쪽 종단으로부터 급전 선로의 개방된 스터브까지의 길이로서, △L에서, 급전 선로(230)의 적어도 일부분은 방사 패치(260)와 오버랩될 수 있다. 또한, Lm는 한쪽 종단에서 폭이 Wf로 유지되는 반대 방향의 길이이며, Lf는 임피던스 정합기(240)와 연결되는 접합부(231)의 길이이다. 이 때, 접합부(231)는 불필요한 반사를 최소화하기 위하여 특성 임피던스가 점차적으로 변화하도록 설계하였다. 또한, 본 발명의 일 실시예에 따르면, 접합부(231)는 급전 선로(230)의 제1 폭과 임피던스 정합기(240)의 제2 폭을 연결하기 위해 삼각형(일례로, 이등변 삼각형)의 형상을 가질 수 있다.
정리하면, 본 발명의 일 실시예에 따른 패치 안테나(200)는 결합 급전 방식을 이용한 패치 안테나로서, 급전 선로(230)와 길이 방향으로 연결된 임피던스 정합기(240)를 이용하여 광대역 특성을 보장한다. 이 때, 광대역 특성을 보장하기 위해, 본 발명에 따르면, 급전 선로(230)의 제1 폭과 임피던스 정합기(260)의 제2 폭은 서로 다르다. 즉, 도 3을 참조하면, 급전 선로(230)의 제1 폭은 임피던스 정합기(260)의 제2 폭보다 넓거나(도 3의 (a)) 좁을 수 있다(도 3의 (b)).
따라서, 대역폭 확장을 위해 foam을 사용하지 않으며 안테나 패치의 구조 파라미터를 유지한 채 급전 선로(230)의 길이와 임피던스 정합기(240)의 구조 파라미터 변화만으로 대역폭을 확장할 수 있다. 또한, 임피던스 정합기(240)는 구조가 간단하고 설계하기가 쉬우며 안테나의 방사 특성을 크게 변화시키지 않고 대역폭을 크게 증가시키는 장점을 가진다.
이하, 하기의 도면을 참조하여, 본 발명의 일 실시예에 따른 패치 안테나(200)의 동작 및 성능을 상세하게 설명하기로 한다.
1. 급전 기판(220)과 패치 기판(250)의 유전상수가 2.2로 같은 경우, 임피던스 정합기(240)가 집적된 패치 안테나의 대역폭 확장
가. 급전 기판(220)과 패치 기판(250)의 두께가 3.18mm인 경우
도 2의 구조를 이용하여 3GHz에서 동작하는 패치 안테나(200)를 설계하였다. 표 1은 설계한 패치 안테나(200)의 설계 파라미터를 나타낸다. 표 1과 같은 Wf의 폭을 가지는 급전 선로(230)는 약 50Ω의 특성 임피던스를 가지며 Ws의 폭을 가지는 임피던스 정합기(240)는 약 100Ω의 특성 임피던스를 가진다. 여기서 급전 기판(220)과 패치 기판(250)은 3.18mm의 두께를 가지는 Taconic사의 TLY-5(εr=2.2, tanδ=0.0009)를 이용하였다. Lg의 길이는 안테나 기판의 크기가 λ0가 되도록 설계하였다.
Figure 112014099916025-pat00001
도 4는 표 1의 설계 파라미터를 가지는 패치 안테나(200)에서 여러 가지 △L에 따른 반사 손실(도 4의 (a))과 스미스 도표에 도시한 입력 임피던스 특성(도 4의 (b))을 도시한 도면이다.
도 4의 (a)에서, △L이 4mm인 경우, 공진 주파수에서 가장 잘 정합된 특성을 나타내었으며, △L이 6mm인 경우, 가장 넓은 8.6%의 대역폭 특성을 보였다.
또한, 도 4의 (b)에서, △L이 증가할수록 스미스 도표에 도시한 주파수에 따른 임피던스 궤적이 위로 이동함을 볼 수 있으므로, △L이 증가할수록 인덕턴스 성분이 증가함을 볼 수 있다. 또한, △L이 증가할수록 급전 선로(230)로부터 안테나로의 커플링이 증가하여 스미스 도표에 도시한 주파수에 따른 임피던스 궤적의 저항 성분이 증가함을 볼 수 있다. 표 2에서는 △L에 따른 패치 안테나(200)의 공진주파수와 대역폭을 정리하였다.
△L
[mm]
공진 주파수
[GHz]
대역폭
[%]
0 3.01 -
2 3.00 5.9
4 3.01 8.2
6 3.04 8.6
8 3.10 8.2
도 4의 (b)에서, △L이 0mm인 경우, 임피던스 궤적이 VSWR이 2:1인 원보다 작은 원형을 그리고 있다. 이 경우, 임피던스 궤적의 원형 부분을 VSWR이 2:1인 원 안쪽으로 이동시키면 △L이 6mm인 경우보다 더 넓은 대역폭을 얻을 수 있다.
도 5는 △L이 0mm인 경우 표 1과 같은 설계 파라미터를 가지는 안테나의 Lm을 변화시켜가며 전산 모의한 반사 손실(도 5의(a))과 스미스 도표에 도시한 입력 임피던스 특성(도 5의(b))을 도시한 도면이다.
도 2과 같은 구조에서, Lm이 변화하면 특성 임피던스가 50Ω인 급전 선로(230)의 길이가 변화한다. 따라서 도 5의 (b)에서 보는 것처럼 Lm이 증가함에 따라 입력 임피던스의 궤적이 50Ω으로 정규화된 스미스 도표의 중심을 기준으로 시계 방향으로 이동함을 볼 수 있다. 그러므로 도 5의 (a)에 도시된 바와 같이, Lm의 변화에 따른 반사 손실의 변화가 거의 발생하지 않음을 볼 수 있다. 따라서, 50Ω인 전송선로의 길이 변화는 안테나의 반사 손실 특성에는 거의 영향을 미치지 않고 입력 임피던스의 실수 값과 허수 값에만 영향을 미침을 볼 수 있다.
도 6는 △L이 0mm이고 Lm이 31.5mm인 경우 여러 가지 ls를 가지는 임피던스 정합기(240)를 이용한 패치 안테나(200)의 반사 손실(도 6의(a))과 스미스 도표에 도시한 임피던스 특성(도 6의(b))을 도시한 도면이다.
도 6의 (a)에서 ls가 15mm인 경우 반사 손실 대역폭이 14.4%로 가장 넓은 특성을 보였다. 도 6의 (b)에서, 100Ω의 특성 임피던스를 가지는 임피던스 정합기(240)의 ls가 증가함에 따라 임피던스 궤적이 스미스 도표의 100Ω의 임피던스 점을 중심으로 시계 방향으로 이동함을 볼 수 있다. 표 3에 여러 가지 ls를 가지는 임피던스 정합기(240)를 이용한 패치 안테나(200)의 중심 주파수와 대역폭을 정리하였다.
ls
[mm]
중심 주파수
[GHz]
대역폭
[%]
6 2.99 3.5
9 3.01 8.8
12 3.03 13.7
15 3.00 14.4
18 2.96 13.9
또한, 임피던스 정합기(240)를 이용하여 가장 넓은 대역폭을 가지는 패치 안테나(200)의 설계 파라미터를 표 4에 정리하였다.
Figure 112014099916025-pat00002
도 7은 임피던스 정합기(240)를 이용한 패치 안테나(200)의 중심 주파수에서의 방사패턴(도 7의 (a))과 주파수에 따른 이득(도 7의 (b))을 도시한 도면이다.
도 7의 5 (a)에서, 급전 선로(230)의 끝에 임피던스 정합기(240)를 가지는 패치 안테나(200)의 방사 패턴은 임피던스 정합기를 가지지 않는 급전 선로를 이용한 패치 안테나의 방사 패턴과 비슷함을 볼 수 있다. 동일 편파 패턴의 경우 E-평면에서 급전 선로(230)의 기생 방사로 인해 동일 편파의 최대 이득 방향이
Figure 112014099916025-pat00003
근처에서 발생하였다. 도 7의 (b)에서, 대역폭 내 안테나의 최대 이득은 7.6dBi, 최소 이득은 7.0dBi로 크기 차이가 0.6dB 이내의 비슷한 값을 가졌다. H-평면의 경우 최대 이득이 약
Figure 112014099916025-pat00004
근처에서 발생하였으며 좌우가 대칭적인 패턴 특성을 가졌다. 대역폭 내에서 최대 이득은 6.5dBi, 최소 이득은 5.7dBi로 0.8dB 이내의 비슷한 값을 가졌다.
동일 편파 이득과 교차 편파 이득의 비(CPSR: Cross-Polarization Suppression Ratio)의 경우 E-평면은 대역폭 내에서 50dB 이상으로 교차 편파의 크기가 매우 작은 특성을 가졌다. H-평면의 경우 안테나의 접지면 폭 방향의 가장자리로부터 안테나로 향하는 프린징 필드의 편파 성분과 근접 결합 급전 선로의 기생 방사로 CPSR이 E-평면에 비해 작은 값을 가졌다. 표 5에 주파수에 따른 방사 특성을 정리하였다.
Frequency
[GHz]
2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20
E-plane Co-pol. gain[dBi] 7.1 7.1 7.0 7.1 7.3 7.5 7.6 7.2
X-pol. suppression ratio [dB] 50.4 50.8 51.3 51.6 52.0 52.5 51.7 51.9
H-plane Co-pol.gain[dBi] 6.5 6.2 5.9 5.7 5.7 5.7 5.8 5.6
X-pol. suppression ratio [dB] 14.1 13.8 13.9 14.0 14.4 14.6 14.7 14.5
나. 급전 기판(220)과 패치 기판(250)의 두께가 1.58mm인 경우
본 절에서는 급전 방식(230)을 이용한 패치 안테나(200)의 대역폭 및 방사특성에 대하여, 종래 기술인 "Increasing the bandwidth of a microstrip antenna by proximity coupling(D. M. Pozar et. al)"의 설계 파라미터를 가지는 안테나의 급전 선로(230) 끝에 임피던스 정합기(240)를 집적한 패치 안테나(200)의 대역폭과 방사 특성에 대하여 연구하였다. 상기의 종래 기술에서 사용한 설계 파라미터를 표 6에 정리하였다.
Figure 112014099916025-pat00005
표 6과 같은 Wf의 폭을 가지는 급전 선로(230)는 약 70Ω의 특성 임피던스를 가진다. 급전 기판(230)과 패치 기판(250)은 1.58mm의 두께를 가지는 Duroid 5870(εr=2.2, tanδ=0.0009)을 이용하였다. 또한 Lg의 길이는 패치 기판(250)의 x축 방향의 크기가 약 λ0가 되도록 설계하였다.
도 8은 표 6의 설계 파라미터를 가지는 안테나의 반사 손실(도 8의 (a))과 스미스 도표에 도시한 입력 임피던스 특성(도 8의 (b))을 도시한 도면이다.
도 8의 (a)에서, 안테나의 공진 주파수는 3.52GHz이고 4.2%의 대역폭을 가짐을 볼 수 있다. 도 8의 (b)에서 주파수 범위가 3.45GHz∼3.60GHz인 경우, 스미스 도표에 도시한 입력 임피던스 궤적이 VSWR이 2:1이 되는 원 안에 존재하는 것을 볼 수 있다.
도 9는 표 6의 설계 파라미터를 가지는 안테나에서 여러 가지 △L에 따른 반사 손실(도 9의 (a))과 스미스 도표에 도시한 입력 임피던스 특성(도 9의 (a))을 도시한 도면이다.
도 9의 (a)에서, △L이 8.5mm인 경우 가장 넓은 4.6%의 대역폭을 보였다. 도 9의 (b)에서, △L이 증가할수록 스미스 도표에 도시한 주파수에 따른 임피던스 궤적이 위로 이동함을 볼 수 있어, △L이 증가할수록 인덕턴스 성분이 증가함을 볼 수 있다. 또한, △L이 증가할수록 급전 선로(230)로부터 안테나로의 커플링이 증가하여 스미스 도표에 도시한 주파수에 따른 임피던스 궤적의 저항 성분이 증가함을 볼 수 있다. 표 7에 여러 가지 △L을 가지는 패치 안테나의 공진주파수와 대역폭을 정리하였다.
△L
[mm]
공진 주파수
[GHz]
대역폭
[%]
6.5 3.48 3.5
8.5 3.51 4.6
10.5 3.52 4.5
12.5 3.53 4.2
14.5 3.54 3.8
16.5 3.55 3.0
18.5 3.54 1.2
20.5 3.54 -
도 9의 (b)에서 △L이 20.5mm인 경우 임피던스 궤적이 VSWR이 2:1인 원보다 작은 원형을 그리고 있다. 이 경우, 작은 원형을 그리는 임피던스 궤적을 VSWR이 2:1인 원 안쪽으로 이동시키면 △L이 8.5mm인 경우보다 더 넓은 대역폭을 얻을 수 있다.
도 10은 △L이 20.5mm인 경우 표 6과 같은 설계 파라미터를 가지는 안테나의 Lm을 변화시켜가며 전산 모의한 반사 손실(도 10의 (a))과 스미스 도표에 도시한 입력 임피던스 특성(도 10의 (b))을 도시한 도면이다.
도 2과 같은 구조에서 Lm이 변화하면 특성 임피던스가 70Ω인 급전 선로(230)의 길이가 변화한다. 따라서, 도 10의 (b)을 참조하면, Lm이 증가함에 따라 입력 임피던스의 궤적이 스미스 도표의 70Ω인 임피던스 점을 기준으로 시계 방향으로 이동함을 볼 수 있다. 그러므로, 도 10의 (a)에서 보는 것처럼 Lm의 변화에 따른 반사 손실의 변화가 거의 발생하지 않음을 볼 수 있다.
도 11은 △L이 20.5mm이고 Lm이 5mm인 경우 여러 가지 ls를 가지는 임피던스 정합기를 이용한 패치 안테나의 반사 손실(도 11의 (a))과 스미스 도표에 도시한 임피던스 특성(도 11의 (b))을 도시한 도면이다.
여기서, Ws는 1.3mm로 임피던스 정합기(240)가 약 130Ω인 특성 임피던스를 가지도록 설계하였다. 도 11의 (a)에서 ls가 20mm인 경우 반사 손실 대역폭이 9.6%로 가장 넓은 특성을 보였다. 도 11의 (b)에서, 130Ω인 특성 임피던스를 가지는 임피던스 정합기(240)의 ls가 증가함에 따라 임피던스 궤적이 스미스 도표의 130Ω인 임피던스 점을 중심으로 시계 방향으로 이동함을 볼 수 있다. 표 8에 여러 가지 ls를 가지는 임피던스 정합기(240)를 이용한 패치 안테나(200)의 중심 주파수와 대역폭을 정리하였다. 또한, 표 9에서는 임피던스 정합기(240)를 이용하여 가장 넓은 대역폭을 가지는 안테나의 설계 파라미터를 정리하였다.
ls
[mm]
중심 주파수
[GHz]
대역폭
[%]
5 3.55 -
10 3.53 -
15 3.47 3.0
20 3.52 9.6
25 3.58 4.0
30 3.55 -
Figure 112014099916025-pat00006
도 12는 표 9의 설계 파라미터를 가지는 임피던스 정합기(240)를 이용한 패치 안테나(200)의 중심 주파수에서의 방사패턴(도 12의 (a))과 주파수에 따른 이득(도 12의 (b))을 도시한 도면이다.
도 12의 (a)에서, 급전 선로(230)의 끝에 임피던스 정합기(240)를 가지는 패치 안테나(200)의 방사 패턴은 임피던스 정합기를 가지지 않는 급전 선로를 이용한 패치 안테나의 방사 패턴과 비슷함을 볼 수 있다. 동일 편파 패턴의 경우 E-평면에서 근접 결합 급전 선로의 기생 방사로 인해 동일 편파의 최대 이득 방향이
Figure 112014099916025-pat00007
근처에서 발생하였다. 도 12의 (b)에서 대역폭 내 안테나의 최대 이득은 8.9dBi, 최소 이득은 8.1dBi로 대역폭 내에서 비슷한 이득 특성을 가졌다. 이 경우, 주파수가 3.40GHz에서 3.70GHz로 변화함에 따라 안테나는 약 0.1λ0의 길이 차이가 발생하며, 기판의 전기적인 크기의 차이에 따른 기판 가장자리에서 회절하는 표면파가 이득에 미치는 영향으로 인해 이득의 차이가 발생한 것으로 보인다. H-평면의 경우 최대 이득이 약
Figure 112014099916025-pat00008
근처에서 발생하였으며 좌우가 대칭적인 패턴 특성을 가졌다. 대역폭 내에서 최대 이득은 8.8dBi, 최소 이득은 8.1dBi로 비슷한 값을 가졌다.
CPSR의 경우 E-평면은 대역폭 내에서 40dB 이상으로 교차 편파의 크기가 매우 크게 억제된 특성을 가졌다. 대역폭 확장을 위하여 병렬 스터브를 사용한 "Increasing the bandwidth of a microstrip antenna by proximity coupling(D. M. Pozar et. al)"의 경우에 비해 E-평면의 교차 편파의 크기가 약 20dB 감소한 특성을 가졌다. H-평면의 경우 대역폭 내에서 17.0dB 이상으로 상기한 종래 기술의 결과와 비슷한 특성을 가졌다. 표 10에서는 주파수에 따른 방사 특성을 정리하였다.
Frequency
[GHz]
3.40 3.45 3.50 3.55 3.60 3.65 3.70
E-plane Co-pol. gain[dBi] 8.1 8.3 8.5 8.6 8.7 8.9 8.9
X-pol. suppression ratio [dB] 40.4 40.2 40.2 40.4 40.7 41.0 41.0
H-plane Co-pol.gain[dBi] 8.1 8.3 8.4 8.5 8.7 8.8 8.8
X-pol. suppression ratio [dB] 17.0 17.0 17.1 17.3 17.5 17.5 17.3
2. 급전 기판(220)의 유전상수가 10. 2 이고 패치 기판(250)의 유전상수가 2.33인 경우, 임피던스 정합기(240)가 집적된 패치 안테나의 대역폭 확장
이하에서는 급전 방식(230)을 이용한 패치 안테나(200)의 대역폭 및 방사특성에 대하여 연구한 "Design and Modeling of Proximity Coupled Patch Antenna(S. Vajha et. al)"의 설계 파라미터를 가지는 안테나의 급전 선로(230) 끝에 임피던스 정합기(240)를 이용한 경우의 대역폭과 방사 특성을 설명하기로 한다. 상기한 참조문헌에서 사용한 안테나의 설계 파라미터를 표 11에서 정리하였다.
Figure 112014099916025-pat00009
표 11과 같은 Wf의 폭을 가지는 급전 선로(230)는 약 50Ω인 특성 임피던스를 가진다. 급전 기판(230)은 1.27mm의 두께를 가지는 Duroid 6010(εr=10.2, tanδ=0.0023)을 이용하였고, 패치 기판(250)은 3.18mm의 두께를 가지는 Duroid 5870(εr=2.33, tanδ=0.0012)을 이용하였다. 또한, Lg의 길이는 패치 기판(250)의 x축 방향의 크기가 약 λ0가 되도록 설계하였다.
도 13는 표 11의 설계 파라미터를 가지는 안테나에서 여러 가지 △L에 따른 반사 손실(도 13의 (a))과 스미스 도표에 도시한 입력 임피던스 특성(도 13의 (b))을 도시한 도면이다. 도 13의 (a)에서 보면 △L을 변화시켜도 안테나의 반사 손실이 10 dB 이상으로 커지는 △L을 발견할 수 없었다. 도 13의 (b)에서, △L이 증가함에 따라 인덕턴스 성분이 증가하여 스미스 도표에 도시한 입력 임피던스 궤적이 시계 방향으로 이동함을 볼 수 있다. 이 경우, 임피던스 궤적이 VSWR이 2:1이 되는 원 바깥에 존재하여 어떤 주파수에서도 반사 손실이 10 dB 이하임을 볼 수 있었다. "Design and Modeling of Proximity Coupled Patch Antenna(S. Vajha et. al)" 에서 사용한 표 11과 같은 설계 파라미터를 가지는 안테나의 동작 주파수는 1.8GHz이며 반사 손실은 약 3dB의 특성을 가졌다.
도 14는 △L이 30mm인 경우, 표 11과 같은 설계 파라미터를 가지는 안테나의 Lm을 변화시켜가며 전산 모의한 반사 손실(도 14의 (a))과 스미스 도표에 도시한 입력 임피던스 특성(도 14의 (b))을 도시한 도면이다
도 2과 같은 구조에서, Lm이 변화하면 특성 임피던스가 50Ω인 급전 선로(230)의 길이가 변화한다. 따라서 도 14의 (b)에서 보는 것처럼, Lm이 증가함에 따라 입력 임피던스의 궤적이 50Ω인 정규화된 스미스 도표의 중심을 기준으로 시계 방향으로 이동함을 볼 수 있다. 그러므로, 도 14의 (a)에서 보는 것처럼, Lm의 변화에 따른 반사 손실의 변화가 거의 발생하지 않음을 볼 수 있다. 따라서, 50Ω인 전송선로의 길이 변화는 안테나의 반사 손실 특성에는 거의 영향을 미치지 않고 입력 임피던스의 실수 값과 허수 값에만 영향을 미침을 볼 수 있다.
도 15은 △L이 30mm이고 Lm이 20mm인 경우 여러 가지 ls를 가지는 임피던스 정합기(240)를 이용한 패치 안테나(200)의 반사 손실(도 15의 (a))과 스미스 도표에 도시한 임피던스 특성(도 15의 (b))을 도시한 도면이다. 여기서, Ws는 3.8mm로 임피던스 정합기(240)는 약 25Ω인 특성 임피던스를 가진다. 도 13의 (a)에서, ls가 15mm인 경우 반사 손실 대역폭이 3.8%로 가장 넓은 특성을 보였다. 도 15의 (b)에서 25Ω인 특성 임피던스를 가지는 임피던스 정합기(240)의 ls가 증가함에 따라 임피던스 궤적이 스미스 도표의 25Ω인 임피던스 점을 중심으로 시계 방향으로 이동함을 볼 수 있다. 표 12에 여러 가지 ls를 가지는 임피던스 정합기(240)를 이용한 패치 안테나(200)의 중심 주파수와 대역폭을 정리하였다. 또한, 표 13에서는 임피던스 정합기(240)를 이용하여 가장 넓은 대역폭을 가지는 패치 안테나의 설계 파라미터를 정리하였다.
ls
[mm]
중심 주파수
[GHz]
대역폭
[%]
5 1.68 -
10 1.67 3.0
15 1.63 3.8
20 1.60 0.5
25 1.67 -
Figure 112014099916025-pat00010
도 16는 표 13의 설계 파라미터를 가지는 임피던스 정합기(240)를 이용한 패치 안테나(200)의 방사패턴을 도시한 도면이다.
도 16에서, 급전 선로(230)의 끝에 임피던스 정합기(240)를 가지는 패치 안테나(200)의 방사 패턴은 임피던스 정합기를 가지지 않는 급전 선로(230)를 이용한 패치 안테나(200)의 방사 패턴과 비슷함을 볼 수 있다. 동일 편파의 경우 최대 이득 방향이 E-평면과 H-평면에서
Figure 112014099916025-pat00011
근처에서 발생하였으며 6.6dBi의 이득을 가졌다. 근접 결합 급전의 기생 방사로 인해 x축 방향의 E-평면 후방 방사가 다소 증가하였다. CPSR의 경우 E-평면에서 9.0dB, H-평면에서 8.9dB의 값을 가졌다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (9)

  1. 급전 기판;
    상기 급전 기판 상에 위치하며, 제1 폭을 가지는 급전 선로;
    상기 급전 기판 상에 위치하여 상기 급전 선로와 연결되며, 제2 폭을 가지는 임피던스 정합기;
    상기 급전 선로 상에 위치하는 패치 기판; 및
    상기 패치 기판의 중앙부 상에 위치하는 방사 패치;를 포함하되,
    상기 패치 기판이 길이는 상기 급전 기판의 길이보다 작고, 평면도 상에서 상기 임피던스 정합기는 상기 급전 기판의 일단과 상기 패치 기판 일단 사이에 위치하며, 상기 제1 폭과 상기 제2 폭은 서로 다른 것을 특징으로 하는 패치 안테나.
  2. 제1항에 있어서,
    상기 급전 선로과 상기 임피던스 정합기는 길이 방향으로 연결되는 것을 특징으로 하는 패치 안테나.
  3. 제1항에 있어서,
    상기 급전 기판의 아래에 위치하는 접지면;을 더 포함하는 것을 특징으로 하는 패치 안테나.
  4. 제1항에 있어서,
    상기 임피던스 정합기와 연결되는 커넥터;를 더 포함하는 것을 특징으로 하는 패치 안테나.
  5. 삭제
  6. 제1항에 있어서
    평면도 상에서, 상기 급전 선로의 적어도 일부분은 상기 방사 패치와 오버랩되는 것을 특징으로 하는 패치 안테나.
  7. 제1항에 있어서,
    상기 급전 선로는, 상기 임피던스 정합기와 연결되는 접합부를 포함하는 것을 특징으로 하는 패치 안테나.
  8. 제7항에 있어서,
    상기 접합부는 삼각형의 형상을 가지는 것을 특징으로 하는 패치 안테나.
  9. 접지면;
    상기 접지면 상에 위치하는 급전 기판;
    상기 급전 기판 상에 위치하며, 제1 폭을 가지는 급전 선로;
    상기 급전 기판 상에 위치하여 상기 급전 선로와 연결되며, 제2 폭을 가지는 임피던스 정합기;
    상기 급전 선로 상에 위치하는 패치 기판; 및
    상기 패치 기판의 중앙부 상에 위치하는 방사 패치;를 포함하되,
    상기 패치 기판이 길이는 상기 급전 기판의 길이보다 작고, 평면도 상에서 상기 임피던스 정합기는 상기 급전 기판의 일단과 상기 패치 기판 일단 사이에 위치하며, 상기 제1 폭은 상기 제2 폭보다 넓거나 좁은 것을 특징으로 하는 패치 안테나.
KR1020140141885A 2014-10-20 2014-10-20 임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나 KR101602575B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140141885A KR101602575B1 (ko) 2014-10-20 2014-10-20 임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140141885A KR101602575B1 (ko) 2014-10-20 2014-10-20 임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나

Publications (1)

Publication Number Publication Date
KR101602575B1 true KR101602575B1 (ko) 2016-03-10

Family

ID=55539339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140141885A KR101602575B1 (ko) 2014-10-20 2014-10-20 임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나

Country Status (1)

Country Link
KR (1) KR101602575B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838885B1 (ko) * 2017-12-11 2018-03-15 삼성넥스텍(주) 다중 임피던스 무선통신보조설비 중계 시스템
KR20180060875A (ko) * 2016-11-29 2018-06-07 숭실대학교산학협력단 개구면을 가지는 접지면을 포함하는 광대역 근접 결합 급전 패치 안테나
WO2020180855A1 (en) * 2019-03-04 2020-09-10 Massachusetts Institute Of Technology Octave band stacked microstrip patch phased array antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000020274A (ko) * 1998-09-18 2000-04-15 한병성 1/4 파장 변환기를 이용한 고온초전도 마이크로스트립 안테나
KR100869754B1 (ko) * 2006-11-27 2008-11-21 한양대학교 산학협력단 재구성가능한 다중 대역 안테나
JP2009089217A (ja) * 2007-10-02 2009-04-23 Panasonic Corp アレーアンテナ装置
KR101174825B1 (ko) * 2011-09-30 2012-08-17 지앤씨테크(주) 평면 안테나

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000020274A (ko) * 1998-09-18 2000-04-15 한병성 1/4 파장 변환기를 이용한 고온초전도 마이크로스트립 안테나
KR100869754B1 (ko) * 2006-11-27 2008-11-21 한양대학교 산학협력단 재구성가능한 다중 대역 안테나
JP2009089217A (ja) * 2007-10-02 2009-04-23 Panasonic Corp アレーアンテナ装置
KR101174825B1 (ko) * 2011-09-30 2012-08-17 지앤씨테크(주) 평면 안테나

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180060875A (ko) * 2016-11-29 2018-06-07 숭실대학교산학협력단 개구면을 가지는 접지면을 포함하는 광대역 근접 결합 급전 패치 안테나
KR101871100B1 (ko) * 2016-11-29 2018-06-26 숭실대학교산학협력단 개구면을 가지는 접지면을 포함하는 광대역 근접 결합 급전 패치 안테나
KR101838885B1 (ko) * 2017-12-11 2018-03-15 삼성넥스텍(주) 다중 임피던스 무선통신보조설비 중계 시스템
WO2020180855A1 (en) * 2019-03-04 2020-09-10 Massachusetts Institute Of Technology Octave band stacked microstrip patch phased array antenna
US11239569B2 (en) 2019-03-04 2022-02-01 Massachusetts Institute Of Technology Octave band stacked microstrip patch phased array antenna

Similar Documents

Publication Publication Date Title
US9954288B2 (en) Waveguide fed and wideband complementary antenna
US7847737B2 (en) Antenna apparatus
US5400041A (en) Radiating element incorporating impedance transformation capabilities
US20210159609A1 (en) Capacitive-coupled comb-line microstrip array antenna
US20100007572A1 (en) Dual-polarized phased array antenna with vertical features to eliminate scan blindness
US9431711B2 (en) Broadband multi-strip patch antenna
KR200467798Y1 (ko) 기판 집적형 도파관 급전 대척 선형 테이퍼 슬롯 안테나 및 그 배열 안테나
CN110783704B (zh) 双过孔探针馈电集成基片间隙波导圆极化天线
KR101494687B1 (ko) 다중 편파 마이크로스트립 패치 안테나
Hossain et al. Improvement of antenna performance using stacked microstrip patch antenna
KR101602575B1 (ko) 임피던스 정합기를 사용한 광대역 근접 결합 급전 패치 안테나
CN111628287A (zh) 一种宽带圆极化贴片天线
CN108808253B (zh) 一种基于加载短路钉的基片集成波导的背腔式缝隙天线
US10854991B2 (en) Waveguide fed open slot antenna
US20100141532A1 (en) Antenna feeding arrangement
CN108808254B (zh) 一种基于加载短路钉的基片集成波导的背腔式缝隙天线
KR101288381B1 (ko) 병렬 스터브를 가지는 개구부 결합 급전을 이용하며, 비아가 배열된 마이크로스트립 패치 안테나
US11664598B2 (en) Omnidirectional dielectric resonator antenna
US20220224017A1 (en) Capacitive-coupled comb-line microstrip array antenna and method of manufacturing the same
Khare et al. Optimization of a broadband directional gain microstrip patch antenna for X–Ku band application
KR101871100B1 (ko) 개구면을 가지는 접지면을 포함하는 광대역 근접 결합 급전 패치 안테나
KR102123976B1 (ko) 일차원 전자기 밴드갭 접지 구조를 구비하는 안테나 장치
Chen Wideband multilayered microstrip antennas fed by coplanar waveguide-loop with and without via combinations
Eu et al. A printed array antenna for multi-layer PCB design
CN217405706U (zh) 一种新型微带天线及以其为阵元的串馈阵列天线

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 5