KR101599523B1 - Quality evaluation method of de-differentiating cells including early embryos and stem cells - Google Patents

Quality evaluation method of de-differentiating cells including early embryos and stem cells Download PDF

Info

Publication number
KR101599523B1
KR101599523B1 KR1020120105720A KR20120105720A KR101599523B1 KR 101599523 B1 KR101599523 B1 KR 101599523B1 KR 1020120105720 A KR1020120105720 A KR 1020120105720A KR 20120105720 A KR20120105720 A KR 20120105720A KR 101599523 B1 KR101599523 B1 KR 101599523B1
Authority
KR
South Korea
Prior art keywords
genes
homolog
seq
control group
dna
Prior art date
Application number
KR1020120105720A
Other languages
Korean (ko)
Other versions
KR20140043539A (en
Inventor
강용국
박정선
권수진
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020120105720A priority Critical patent/KR101599523B1/en
Publication of KR20140043539A publication Critical patent/KR20140043539A/en
Application granted granted Critical
Publication of KR101599523B1 publication Critical patent/KR101599523B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Abstract

본 발명은 초기 배아 및 줄기세포를 포함한 역분화 세포의 양질성(quality) 판단 방법에 관한 것으로, 본 발명은 체내수정, 체외수정, 체내발달, 체외발달, 처녀생식, 핵치환복제 및 배양조건과 같은 다양한 환경조건에서 유래된 표준동물 배아가 표준과 비교하여 어느 정도의 양질을 가지는 판단하는 방법을 발견하여 초기 배 발생에서 그 기능과 중요성이 확인된 후성유전 재편(epigenetic reprogramming) 관련 대상으로 다중 PCR를 통해 조사 대상 유전자를 집단화하여 그 발현을 조사하였고 개별 배반포별로 분자생물학적 분석하였으며 개별 배반포내 유전자간 상대적 발현 수준을 측정하였고 유전자 발현 관련 배반포간 개체변이를 측정하였으며 복제효율 또는 iPS 효율을 높이는 다양한 처리로 나타나는 효험(efficacy)에 대해 개별 방법 간 차이를 정량화할 수 있으므로 유용하게 이용할 수 있다. The present invention relates to a method for determining the quality of degenerated cells including early embryonic stem cells, and the present invention relates to a method for determining the quality of regenerated cells including early embryonic stem cells, We found a method to judge the quality of a standard animal embryo derived from various environmental conditions with a certain quality as compared with the standard, and found that the function and importance of epigenetic reprogramming in early embryogenesis was confirmed by multiplex PCR . The expression levels of these genes were analyzed by molecular biology of individual blastocysts. The relative expression levels of the genes in the individual blastocysts were measured and individual mutations were measured between gene expression-related blastocysts. Various treatments were performed to increase replication efficiency or iPS efficiency The difference between the individual methods can be quantified for efficacy So it can be effectively utilized.

Description

초기 배아 및 줄기 세포를 포함한 역분화 세포의 양질성 판단 방법{Quality evaluation method of de-differentiating cells including early embryos and stem cells}[0001] The present invention relates to a method for determining quality of degenerated cells including early embryos and stem cells,

본 발명은 미량시료로부터 후성유전 재편 관련 유전자군의 발현을 다중 PCR 기법으로 분석하는 방법을 이용하여 초기 배아 및 줄기세포를 포함하는 역분화 세포의 양질성(quality) 판단 방법 및 상기 판단을 위한 양질성 판단용 키트 및 바이오칩에 관한 것이다. The present invention relates to a method for determining the quality of regenerated cells including early embryonic stem cells and a stem cell using a method of analyzing the expression of a gene related to a proximal genetic rearrangement from a trace amount sample by a multiplex PCR technique, And a biochip.

사람을 비롯한 포유동물 난자의 체외성숙, 체외수정 및 배양은 임상적으로나 산업적으로 매우 유용하고 실험적 접근이 용이한 수정란 생산 방법이다. 하지만 돼지와 같은 일부 포유동물의 경우 그 체외생산 방법이 아직 확립 중에 있어 체내 유래 수정란에 비해 질적인 면에서 크게 뒤지는 것으로 알려져 있다. 따라서 이를 극복하려는 많은 연구가 이루어지고 있으나 그 효과를 빠르게 확인할 수 방법은 현재까지 매우 제한적이다. 대동물의 경우 임신기간이 길고 산자(offspring)수가 제한적이며 복제효율이 너무 낮아, 기껏해야 배반포까지의 발달률을 비교해 보거나, 배반포의 구조를 면역염색(immunostaining)하여 내부세포괴(inner cell mass)와 영양외배엽(trophectoderm) 세포간 비율을 조사하는 정도로, 간접적이고 좀 더 검증이 필요한 잣대로 이들 시도들의 적절성을 다소 관행적으로 판단하여 왔다.
In vitro maturation, in vitro fertilization and cultivation of human and mammalian oocytes is a method of producing fertilized eggs which is very useful for clinical and industrial purposes and easy to experimentally access. However, in some mammals, such as pigs, the in vitro production method is still established and is known to be significantly inferior to in vitro fertilized embryos. Therefore, although many studies have been conducted to overcome this problem, the method for quickly confirming the effect thereof is very limited to date. In large animals, the pregnancy is long, the number of offspring is limited, and the replication efficiency is too low. At best, the development rate to the blastocyst is compared, or the structure of the blastocyst is immunostained to determine the inner cell mass We have judged the appropriateness of these trials to be somewhat customary, in an indirect and more verifiable measure, to the extent of examining the ratio of the trophectoderm cells.

한편, 동물 복제 기술은 태동하면서부터 무한한 의학적, 산업적 응용 가능성이 예견되었고, 형질전환기술(transgenic technology)과 줄기세포기술(stem cell technology) 등 다양한 기술들과 접목되어 새로운 고부가가치 산업을 창출하고 있다. 그러나 높은 복제 실패율이 이러한 신산업군 창출에 커다란 제약으로 작용하고 있다. 더군다나 정상적인 체세포가 아닌 적중세포 등 형질전환 체세포를 공여핵으로 사용하는 경우 복제 효율은 더욱 떨어지고, 낮은 확률로 출산된 경우에도 출생 후 수개월 이내에 죽거나 면역체계 이상, 기관형성 이상 등 다양한 형태의 비정상적인 현상을 보여왔다. 이러한 현상은 특정 종에만 국한되어 나타나는 현상이 아니라, 생쥐, 젖소, 면양, 돼지 등 전 포유동물 종에 걸쳐 나타나는 현상이므로 복제기술 자체와 직접적으로 연관이 있다고 판단된다. 이러한 문제점을 개선하고자 재구성난자의 활성화방법 변화, 체외배양 조건 개선, 배양배지 개선, 미세조작법 변화, 공여체세포 조작 등 다양한 시도가 이루어졌음에도 불구하고 복제 양 '돌리'이래, 전 세계적으로 복제 효율은 크게 개선되지 않았다.
On the other hand, animal cloning technology has been anticipated for infinite medical and industrial applications since its inception and has been combined with various technologies such as transgenic technology and stem cell technology to create new high value-added industries . However, high replication failure rate is a major constraint on the creation of these new industries. Furthermore, when using transgenic somatic cells such as adenocarcinoma cells, which are not normal somatic cells, as a donor nucleus, the replication efficiency is further reduced. Even if a child is born with a low probability, it may die within a few months after birth and cause various abnormalities such as immune system abnormality, I have shown. This phenomenon is not a phenomenon that is confined to a specific species, but rather a phenomenon that occurs throughout mammal species such as mice, cows, sheep, and pigs. In order to solve these problems, although various attempts have been made such as changes in the activation method of reconstituted oocytes, improvement of in vitro culture conditions, improvement of culture medium, change of micro-manipulation method and manipulation of donor somatic cells, It did not improve greatly.

복제동물의 낮은 생산 효율의 원인은 수란난자(recipient oocyte) 및 공여체세포간 후성유전학적 괴리에 있다고 할 수 있다. 수란난자의 세포질에는 정자의 유전체를 고려하여 차후 발생에 적합하도록 리모델링(remodeling)시키기 위한 단백질 복합체를 보유하고 있는데 정자가 아닌 완전히 성격이 다른 일반 체세포 핵이 들어오게 되면 이들 수란난자의 단백질 복합체는 적절한 리모델링 기능을 수행하지 못하게 되고, 이로 인해 다양한 후성유전적 돌연변이(epimutations)를 유발한다.
The low production efficiency of cloned animals can be attributed to the epigenetic gap between recipient oocytes and donor somatic cells. The cytoplasm of egg yolk oocytes has a protein complex for remodeling the spermatozoa in consideration of the genome of the spermatozoa. When the oocyte nuclei with completely different characteristics are introduced, the protein complexes of these oocyte eggs are suitable They are unable to perform the remodeling function, thereby causing various epigenetic mutations (epimutations).

이러한 체세포 복제수정란 유전체에 남아있는 후성유전적 돌연변이의 존재는 복제배아의 비정상적인 발생을 야기하므로 복제 효율의 개선을 위해서는 복제수정란에서 일어나는 후성유전적 재편의 실상을 파악하고, 후성유전 재편을 촉진할 수 있는 다양한 시도가 이루어져야 한다. 이와 함께, 이런 시도들의 적절성, 효과 여부를 판단할 수 있는 객관적 분석체계가 확립되어야 하는데, 앞서 언급한 바와 같이 현재로서는 전무한 상황이다.
Because the presence of a residual genetic mutation in the embryonic genome of the somatic cell cloned embryo causes an abnormal occurrence of the cloned embryo, it is necessary to identify the actual state of the epigenetic reorganization occurring in the cloned embryo and to promote the reproductive reorganization Various attempts should be made. At the same time, an objective analysis system should be established to judge the appropriateness and effectiveness of these attempts.

새로운 복제기법이나 체외배양 기술, 역분화 촉진기술, 그리고 에피지놈 변형 연구 등 배아 및 줄기세포의 발생능 개선이나 후성유전 재편 과정을 증진시키기 위한 목적으로 행해지는 복잡하고 다양한 시도(연구)들의 성공여부를 판별 및 예측하기위한 척도로 활용할 수 있는 객관적인 분자생물학적 분석체계를 확립하는 것이다.
The success of complex and diverse trials aimed at promoting the development of embryonic and stem cell genetics, such as new replication techniques, in vitro culture techniques, de-differentiation facilitation techniques, and epigenome alteration studies And to establish an objective molecular biologic analysis system that can be used as a measure to identify and predict disease.

포유동물의 정자와 난자는 완전히 분화된 세포로, 이들의 유전체에는 생식세포의 발생과정 동안 겪은 분화의 흔적이 남아있다. 수정 이후 초기 배 발달이 원활하게 이루어지기 위해서는 정자와 난자의 유전체에 존재하는 분화의 흔적이 지워지고 다시 써져야 하는데 이 과정을 후성유전 재편이라고 하며, 여기에 다양한 후성유전 재편 관련 단백질이 직-간접적으로 관여한다. 이 과정은 초기 수정란의 전능성(totipotency)또는 다능성(pluripotency)의 획득 여부와 직결되므로 발생과정에서 매우 중요한 과정이다(Kang, Y.K., K.K. Lee, and Y.M. Han, Reprogramming DNA methylation in the preimplantation stage: peeping with Dolly's eyes. Curr Opin Cell Biol, 2003. 15(3): p. 290-5.).
Sperm and eggs of mammals are completely differentiated cells, and their genomes are left with signs of differentiation during the development of germ cells. In order to facilitate early embryogenesis after fertilization, the traces of differentiation in the genome of sperm and egg must be erased and rewritten. This process is called posterior inheritance, I am involved. This process is a very important process in the developmental process since it is directly related to the acquisition of totipotency or pluripotency of the early embryo (Kang, YK, KK Lee, and YM Han, Reprogramming DNA methylation in the preimplantation stage: peeping with Dolly's eyes, Curr Opin Cell Biol, 2003. 15 (3): p.

후성유전 재편은 크게 DNA 메틸화(DNA methylation), 히스톤 변형(histone modifications), Polycomb-group(PcG) 단백질 작용, 특정 염색체 부위의 구조 및 기능적 구획(compartmentalization)을 결정하는 핵 구조(nuclear structure) 등을 대상으로 일어난다. 이러한 재편과정을 통해 다양한 후성유전체계(epigenetic system)가 리셋(re-set)되고 다시 재확립(re-establishment) 되며, 메틸화 재편(genomic methylation reprogramming), X 염색체 불활성화(X-chromosome inactivation), 유전체 각인(imprinting) 등 다양하고 복잡한 생물학적 현상들이 만들어 진다(Surani, M.A., Reprogramming of genome function through epigenetic inheritance. Nature, 2001. 414(6859): p. 122-8.).
The posterior genetic rearrangements are largely classified into DNA methylation, histone modifications, polycomb-group (PcG) protein action, and nuclear structure that determines the structure and functional compartmentalization of specific chromosomal regions It happens to the target. A variety of epigenetic systems have been re-established and re-established through such a reorganization process, including genomic methylation reprogramming, X-chromosome inactivation, Genomic imprinting, etc. (Surani, MA, Reprogramming of genome function through epigenetic inheritance. Nature, 2001 414 (6859): p. 122-8.).

후성유전체계는 여러 개의 층(layers)으로 구성된다. DNA 메틸화와 히스톤 메틸화 및 탈메틸화, 발생에 중요한 Hox 유전자들의 발현 조절에 관련된 PcG 단백질들이 각기 따로 또는 상호작용하면서 후성유전체계를 구성한다. 후성유전체계를 구성하는 유전자의 발생학적 중요성은 그 기능상실성(loss-of-function) 돌연변이들 거의 대부분이 치사 표현형(lethal phenotype)을 보이는 것으로 알 수 있다. 비정상적인 후성유전적 조절로 유산 등 배아가 정상적으로 발생하지 못하고, 염색체가 불안정적으로 유지되며, 그리고 다양한 질병과 암을 유발시키는 것으로 알려져 있다.
The posterior genetic system consists of several layers. DNA methylation, histone methylation and demethylation, and PcG proteins involved in regulating the expression of Hox genes critical to development constitute a progeny genetic system, either separately or interacting. The genetic significance of the genes that make up the posterior genetic system can be seen in that most of the loss-of-function mutations show lethal phenotype. Abnormal proliferative genetic control has been known to prevent embryos such as abortion from occurring normally, to maintain unstable chromosomes, and to induce various diseases and cancers.

후성유전적 재편을 통한 체세포의 역분화에 있어 중요한 역할을 담당하는 대표적인 단백질로 DNA 메틸화효소(Dnmt1, Dnmt3a, Dnmt3b, Dnmt3l)가 널리 알려져 있으며(Reik, W., W. Dean, and J. Walter, Epigenetic reprogramming in mammalian development. Science, 2001. 293(5532): p. 1089-93, Rideout, W.M., 3rd, K. Eggan, and R. Jaenisch, Nuclear cloning and epigenetic reprogramming of the genome . Science, 2001. 293(5532): p. 1093-8.), DNA 메틸화와 인과적 상관관계를 가지는 것으로 알려진 epigenetic marker인 히스톤 H3K9의 메틸화효소(Setdb1/Eset, Suv39h1, G9a, Glp 등)와 탈메틸화효소(Jhdm2a, Jhdm3a, Lsd1, Jmjd3 등)(Tamaru, H. and E.U. Selker, A histone H3 methyltransferase controls DNA methylation in Neurospora crassa . Nature, 2001. 414(6861): p. 277-83, Jackson, J.P., et al., Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase . Nature, 2002. 416(6880): p. 556-60.), 그리고 발생과정의 molecular memory mechanism이며 동시에 줄기성 유지에 중요한 역할을 하는 H3K27의 메틸화를 담당하는 polycomb 단백질(Eed, Suz12, Bmi1, YY1 등)(Bernstein, B.E., et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells . Cell, 2006. 125(2): p. 315-26, Shafa, M., R. Krawetz, and D.E. Rancourt, Returning to the stem state : epigenetics of recapitulating pre - differentiation chromatin structure . Bioessays, 2010. 32(9): p. 791-9.) 등이 잘 알려져 있다. 따라서 이들 단백질의 종합적 발현 양상 및 발현 정도를 조사함으로서 결국 복제수정란 또는 체세포 내 후성유전적 재편의 정도를 판가름할 수 있고 결과적으로 역분화 성공을 판단할 수 있는 척도로 활용 가능하다.
DNA methylation enzymes (Dnmt1, Dnmt3a, Dnmt3b, and Dnmt3l) are widely known as representative proteins that play an important role in somatic cell degeneration through epigenetic rearrangement (Reik, W., W. Dean, and J. Walter , Epigenetic reprogramming in mammalian development. Science, 2001. 293 (5532): p. 1089-93, Rideout, WM, 3rd, K. Eggan, and R. Jaenisch, Nuclear cloning and epigenetic reprogramming of the genome. Science, 2001. 293 (5532): p. (Setdb1 / Eset, Suv39h1, G9a, Glp, etc.) and the demethylating enzyme (Jhdm2a, Jhdm3a, Lsd1, Jmjd3, etc.), an epigenetic marker of histone H3K9, which is known to have a causal correlation with DNA methylation ) (Tamaru, H. and EU Selker, A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature, 2001 414 (6861): p. 277-83, Jackson, JP, et al., Control of CpNpG DNA 메틸레이션 by the KRYPTONITE histone H3 methyltransferase . Nature, 2002. 416 (6880): p. (Eed, Suz12, Bmi1, YY1, etc.) responsible for the methylation of H3K27 (Bernstein, BE, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells . Cell, 2006. 125 (2): p. 315-26, Shafa, M., R. Krawetz, and DE Rancourt, Returning to the stem state : epigenetics of recapitulating pre - differentiation chromatin structure . Bioessays, 2010. 32 (9): p. 791-9.) Are well known. Therefore, by examining the expression pattern and expression level of these proteins, it is possible to judge the degree of proliferative genetic rearrangement in cloned embryos or somatic cells, and as a result, it can be used as a measure for judging the success of degeneration.

초기배 발생을 효과적으로 유도함으로서 양질의 핵치환 복제수정란을 많은 량 획득할 수 있다면 복제효율을 크게 향상시킬 수 있어 그 경제적 효과는 매우 크다 하겠다. 초기배 발생 효율 향상을 위한 다양한 시도가 되어져 왔으나, 그 효과를 확인하는 방법은 현재까지 매우 제한적이다. 대동물의 경우 임신기간이 길고 산자(offspring)수가 제한적이며 복제효율이 너무 낮아 복제효율을 높이는 시도들의 효율을 태어나는 산자수로 직접 비교하는 것은 거의 불가능하다. 따라서 기껏 배반포까지의 발달률을 비교해 보거나, 배반포의 구조를 면역염색하여 내부세포괴(inner cell mass)와 영양외배엽(trophectoderm) 세포 간 비율 조사 등 간접적 방법에 의존하여 분석이 이루어져왔으며, 이들 시도들의 적절성은 달리 접근 방법이 없다는 이유로 검증 없이 다소 관행적으로 실시되어온 것이 사실이다.
By effectively inducing early embryogenesis, it is possible to greatly improve replication efficiency if a large quantity of high quality nuclear transfer-replicating embryos can be obtained. Various attempts have been made to improve the initial embryo efficiency, but the method of confirming the effect is very limited to date. In large animals, it is almost impossible to directly compare the efficiency of attempts to increase replication efficiency with the number of live births because of long pregnancy, limited number of offspring, and too low replication efficiency. Therefore, the developmental rates of the blastocysts have been compared, or the structure of the blastocysts has been immunostained and analyzed depending on the indirect methods such as the ratio of the inner cell mass and the trophectoderm cell ratio. It has been practiced somewhat conventionally without verification because there is no alternative approach.

이에, 본 발명자들은 체내수정, 체외수정, 체내발달, 체외발달, 처녀생식, 핵치환복제 및 배양조건과 같은 다양한 환경조건에서 유래된 표준동물 배아가 표준과 비교하여 어느 정도의 양질을 가지는 판단하는 방법을 발견하여 초기 배 발생에서 그 기능과 중요성이 확인된 후성유전 재편(epigenetic reprogramming) 관련 대상으로 다중 역전사 중합효소연쇄를 통해 조사 대상 유전자를 집단화하여 그 발현을 조사하였고 개별 배반포별로 분자생물학적 분석하였으며 개별 배반포내 유전자간 상대적 발현 수준을 측정하였고 유전자 발현 관련 배반포간 개체변이를 측정하였으며 복제효율 또는 iPS 효율을 높이는 다양한 처리로 나타나는 효험(efficacy)에 대해 개별 방법 간 차이를 정량화할 수 있음을 밝힘으로써 본 발명을 완성하였다.
Accordingly, the inventors of the present invention have found that a standard animal embryo derived from various environmental conditions such as in-vivo fertilization, in vitro fertilization, in-vivo development, in vitro development, virgin reproduction, nuclear substitution replication and culture conditions has a certain quality In the present study, we investigated the expression of the target genes by multiple reverse transcriptase polymerase chain reaction in epigenetic reprogramming subjects whose function and significance were confirmed in early embryogenesis and analyzed their molecular biology by individual blastocysts By measuring relative gene expression levels in individual blastocysts and measuring individual variation among gene expression-associated blastocysts, we could quantify differences between individual methods for the efficacy of various treatments to increase replication efficiency or iPS efficiency Thus completing the present invention.

본 발명의 목적은 SUMMARY OF THE INVENTION

1) 실험군으로서 검출하고자 하는 초기 배아 또는 역분화 세포의 콜로니를, 대조군으로서 표준 초기 배아 또는 역분화 세포를 각각 준비하는 단계:1) preparing a colony of an early embryo or de-differentiated cell to be detected as an experimental group, and a standard early embryo or de-differentiated cell as a control group, respectively;

2) 상기 단계 1)의 실험군 및 대조군으로부터 각각 유래된 단일 배아 또는 단일 세포 콜로니로부터 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머들을 이용하여 다중 RT-PCT을 수행하여 상기 15개 유전자들의 발현 정도를 분석하는 단계:2) Multiple RT-PCT was performed using primers capable of amplifying each of the following 15 genes from single embryonic or single cell colonies derived from the experimental group and the control group in the above step 1) Analysis step:

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3); 및Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3); And

3) 상기 단계 2)에서 분석한 실험군의 유전자 발현 정도를 대조군의 유전자 발현 정도와 비교하는 단계를 포함하는, 초기 배아 또는 역분화 세포의 양질성(quality) 판단 방법을 제공하는 것이다. 3) comparing the gene expression level of the test group analyzed in step 2) with the level of gene expression of the control group, and determining the quality of early embryonic or degenerated cells.

본 발명의 또 다른 목적은 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머를 포함하는 초기 배아 또는 역분화 세포의 양질성(quality) 판단용 키트:It is still another object of the present invention to provide a kit for determining the quality of early embryonic or degenerated cells comprising primers capable of amplifying the following 15 genes, respectively:

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3)를 제공하는 것이다. Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3).

본 발명의 또 다른 목적은 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머를 포함하는 초기 배아 또는 역분화 세포의 양질성(quality) 판단용 바이오칩:It is still another object of the present invention to provide a biochip for judging the quality of early embryonic or degenerated cells comprising primers capable of amplifying each of the following 15 genes,

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3)를 제공하는 것이다.
Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3).

상기 목적을 달성하기 위하여, In order to achieve the above object,

본 발명은 1) 실험군으로서 검출하고자 하는 초기 배아 또는 역분화 세포의 콜로니를, 대조군으로서 표준 초기 배아 또는 역분화 세포를 각각 준비하는 단계:The present invention provides: 1) preparing a colony of an early embryo or de-differentiated cell to be detected as an experimental group, a standard early embryo or a regenerated cell as a control,

2) 상기 단계 1)의 실험군 및 대조군으로부터 각각 유래된 단일 배아 또는 단일 세포 콜로니로부터 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머들을 이용하여 다중 RT-PCT을 수행하여 상기 15개 유전자들의 발현 정도를 분석하는 단계:2) Multiple RT-PCT was performed using primers capable of amplifying each of the following 15 genes from single embryonic or single cell colonies derived from the experimental group and the control group in the above step 1) Analysis step:

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3); 및Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3); And

3) 상기 단계 2)에서 분석한 실험군의 유전자 발현 정도를 대조군의 유전자 발현 정도와 비교하는 단계를 포함하는, 초기 배아 또는 역분화 세포의 양질성(quality) 판단 방법을 제공한다. 3) comparing the gene expression level of the test group analyzed in the step 2) with the gene expression level of the control group, to determine the quality of early embryonic or degenerated cells.

상기 목적을 달성하기 위하여, 본 발명은 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머를 포함하는 초기 배아 또는 역분화 세포의 양질성(quality) 판단용 키트:In order to achieve the above object, the present invention provides a kit for determining quality of early embryonic or degenerated cells comprising primers capable of amplifying the following 15 genes, respectively:

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3)를 제공한다.Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3).

상기 목적을 달성하기 위하여, 본 발명은 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머를 포함하는 초기 배아 또는 역분화 세포의 양질성(quality) 판단용 바이오칩:In order to achieve the above object, the present invention provides a biochip for determining quality of an early embryonic stem cell or a degenerated cell comprising primers capable of amplifying the following 15 genes, respectively:

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3)를 제공한다.
Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3).

본 발명은 체내수정, 체외수정, 체내발달, 체외발달, 처녀생식, 핵치환복제 및 배양조건과 같은 다양한 환경조건에서 유래된 표준동물 배아가 표준과 비교하여 어느 정도의 양질을 가지는 판단하는 방법을 발견하여 초기 배 발생에서 그 기능과 중요성이 확인된 후성유전 재편(epigenetic reprogramming) 관련 대상으로 다중 PCR를 통해 조사 대상 유전자를 집단화하여 그 발현을 조사하였고 개별 배반포별로 분자생물학적 분석하였으며 개별 배반포내 유전자간 상대적 발현 수준을 측정하였고 유전자 발현 관련 배반포간 개체변이를 측정하였으며 복제효율 또는 iPS 효율을 높이는 다양한 처리로 나타나는 효험(efficacy)에 대해 개별 방법간 차이를 정량화할 수 있으므로 유용하게 이용할 수 있다.
The present invention relates to a method for judging a standard animal embryo derived from various environmental conditions such as in-body fertilization, in vitro fertilization, in-vivo development, in vitro development, virgin reproduction, nuclear replacement replication, The expression of the gene was investigated by multiple PCR using epigenetic reprogramming related to its function and significance in early embryogenesis. Molecular biologic analysis was performed for each blastocyst. Relative expression levels can be measured and individual variation among gene expression-related blastocysts measured, and the efficacy of various treatments enhancing replication efficiency or iPS efficiency can be quantified and quantified.

도 1은 배아줄기세포(상단), 생쥐 배반포(중단) 및 소 배반포(하단)에서 추출한 mRNA로부터 후성유전 재편 관련 유전자들 각각의 발현을 RT-PCR로 분석한 결과 증폭됨을 확인한 그림이다.
도 2는 생쥐 배반포난에서 추출한 mRNA로부터 후성유전 재편 관련 유전자들 각각의 발현을 다중 PCR로 분석한 결과 증폭됨을 확인한 그림이다.
도 3은 생쥐 체내배양 배반포 및 체외배양 배반포를 대상으로 한 다중 PCR 결과를 통해 두 그룹간 후성유전 재편 관련 유전자의 발현 양을 비교 분석한 그림.
도 4는 생쥐 체내배양 배반포 및 체외수정 배반포를 대상으로 한 다중 PCR 결과를 통해 두 그룹간 후성유전 재편 관련 유전자의 발현 양을 비교 분석한 그림이다.
도 5는 소의 체외수정배반포 및 복제배반포를 대상으로 한 다중 PCR 결과를 통해 두 그룹간 후성유전 재편 관련 유전자의 발현 양을 비교 분석한 그림이다.
도 6은 생쥐 배아줄기세포 유래 단일 콜로니 및 역분화 만능 줄기 세포 유래 콜로니를 대상으로 한 다중 PCR 결과를 통해 두 그룹간 후성유전 재편 관련 유전자의 발현 양을 비교 분석한 그림이다.
FIG. 1 shows the results of RT-PCR analysis of the expression of each of the genes related to the proliferative gene rearrangement from the mRNA extracted from embryonic stem cells (upper), mouse blastocyst (discontinued) and bovine blastocyst (lower).
FIG. 2 shows the results of multiplex PCR analysis of the expression of each of the genes related to the reprogramming genes from the mRNA extracted from the blastocyst of a mouse blastocyst.
FIG. 3 is a comparative analysis of the expression levels of the genes related to the reproductive rearrangement between the two groups in the multi-PCR of the in-vitro cultured blastocyst and the in vitro cultured blastocyst.
FIG. 4 is a graph comparing the expression amounts of the genes related to the progeny of the herniated genome of the two groups with respect to the multiplex PCR performed on the cultured blastocysts and IVF blastocysts of the mice.
FIG. 5 is a graph comparing the expression levels of the genes related to the progeny of the herpes simplex in the two groups by the results of multiplex PCR on the in vitro fertilized blastocysts and cloned blastocysts of bovine animals.
FIG. 6 is a graph comparing the expression levels of the genes related to the proliferative gene rearrangement between the two groups through the results of multiplex PCR on colonies derived from mouse embryonic stem cells and colonies derived from the stem cells derived from the differentiated pluripotent stem cells.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은The present invention

1) 실험군으로서 검출하고자 하는 초기 배아 또는 역분화 세포의 콜로니를, 대조군으로서 표준 초기 배아 또는 역분화 세포를 각각 준비하는 단계:1) preparing a colony of an early embryo or de-differentiated cell to be detected as an experimental group, and a standard early embryo or de-differentiated cell as a control group, respectively;

2) 상기 단계 1)의 실험군 및 대조군으로부터 각각 유래된 단일 배아 또는 단일 세포 콜로니로부터 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머들을 이용하여 다중 RT-PCT을 수행하여 상기 15개 유전자들의 발현 정도를 분석하는 단계:2) Multiple RT-PCT was performed using primers capable of amplifying each of the following 15 genes from single embryonic or single cell colonies derived from the experimental group and the control group in the above step 1) Analysis step:

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3); 및Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3); And

3) 상기 단계 2)에서 분석한 실험군의 유전자 발현 정도를 대조군의 유전자 발현 정도와 비교하는 단계를 포함하는, 초기 배아 또는 역분화 세포의 양질성(quality) 판단 방법을 제공한다.3) comparing the gene expression level of the test group analyzed in the step 2) with the gene expression level of the control group, to determine the quality of early embryonic or degenerated cells.

상기 방법에 있어서, 단계 1)의 배아 세포 종류는 체내수정란, 체외수정란 체내배양 배반포, 체외배양 배반포, 체외수정 후 배양 배반포 및 복제수정란으로 구성된 군으로부터 선택되는 것이 바람직하나 이에 한정하지 않는다. In this method, the type of embryo cells of step 1) is preferably selected from the group consisting of an in-body fertilized egg, an in vitro embryo culture blastocyst, an in vitro culture blastocyst, an in vitro fertilized blastocyst and a reproductive embryo.

상기 방법에 있어서, 단계 1)의 역분화 세포는 배아줄기세포 또는 역분화 만능 줄기(induced pluripotent stem, iPS) 세포인 것이 바람직하나 이에 한정하지 않는다. In this method, the degenerated cells of step 1) are preferably embryonic stem cells or induced pluripotent stem (iPS) cells, but are not limited thereto.

상기 방법에 있어서, 단계 3)의 유전자는 후성유전 재편(epigenetic reprogramming) 관련 유전자인 것이 바람직하나 이에 한정하지 않는다. In this method, the gene of step 3) is preferably a gene related to epigenetic reprogramming, but is not limited thereto.

상기 방법에 있어서, 단계 3)의 유전자는 Dnmt1, Dnmt3a 및 Dnmt3b은 DNA 메틸화 효소이고, G9q, GLP, ESET 및 Suv39h1은 히스톤 메틸화 효소이며, Eed, Suz12, Bmil 및 YY1은 폴리콤 단백질이고,및 LSD1, JHDM2A, JHDM3A 및 JHDM3은 히스톤 탈메틸화 효소인 것이 바람직하나 이에 한정하지 않는다. Wherein G9q, GLP, ESET and Suv39h1 are histone methylating enzymes, Eed, Suz12, Bmil and YY1 are polycomb proteins and LSD1, Dnmt3a and Dnmt3b are DNA methylation enzymes, JHDM2A, JHDM3A, and JHDM3 are preferably histone demethylating enzymes, but are not limited thereto.

상기 방법에 있어서, 단계 2)의 프라이머는 서열번호 1 내지 서열번호 60 중 어느 하나의 염기서열로 구성되는 것이 바람직하며 이에 한정하지 않으며 하기 [표 2]에 나타내었다.In the above method, the primer of step 2) is preferably composed of any one of the nucleotide sequences of SEQ ID NO: 1 to SEQ ID NO: 60, but is not limited thereto and is shown in Table 2 below.

상기 방법에 있어서, 실험군 및 대조군은 하기로 각각 구성되는 것을 특징으로 하는 초기 배아 또는 역분화 세포의 양질성(quality) 판단 방법:In this method, the test group and the control group are each constituted by the following methods: Determination of quality of early embryonic or degenerated cells:

ⅰ) 실험군은 체외배양 배반포 및 대조군은 체내배양 배반포:I) In vitro culture blastocysts and control group were cultured in vitro:

ⅱ) 실험군은 체외수정 후 체외배양 배반포 및 대조군는 체내배양 배반포:Ii) In vitro culture of in vitro fertilized blastocysts and control group were performed in vitro.

ⅲ) 실험군은 복제수정란 및 대조군은 체외수정란; 및Iii) Cloned embryos in the experimental group and in vitro embryos in the control group; And

ⅳ) 실험군은 역분화 만능 줄기 세포 유래 콜로니 및 대조군은 배아줄기세포 유래 콜로니인 것이 바람직하나 이에 한정하지 않는다.Iv) In the experimental group, it is preferable that the colony derived from the pluripotent pluripotent stem cells and the control group are embryonic stem cell-derived colonies, but not always limited thereto.

상기 방법에 있어서, 상기 단계 2)의 다중 RT-PCT은 In the method, the multiple RT-PCT of step 2)

1) 서열번호 1 내지 서열번호 60의 프라이머를 이용하여 동시에 1차 중합효소반응을 시키는 단계; 및1) subjecting the primers of SEQ ID NO: 1 to SEQ ID NO: 60 to a first polymerase reaction simultaneously; And

2) 상기 단계 1)의 1차 중합효소반응 생성물을 희석하고 2차 중합효소반응을 위한 주형으로 사용하여 네스티드(nested) 중합효소반응 프라이머 쌍으로 이차 네스피트 중합효소반응을 시키는 것이 바람직하나 이에 한정하지 않는다. 2) It is preferable to dilute the first polymerase reaction product of step 1) and use as a template for the second polymerase reaction to perform a second NestPit polymerase reaction with a pair of nested polymerase reaction primers. However, Not limited.

상기 방법에 있어서, 유전자의 발현 정도는 하나의 유전자의 발현 정도를 기준으로 나머지 유전자를 수치화하는 단계를 포함하는 것이 바람직하나 이에 한정하지 않는다.
In the above method, the degree of expression of the gene preferably includes a step of digitizing the remaining genes based on the degree of expression of one gene, but is not limited thereto.

본 발명자들은 후성유전 재편 관련 유전자 및 이의 프라이머를 제작하였고 배아줄기세포(상단), 생쥐 배반포(중단) 및 소 배반포(하단)에서 추출한 mRNA로부터 후성유전 재편 관련 유전자들 각각의 발현을 RT-PCR 및 생쥐 배반포난에서 추출한 mRNA로부터 후성유전 재편 관련 유전자들 각각의 발현을 다중 PCR로 분석한 결과 증폭됨을 확인하였다(도 1 및 도 2 참조).The present inventors have constructed a gene related to the reproductive rearrangement and a primer thereof, and expressed the expression of each of the genes related to the rearranged gene rearrangement from the mRNA extracted from embryonic stem cells (top), mouse blastocyst (discontinued) and bovine blastocyst (bottom) It was confirmed that the expression of each of the genes related to the eukaryotic gene rearrangement from the mRNA extracted from the mouse blastocyst was amplified by multiplex PCR (see FIGS. 1 and 2).

생쥐 체내 배양 반배포 및 체외 배양 배반포의 후성유전 재편 관련 유전자의 발현을 분석하기 위해 <실시예>에서 후성유전 재편 관련 유전자를 크게 4개 그룹으로 15개 유전자로 분류하였고 개별 생쥐 배반포를 대상으로 15개 유전자들의 발현을 동시 분석하기 위해서 다중 PCR(multiplex PCR)을 한 결과 후성유전 재편 지표의 비교를 통해 체내 및 체외 배반포 간 큰 차이가 존재함을 확인하였고 체외배반포에서 Dnmt1 (p=0.005), Suv39h1 (p=0.016), Glp (p=0.013) 및 Eed (p=6.29E-6) 유전자의 발현이 체내배반포에 비해 유의적으로 높게 나타남을 확인하였다(도 3 참조).In order to analyze the expression of the gene related to the reproductive rearrangement of the blastocyst in the mouse body culture medium and the in vitro culture blastocyst, the genes related to the reproductive rearrangement in the <Example> were classified into four groups of 15 genes. In the individual mouse blastocysts, 15 In order to simultaneously analyze the expression of the genes, multiplex PCR was performed to confirm that there is a large difference between the body and the extracellular blastocysts by comparing the reproductive rearrangement indexes. In the case of in vitro blastocysts, Dnmt1 (p = 0.005), Suv39h1 (p = 0.016), Glp (p = 0.013) and Eed (p = 6.29E-6) genes were significantly higher than in the blastocysts of the body (see FIG. 3).

생쥐 체내배양 배반포 및 체외수정/배양 배반포에서 후성유전 재편 관련 유전자의 발현 분석을 하기 위하여 <실시예>에서 후성유전 재편 관련 유전자를 크게 4개 그룹으로 15개 유전자로 분류하였고 개별 생쥐 배반포를 대상으로 15개 유전자들의 발현을 동시 분석하기 위해서 다중 PCR(multiplex PCR)을 한 결과 호르몬으로 과배란 유도된 성숙난자를 체외수정 및 체외배양과정을 통해서 획득한 배반포난을 인 비보 유래 배반포 난과 비교시 인 비보 유래 배반포난에 비해 크게 다른 발현 양상을 보였으며 체외수정/배양배반포에서 Dnmt1 (p=1.68E-4),v Dnmt3a (p=0.024), Dnmt3b (p=0.008), Suv39h1 (p=1.15E-6), G9a (p=0.030), Eset (p=5.69E-4), Glp (p=1.74E-5), Eed (p=1.39E-8), Jmjd3 (p=0.016), Jhdm2a (p=7.61E-7) 유전자의 발현이 체내배반포에 비해 유의적으로 높게 나타남을 확인하였다(도 4 참조). In order to analyze the expression of the genes related to the progeny in the mouse embryo culture and in vitro fertilization / culturing blastocysts, the genes related to the progeny genetic rearrangement were classified into four groups, 15 genes in the Examples, and the individual mouse blastocysts In order to analyze the expression of 15 genes simultaneously, multiplex PCR was used to compare the results obtained with in vitro fertilization and in vitro culture of hormone - (P = 1.68E-4), v Dnmt3a (p = 0.024), Dnmt3b (p = 0.008), and Suv39h1 (p = 1.15E-4) in the in vitro fertilized and blastocyst blastocysts, (P = 1.39E-8), Jmjd3 (p = 0.016), Jhdm2a (p = = 7.61E-7) gene was significantly higher than that of blastocysts in the body (see FIG. 4).

소 체외수정란 및 복제수정란의 후성유전 재편 관련 유전자의 발현 분석을 하기 위하여 <실시예>에서 후성유전 재편 관련 유전자를 크게 4개 그룹으로 15개 유전자로 분류하였고 개별 생쥐 배반포를 대상으로 15개 유전자들의 발현을 동시 분석하기 위해서 다중 PCR(multiplex PCR)을 한 결과 Dnmt3b (p=0.035) 및 Suv39h1 (p=0.001) 유전자의 발현이 체외수정란과 복제수정란 간 유의적인 차이가 있음을 확인하였다(도 5 참조). In order to analyze the expression of the genes related to the reproductive rearrangement of bovine IVF embryos and cloned embryos, the genes related to reproductive rearrangement in the <Example> were classified into 15 genes in four groups, and 15 genes In order to analyze expression simultaneously, multiplex PCR was performed to confirm that the expression of Dnmt3b (p = 0.035) and Suv39h1 (p = 0.001) genes was significantly different between in vitro and infertile embryos ).

역분화-줄기세포(induced Pluripotent Stem cell, IPS)의 후성유전 재편 관련 유전자의 발현 분석하기 위하여 <실시예>에서 후성유전 재편 관련 유전자를 크게 4개 그룹으로 15개 유전자로 분류하였고 개별 생쥐 배반포를 대상으로 15개 유전자들의 발현을 동시 분석하기 위해서 다중 PCR(multiplex PCR)을 한 결과 Dnmt3a (p=1.33E-5), Dnmt3b (p=6.97E-4) 및 G9a (p=0.008) 등의 유전자에서 두 그룹간 발현 양의 차이가 유의적으로 나타남을 확인하였다(도 6 참조).In order to analyze the expression of the gene related to the progeny of the reprogramming-induced pluripotent stem cell (IPS) In the <Example>, the genes related to the progeny genetic rearrangement were classified into 15 genes in four groups. In order to simultaneously analyze the expression of 15 genes in individual mouse blastocysts, multiplex PCR was performed to obtain Dnmt3a (p = 1.33E-5), Dnmt3b (p = 6.97E-4) and G9a (p = 0.008).

따라서, 본 발명자들은 생쥐 체내 배양 반배포 및 체외 배양 배반포, 생쥐 체내배양 배반포 및 체외수정/배양 배반포, 소 체외수정란 및 복제수정란 및 역분화-줄기세포(IPS)의 후성유전 재편 관련 유전자 관련 대상으로 다중 PCR를 통해 조사 대상 유전자를 집단화하여 그 발현을 조사하였고 개별 배반포별로 분자생물학적 분석하였으며 개별 배반포내 유전자간 상대적 발현 수준을 측정하였고 유전자 발현 관련 배반포간 개체변이를 측정하였으며 복제효율 또는 iPS 효율을 높이는 다양한 처리로 나타나는 효험(efficacy)에 대해 개별 방법 간 차이를 정량화할 수 있으므로 유용하게 이용할 수 있다.
Accordingly, the present inventors have conducted extensive studies on gene rearrangement related genes in vitro and in vitro, in vitro, in vitro fertilized / cultured blastocysts, bovine embryo and cloned embryos, and reprogramming-stem cells (IPS) Molecular biology of individual blastocysts was measured by multiplex PCR. The relative expression level of each gene in the individual blastocysts was measured, individual mutations in gene expression-related blastocysts were measured, and cloning efficiency or iPS efficiency It is useful because it can quantify the difference between the individual methods for the efficacy of the various treatments.

또한, 본 발명은 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머를 포함하는 초기 배아 또는 역분화 세포의 양질성(quality) 판단용 키트를 제공한다;The present invention also provides a kit for determining the quality of early embryonic or degenerated cells comprising primers capable of amplifying the following 15 genes, respectively;

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3).Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3).

상기 프라이머는 서열번호 1 내지 서열번호 60 중 어느 하나의 염기서열로 구성되는 것이 바람직하나 이에 한정하지 않으며 하기 [표 2]에 나타내었다.
The primer preferably comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 60, but is not limited thereto and is shown in Table 2 below.

아울러, 본 발명은 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머를 포함하는 초기 배아 또는 역분화 세포의 양질성(quality) 판단용 바이오칩을 제공한다;In addition, the present invention provides a biochip for determining the quality of early embryonic or degenerated cells comprising primers capable of amplifying the following 15 genes, respectively;

Dnmt1(DNA methyltransferase 1); Dnmt3a(DNA methyltransferase 3a); Dnmt3b(DNA methyltransferase 3b); G9a; GLP(G9a-like protein); ESET(ERG-associated protein with a SET domain); Suv39h1(suppressor of variegation 3-9 homolog 1); Eed(embryonic ectoderm development); Suz12(suppressor of zeste 12 homolog ); Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3)를 제공한다. Dnmt1 (DNA methyltransferase 1); Dnmt3a (DNA methyltransferase 3a); Dnmt3b (DNA methyltransferase 3b); G9a; GLP (G9a-like protein); ESET (ERG-associated protein with a SET domain); Suv39h1 (suppressor of variant 3-9 homolog 1); Eed (embryonic ectoderm development); Suz12 (suppressor of zest12 homolog); Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine (K) -specific demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A 3A) and JMJD3 (Jumonji domain 3).

상기 프라이머는 서열번호 1 내지 서열번호 60 중 어느 하나의 염기서열로 구성되는 것이 바람직하나 이에 한정하지 않으며 하기 [표 2]에 나타내었다.
The primer preferably comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 60, but is not limited thereto and is shown in Table 2 below.

이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples.

단, 하기 실시예 및 실험예는 본 발명을 구체적으로 예시는 것이며, 본 발명의 내용이 실시예 및 실험예에 의해 한정되는 것은 아니다.
However, the following examples and experimental examples are illustrative of the present invention, and the contents of the present invention are not limited by the examples and the experimental examples.

<< 실시예Example > > 후성유전Fusheng oilfield 재편 관련 유전자 및 이의  Relocation-related genes and their objections 프라이머primer

체내 유래 배아 및 체외 유래 배아, 체외 유래 배아 및 핵치환 배아, 및 배아줄기 콜로니 및 IPS 콜로니의 후성유전 재편 관련 유전자의 발현을 분석하기 위해 선발하여 4개 그룹 15개 유전자로 하기 [표 1]에 나타내었다. DNA 메틸화효소(DNA methyltransferases, DNMTs) 그룹은 DNA 메틸화에 관여하는 효소들로 구성되어 있고, Dnmt1[ref], Dnmt3a, Dnmt3b를 포함하였다. 히스톤 메틸화효소(histone lysine methyltransferases, HMTs) 그룹은 히스톤 H3의 9번째 라이신(lysine) 잔기를 메틸화시키는 효소들로 구성되고, G9a, Suv39h1, Eset, GLP를 포함하였다. 폴리콤 단백질(Polycomb proteins, PcGs) 그룹은 단백질 복합체로써 히스톤 H3 27번 라이신을 메틸화시키거나 다른 단백질과 함께 발생에 중요한 유전자들의 발현을 활성/억제시키는 역할을 하는데, Eed, Suz12, Bmi, YY1을 포함하였다. 히스톤 탈메틸화효소(histone demethylases, HDMs) 그룹은 히스톤 H3의 라이신을 탈메틸화시키는 기능을 가지는데, LSD1, JHDM2A, JHDM3A, JMJD3를 포함하였다.Derived embryo and in vitro derived embryos, in vitro derived embryos and nuclear embryos, and embryonic stem colonies and IPS colonies Table 1 shows 15 genes of 4 groups selected for analysis of expression. The DNA methyltransferases (DNMTs) group consists of enzymes involved in DNA methylation, including Dnmt1 [ref], Dnmt3a, and Dnmt3b. The histone lysine methyltransferases (HMTs) group consists of enzymes that methylate the ninth lysine residue of histone H3 and include G9a, Suv39h1, Eset, and GLP. Polycomb proteins (PcGs) group is a protein complex that functions to methylate histone H3 27 lysine or to activate / inhibit the expression of genes important for development with other proteins, including Eed, Suz12, Bmi, YY1 Respectively. The histone demethylases (HDMs) group has the function of demethylating histone H3 lysine, including LSD1, JHDM2A, JHDM3A, and JMJD3.

체내 유래 배아 및 체외 유래 배아, 체외 유래 배아 및 핵치환 배아, 및 배아줄기 콜로니 및 IPS 콜로니의 후성유전적 재편 관련 유전자의 발현을 분석하기 위해 선발하여 4개 그룹 15개 각각의 유전자의 프라이머를 제작하여 하기 [표 2]에 나타내었으며 배아줄기세포(상단), 생쥐 배반포(중단) 및 소 배반포(하단)에서 추출한 mRNA로부터 후성유전 재편 관련 유전자들 각각의 발현을 RT-PCR 및 생쥐 배반포난에서 추출한 mRNA로부터 후성유전 재편 관련 유전자들 각각의 발현을 다중 PCR로 분석한 결과 증폭됨을 확인하였다(도 1 및 도 2).
In vitro derived embryo and in vitro derived embryos, in vitro derived embryos and nuclear substituted embryos, and embryonic stem colonies and IPS colonies The primers for each of the 15 genes in each of the four groups were selected to analyze the expression, and the mRNA extracted from embryonic stem cells (top), mouse blastocysts (discontinued) and bovine blastocysts (bottom) The expression of each of the genes related to the reproductive rearrangement was amplified by RT-PCR and by multiplex PCR analysis of expression of each of the genes related to the eukaryotic reorganization from the mRNA extracted from the mouse blastocyst stage (FIGS. 1 and 2).

발현 분석을 위해 선발한 Selected for expression analysis 후성유전Fusheng oilfield 재편 관련 유전자 Regrouped genes 그룹group 유전자gene 마우스mouse 소(Bovine)Bovine 돼지(Porcine)Porcine 크기size Ref #Ref # 크기size Ref #Ref # 크기size Ref #Ref # DNMTsDNMTs Dnmt1Dnmt1 133133 NM_010066.4NM_010066.4 131131 NM_182651.2NM_182651.2 OO NM_001032355NM_001032355 Dnmt3aDnmt3a 192192 NM_007872.4NM_007872.4 192192 AY271298.1AY271298.1 OO NM_001097437NM_001097437 Dnmt3bDnmt3b 168168 NM_001003960.3NM_001003960.3 168168 NM_181813.2NM_181813.2 OO NM_001162404NM_001162404 HMTsHMTs G9aG9a 184184 NM_145830.1NM_145830.1 186186 XM_869170.4XM_869170.4 OO EU219914.1EU219914.1 GLPGLP 127127 NM_001012518.2NM_001012518.2 127127 NM_001099041NM_001099041 XX ESETESET 167167 NM_001163641.1NM_001163641.1 164164 XM_002686045XM_002686045 OO XM_001929668XM_001929668 Suv39h1Suv39h1 242242 NM_011514.2NM_011514.2 242242 NM_001046264NM_001046264 OO DQ913894DQ913894 PcGsPcGs EedEed 195195 NM_021876.3NM_021876.3 195195 NM_001040494NM_001040494 OO AK238681AK238681 Suz12Suz12 172172 NM_199196.2NM_199196.2 172172 XM_582605.5XM_582605.5 OO XM_003131745XM_003131745 Bmi1Bmi1 258258 NM_007552.4NM_007552.4 258258 NM_001038072NM_001038072 OO XM_003130780XM_003130780 YY1YY1 112112 NM_009537.3NM_009537.3 112112 NM_001098081NM_001098081 OO AK230712AK230712 HDMsHDMs LSD1LSD1 157157 NM_133872.2NM_133872.2 157157 XM_002685717XM_002685717 OO EU219916EU219916 JHDM2AJHDM2A 228228 NM_001038695.2NM_001038695.2 222222 NM_001192872NM_001192872 OO XM_003124935XM_003124935 JHDM3AJHDM3A 219219 NM_001161823.1NM_001161823.1 219219 XM_002686436XM_002686436 OO EU661937EU661937 JMJD3JMJD3 273273 NM_001017426.1NM_001017426.1 272272 XR_083052.1XR_083052.1 OO

발현 분석을 위해 선발한 Selected for expression analysis 후성유전Fusheng oilfield 재편 관련 유전자의 증폭  Amplification of rearranged genes DNADNA 크기 및 이의 Size and Objectives 프라이머의Primer 염기서열  Base sequence 유전자gene PCRPCR ## 정방향 Forward 프라이머primer (5'에서 3')(5 ' to 3 ') 역방향 Reverse 프라이머primer (5'에서 3')(5 ' to 3 ') 크기size
(( bpbp ))
Dnmt1Dnmt1 1One CAGTGGCATGAACCGCTTCA(서열번호 1)CAGTGGCATGAACCGCTTCA (SEQ ID NO: 1) GTCTGGGCCACGCCATACT(서열번호 2)GTCTGGGCCACGCCATACT (SEQ ID NO: 2) 240b240b 22 GCTACTGTGACTACTACCG(서열번호 3)GCTACTGTGACTACTACCG (SEQ ID NO: 3) AAAGGTGCACTGGTAGCC(서열번호 4)AAAGGTGCACTGGTAGCC (SEQ ID NO: 4) 133133 Dnmt3aDnmt3a 1One TCAAGGAGATCATTGATG(서열번호 5)TCAAGGAGATCATTGATG (SEQ ID NO: 5) TGTTCCCACACATGAGCA(서열번호 6)TGTTCCCACACATGAGCA (SEQ ID NO: 6) 255255 22 AGCGGCTGGTGTATGAGG(서열번호 7)AGCGGCTGGTGTATGAGG (SEQ ID NO: 7) AGCAGATGGTGCAATAGGAC(서열번호 8)AGCAGATGGTGCAATAGGAC (SEQ ID NO: 8) 192192 Dnmt3bDnmt3b 1One CCTACCCGGAATGAACAG(서열번호 9)CCTACCCGGAATGAACAG (SEQ ID NO: 9) ACAGGCAAAGTAGTCCTTC(서열번호 10)ACAGGCAAAGTAGTCCTTC (SEQ ID NO: 10) 343343 22 AGCTCGAGCTGCAGGACT(서열번호 11)AGCTCGAGCTGCAGGACT (SEQ ID NO: 11) AGATCCTTTCGAGCTCAGTG(서열번호 12)AGATCCTTTCGAGCTCAGTG (SEQ ID NO: 12) 168168 Suv39h1Suv39h1 1One CCATCTACGAGTGCAACTC(서열번호 13)CCATCTACGAGTGCAACTC (SEQ ID NO: 13) CTCATCAAGGTTGTCTATG(서열번호 14)CTCATCAAGGTTGTCTATG (SEQ ID NO: 14) 374374 22 CGCTACGATCTCTGCATCTT(서열번호 15)CGCTACGATCTCTGCATCTT (SEQ ID NO: 15) ACAAAATGAGAGATGTTGCC(서열번호 16)ACAAAATGAGAGATGTTCC (SEQ ID NO: 16) 242242 G9aG9a 1One GACAGAACGCGGGTTTGAG(서열번호 17)GACAGAACGCGGGTTTGAG (SEQ ID NO: 17) CAGGCCTTATGGAAGCGG(서열번호 18)CAGGCCTTATGGAAGCGG (SEQ ID NO: 18) 324324 22 AGGGCACAAGTGCATGGC(서열번호 19)AGGGCACAAGTGCATGGC (SEQ ID NO: 19) CCCGCTGTGCAGAAGTAG(서열번호 20)CCCGCTGTGCAGAAGTAG (SEQ ID NO: 20) 184184 EsetEset 1One CACACGCCAGTTCTATGA(서열번호 21)CACACGCCAGTTCTATGA (SEQ ID NO: 21) TCAGGAAGACCCAGTTCCT(서열번호 22)TCAGGAAGACCCAGTTCCT (SEQ ID NO: 22) 354354 22 ACCTCAATCACAGTTGCAGC(서열번호 23)ACCTCAATCACAGTTGCAGC (SEQ ID NO: 23) CTCCTTGCCTTCCACACTG(서열번호 24)CTCCTTGCCTTCCACACTG (SEQ ID NO: 24) 167167 GlpGlp 1One TGGTCAAGTATGAGCTGATGC(서열번호25)TGGTCAAGTATGAGCTGATGC (SEQ ID NO: 25) TGCTATGGTCACCTCTTTG(서열번호 26)TGCTATGGTCACCTCTTTG (SEQ ID NO: 26) 260260 22 ATGGTGAAGCACCAGTGCTG(서열번호 27)ATGGTGAAGCACCAGTGCTG (SEQ ID NO: 27) CATTGTTGACTCGAGAGGCA(서열번호 28)CATTGTTGACTCGAGAGGCA (SEQ ID NO: 28) 127127 Bmi1Bmi1 1One GAGGGTACTTCATTGATG(서열번호 29)GAGGGTACTTCATTGATG (SEQ ID NO: 29) ACTTTCCGATCCAATCTG(서열번호 30)ACTTTCCGATCCAATCTG (SEQ ID NO: 30) 376376 22 GAGACCAGCAAGTATTGTCC(서열번호 31)GAGACCAGCAAGTATTGTCC (SEQ ID NO: 31) CAAGCTTATTATCTCATCATCAG(서열번호32)CAAGCTTATTATCTCATCATCAG (SEQ ID NO: 32) 258258 EedEed 1One CTGAGTGCTGATTATGATC(서열번호 33)CTGAGTGCTGATTATGATC (SEQ ID NO: 33) TATGAGGATCTTCTACTTC(서열번호34)TATGAGGATCTTCTACTTC (SEQ ID NO: 34) 475475 22 TCTACCAGAGACATACATAG(서열번호 35)TCTACCAGAGACATACATAG (SEQ ID NO: 35) CCAAATGTCACACTGGCTGT(서열번호36)CCAAATGTCACACTGGCTGT (SEQ ID NO: 36) 195195 Suz12Suz12 1One CTCTATTTCCACAGTGATAC(서열번호 37)CTCTATTTCCACAGTGATAC (SEQ ID NO: 37) TATCTATTGACATTATGC(서열번호 38)TATCTATTGACATTATGC (SEQ ID NO: 38) 337337 22 AAGGAGAGAAAGAAGTGATG(서열번호 39)AAGGAGAGAAAGAAGTGATG (SEQ ID NO: 39) TCATGCATGCTGACTAGATG(서열번호 40)TCATGCATGCTGACTAGATG (SEQ ID NO: 40) 172172 Yy1Yy1 1One AAGAAGTGGGAGCAGAAGC(서열번호 41)AAGAAGTGGGAGCAGAAGC (SEQ ID NO: 41) TGTTCTTGGAGCATCATC(서열번호 42)TGTTCTTGGAGCATCATC (SEQ ID NO: 42) 279279 22 TGCAGATCAAGACCCTGGA(서열번호 43)TGCAGATCAAGACCCTGGA (SEQ ID NO: 43) GAGTTCTCTCCAATGATCTG(서열번호 44)GAGTTCTCTCCAATGATCTG (SEQ ID NO: 44) 112112 Jmjd3Jmjd3 1One CTCACCATCAGCCACTGTG(서열번호 45)CTCACCATCAGCCACTGTG (SEQ ID NO: 45) AGCTCTCACAGGGCCAGAT(서열번호 46)AGCTCTCACAGGGCCAGAT (SEQ ID NO: 46) 415415 22 TGCCAGCAAGAATGCCAAG(서열번호 47)TGCCAGCAAGAATGCCAAG (SEQ ID NO: 47) CCAGAGTCTTGGTGGAGAAA(서열번호 48)CCAGAGTCTTGGTGGAGAAA (SEQ ID NO: 48) 273273 Jhdm2aJhdm2a 1One AGCATTCTTGGCTTTGACA(서열번호 49)AGCATTCTTGGCTTTGACA (SEQ ID NO: 49) CATCAGATCATCAAACCTG(서열번호 50)CATCAGATCATCAAACCTG (SEQ ID NO: 50) 402402 22 GGCAGCCAGTGATGGTGT(서열번호 51)GGCAGCCAGTGATGGTGT (SEQ ID NO: 51) CCTTAAGTTTCAACACCATTG(서열번호 52)CCTTAAGTTTCAACACCATTG (SEQ ID NO: 52) 228228 Jhdm3aJhdm3a 1One TTCTACCAGTGTGAGGTG(서열번호 53)TTCTACCAGTGTGAGGTG (SEQ ID NO: 53) TCTCATTGAAGCGCATGTC(서열번호 54)TCTCATTGAAGCGCATGTC (SEQ ID NO: 54) 346346 22 CATAGTGAGTCAGGACTGTC(서열번호 55)CATAGTGAGTCAGGACTGTC (SEQ ID NO: 55) AGTCTAGACTTGACTCTCTT(서열번호 56)AGTCTAGACTTGACTCTCTT (SEQ ID NO: 56) 219219 Lsd1Lsd1 1One TCTGGCTTGGCAGCAGCTC(서열번호 57)TCTGGCTTGGCAGCAGCTC (SEQ ID NO: 57) GTGGCTTCTAGCAACCGGT(서열번호 58)GTGGCTTCTAGCAACCGGT (SEQ ID NO: 58) 302302 22 ACTTCTGGAAGCCAGGGATC(서열번호 59)ACTTCTGGAAGCCAGGGATC (SEQ ID NO: 59) CTTGATCTTGGCCAGTTCCA(서열번호 60)CTTGATCTTGGCCAGTTCCA (SEQ ID NO: 60) 157157

<< 실험예Experimental Example 1> 생쥐 체내 배양  1> In-body culture 배반포Blastocyst 및 체외 배양  And in vitro culture 배반포에서In a blastocyst 후성유전Fusheng oilfield 재편 관련 유전자 발현 분석 Gene rearrangement gene expression analysis

생쥐 체내 배양 반배포 및 체외 배양 배반포의 후성유전 재편 관련 유전자의 발현을 분석하기 위해 <실시예>에서 후성유전 재편 관련 유전자를 크게 4개 그룹으로 15개 유전자로 분류하였고 개별 생쥐 배반포를 대상으로 15개 유전자들의 발현을 동시 분석하기 위해서 다중 PCR(multiplex PCR)을 하였다. In order to analyze the expression of the gene related to the reproductive rearrangement of the blastocyst in the mouse body culture medium and the in vitro culture blastocyst, the genes related to the reproductive rearrangement in the <Example> were classified into four groups of 15 genes. In the individual mouse blastocysts, 15 Multiplex PCR was performed to simultaneously analyze the expression of the genes.

구체적으로, 암컷 생쥐를 PMSG(Sigma, USA) 및 hCG(Sigma, USA)를 복강에 주입, 과배란 유도 후 수컷 생쥐와 메이팅(mating)을 통해 수정란을 회수하고 M16(Sigma, USA) 배양액에서 3일 동안 체외 배양(37oC 및 5% CO2 조건)하여 배반포를 획득하였다. 이때 1-세포기 수정란을 채집하여 체외배양을 통해 획득한 배반포(in vitro group)와 체내에서 3.5일 추가 배양하여 획득한 배반포(in vivo group) 등 두 개 그룹으로 나누어 다중 PCR을 실시하였다. <실시예>에 상기 [표 2]의 1차 및 2차 PCR에 사용한 프라이머를 이용하여 역전사(reverse transcription, RT) 반응 및 1차 PCR을 모두 한 튜브 내에서 수행하였다. PCR 반응액은 원-스텝(One-step) RT-PCR 키트(Qiagen, USA)에 생쥐 배반포 1개를 주형(template)으로 10 피코 몰(pico mole)의 [표 2]의 각각 15개의 프라이머를 각각 1 ㎕ 혼합하여 0.1 피코 몰(pico mole) 이 되도록 총 100 ㎕로 조성하였다. PCR은 DNA Engine(BIORAD, USA)을 이용하여 94℃에서 30초 전변성(predenaturation)한 후 94℃에서 15분간 변성(denaturation), 72℃에서 30초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 40회 수행하고 마지막으로 72℃에서 30초간 반응시켰다. 1차 PCR 생성물을 100배 희석 후 4개 서브그룹(subgroup)으로 나누어 2차 PCR을 위한 주형으로 사용하였다. 4개의 서브그룹에 포함된 네스티드 프라이머 세트(nested primers sets)를 사용하여 2차 PCR을 수행하였다. PCR 반응액은 PCR Pre-Mix(Bioneer, Korea)에 1st PCR Product를 1/100으로 희석하여 5 ul를 주형(template)으로 넣은 후 10 피코 몰(pico mole)의 상기 [표 2]의 각각 15개의 프라이머를 4개의 하위그룹에 각각 10 ㎕ 혼합하여 총 100 ㎕로 조성하여 1 피코 몰(pico mole)이 되도록 하였다. PCR은 DNA Engine (BIORAD, USA)을 이용하여 94℃에서 30초 전변성(predenaturation)한 후 94℃에서 15분간 변성(denaturation), 72℃에서 30초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 40회 수행하고 마지막으로 72℃에서 30초간 반응시켰다. 또한, 15개 유전자 중 가장 일정하고 안정된 발현을 보이는 Lsd1 밴드를 기준으로 상대적인 발현량을 그래프로 나타내었고 다중 PCR 결과로 나온 밴드의 인텐시티(band intensity)를 정량하기 위해 TINA2.0 소프트웨어(software)를 사용하여 수치화한 후 Dnmt1의 값을 기준으로 상대적인 발현량을 조사하여 하기 [표 3]에 나타내었다. Specifically, embryos were collected from female mice by intraperitoneal injection of PMSG (Sigma, USA) and hCG (Sigma, USA) and mating with male mice after induction of superovulation and cultured in M16 (Sigma, USA) (37 ° C and 5% CO 2 ) to obtain blastocysts. In this study, 1 - cell embryos were collected and divided into two groups: in vitro group obtained by in vitro culture and in vivo group obtained by further incubation in body for 3.5 days. The reverse transcription (RT) reaction and the first PCR were performed in a single tube using the primers used in the primary and secondary PCRs of the above Table 2, respectively. PCR reactions were performed by using one-step RT-PCR kit (Qiagen, USA) with 1 mouse blastocyst as a template and 15 primers of 10 picomoles of [Table 2] 1 μl each were mixed to form a total of 100 μl so as to have a pico mole. PCR was performed using DNA Engine (BIORAD, USA) at 94 ° C for 30 seconds, denaturation at 94 ° C for 15 minutes, annealing at 72 ° C for 30 seconds, extension at 72 ° C for 30 seconds extension was performed 40 times, and finally, reaction was carried out at 72 ° C for 30 seconds. The first PCR product was diluted 100-fold and then divided into 4 subgroups and used as a template for the second PCR. Secondary PCR was performed using nested primer sets contained in four subgroups. The PCR reaction mixture was diluted to 1/100 of 1 st PCR product in a PCR Pre-Mix (Bioneer, Korea), 5 μl was added as a template, and then 10 picomoles of each of the [Table 2] 15 primers were mixed with 10 쨉 l of each of the four subgroups to form a total of 100 쨉 l to give a pico mole. PCR was performed using DNA Engine Followed by denaturation at 94 ° C for 15 minutes, annealing at 72 ° C for 30 seconds, extension at 72 ° C for 30 seconds, and subsequent denaturation at 94 ° C for 30 seconds. 40 times, and finally at 72 ° C for 30 seconds. In addition, the relative expression level of the Lsd1 band, which is the most constant and stable expression among the 15 genes, is shown in the graph. TINA2.0 software is used to quantify band intensities of the multiplex PCR results. And the relative expression level was examined based on the value of Dnmt1. The results are shown in Table 3 below.

그 결과, 후성유전 재편 지표의 비교를 통해 체내 및 체외 배반포 간 큰 차이가 존재함을 확인하였다. 체외배반포에서 Dnmt1(p=0.005), Suv39h1(p=0.016), Glp(p=0.013) 및 Eed(p=6.29E-6) 유전자의 발현이 체내배반포에 비해 유의적으로 높게 나타남을 확인하였다(도 3).
As a result, it was confirmed that there was a large difference between the in vivo and in vitro blastocysts through comparison of the posterior inheritance regression indexes. The expression of Dnmt1 (p = 0.005), Suv39h1 (p = 0.016), Glp (p = 0.013) and Eed (p = 6.29E-6) in the blastocysts was significantly higher than in the blastocysts 3).

생쥐 체내 배양 Inoculation of mouse body 배반포Blastocyst 및 체외 배양  And in vitro culture 배반포에서In a blastocyst 후성유전Fusheng oilfield 재편 관련 유전자 발현량 Regeneration related gene expression level in vivoin vivo STDSTD in vitroin vitro STDSTD P 값P value Dnmt1Dnmt1 0.2471850.247185 0.3695980.369598 0.7194810.719481 0.3717530.371753 0.005210.00521 Dnmt3aDnmt3a 0.9901370.990137 0.2118990.211899 1.0135071.013507 0.4615520.461552 0.853850.85385 Dnmt3bDnmt3b 1.0314481.031448 0.2387580.238758 1.1548231.154823 0.1626040.162604 0.193330.19333 Suv39h1Suv39h1 0.2421020.242102 0.3704740.370474 0.6948050.694805 0.5367340.536734 0.01640.0164 G9aG9a 0.8335080.833508 0.392020.39202 0.8039540.803954 0.3880610.388061 0.8580.858 EsetEset 0.3656140.365614 0.3636960.363696 0.4353610.435361 0.4765770.476577 0.678150.67815 GlpGlp 0.0764590.076459 0.1213020.121302 0.2093960.209396 0.1139370.113937 0.013130.01313 Bmi1Bmi1 0.8081710.808171 0.4107810.410781 0.753650.75365 0.4894510.489451 0.766010.76601 EedEed 0.1529160.152916 0.3217690.321769 0.9158790.915879 0.3281030.328103 6.29439E-66.29439E-6 Suz12Suz12 0.0154340.015434 0.040070.04007 0.0281930.028193 0.0334360.033436 0.43420.4342 Yy1Yy1 0.6126910.612691 0.4169250.416925 0.5455540.545554 0.3719460.371946 0.695360.69536 Jmjd3Jmjd3 0.4844030.484403 0.4554330.455433 0.5667090.566709 0.4319690.431969 0.665030.66503 Jhdm2aJhdm2a 0.2525440.252544 0.3168830.316883 0.3035460.303546 0.4181930.418193 0.728220.72822 Jhdm3aJhdm3a 0.3470340.347034 0.4088170.408817 0.0913150.091315 0.2582780.258278 0.114480.11448

<< 실험예Experimental Example 2> 생쥐 체내배양  2> In-body culture 배반포Blastocyst 및 체외수정/배양  And in vitro fertilization / culture 배반포에서In a blastocyst 후성유전Fusheng oilfield 재편 관련 유전자의 발현 분석 Expression Analysis of Regeneration Related Gene

생쥐 체내배양 배반포 및 체외수정/배양 배반포에서 후성유전 재편 관련 유전자의 발현 분석을 하기 위하여 <실시예>에서 후성유전 재편 관련 유전자를 크게 4개 그룹으로 15개 유전자로 분류하였고 개별 생쥐 배반포를 대상으로 15개 유전자들의 발현을 동시 분석하기 위해서 다중 PCR(multiplex PCR)을 하였다. In order to analyze the expression of the genes related to the progeny in the mouse embryo culture and in vitro fertilization / culturing blastocysts, the genes related to the progeny genetic rearrangement were classified into four groups, 15 genes in the Examples, and the individual mouse blastocysts Multiplex PCR was performed to analyze the expression of 15 genes simultaneously.

구체적으로, 체외수정을 위해서 4주령 암컷 생쥐(코아텍)에 PMSG(Sigma, USA)와 hCG(Sigma, USA)를 이용 과배란을 유도하여 16시간 후에 성숙난자를 회수하였고, 수컷 생쥐의 정소 상체 미부로부터 정자를 회수하여 M16 배양액(Sigma, USA)에서 1시간 동안 배양한 후 성숙난자와 5 ~ 6시간 동안 공배양함으로써 체외수정을 유도하였고, 이후 3일 동안 배양하여 획득한 체외수정 배반포난 및 암컷 생쥐에 PMSG와 hCG를 이용 과배란 유도 후 수컷 생쥐와 mating 시켜 3일 후 암컷 생쥐의 자궁으로부터 회수한 인 비보 유래 배반포난의 두 개 그룹으로 나누어 다중 PCR을 실시하였다. <실시예>에 상기 [표 2]의 1차 및 2차 PCR에 사용한 프라이머를 이용하여 역전사(reverse transcription, RT) 반응 및 1차 PCR을 모두 한 튜브 내에서 수행하였다. PCR 반응액은 One-step RT-PCR Kit (Qiagen, USA)에 생쥐 배반포 1개를 주형(template)으로 10 피코 몰(pico mole)의 상기 [표 2]의 각각 15개의 프라이머를 각각 1 ㎕ 혼합하여 0.1 피코 몰(pico mole) 이 되도록 총 100 ㎕로 조성하였다. PCR은 DNA Engine(BIORAD, USA)을 이용하여 94℃에서 30초 전변성(predenaturation)한 후 94℃에서 15분간 변성(denaturation), 72℃에서 30초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 40회 수행하고 마지막으로 72℃에서 30초간 반응시켰다. 1차 PCR 생성물을 100배 희석 후 4개 서브그룹(subgroup)으로 나누어 2차 PCR을 위한 주형으로 사용하였다. PCR 반응액은 PCR Pre-Mix(Bioneer, Korea)에 1st PCR Product를 1/100으로 희석하여 5 ul를 주형(template)으로 넣은 후 10 피코 몰(pico mole)의 [표 2]의 각각 15개의 프라이머를 4개의 하위그룹에 각각 10 ㎕ 혼합하여 총 100 ㎕로 조성하여 1 피코 몰(pico mole)이 되도록 하였다. PCR은 DNA Engine (BIORAD, USA)을 이용하여 94℃에서 30초 전변성(predenaturation)한 후 94℃에서 15분간 변성(denaturation), 72℃에서 30초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 40회 수행하고 마지막으로 72℃에서 30초간 반응시켰다. 또한, 15개 유전자 중 가장 일정하고 안정된 발현을 보이는 Lsd1 밴드를 기준으로 상대적인 발현량을 그래프로 나타내었고 다중 PCR 결과로 나온 밴드의 인텐시티(band intensity)를 정량하기 위해 TINA2.0 소프트웨어(software)를 사용하여 수치화한 후 Dnmt1의 값을 기준으로 상대적인 발현량을 조사하여 하기 [표 4]에 나타내었다. Specifically, mature oocytes were recovered 16 hours after induction of superovulation by using PMSG (Sigma, USA) and hCG (Sigma, USA) at 4 weeks old female mice (Coatec) for in vitro fertilization. (Sigma, USA) for 1 hour and then inoculated with matured oocytes for 5 to 6 hours. After 3 days of incubation, Mice were mated with male rats after induction of superovulation using PMSG and hCG in mice. Two groups of embryo - derived blastocysts recovered from the uterus of female mice three days later were used for multiplex PCR. The reverse transcription (RT) reaction and the first PCR were performed in a single tube using the primers used in the primary and secondary PCRs of the above Table 2, respectively. The PCR reaction mixture was prepared by mixing 1 μl of each of 15 primers of the above [Table 2] of 10 picomoles of a mouse blastocyst with one-step RT-PCR Kit (Qiagen, USA) as a template To give a total pico mole of 0.1 picol. PCR was performed using DNA Engine (BIORAD, USA) at 94 ° C for 30 seconds, denaturation at 94 ° C for 15 minutes, annealing at 72 ° C for 30 seconds, extension at 72 ° C for 30 seconds extension was performed 40 times, and finally, reaction was carried out at 72 ° C for 30 seconds. The first PCR product was diluted 100-fold and then divided into 4 subgroups and used as a template for the second PCR. The PCR reaction mixture was diluted to 1/100 of 1 st PCR product in PCR Pre-Mix (Bioneer, Korea), 5 μl was added as a template, and 15 μl of each 10 picomoles of [Table 2] 10 primers were mixed with 4 subgroups of 10 μl each to give a total of 100 μl to give 1 pico mole. PCR was performed using DNA Engine Followed by denaturation at 94 ° C for 15 minutes, annealing at 72 ° C for 30 seconds, extension at 72 ° C for 30 seconds, and subsequent denaturation at 94 ° C for 30 seconds. 40 times, and finally at 72 ° C for 30 seconds. In addition, the relative expression level of the Lsd1 band, which is the most constant and stable expression among the 15 genes, is shown in the graph. TINA2.0 software is used to quantify band intensities of the multiplex PCR results. And the relative expression level was examined based on the value of Dnmt1. The results are shown in Table 4 below.

그 결과, 호르몬으로 과배란 유도된 성숙난자를 체외수정 및 체외배양과정을 통해서 획득한 배반포난을 인 비보 유래 배반포 난과 비교시 인 비보 유래 배반포난에 비해 크게 다른 발현 양상을 보였다. 체외수정/배양배반포에서 Dnmt1(p=1.68E-4),v Dnmt3a(p=0.024), Dnmt3b(p=0.008), Suv39h1(p=1.15E-6), G9a(p=0.030), Eset(p=5.69E-4), Glp(p=1.74E-5), Eed(p=1.39E-8), Jmjd3(p=0.016), Jhdm2a(p=7.61E-7) 유전자의 발현이 체내배반포에 비해 유의적으로 높게 나타남을 확인하였다(도 4).
As a result, the mature oocytes induced by the hormone - induced ovarian hyperstimulation were significantly different from those obtained from in vivo - derived blastocysts compared with in vivo - derived blastocysts obtained from in vitro fertilization and in vitro culture. In vitro fertilization / culture blastocysts were cultured in the presence of Dnmt1 (p = 1.68E-4), v Dnmt3a (p = 0.024), Dnmt3b (p = 0.008), Suv39h1 (p = 1.15E-6), G9a (p = 5.69E-4), Glp (p = 1.74E-5), Eed (p = 1.39E-8), Jmjd3 (p = 0.016) and Jhdm2a (Fig. 4).

생쥐 체내배양 Inoculation of mouse body 배반포Blastocyst 및 체외수정/배양  And in vitro fertilization / culture 배반포에서In a blastocyst 후성유전Fusheng oilfield 재편 관련 유전자의 발현량 Expression of gene related to rearrangement in vivoin vivo STDSTD IVFIVF STDSTD P 값P value Dnmt1Dnmt1 0.2471850.247185 0.3695980.369598 1.1652081.165208 0.6504760.650476 1.67567E-41.67567E-4 Dnmt3aDnmt3a 0.9901370.990137 0.2118990.211899 1.475171.47517 0.8516740.851674 0.023880.02388 Dnmt3bDnmt3b 1.0314481.031448 0.2387580.238758 1.4269251.426925 0.4404780.440478 0.007770.00777 Suv39h1Suv39h1 0.2421020.242102 0.3704740.370474 1.4313191.431319 0.4817660.481766 1.1455E-61.1455E-6 G9aG9a 0.8335080.833508 0.392020.39202 1.3040871.304087 0.5779550.577955 0.029690.02969 EsetEset 0.3656140.365614 0.3636960.363696 1.2004491.200449 0.6907930.690793 5.68942E-45.68942E-4 GlpGlp 0.0764590.076459 0.1213020.121302 0.714480.71448 0.5095770.509577 1.73636E-51.73636E-5 Bmi1Bmi1 0.8081710.808171 0.4107810.410781 1.2415441.241544 0.4708970.470897 0.038010.03801 EedEed 0.1529160.152916 0.3217690.321769 1.4117031.411703 0.3274920.327492 1.39479E-81.39479E-8 Suz12Suz12 0.0154340.015434 0.040070.04007 0.0186240.018624 0.0235420.023542 0.855540.85554 Yy1Yy1 0.6126910.612691 0.4169250.416925 0.9568140.956814 0.3858640.385864 0.084390.08439 Jmjd3Jmjd3 0.4844030.484403 0.4554330.455433 1.0664381.066438 0.582190.58219 0.016420.01642 Jhdm2aJhdm2a 0.2525440.252544 0.3168830.316883 1.3612111.361211 0.4900840.490084 7.61321E-77.61321E-7 Jhdm3aJhdm3a 0.3470340.347034 0.4088170.408817 0.5582360.558236 0.6844940.684494 0.353450.35345

<< 실험예Experimental Example 3> 소 체외수정란 및 복제수정란의  3> Bovine IVF Embryo and Cloned Embryo 후성유전Fusheng oilfield 재편 관련 유전자의 발현 분석 Expression Analysis of Regeneration Related Gene

소 체외수정란 및 복제수정란의 후성유전 재편 관련 유전자의 발현 분석을 하기 위하여 <실시예>에서 후성유전 재편 관련 유전자를 크게 4개 그룹으로 15개 유전자로 분류하였고 개별 생쥐 배반포를 대상으로 15개 유전자들의 발현을 동시 분석하기 위해서 다중 PCR(multiplex PCR)을 하였다. In order to analyze the expression of the genes related to the reproductive rearrangement of bovine IVF embryos and cloned embryos, the genes related to reproductive rearrangement in the <Example> were classified into 15 genes in four groups, and 15 genes Multiplex PCR was performed to analyze the expression simultaneously.

구체적으로, 도축장(대전 오정동)에서 도살된 소의 난소를 공수하여 실험실에서 미성숙 난자를 얻고 10% FBS가 첨가된 TCM199(Gibco BRL)에서 20-22시간 동안 배양하여 성숙난자를 얻었다. 살아있는 정자(한우개량사업소)만을 선별할 수 있는 퍼컬(Percoll, Sigma, USA) gradient를 이용 원심분리를 통해 스윔- 업(swim-up) 정자를 회수한 후 성숙난자를 24시간 동안 공배양 시켜 체외수정을 유도하였다. 이렇게 만들어진 체외수정란을 7일 동안 CR1-aa (Rosenkrans L. G. et al., 1991. Culture of bovine zygotes to the blastocyst stape: Effect of amino acids and vitamins. Theriogenology 35:266) 배양액에서 배양함으로써 체외배반포난(IVF)을 획득하였다. 복제수정란 제작을 위해 체외성숙과정을 통해 얻은 성숙난자를 제핵하고 난자 채취과정에서 얻어지는 난구세포(cumulus cell)을 공여세포 핵을 이식하여 재구성 난자를 제작한 후 체외배양과정을 통해 복제 배반포난(NT)을 획득하였다. 이렇게 획득한 한 개의 배반포난을 사용하여 <실시예>에 상기 [표 2]의 1차 및 2차 PCR에 사용한 프라이머를 이용하여 역전사(reverse transcription, RT) 반응 및 1차 PCR을 모두 한 튜브 내에서 수행하였다. PCR 반응액은 원-스텝 RT-PCR 키트(Qiagen, USA)에 소 배반포 1개를 주형(template)으로 10 피코 몰(pico mole)의 [표 2]의 각각 15개의 프라이머를 각각 1 ㎕ 혼합하여 0.1 피코 몰(pico mole) 이 되도록 총 100 ㎕로 조성하였다. PCR은 DNA Engine (BIORAD, USA)을 이용하여 94℃에서 30초 전변성(predenaturation)한 후 94℃에서 15분간 변성(denaturation), 72℃에서 30초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 40회 수행하고 마지막으로 72℃에서 30초간 반응시켰다. 1차 PCR 생성물을 100배 희석 후 4개 서브그룹(subgroup)으로 나누어 2차 PCR을 위한 주형으로 사용하였다. 4개의 서브그룹에 포함된 네스티드 프라이머 세트(nested primers sets)를 사용하여 2차 PCR을 수행하였다. PCR 반응액은 PCR Pre-Mix(Bioneer, Korea)에 1st PCR 생성물을 1/100으로 희석하여 5 ul를 주형(template)으로 넣은 후 10 피코 몰(pico mole)의 상기 [표 2]의 각각 15개의 프라이머를 4개의 하위그룹에 각각 10 ㎕ 혼합하여 총 100 ㎕로 조성하여 1 피코 몰(pico mole)이 되도록 하였다. PCR은 DNA Engine(BIORAD, USA)을 이용하여 94℃에서 30초 전변성(predenaturation)한 후 94℃에서 15분간 변성(denaturation), 72℃에서 30초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 40회 수행하고 마지막으로 72℃에서 30초간 반응시켰다. 또한, 15개 유전자 중 가장 일정하고 안정된 발현을 보이는 Lsd1 밴드를 기준으로 상대적인 발현량을 그래프로 나타내었고 다중 PCR 결과로 나온 밴드의 인텐시티(band intensity)를 정량하기 위해 TINA2.0 소프트웨어(software)를 사용하여 수치화한 후 Dnmt1의 값을 기준으로 상대적인 발현량을 조사하여 하기 [표 5]에 나타내었다. Specifically, the ovaries from slaughtered cattle (Daejeon Oh Jung-dong) were slaughtered, and immature oocytes were obtained from the laboratory and cultured in TCM199 (Gibco BRL) supplemented with 10% FBS for 20-22 hours to obtain mature oocytes. Swim-up sperm were recovered by centrifugation using a percoll (Sigma, USA) gradient, which allows only spermatozoa to be screened, and mature oocytes were co-cultured for 24 hours. . The in vitro fertilized embryos were cultured for 7 days in culture medium of CR1-aa (Rosenkrans LG et al., 1991. Culture of bovine zygotes to the blastocyst stape: Effect of amino acids and vitamins. Theriogenology 35: 266) ). For the production of cloned fertilized eggs, the mature oocytes obtained from the in vitro maturation process were harvested and the reconstituted oocytes were transplanted into the cumulus cells obtained from the oocyte retrieval process to obtain reconstituted embryonated eggs (NT ). The reverse transcription (RT) reaction and the first PCR were carried out in the same manner as in Example 1 using the primers used for the primary and secondary PCRs of Table 2, . The PCR reaction mixture was prepared by mixing 1 ㎕ of each of 15 primers of [Table 2] of 10 picomoles (template 2) into a one-shot blastocyst with a one-step RT-PCR kit (Qiagen, USA) 0.1 pico mole (pico mole). PCR was performed using DNA Engine Followed by denaturation at 94 ° C for 15 minutes, annealing at 72 ° C for 30 seconds, extension at 72 ° C for 30 seconds, and subsequent denaturation at 94 ° C for 30 seconds. 40 times, and finally at 72 ° C for 30 seconds. The first PCR product was diluted 100-fold and then divided into 4 subgroups and used as a template for the second PCR. Secondary PCR was performed using nested primer sets contained in four subgroups. The PCR reaction solution was prepared by diluting a 1- st PCR product to 1/100 in a PCR Pre-Mix (Bioneer, Korea), adding 5 μl of the PCR product as a template, and adding 10 picomoles of each of the above [Table 2] 15 primers were mixed with 10 쨉 l of each of the four subgroups to form a total of 100 쨉 l to give a pico mole. PCR was performed using DNA Engine (BIORAD, USA) at 94 ° C for 30 seconds, denaturation at 94 ° C for 15 minutes, annealing at 72 ° C for 30 seconds, extension at 72 ° C for 30 seconds extension was performed 40 times, and finally, reaction was carried out at 72 ° C for 30 seconds. In addition, the relative expression level of the Lsd1 band, which is the most constant and stable expression among the 15 genes, is shown in the graph. TINA2.0 software is used to quantify band intensities of the multiplex PCR results. And the relative expression level was examined based on the value of Dnmt1, and the results are shown in Table 5 below.

그 결과, Dnmt3b(p=0.035)와 Suv39h1(p=0.001) 유전자의 발현이 체외수정란 및 복제수정란 간 유의적인 차이가 있음을 확인하였다(도 5).
As a result, it was confirmed that the expression of Dnmt3b (p = 0.035) and Suv39h1 (p = 0.001) genes were significantly different between in vitro and in vitro fertilized embryos (FIG. 5).

소 체외수정란 및 복제수정란에서 Bovine embryos and cloned embryos 후성유전Fusheng oilfield 재편 관련 유전자의 발현 양 Amount of expression of rearranged genes b-NTb-NT STDSTD b-IVFb-IVF STDSTD P 값P value Dnmt1Dnmt1 00 00 0.0403820.040382 0.1418480.141848 0.406020.40602 Dnmt3aDnmt3a 1.0935261.093526 0.1252230.125223 1.0579541.057954 0.1835490.183549 0.608790.60879 Dnmt3bDnmt3b 0.695710.69571 0.3241420.324142 0.9384830.938483 0.2266630.226663 0.03480.0348 Suv39h1Suv39h1 0.34460.3446 0.3820530.382053 0.0088410.008841 0.0364530.036453 0.001240.00124 G9aG9a 0.2204830.220483 0.3924660.392466 0.1747330.174733 0.3611390.361139 0.767940.76794 EsetEset 0.0185050.018505 0.0318970.031897 0.093440.09344 0.1286760.128676 0.101260.10126 GlpGlp 0.0417010.041701 0.0512950.051295 0.1271160.127116 0.2500940.250094 0.32530.3253 Bmi1Bmi1 0.9308750.930875 0.2261360.226136 0.8477440.847744 0.3175390.317539 0.493920.49392 EedEed 0.0022070.002207 0.006620.00662 00 00 0.174150.17415 Suz12Suz12 00 00 00 00 -- Yy1Yy1 0.610510.61051 0.2938620.293862 0.4441690.444169 0.2055240.205524 0.103790.10379 Jmjd3Jmjd3 00 00 0.0173830.017383 0.0493940.049394 0.306180.30618 Jhdm2aJhdm2a 0.0951570.095157 0.1616930.161693 0.1072850.107285 0.1912350.191235 0.872880.87288 Jhdm3aJhdm3a 0.8855870.885587 0.135140.13514 0.9756080.975608 0.2013850.201385 0.241910.24191

<< 실험예Experimental Example 4>  4> 역분화De-differentiation -줄기세포(-Stem Cells( inducedinduced PluripotentPluripotent StemStem cellcell , , IPSIPS ) ) 후성유전Fusheng oilfield 재편 관련 유전자의 발현 분석 Expression Analysis of Regeneration Related Gene

역분화-줄기세포(induced Pluripotent Stem cell, IPS) 후성유전 재편 관련 유전자의 발현 분석하기 위하여 <실시예>에서 후성유전 재편 관련 유전자를 크게 4개 그룹으로 15개 유전자로 분류하였고 개별 생쥐 배반포를 대상으로 15개 유전자들의 발현을 동시 분석하기 위해서 다중 PCR(multiplex PCR)을 하였다. In order to analyze the expression of the gene related to the reprogramming-induced pluripotent stem cell (IPS) In the <Example>, genes related to the progeny gene rearrangement were classified into four groups of 15 genes, and multiplex PCR was performed to simultaneously analyze the expression of 15 genes in individual mouse blastocysts.

구체적으로, JI 생쥐배아줄기세포(ATCC) 유래 단일 콜로니와 야마나카 인자의 발현으로 유도된 초기 단계의 단일 역분화-줄기세포(IPS) 콜로니로부터 mRNA를 추출하고 15개 후성유전 재편 관련 유전자 발현을 조사하였다. 형질전환 쥐인 4F2A에서 얻은 헤드(HEAD) 세포에서 획득된 IPS는 10% FBS 가 첨가된 배양액을 이용하여 실험 하루 전 마트리겔(Matrigel)로 4 웰 컬처 디쉬 코팅 후 40,000개의 세포를 한 well당 넣어준다. 24시간 후 위 배양액에 2ug/ml농도의 독시사이클린(Doxycyclin)을 첨가해주고 48시간 후부터 넉아웃 DMEM에 넉아웃 SR 10%, ES 세포용 FBS 5%가 들어간 배양액에 독시사이클린을 첨가해 7일 이상 배양시키며 관찰하면 iPS 콜로니가 생성되는데 이 콜로니 1개씩 유리 피펜(pipette)을 이용하여 분리 후PBS로 씻어낸 후 PCR tube에 넣어 실험을 수행하였다. <실시예>에 상기 [표 2]의 1차 및 2차 PCR에 사용한 프라이머를 이용하여 역전사(reverse transcription, RT) 반응 및 1차 PCR을 모두 한 튜브 내에서 수행하였다. PCR 반응액은 원-스텝 RT-PCR 키트(Qiagen, USA)에 생쥐 배아줄기세포 콜로니 또는 iPS 콜로니1개를 주형(template)으로 10 피코 몰(pico mole)의 [표 2]의 각각 15개의 프라이머를 각각 1 ㎕ 혼합하여 0.1 피코 몰(pico mole) 이 되도록 총 100 ㎕로 조성하였다. PCR은 DNA Engine (BIORAD, USA)을 이용하여 94℃에서 30초 전변성(predenaturation)한 후 94℃에서 15분간 변성(denaturation), 72℃에서 30초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 40회 수행하고 마지막으로 72℃에서 30초간 반응시켰다. 1차 PCR 생성물을 100배 희석 후 4개 서브그룹(subgroup)으로 나누어 2차 PCR을 위한 주형으로 사용하였다. PCR 반응액은 PCR Pre-Mix(Bioneer, Korea)에 1st PCR 생성물를 1/100으로 희석하여 5 ul를 주형(template)으로 넣은 후 10 피코 몰(pico mole)의 상기 [표 2]의 각각 15개의 프라이머를 4개의 하위그룹에 각각 10 ㎕ 혼합하여 총 100 ㎕로 조성하여 1 피코 몰(pico mole)이 되도록 하였다. PCR은 DNA Engine (BIORAD, USA)을 이용하여 94℃에서 30초 전변성(predenaturation)한 후 94℃에서 15분간 변성(denaturation), 72℃에서 30초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 40회 수행하고 마지막으로 72℃에서 30초간 반응시켰다. 또한, 비교군으로 iPS 유도시 사용한 체세포의 발현 패턴도 조사하였다. 15개 유전자 중 가장 일정하고 안정된 발현을 보이는 Lsd1 밴드를 기준으로 상대적인 발현량을 그래프로 나타내었고 다중 PCR 결과로 나온 밴드의 인텐시티(band intensity)를 정량하기 위해 TINA2.0 소프트웨어(software)를 사용하여 수치화한 후 Dnmt1의 값을 기준으로 상대적인 발현량을 조사하여 하기 [표 6]에 나타내었다. Specifically, mRNA was extracted from early stage single-differentiation-stem cell (IPS) colonies induced by expression of a single colony and Yamanaka factor derived from JI mouse embryonic stem cell (ATCC), and 15 genes Respectively. The IPS obtained from the HEAD cells obtained from the transgenic mouse 4F2A was cultured in a culture medium supplemented with 10% FBS, and 4,000 cells were seeded per well into a 4-well culture dish coated with Matrigel one day before the experiment . Doxycyclin at a concentration of 2 ug / ml was added to the culture supernatant after 24 hours. Doxycyclin was added to the culture solution containing knockout SR 10% and 5% FBS for ES cells in a knockout DMEM for 48 days. After observation, iPS colonies were generated. One colony was separated by using a glass pipette, washed with PBS, and then placed in a PCR tube. The reverse transcription (RT) reaction and the first PCR were performed in a single tube using the primers used in the primary and secondary PCRs of the above Table 2, respectively. The PCR reaction mixture was prepared by adding 1 mouse oocyte stem cell colony or iPS colony as a template to 15 primers (pico moles) of [Table 2] in a one-step RT-PCR kit (Qiagen, USA) Were mixed to prepare a total of 100 mu l so as to be 0.1 picomoles. PCR was performed using DNA Engine Followed by denaturation at 94 ° C for 15 minutes, annealing at 72 ° C for 30 seconds, extension at 72 ° C for 30 seconds, and subsequent denaturation at 94 ° C for 30 seconds. 40 times, and finally at 72 ° C for 30 seconds. The first PCR product was diluted 100-fold and then divided into 4 subgroups and used as a template for the second PCR. The PCR reaction mixture was diluted to 1/100 of 1 st PCR product in a PCR Pre-Mix (Bioneer, Korea), 5 μl was added as a template, and 10 pico moles of each of 15 10 primers were mixed with 4 subgroups of 10 μl each to give a total of 100 μl to give 1 pico mole. PCR was performed using DNA Engine Followed by denaturation at 94 ° C for 15 minutes, annealing at 72 ° C for 30 seconds, extension at 72 ° C for 30 seconds, and subsequent denaturation at 94 ° C for 30 seconds. 40 times, and finally at 72 ° C for 30 seconds. In addition, expression patterns of somatic cells used for iPS induction as a comparative group were also examined. Relative expression levels were plotted on the basis of the Lsd1 band, which is the most constant and stable expression among the 15 genes. To quantify the band intensities of the multiplex PCR, TINA2.0 software After the quantification, the relative expression level was examined based on the value of Dnmt1, and the results are shown in Table 6 below.

그 결과, Dnmt3a(p=1.33E-5), Dnmt3b(p=6.97E-4) 및 G9a(p=0.008) 등의 유전자에서 두 그룹간 발현 양의 차이가 유의적으로 나타남을 확인하였다(도 6).
As a result, it was confirmed that the difference in the expression level between the two groups was significant in genes such as Dnmt3a (p = 1.33E-5), Dnmt3b (p = 6.97E-4) and G9a (p = 0.008) 6).

생쥐배아줄기세포(ES)와Mouse embryonic stem cells (ES) and 역분화De-differentiation -줄기세포(-Stem Cells( iPSiPS )에서 )in 후성유전Fusheng oilfield 재편 관련 유전자의 발현 분석 Expression Analysis of Regeneration Related Gene ESES ES-STDVES-STDV iPSiPS iPS-STDViPS-STDV P 값P value Dnmt1Dnmt1 0.2727920.272792 0.1651840.165184 0.2490830.249083 0.0977530.097753 0.624020.62402 Dnmt3aDnmt3a 1.0116691.011669 0.3047940.304794 0.62.8740.62.874 0.0961190.096119 1.33433E-51.33433E-5 Dnmt3bDnmt3b 0.8724410.872441 0.3378860.337886 0.4804440.480444 0.2234130.223413 6.97286E-46.97286E-4 Suv39h1Suv39h1 0.1864580.186458 0.1846170.184617 0.3084030.308403 0.2374080.237408 0.16680.1668 G9aG9a 0.6250470.625047 0.3216530.321653 0.3785880.378588 0.1545410.154541 0.007890.00789 EsetEset 0.7493260.749326 0.3206670.320667 0.6684430.668443 0.2455140.245514 0.448950.44895 GlpGlp 0.911470.91147 0.1583920.158392 0.1907060.190706 0.1802320.180232 0.149640.14964 Bmi1Bmi1 0.2451820.245182 0.3166070.316607 0.3443180.344318 0.2269210.226921 0.331750.33175 EedEed 0.3425650.342565 0.281750.28175 0.2420230.242023 0.1696880.169688 0.231520.23152 Suz12Suz12 0.371470.37147 0.2200550.220055 0.4074140.407414 0.2636690.263669 0.713780.71378 Yy1Yy1 0.1975290.197529 0.1542320.154232 0.2268890.226889 0.1402250.140225 0.604960.60496 Jmjd3Jmjd3 0.1437550.143755 0.2184910.218491 0.2067460.206746 0.1424090.142409 0.348950.34895 Jhdm2aJhdm2a 0.3560570.356057 0.1966110.196611 0.3525120.352512 0.2132490.213249 0.965220.96522 Jhdm3aJhdm3a 0.3706870.370687 0.5335020.533502 0.2558360.255836 0.1238340.123834 0.360830.36083

<110> Korea Research Institute of Bioscience and Biotechnology <120> Quality evaluation method of de-differentiating cells including early embryos and stem cells <130> 12p-05-56 <160> 60 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Dnmt1 forward 5'-3' <400> 1 cagtggcatg aaccgcttca 20 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Dnmt1 reverse 5'-3' <400> 2 gtctgggcca cgccatact 19 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Dnmt1 forward 5'-3' <400> 3 gctactgtga ctactaccg 19 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Dnmt1 reverse 5'-3' <400> 4 aaaggtgcac tggtagcc 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Dnmt3a forward 5'-3' <400> 5 tcaaggagat cattgatg 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Dnmt3a reverse 5'-3' <400> 6 tgttcccaca catgagca 18 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Dnmt3a forward 5'-3' <400> 7 agcggctggt gtatgagg 18 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Dnmt3a reverse 5'-3' <400> 8 agcagatggt gcaataggac 20 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Dnmt3b forward 5'-3' <400> 9 cctacccgga atgaacag 18 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Dnmt3b reverse 5'-3' <400> 10 acaggcaaag tagtccttc 19 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Dnmt3b forward 5'-3' <400> 11 agctcgagct gcaggact 18 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Dnmt3b reverse 5'-3' <400> 12 agatcctttc gagctcagtg 20 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Suv39h1 forward 5'-3' <400> 13 ccatctacga gtgcaactc 19 <210> 14 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Suv39h1 reverse 5'-3' <400> 14 ctcatcaagg ttgtctatg 19 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suv39h1 forward 5'-3' <400> 15 cgctacgatc tctgcatctt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suv39h1 reverse 5'-3' <400> 16 acaaaatgag agatgttgcc 20 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> G9a forward 5'-3' <400> 17 gacagaacgc gggtttgag 19 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> G9a reverse 5'-3' <400> 18 caggccttat ggaagcgg 18 <210> 19 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> G9a forward 5'-3' <400> 19 agggcacaag tgcatggc 18 <210> 20 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> G9a reverse 5'-3' <400> 20 cccgctgtgc agaagtag 18 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Eset forward 5'-3' <400> 21 cacacgccag ttctatga 18 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Eset reverse 5'-3' <400> 22 tcaggaagac ccagttcct 19 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Eset forward 5'-3' <400> 23 acctcaatca cagttgcagc 20 <210> 24 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Eset reverse 5'-3' <400> 24 ctccttgcct tccacactg 19 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Glp forward 5'-3' <400> 25 tggtcaagta tgagctgatg c 21 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Glp reverse 5'-3' <400> 26 tgctatggtc acctctttg 19 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Glp forward 5'-3' <400> 27 atggtgaagc accagtgctg 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Glp reverse 5'-3' <400> 28 cattgttgac tcgagaggca 20 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Bmi1 forward 5'-3' <400> 29 gagggtactt cattgatg 18 <210> 30 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Bmi1 reverse 5'-3' <400> 30 actttccgat ccaatctg 18 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Bmi1 forward 5'-3' <400> 31 gagaccagca agtattgtcc 20 <210> 32 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Bmi1 reverse 5'-3' <400> 32 caagcttatt atctcatcat cag 23 <210> 33 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Eed forward 5'-3' <400> 33 ctgagtgctg attatgatc 19 <210> 34 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Eed reverse 5'-3' <400> 34 tatgaggatc ttctacttc 19 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Eed forward 5'-3' <400> 35 tctaccagag acatacatag 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Eed reverse 5'-3' <400> 36 ccaaatgtca cactggctgt 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suz12 forward 5'-3' <400> 37 ctctatttcc acagtgatac 20 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Suz12 reverse 5'-3' <400> 38 tatctattga cattatgc 18 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suz12 forward 5'-3' <400> 39 aaggagagaa agaagtgatg 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suz12 reverse 5'-3' <400> 40 tcatgcatgc tgactagatg 20 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Yy1 forward 5'-3' <400> 41 aagaagtggg agcagaagc 19 <210> 42 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Yy1 reverse 5'-3' <400> 42 tgttcttgga gcatcatc 18 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Yy1 forward 5'-3' <400> 43 tgcagatcaa gaccctgga 19 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Yy1 reverse 5'-3' <400> 44 gagttctctc caatgatctg 20 <210> 45 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jmjd3 forward 5'-3' <400> 45 ctcaccatca gccactgtg 19 <210> 46 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jmjd3 reverse 5'-3' <400> 46 agctctcaca gggccagat 19 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jmjd3 forward 5'-3' <400> 47 tgccagcaag aatgccaag 19 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Jmjd3 reverse 5'-3' <400> 48 ccagagtctt ggtggagaaa 20 <210> 49 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jhdm2 forward 5'-3' <400> 49 agcattcttg gctttgaca 19 <210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jhdm2 reverse 5'-3' <400> 50 catcagatca tcaaacctg 19 <210> 51 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Jhdm2 forward 5'-3' <400> 51 ggcagccagt gatggtgt 18 <210> 52 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Jhdm2 reverse 5'-3' <400> 52 ccttaagttt caacaccatt g 21 <210> 53 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Jhdm3a forward 5'-3' <400> 53 ttctaccagt gtgaggtg 18 <210> 54 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jhdm3a reverse 5'-3' <400> 54 tctcattgaa gcgcatgtc 19 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Jhdm3a forward 5'-3' <400> 55 catagtgagt caggactgtc 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Jhdm3a reverse 5'-3' <400> 56 agtctagact tgactctctt 20 <210> 57 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Lsd1 forward 5'-3' <400> 57 tctggcttgg cagcagctc 19 <210> 58 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Lsd1 reverse 5'-3' <400> 58 gtggcttcta gcaaccggt 19 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Lsd1 forward 5'-3' <400> 59 acttctggaa gccagggatc 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Lsd1 reverse 5'-3' <400> 60 cttgatcttg gccagttcca 20 <110> Korea Research Institute of Bioscience and Biotechnology <120> Quality evaluation method of de-differentiating cells including          early embryos and stem cells <130> 12p-05-56 <160> 60 <170> Kopatentin 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Dnmt1 forward 5'-3 ' <400> 1 cagtggcatg aaccgcttca 20 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dnmt1 reverse 5'-3 ' <400> 2 gtctgggcca cgccatact 19 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Dnmt1 forward 5'-3 ' <400> 3 gctactgtga ctactaccg 19 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dnmt1 reverse 5'-3 ' <400> 4 aaaggtgcac tggtagcc 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dnmt3a forward 5'-3 ' <400> 5 tcaaggagat cattgatg 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dnmt3a reverse 5'-3 ' <400> 6 tgttcccaca catgagca 18 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dnmt3a forward 5'-3 ' <400> 7 agcggctggt gtatgagg 18 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dnmt3a reverse 5'-3 ' <400> 8 agcagatggt gcaataggac 20 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dnmt3b forward 5'-3 ' <400> 9 cctacccgga atgaacag 18 <210> 10 <211> 19 <212> DNA <213> Artificial Sequence <220> Dnmt3b reverse 5'-3 ' <400> 10 acaggcaaag tagtccttc 19 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dnmt3b forward 5'-3 ' <400> 11 agctcgagct gcaggact 18 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> Dnmt3b reverse 5'-3 ' <400> 12 agatcctttc gagctcagtg 20 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Suv39h1 forward 5'-3 ' <400> 13 ccatctacga gtgcaactc 19 <210> 14 <211> 19 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Suv39h1 reverse 5'-3 ' <400> 14 ctcatcaagg ttgtctatg 19 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suv39h1 forward 5'-3 ' <400> 15 cgctacgatc tctgcatctt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Suv39h1 reverse 5'-3 ' <400> 16 acaaaatgag agatgttgcc 20 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> G9a forward 5'-3 ' <400> 17 gacagaacgc gggtttgag 19 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> G9a reverse 5'-3 ' <400> 18 caggccttat ggaagcgg 18 <210> 19 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> G9a forward 5'-3 ' <400> 19 agggcacaag tgcatggc 18 <210> 20 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> G9a reverse 5'-3 ' <400> 20 cccgctgtgc agaagtag 18 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Eset forward 5'-3 ' <400> 21 cacacgccag ttctatga 18 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Eset reverse 5'-3 ' <400> 22 tcaggaagac ccagttcct 19 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Eset forward 5'-3 ' <400> 23 acctcaatca cagttgcagc 20 <210> 24 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Eset reverse 5'-3 ' <400> 24 ctccttgcct tccacactg 19 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Glp forward 5'-3 ' <400> 25 tggtcaagta tgagctgatg c 21 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Glp reverse 5'-3 ' <400> 26 tgctatggtc acctctttg 19 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Glp forward 5'-3 ' <400> 27 atggtgaagc accagtgctg 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Glp reverse 5'-3 ' <400> 28 cattgttgac tcgagaggca 20 <210> 29 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bmi1 forward 5'-3 ' <400> 29 gagggtactt cattgatg 18 <210> 30 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bmi1 reverse 5'-3 ' <400> 30 actttccgat ccaatctg 18 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bmi1 forward 5'-3 ' <400> 31 gagaccagca agtattgtcc 20 <210> 32 <211> 23 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Bmi1 reverse 5'-3 ' <400> 32 caagcttatt atctcatcat cag 23 <210> 33 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Eed forward 5'-3 ' <400> 33 ctgagtgctg attatgatc 19 <210> 34 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Eed reverse 5'-3 ' <400> 34 tatgaggatc ttctacttc 19 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Eed forward 5'-3 ' <400> 35 tctaccagag acatacatag 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Eed reverse 5'-3 ' <400> 36 ccaaatgtca cactggctgt 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suz12 forward 5'-3 ' <400> 37 ctctatttcc acagtgatac 20 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Suz12 reverse 5'-3 ' <400> 38 tatctattga cattatgc 18 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suz12 forward 5'-3 ' <400> 39 aaggagagaa agaagtgatg 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Suz12 reverse 5'-3 ' <400> 40 tcatgcatgc tgactagatg 20 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Yy1 forward 5'-3 ' <400> 41 aagaagtggg agcagaagc 19 <210> 42 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Yy1 reverse 5'-3 ' <400> 42 tgttcttgga gcatcatc 18 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Yy1 forward 5'-3 ' <400> 43 tgcagatcaa gaccctgga 19 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Yy1 reverse 5'-3 ' <400> 44 gagttctctc caatgatctg 20 <210> 45 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jmjd3 forward 5'-3 ' <400> 45 ctcaccatca gccactgtg 19 <210> 46 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jmjd3 reverse 5'-3 ' <400> 46 agctctcaca gggccagat 19 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jmjd3 forward 5'-3 ' <400> 47 tgccagcaag aatgccaag 19 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Jmjd3 reverse 5'-3 ' <400> 48 ccagagtctt ggtggagaaa 20 <210> 49 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jhdm2 forward 5'-3 ' <400> 49 agcattcttg gctttgaca 19 <210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jhdm2 reverse 5'-3 ' <400> 50 catcagatca tcaaacctg 19 <210> 51 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Jhdm2 forward 5'-3 ' <400> 51 ggcagccagt gatggtgt 18 <210> 52 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Jhdm2 reverse 5'-3 ' <400> 52 ccttaagttt caacaccatt g 21 <210> 53 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Jhdm3a forward 5'-3 ' <400> 53 ttctaccagt gtgaggtg 18 <210> 54 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Jhdm3a reverse 5'-3 ' <400> 54 tctcattgaa gcgcatgtc 19 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Jhdm3a forward 5'-3 ' <400> 55 catagtgagt caggactgtc 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Jhdm3a reverse 5'-3 ' <400> 56 agtctagact tgactctctt 20 <210> 57 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Lsd1 forward 5'-3 ' <400> 57 tctggcttgg cagcagctc 19 <210> 58 <211> 19 <212> DNA <213> Artificial Sequence <220> Lsd1 reverse 5'-3 ' <400> 58 gtggcttcta gcaaccggt 19 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Lsd1 forward 5'-3 ' <400> 59 acttctggaa gccagggatc 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> Lsd1 reverse 5'-3 ' <400> 60 cttgatcttg gccagttcca 20

Claims (13)

1) 하기 i) 내지 iii) 중 어느 하나의 실험군 및 대조군을 각각 준비하는 단계:
i) 실험군은 체외배양 배반포 및 대조군은 인간을 제외한 포유류의 체내배양 배반포;
ⅱ) 실험군은 체외수정 후 체외배양 배반포 및 대조군은 인간을 제외한 포유류의 체내배양 배반포; 및
ⅲ) 실험군은 복제수정란 및 대조군은 체외수정란;
2) 상기 단계 1)의 실험군 및 대조군으로부터 각각 유래된 단일 배아 또는 단일 세포 콜로니로부터 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머들을 이용하여 다중 RT-PCR을 수행하여 상기 15개 유전자들의 발현 정도를 분석하는 단계:
Dnmt1(DNA methyltransferase 1), Dnmt3a(DNA methyltransferase 3a), Dnmt3b(DNA methyltransferase 3b), G9a, GLP(G9a-like protein), ESET(ERG-associated protein with a SET domain), Suv39h1(suppressor of variegation 3-9 homolog 1), Eed(embryonic ectoderm development), Suz12(suppressor of zeste 12 homolog ), Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3); 및
3) 상기 단계 2)에서 분석한 실험군의 유전자 발현 정도를 대조군의 유전자 발현 정도와 비교하여 하기 a) 내지 c)로 판정하는 단계:
를 포함하는 배아 세포의 복제 효율을 증가시키는 양질성(quality) 판단 방법.
a) 상기 단계 1)에서 i)인 경우, Dnmt1, Suv39h1, Glp 및 Eed 유전자가 대조군에 비해 증가하면 실험군의 복제효율이 대조군보다 높은 것이고;
b) 상기 단계 1)에서 ⅱ)인 경우, Dnmt1, Dnmt3a, Dnmt3b, Suv39h1, G9a, ESET, Glp, Eed, Jmjd3, Jhdm2a 유전자가 대조군에 비해 증가하면 실험군의 복제효율이 대조군보다 높은 것이고;
c) 상기 단계 1)에서 ⅲ)인 경우, Dnmt3b 및 Suv39h1 유전자를 대조군과 비교하여 각각의 p의 값이 0.05 이하로서 유의적 차이가 있으면 복제효율이 대조군보다 높은 것임.
1) preparing an experimental group and a control group of any one of the following i) to iii)
i) In vitro culture blastocysts and control group were cultured in mammals other than humans; blastocysts;
Ii) In vitro cultured blastocysts after in vitro fertilization and the control group were cultured in vitro in mammals other than humans; blastocysts; And
Iii) Cloned embryos in the experimental group and in vitro embryos in the control group;
2) Multiple RT-PCR was performed using primers capable of amplifying each of the following 15 genes from a single embryo or a single cell colony derived from each of the experimental group and the control group in the above step 1) to determine the expression level of the 15 genes Analysis step:
DNA methyltransferase 3a, Dnmt3b DNA methyltransferase 3b, G9a, GLP (G9a-like protein), ESET (ERG-associated protein with a SET domain), Suv39h1 (suppressor of variant 3- 9 homolog 1), Eed (embryonic ectoderm development), Suz12 (suppressor of zeste 12 homolog), Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A (JmjC-Containing H3K9 Demethylase 3A) and JMJD3 (Jumonji domain 3); And
3) comparing the gene expression level of the test group analyzed in the step 2) with the gene expression level of the control group to determine the following a) to c):
Wherein the method comprises the steps of: determining the quality of the embryonic cell;
a) If the Dnmt1, Suv39h1, Glp and Eed genes are increased as compared to the control group in step i) above, the replication efficiency of the test group is higher than that of the control group;
b) In step ii) of the step 1), when the Dnmt1, Dnmt3a, Dnmt3b, Suv39h1, G9a, ESET, Glp, Eed, Jmjd3 and Jhdm2a genes are increased as compared with the control group, the replication efficiency of the test group is higher than that of the control group;
c) In the case of iii) in the above step 1), the Dnmt3b and Suv39h1 genes are compared with the control group and the value of each p is 0.05 or less. If there is a significant difference, the replication efficiency is higher than that of the control.
삭제delete 1) 하기의 실험군 및 대조군을 각각 준비하는 단계:
실험군은 역분화 만능 줄기 세포 유래 콜로니 및 대조군은 배아줄기세포 유래 콜로니;
2) 상기 단계 1)의 실험군 및 대조군으로부터 각각 유래된 단일 세포 콜로니로부터 하기 15개의 유전자를 각각 증폭할 수 있는 프라이머들을 이용하여 다중 RT-PCR을 수행하여 상기 15개 유전자들의 발현 정도를 분석하는 단계:
Dnmt1(DNA methyltransferase 1), Dnmt3a(DNA methyltransferase 3a), Dnmt3b(DNA methyltransferase 3b), G9a, GLP(G9a-like protein), ESET(ERG-associated protein with a SET domain), Suv39h1(suppressor of variegation 3-9 homolog 1), Eed(embryonic ectoderm development), Suz12(suppressor of zeste 12 homolog ), Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3); 및
3) 상기 단계 2)에서 분석한 실험군의 유전자 발현 정도를 대조군의 유전자 발현 정도와 비교하여 하기 a)로 판정하는 단계:
를 포함하는 역분화 세포의 iPS(induced-pluripotent stem cell) 효율을 증가시키는 양질성(quality) 판단 방법.
a) 상기 단계 1)에서, Dnmt3a, Dnmt3b 및 G9a 유전자를 대조군과 비교하여 각각의 p의 값이 0.05 이하로서 유의적 차이가 있으면 iPS 효율이 대조군보다 높은 것임.
1) preparing the following experimental group and control group, respectively:
The experimental group was a population of pluripotent pluripotent stem cells and the control group was embryonic stem cell-derived colonies;
2) performing multiple RT-PCR using primers capable of amplifying each of the following 15 genes from the single cell colonies derived from the experimental group and the control group of the step 1) to analyze the expression level of the 15 genes :
DNA methyltransferase 3a, Dnmt3b DNA methyltransferase 3b, G9a, GLP (G9a-like protein), ESET (ERG-associated protein with a SET domain), Suv39h1 (suppressor of variant 3- 9 homolog 1), Eed (embryonic ectoderm development), Suz12 (suppressor of zeste 12 homolog), Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A (JmjC-Containing H3K9 Demethylase 3A) and JMJD3 (Jumonji domain 3); And
3) comparing the gene expression level of the test group analyzed in the step 2) with the gene expression level of the control group,
(IPS) efficiency of regenerated cells comprising the same.
a) In step 1), when the Dnmt3a, Dnmt3b and G9a genes are compared with the control group and the value of each p is 0.05 or less, iPS efficiency is higher than that of the control group.
제 1항에 있어서, 상기 단계 3)의 유전자는 후성유전 재편(epigenetic reprogramming) 관련 유전자인 것을 특징으로 하는 배아 세포의 복제 효율을 증가시키는 양질성 판단 방법.
[3] The method according to claim 1, wherein the gene of step 3) is a gene related to epigenetic reprogramming.
제 1항에 있어서, 상기 단계 3)의 유전자 중에서 Dnmt1, Dnmt3a 및 Dnmt3b은 DNA 메틸화 효소이고, G9a, GLP, ESET 및 Suv39h1은 히스톤 메틸화 효소이며, Eed, Suz12, Bmil 및 YY1은 폴리콤 단백질이고, LSD1, JHDM2A, JHDM3A 및 JMJD3은 히스톤 탈메틸화 효소인 것을 특징으로 하는 배아 세포의 복제 효율을 증가시키는 양질성 판단 방법.
The method according to claim 1, wherein Dnmt1, Dnmt3a and Dnmt3b among the genes of step 3) are DNA methylase, G9a, GLP, ESET and Suv39h1 are histone methylation enzymes, Eed, Suz12, Bmil and YY1 are polycomb proteins, LSD1 , JHDM2A, JHDM3A and JMJD3 are histone demethylating enzymes, which increase the replication efficiency of embryonic cells.
제 1항에 있어서, 상기 단계 2)의 프라이머는 서열번호 1 내지 서열번호 60 중 어느 하나의 염기서열로 구성되는 것을 특징으로 하는 배아 세포의 복제 효율을 증가시키는 양질성(quality) 판단 방법.
The method according to claim 1, wherein the primer of step 2) comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 60.
삭제delete 제 1항에 있어서, 상기 단계 2)의 다중 RT-PCR은
1) 서열번호 1 내지 서열번호 60의 프라이머를 이용하여 동시에 1차 중합효소반응을 시키는 단계; 및
2) 상기 단계 1)의 1차 중합효소반응 생성물을 희석하고 2차 중합효소반응을 위한 주형으로 사용하여 네스티드(nested) 중합효소반응 프라이머 쌍으로 이차 네스티드 중합효소반응을 시키는 것을 특징으로 하는 배아 세포의 복제 효율을 증가시키는 양질성 판단 방법.
2. The method of claim 1, wherein the multiple RT-PCR of step 2)
1) subjecting the primers of SEQ ID NO: 1 to SEQ ID NO: 60 to a first polymerase reaction simultaneously; And
2) The first polymerase reaction product of step 1) is diluted and used as a template for a second polymerase reaction to perform a secondary nested polymerase reaction with a pair of nested polymerase enzyme reaction primers A method of quality determination which increases the replication efficiency of embryonic cells.
하기 15개의 유전자를 각각 증폭할 수 있는 프라이머를 포함하는 역분화 세포의 iPS(induced-pluripotent stem cell) 효율을 증가시키는 양질성 판단용 키트:
Dnmt1(DNA methyltransferase 1), Dnmt3a(DNA methyltransferase 3a), Dnmt3b(DNA methyltransferase 3b), G9a, GLP(G9a-like protein), ESET(ERG-associated protein with a SET domain), Suv39h1(suppressor of variegation 3-9 homolog 1), Eed(embryonic ectoderm development), Suz12(suppressor of zeste 12 homolog ), Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3).
A kit for quality assessment to increase the induced-pluripotent stem cell (iPS) efficiency of a degenerated cell comprising primers capable of amplifying the following 15 genes, respectively:
DNA methyltransferase 3a, Dnmt3b DNA methyltransferase 3b, G9a, GLP (G9a-like protein), ESET (ERG-associated protein with a SET domain), Suv39h1 (suppressor of variant 3- 9 homolog 1), Eed (embryonic ectoderm development), Suz12 (suppressor of zeste 12 homolog), Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine demethylase 1), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A (JmjC-Containing H3K9 Demethylase 3A) and JMJD3 (Jumonji domain 3).
하기 15개의 유전자를 각각 증폭할 수 있는 프라이머를 포함하는 배반포 또는 수정란 세포의 복제 효율을 증가시키는 양질성 판단용 키트:
Dnmt1(DNA methyltransferase 1), Dnmt3a(DNA methyltransferase 3a), Dnmt3b(DNA methyltransferase 3b), G9aGLP(G9a-like protein), ESET(ERG-associated protein with a SET domain), Suv39h1(suppressor of variegation 3-9 homolog 1), Eed(embryonic ectoderm development), Suz12(suppressor of zeste 12 homolog ), Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3).
A kit for determining the quality of a blastocyst or a fertilized egg cell which includes a primer capable of amplifying the following 15 genes, respectively,
(DNA methyltransferase 1), Dnmt3a (DNA methyltransferase 3a), Dnmt3b (DNA methyltransferase 3b), G9aGLP (G9a-like protein), ESET (ERG-associated protein with a SET domain), Suv39h1 (suppressor of variant 3-9 homolog 1), Eed (embryonic ectoderm development), Suz12 (suppressor of zeste 12 homolog), Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine ), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A (JmjC-Containing H3K9 Demethylase 3A) and JMJD3 (Jumonji domain 3).
제 10항에 있어서, 상기 프라이머는 서열번호 1 내지 서열번호 60 중 어느 하나의 염기서열로 구성되는 것을 특징으로 하는 배반포 또는 수정란 세포의 복제 효율을 증가시키는 양질성 판단용 키트.
[Claim 11] The kit for determining the quality of a blastocyst or embryo cell according to claim 10, wherein the primer comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO:
하기 15개의 유전자를 각각 증폭할 수 있는 프라이머들을 포함하는 배반포 또는 수정란 세포의 복제 효율을 증가시키는 양질성 판단용 바이오칩:
Dnmt1(DNA methyltransferase 1), Dnmt3a(DNA methyltransferase 3a), Dnmt3b(DNA methyltransferase 3b), G9aGLP(G9a-like protein), ESET(ERG-associated protein with a SET domain), Suv39h1(suppressor of variegation 3-9 homolog 1), Eed(embryonic ectoderm development), Suz12(suppressor of zeste 12 homolog ), Bmi1(B lymphoma Mo-MLV insertion region 1 homolog), YY1(yin-yang protein), LSD1(lysine (K)-specific demethylase 1), JHDM2A(JmjC-Containing H3K9 Demethylase 2A), JHDM3A(JmjC-Containing H3K9 Demethylase 3A) 및 JMJD3(Jumonji domain 3).
A biochip for quality determination to increase the replication efficiency of a blastocyst or embryo cell containing primers capable of amplifying the following 15 genes, respectively:
(DNA methyltransferase 1), Dnmt3a (DNA methyltransferase 3a), Dnmt3b (DNA methyltransferase 3b), G9aGLP (G9a-like protein), ESET (ERG-associated protein with a SET domain), Suv39h1 (suppressor of variant 3-9 homolog 1), Eed (embryonic ectoderm development), Suz12 (suppressor of zeste 12 homolog), Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog), YY1 (yin-yang protein), LSD1 (lysine ), JHDM2A (JmjC-Containing H3K9 Demethylase 2A), JHDM3A (JmjC-Containing H3K9 Demethylase 3A) and JMJD3 (Jumonji domain 3).
제 12항에 있어서, 상기 프라이머는 서열번호 1 내지 서열번호 60 중 어느 하나의 염기서열로 구성되는 것을 특징으로 하는 배반포 또는 수정란 세포의 복제 효율을 증가시키는 양질성 판단용 바이오칩.










13. The biochip for quality control as claimed in claim 12, wherein the primer comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 60.










KR1020120105720A 2012-09-24 2012-09-24 Quality evaluation method of de-differentiating cells including early embryos and stem cells KR101599523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120105720A KR101599523B1 (en) 2012-09-24 2012-09-24 Quality evaluation method of de-differentiating cells including early embryos and stem cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120105720A KR101599523B1 (en) 2012-09-24 2012-09-24 Quality evaluation method of de-differentiating cells including early embryos and stem cells

Publications (2)

Publication Number Publication Date
KR20140043539A KR20140043539A (en) 2014-04-10
KR101599523B1 true KR101599523B1 (en) 2016-03-03

Family

ID=50651988

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120105720A KR101599523B1 (en) 2012-09-24 2012-09-24 Quality evaluation method of de-differentiating cells including early embryos and stem cells

Country Status (1)

Country Link
KR (1) KR101599523B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120207744A1 (en) * 2009-03-19 2012-08-16 Mendlein John D Reprogramming compositions and methods of using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120207744A1 (en) * 2009-03-19 2012-08-16 Mendlein John D Reprogramming compositions and methods of using the same

Also Published As

Publication number Publication date
KR20140043539A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
Huang et al. Association of telomere length with authentic pluripotency of ES/iPS cells
Uysal et al. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos
John The control of mtDNA replication during differentiation and development
Haston et al. Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro
Wrenzycki et al. Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer
Tian et al. Functional oocytes derived from granulosa cells
JP7474520B2 (en) Media for mammalian stem cell expansion potential, compositions and methods thereof
Madeja et al. Beyond the mouse: Non-rodent animal models for study of early mammalian development and biomedical research
JP2008516633A (en) Methods for generating homozygous animals for genetic modification
Kohda et al. Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development
Fulka et al. Chromatin in early mammalian embryos: achieving the pluripotent state
CN104024404A (en) Haploid cells
Luo et al. Offspring production of ovarian organoids derived from spermatogonial stem cells by defined factors with chromatin reorganization
Cao et al. Live birth of chimeric monkey with high contribution from embryonic stem cells
US8198082B2 (en) Method of determining chicken embryonic stem cells
Khampang et al. Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells
AU2013331101A1 (en) Methods for generating genetically superior animals
Assadollahi et al. Effect of embryo cryopreservation on derivation efficiency, pluripotency, and differentiation capacity of mouse embryonic stem cells
KR101599523B1 (en) Quality evaluation method of de-differentiating cells including early embryos and stem cells
CN116536272A (en) Compositions and methods for somatic reprogramming and imprinting
Zhang et al. Generation of mouse–human chimeric embryos
US10351876B2 (en) Methods for making and using modified oocytes
Byrne et al. Current progress with primate embryonic stem cells
Barman et al. Derivation and characterization of a ES-like cell line from Indian catfish Heteropneustes fossilis blastulas
WO2016171625A1 (en) Targeting telomerase for cell therapy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190104

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 5