KR101599195B1 - Novel carotenoid nanoparticles - Google Patents

Novel carotenoid nanoparticles Download PDF

Info

Publication number
KR101599195B1
KR101599195B1 KR1020150077522A KR20150077522A KR101599195B1 KR 101599195 B1 KR101599195 B1 KR 101599195B1 KR 1020150077522 A KR1020150077522 A KR 1020150077522A KR 20150077522 A KR20150077522 A KR 20150077522A KR 101599195 B1 KR101599195 B1 KR 101599195B1
Authority
KR
South Korea
Prior art keywords
nanoparticles
carotenoid
carotenoids
mmol
mixture
Prior art date
Application number
KR1020150077522A
Other languages
Korean (ko)
Other versions
KR20150071001A (en
Inventor
최신식
구상호
유지숙
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020150077522A priority Critical patent/KR101599195B1/en
Publication of KR20150071001A publication Critical patent/KR20150071001A/en
Application granted granted Critical
Publication of KR101599195B1 publication Critical patent/KR101599195B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/24Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by six-membered non-aromatic rings, e.g. beta-carotene

Abstract

본 발명은 기존의 카로티노이드 화합물과 부분적으로 다른 구조를 가진 카로티노이드 화합물을 이용한 나노입자 형태에 관한 것이다.
본 발명에 따른 1000 nm 이하의 직경을 가지는 입자로서 신규한 카로티노이드 화합물을 포함하는 카로티노이드 나노입자는 안정성과 기능성 측면에서 기존의 베타 카로틴계열 화합물로 제조된 나노입자에 비하여 현저히 향상된 효과가 있다. 구체적으로, 본 발명의 카로티노이드 나노입자는 안전하게 생체 내로 흡수될 수 있으며 온전한 형태로 산화적 스트레스가 있는 곳까지 운반될 수 있으며 흡수율이나 지속력이 좋지 않은 영양소, 약물, 화장품 등의 전달에도 사용될 수 있다.
The present invention relates to nanoparticle morphology using carotenoid compounds having a partially different structure from conventional carotenoid compounds.
The carotenoid nanoparticles comprising the novel carotenoid compound as particles having a diameter of 1000 nm or less according to the present invention are remarkably improved in terms of stability and functionality as compared with nanoparticles prepared from existing beta carotene compounds. Specifically, the carotenoid nanoparticles of the present invention can be safely absorbed in vivo, can be carried to a place where oxidative stress is intact, and can be used for delivery of nutrients, medicines, cosmetics and the like which have poor water absorption and persistence.

Description

신규한 카로티노이드 나노입자 {Novel carotenoid nanoparticles}Novel carotenoid nanoparticles < RTI ID = 0.0 >

본 발명은 기존의 카로티노이드 화합물과 부분적으로 다른 구조를 가진 카로티노이드 화합물을 이용한 나노입자 형태에 관한 것이다. The present invention relates to nanoparticle morphology using carotenoid compounds having a partially different structure from conventional carotenoid compounds.

카로티노이드는 당근이나 토마토 혹은 새우 등 동식물계에 널리 분포되어있는 빨강·노랑 색소이다. 카로티노이드는 생체 내에서 항산화 작용에 기여하거나 면역작용을 돕는 등의 여러 생리적 활성이 있으며 가장 대표적으로는 provitamin-A로서 작용을 한다. Carotenoids are red and yellow pigments widely distributed in plants and animals such as carrots, tomatoes, and shrimps. Carotenoids have various physiological activities such as contributing to antioxidant activity in vivo or helping immune function, and most act as provitamin-A.

인간을 비롯한 거의 대부분의 동물들은 카로티노이드를 스스로 합성할 수 없으므로 대부분 음식물을 통해 공급받게 된다. 하지만 이러한 식품 내부에 있는 카로티노이드조차 생체 내에서 vitamin-A로의 전환율이 좋지 않고 생물학적 이용도도 낮은 것으로 알려져 있다. 또한, 카로티노이드는 분자 내에 많은 이중결합을 포함하고 있어 공기나 열, 빛에 산화되기 쉬운 불안정한 물질이다.Almost all animals, including humans, can not synthesize carotenoids themselves, so most of them are fed through food. However, even the carotenoids in these foods are known to have poor conversion to vitamin A in vivo and low bioavailability. In addition, carotenoids contain many double bonds in molecules and are unstable substances that are easily oxidized to air, heat, and light.

종래의 이런 문제점들에 대한 해결방안들로는 크게 두 가지가 있는데, 지용성 성분인 카로티노이드를 기름 성분에 녹여서 섭취하는 방법과 수중유적형의 나노입자로 만드는 방법이다. 기름에 녹인 카로티노이드의 경우 불안정한 형태의 카로티노이드들이 기름의 산패를 촉진하고 이런 산패현상이 다시 카로티노이드를 분해하는 연쇄적 반응이 일어나기도 하며 기름에 포함시킬 수 있는 카로티노이드의 양 역시 제한적이라는 문제점이 있다. 또 여전히 생물학적 이용도나 생체 내 전환율이 좋지 않다는 문제점도 있다. Conventionally, there are two solutions to such problems. There are two methods for solving these problems. One is a method of dissolving carotenoid, which is a fat-soluble component, in oil components, and a method of making it into water-like nanoparticles. In the case of carotenoids dissolved in oil, unstable forms of carotenoids promote the acidosis of oil, and this rancorous phenomenon again causes a chain reaction in which carotenoids are decomposed, and the amount of carotenoids that can be included in oil is also limited. There is also a problem that the bioavailability and conversion rate in vivo are not good.

또한, 카로티노이드를 나노입자로 제조한다 하더라도 카로티노이드 자체의 불안정성으로 인하여 나노입자가 햇빛에 노출될 경우 항산화 능력이 현격하게 감소하게 되는 문제점이 있어 왔으며, 카로티노이드 나노입자 자체의 형태 역시 기간 경과에 의해서 크기의 감소 등의 형태 변화를 동반하게 되는 문제점이 있어왔다. In addition, even if carotenoids are prepared as nanoparticles, the antioxidant ability of the nanoparticles is significantly reduced when the nanoparticles are exposed to sunlight due to the instability of the carotenoids themselves. There has been a problem in that it accompanies a change in morphology such as reduction.

이에, 본 발명자는 상기의 문제점이 개선된 카로티노이드 나노입자를 제조하기 위하여 신규한 구조의 카로티노이드 화합물을 이용하여 나노입자를 제조할 경우 생물학적 이용도와 기능성 측면에서 향상된 나노입자를 제공할 수 있다는 것을 확인하여 본 발명을 완성하였다. Accordingly, the inventors of the present invention confirmed that, when nanoparticles were prepared using a carotenoid compound having a novel structure to produce carotenoid nanoparticles having the above problems, nanoparticles improved in biological utility and functionality could be provided Thus completing the present invention.

본 발명은 1000 nm 이하의 직경을 가지는 입자로서 신규한 카로티노이드 화합물을 포함하는 카로티노이드 나노입자를 제공하기 위한 것이다. The present invention is to provide carotenoid nanoparticles comprising a novel carotenoid compound as particles having a diameter of 1000 nm or less.

상기 과제를 해결하기 위하여, 본 발명은 1000 nm 이하의 직경을 가지는 입자로서 하기 화학식 1 또는 화학식 2로 표시되는 카로티노이드 화합물을 포함하는 카로티노이드 나노입자를 제공한다.In order to solve the above problems, the present invention provides carotenoid nanoparticles comprising a carotenoid compound represented by the following formula (1) or (2) as particles having a diameter of 1000 nm or less.

[화학식 1][Chemical Formula 1]

Figure 112015052806652-pat00001
Figure 112015052806652-pat00001

[화학식 2](2)

Figure 112015052806652-pat00002
Figure 112015052806652-pat00002

상기 화학식 1로 표시되는 카로티노이드 화합물 (BAS 카로티노이드, ((1E,3E,5E,7Z,9E,11Z,13E,15E,17E)-7,12-bis(4-methoxyphenyl)-4,15-dimethyloctadeca-1,3,5,7,9,11,13,15,17-nonaene-1,18-diyl)bis(4,1-phenylene))bis(methylsulfane)) 또는 상기 화학식 2로 표시되는 카로티노이드 화합물 (BTS 카로티노이드, ((1E,3E,5E,7Z,9E,11Z,13E,15E,17E)-4,15-dimethyl-7,12-di-p-tolyloctadeca-1,3,5,7,9,11,13,15,17-nonaene-1,18-diyl)bis(4,1-phenylene))bis(methylsulfane))은 테트라터펜(tetraterpene)을 기본구조로 하여 양쪽으로 벤젠고리에 각각 메톡시(methoxy)기 또는 메틸(methyl)기가 치환되어 있는 형태이다.Bis (4-methoxyphenyl) -4,15-dimethyloctadeca- 4-methoxyphenyl-4-methoxyphenyl-4-methoxyphenylcarbamate represented by the above formula (BAS carotenoid, ((1E, 3E, 5E, 7Z, 9E, 11Z, 13E, 15E, 17E) 1,1-diyl) bis (4,1-phenylene)) bis (methylsulfane)) or a carotenoid compound represented by the above formula (2) BTS carotenoid, ((1E, 3E, 5E, 7Z, 9E, 11Z, 13E, 15E, 17E) -4,15-dimethyl-7,12- 11,13,15,17-nonaene-1,18-diyl bis (4,1-phenylene)) bis (methylsulfane)) is a tetraterpene- methoxy group or a methyl group.

본 발명의 상기 화학식 1 또는 화학식 2로 표시되는 카로티노이드 화합물은 화학구조적으로 볼 때, 양끝에 메틸(페닐)설파닐기가 치환되어 있는 구조이며 구조적으로 보다 안정적인 형태이다. The carotenoid compound represented by the formula (1) or (2) of the present invention has a structure in which a methyl (phenyl) sulfanyl group is substituted at both ends in terms of chemical structure, and is structurally more stable.

본 발명의 상기 화학식 1 또는 화학식 2로 표시되는 카로티노이드 화합물은 1000 nm 이하의 직경을 가지는 입자로서 카로티노이드 나노입자형태를 형성하며 더욱 바람직하게는 1 nm 내지 100 nm의 직경을 가지는 나노입자형태를 형성할 수 있다.The carotenoid compound represented by Formula 1 or Formula 2 of the present invention is a particle having a diameter of 1000 nm or less and forms a carotenoid nanoparticle form, more preferably a nanoparticle form having a diameter of 1 nm to 100 nm .

본 발명의 상기 나노입자형태는 당업계에 알려져 있는 공지된 나노입자의 제조방법에 의해서 제조할 수 있다. 본 발명의 일실시예에서는 수중유적형 방법에 의해서 나노입자를 제조하였다. The nanoparticle form of the present invention can be prepared by a known method for producing nanoparticles known in the art. In one embodiment of the present invention, nanoparticles were prepared by the in-water method.

또한, 상기 나노입자는 계면활성제를 추가로 포함할 수 있다. 상기 계면활성제는 선형알킬벤젠술폰산나트륨, 알파술폰산나트륨, 알파올레핀술폰산나트륨, 알킬에테르유산에스테르나트륨, 폴리옥시에틸렌알킬에테르염, 소디움라우릴설페이트, 소듐라우레스설페이트, 및 이들의 혼합물로 구성된 군으로부터 선택되는 어느 하나 이상의 합성계면활성제를 사용할 수 있다. 또한, 상기 계면활성제는 코코베타인, 레시틴, 사포닌, 밀납, 붕사, 술포석시네이트, 및 이들의 혼합물로 구성된 군으로부터 선택되는 어느 하나 이상의 천연계면활성제를 사용할 수 있다. 일반적으로 합성 유화제가 더 독성이 강하나 유화력이 우수하며 본 발명에서는 합성 유화제 중에서도 생체 내 안전성이나 유화 안정성이 높은 트윈 20을 사용하는 것이 보다 더 바람직하다. In addition, the nanoparticles may further comprise a surfactant. The surfactant may be selected from the group consisting of sodium linear alkylbenzenesulfonate, sodium alpha-sulfonate, sodium alpha-olefinsulfonate, sodium alkyl etheresterate, polyoxyethylene alkyl ether salt, sodium lauryl sulfate, sodium laureth sulfate, Any one or more selected synthetic surfactants may be used. The surfactant may be at least one natural surfactant selected from the group consisting of coco betaine, lecithin, saponin, beeswax, borax, sulphosuccinate, and mixtures thereof. In general, the synthetic emulsifier is more toxic but has excellent emulsifying power. In the present invention, among the synthetic emulsifiers, it is more preferable to use Tween 20, which has high in-vivo safety and emulsion stability.

본 발명의 일 실험예에 의할 경우, 화학식 1로 표시되는 카로티노이드 화합물 또는 화학식 2로 표시되는 카로티노이드 화합물을 포함하는 카로티노이드 나노입자와 기존에 알려져 있는 베타카로틴(β-carotene)의 항산화능력을 비교하였을 때, 기존의 베타카로틴 화합물의 경우에는 나노입자화 된 형태이든 화합물 자체의 형태이든 간에 항산화 능력이 낮은 반면, 본 발명의 카로티노이드 화합물로서 BAS 카로티노이드 화합물 및 BTS 카로티노이드 화합물은 나노입자화됨에 의하여 항산화적 기능이 증진되는 것을 확인할 수 있었다.According to one experimental example of the present invention, the antioxidative capacity of carotenoid nanoparticles including the carotenoid compound represented by the formula (1) or the carotenoid compound represented by the formula (2) and the previously known beta carotene (β-carotene) In the case of conventional beta carotene compounds, antioxidative ability is low regardless of whether it is a nanoparticulate form or a compound itself, whereas the BAS carotinoid compound and the BTS carotenoid compound as the carotinoid compound of the present invention are converted into nanoparticles, Was increased.

또한, 본 발명의 일 실험예에 의할 경우, 일반적인 카로티노이드 화합물의 경우 초반에 항산화가 일어나고 그 기능을 잃는 반면에 본 발명의 BAS 카로티노이드 나노입자 및 BTS 카로티노이드 나노입자는 나노입자 형태로 됨으로써 장기간 그 효능이 유지되며 더 나아가 그 효능이 증가되는 것을 확인하였다. 또한, BAS 카로티노이드 나노입자 및 BTS 카로티노이드 나노입자를 선충인 C. elegans에 먹인 결과 몸길이가 신장되고 활성산소종이 줄어드는 생리적인 활성을 나타내었는바, in vivo 실험에서도 역시 동일한 항산화 효능 증가를 확인할 수 있었다.In addition, according to one experimental example of the present invention, general carotenoid compounds are antioxidant and lose their function in the early stage, whereas BAS carotenoid nanoparticles and BTS carotenoid nanoparticles of the present invention are in the nanoparticle form, And the efficacy was further increased. In addition, feeding of BAS carotenoid nanoparticles and BTS carotenoid nanoparticles to the nematode C. elegans showed physiological activities such as elongation of body length and reduction of free radical scavenging, and the same antioxidative efficacy was also confirmed in the in vivo experiment.

또한, 안정성 측면에서 본 발명의 BAS 카로티노이드 나노입자 및 BTS 카로티노이드 나노입자는 장기간 보관(4주)에도 사이즈 변화 없이 형태가 유지되었으며, 빛과 열에 노출되었을 때, BAS 카로티노이드 화합물 및 BTS 카로티노이드 화합물은 그 수가 현저히 감소한 반면 나노입자화 시켰을 때는 수의 감소가 완화된바, 빛과 열에 의한 기능저하 현상을 방지할 수 있다는 것을 확인할 수 있었다.In terms of stability, the BAS carotenoid nanoparticles and BTS carotenoid nanoparticles of the present invention retained their shape without change in size even after prolonged storage (4 weeks). When exposed to light and heat, BAS carotenoid compounds and BTS carotenoid compounds It was confirmed that the reduction of the number of nanoparticles was mitigated while the decrease in the number of nanoparticles was reduced, thereby preventing the deterioration of function due to light and heat.

따라서, 본 발명의 카로티노이드 나노입자는 안전하게 생체 내로 흡수될 수 있으며 생체 내에서 온전한 형태로 산화적 스트레스가 있는 곳까지 운반될 수 있으며 흡수율이나 지속력이 좋지 않은 영양소, 약물, 화장품 등의 전달체로서도 사용될 수 있다.Therefore, the carotenoid nanoparticles of the present invention can be safely absorbed in vivo and can be transported to a place where the oxidative stress is present in a complete form in vivo, and can also be used as a carrier for nutrients, drugs, cosmetics, etc. have.

본 발명에 따른 1000 nm 이하의 직경을 가지는 입자로서 신규한 카로티노이드 화합물을 포함하는 카로티노이드 나노입자는 안정성과 기능성 측면에서 기존의 베타 카로틴계열 화합물로 제조된 나노입자에 비하여 현저히 향상된 효과가 있다. 구체적으로, 기존의 베타카로틴 화합물의 경우에는 나노입자화 된 형태이든 화합물 자체의 형태이든 간에 항산화 능력이 낮은 반면, 본 발명의 카로티노이드 화합물은 나노입자화됨에 의하여 항산화적 기능이 증진되는 효과가 있다. The carotenoid nanoparticles comprising the novel carotenoid compound as particles having a diameter of 1000 nm or less according to the present invention are remarkably improved in terms of stability and functionality as compared with nanoparticles prepared from existing beta carotene compounds. Specifically, in the case of conventional beta-carotene compounds, antioxidative ability is low regardless of the form of nanoparticles or the compound itself, while the carotenoid compound of the present invention has the effect of enhancing the antioxidative function by becoming nanoparticles.

도 1은 화학식 1로 표시되는 카로티노이드 화합물 (BAS 카로티노이드) 나노입자, 화학식 2로 표시되는 카로티노이드 화합물 (BTS 카로티노이드) 나노입자 및 베타카로틴 나노입자의 입자크기를 나타낸 것이다.
도 2는 BAS 카로티노이드 나노입자 및 BTS 카로티노이드 나노입자의 나노입자로 제조하기 전후의 UV/Vis 스펙트럼을 나타낸 것이다.
도 3은 BAS, BTS, 베타카로틴 나노입자의 주사전자현미경 사진을 나타낸 것이다.
도 4는 나노입자화에 의한 BAS 카로티노이드 및 BTS 카로티노이드 화합물의 항산화 활성 증대를 나타낸 것이다.
도 5는 나노입자화에 의한 BAS 및 BTS 카로티노이드 화합물의 항산화 활성 기간 연장 그래프를 나타낸 것이다.
도 6은 BAS 카로티노이드 나노입자, BTS 카로티노이드 나노입자 및 베타카로틴 나노입자의 나노입자화에 의한 안정성 증대를 나타낸 것이다.
도 7은 BAS 카로티노이드 나노입자 및 BTS 카로티노이드 나노입자의 나노입자화에 의한 광화학 반응 감소를 나타낸 것이다.
1 shows particle sizes of carotenoid compound (BAS carotinoid) nanoparticles represented by Chemical Formula 1, carotenoid compound (BTS carotenoid) nanoparticles represented by Chemical Formula 2, and beta carotene nanoparticles.
Figure 2 shows UV / Vis spectra before and after production of BAS carotenoid nanoparticles and nanoparticles of BTS carotenoid nanoparticles.
Fig. 3 shows a scanning electron microscopic photograph of BAS, BTS, and beta-carotene nanoparticles.
Fig. 4 shows the increase in antioxidative activity of BAS carotenoids and BTS carotenoid compounds by nanoparticle formation.
FIG. 5 is a graph showing an extended antioxidative activity period of BAS and BTS carotenoid compounds by nanoparticle formation.
Figure 6 shows the increase in stability due to nanoparticle formation of BAS carotenoid nanoparticles, BTS carotenoid nanoparticles and beta carotene nanoparticles.
Figure 7 shows the reduction of photochemical reactions by nanoparticles of BAS carotenoid nanoparticles and BTS carotenoid nanoparticles.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의하여 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided to further understand the present invention, and the present invention is not limited by the examples.

제조예Manufacturing example 1:  One: BASBAS 카로티노이드의 제조 Preparation of carotenoids

BAS 카로티노이드의 제조는 문헌 'Juwan Maeng, Soo Bong Kim, Nam Joo Lee et al., Conductance Control in Stabilized Carotenoid Wires, Chem. Eur. J. 2010, 16, 7395-7399'을 참고하여 제조하였으며, 구체적으로 하기 반응식과 같이 제조하였다.Preparation of BAS carotenoids is described in Juwan Maeng, Soo Bong Kim, Nam Joo Lee et al., Conductance Control in Stabilized Carotenoid Wires, Chem. Eur. J. 2010, 16, 7395-7399 ", and specifically prepared according to the following reaction formula.

Figure 112015052806652-pat00003
Figure 112015052806652-pat00003

1-1. (E)-2,7-1-1. (E) -2,7- BisBis -(p-- (p- methoxyphenyl메틸oxyphenyl )-) - octoct -4--4- enedioicenedioic acidacid , , diethyldiethyl esterester (11a)의 제조 (11a)

n-BuLi의 1.6 M 헥산 용액(7.48 mmol, 4.70 mL, 3.2 equiv)을 0℃에서 디이소프로필아민(8.18 mmol, 1.16 mL, 3.5 equiv)의 THF 용액(10 ml)에 첨가하였다. 상기 혼합물을 0℃에서 20분 동안 교반하고, -78℃로 냉각하였다. 에틸 4-메톡시페닐아세테이트(7.01 mmol, 1.30 mL, 3.0 equiv)의 THF 용액(5 mL)을 상기 혼합물에 첨가하였다. 상기 혼합물을 -78℃에서 40분 동안 교반하고, 1,4-디브로모-2-부텐(2.34 mmol, 0.50 g, 1.0 equiv)의 THF 용액(5 mL)을 첨가하였다. -78℃에서 1시간 동안 교반하고, 상기 혼합물을 상온까지 가열하고, 1M HCl 용액으로 퀀칭하였다. 상기 혼합물을 CH2Cl2로 추출하고 1M HCl로 세척하고, 무수 Na2SO4로 건조시킨 후 여과하고, 감압하에 농축하였다. 상기 조 생성물을 SiO2 flash column chromatography (Hexanes:EtOAc = 17:3)로 정제하여 diester 11a(1.92 mmol, 0.84 g, a 1:1 mixture of diastereomers)를 82% 수율로 얻었다. A 1.6 M hexane solution of n-BuLi (7.48 mmol, 4.70 mL, 3.2 equiv) was added to a THF solution (10 mL) of diisopropylamine (8.18 mmol, 1.16 mL, 3.5 equiv) at 0 ° C. The mixture was stirred at 0 &lt; 0 &gt; C for 20 min and cooled to -78 &lt; 0 &gt; C. A THF solution (5 mL) of ethyl 4-methoxyphenylacetate (7.01 mmol, 1.30 mL, 3.0 equiv) was added to the mixture. The mixture was stirred at -78 <0> C for 40 min and a THF solution (5 mL) of 1,4-dibromo-2-butene (2.34 mmol, 0.50 g, 1.0 equiv) was added. Was stirred at -78 &lt; 0 &gt; C for 1 hour and the mixture was heated to ambient temperature and quenched with 1 M HCl solution. The mixture was extracted with CH 2 Cl 2 , washed with 1M HCl, dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure. The crude product SiO 2 The mixture was purified by flash column chromatography (Hexanes: EtOAc = 17: 3) to obtain diester 11a (1.92 mmol, 0.84 g, a 1: 1 mixture of diastereomers) in 82% yield.

Rf = 0.40 (Hexanes:EtOAc = 4:1)Rf = 0.40 (Hexanes: EtOAc = 4: 1)

1H NMR δ 1.19 (t, J = 7.1 Hz, 6H), 2.30-2.43 (m, 2H), 2.60-2.73 (m, 2H), 3.44 (dt, Jd = 4.3, Jt = 7.7 Hz, 2H), 3.78 (d, J = 1.5 Hz, 6H), 3.99-4.17 (m, 4H), 5.28-5.45 (m, 2H), 6.80-6.87 (m, 4H), 7.13-7.21 (m, 4H) ppm 1 H NMR δ 1.19 (t, J = 7.1 Hz, 6H), 2.30-2.43 (m, 2H), 2.60-2.73 (m, 2H), 3.44 (dt, Jd = 4.3, Jt = 7.7 Hz, 2H), 2H), 6.80-6.87 (m, 4H), 7.13-7.21 (m, 4H) ppm (m,

13C NMR δ 14.1, 36.4(36.5), *51.0(51.0), *55.2, 60.6, 113.9, 128.9(128.9), *129.3(129.4), *130.8(130.8), *158.7, *173.6(173.6) ppm; IR (KBr) 2978, 2837, 1730, 1611, 1513, 1250, 1178, 1035 cm-1 HRMS (FAB+) calcd for C26H33O6 441.2277, found 441.2280. 13 C NMR? 14.1, 36.4 (36.5), 51.0 (51.0), 55.2, 60.6, 113.9, 128.9 (128.9), 129.3 (129.4), 130.8 (130.8), 158.7, 173.6 ; IR (KBr) 2978, 2837, 1730, 1611, 1513, 1250, 1178, 1035 cm -1 HRMS (FAB + ) calcd for C 26 H 33 O 6 441.2277, found 441.2280.

*: 괄호 안의 13C NMR 피크는 diastereoisomer에서 유래한 것이다.*: The 13 C NMR peak in parentheses is derived from the diastereoisomer.

1-2. (E)-2,7-1-2. (E) -2,7- BisBis -(p-- (p- methoxyphenyl메틸oxyphenyl )-) - octoct -4--4- eneene -1,8--1,8- dioldiol (14a)의 제조 (14a)

Diester 11a(3.49 mmol, 1.54 g, 1.0 equiv)의 THF 용액(5 mL)를 LiAlH4(6.54mmol, 0.25 g, 2.0 equiv)의 THF 현탁액에 첨가하였다. 30분 동안 교반하고, 상기 혼합물을 상온까지 가열하고, 1M HCl 용액으로 퀀칭하였다. 상기 혼합물을 EtOAc로 추출하고 1M HCl로 세척하고, 무수 Na2SO4로 건조시킨 후 여과하고, 감압하에 농축하였다. 상기 조 생성물을 SiO2 flash column chromatography (Hexanes:EtOAc = 13:7)로 정제하여 diol 14a (3.20 mmol, 1.14 g, a 1:1 mixture of stereoisomers)를 92% 수율로 얻었다. A THF solution (5 mL) of Diester 11a (3.49 mmol, 1.54 g, 1.0 equiv) was added to a THF suspension of LiAlH 4 (6.54 mmol, 0.25 g, 2.0 equiv). Stir for 30 min, heat the mixture to ambient temperature and quench with 1 M HCl solution. The mixture is extracted with EtOAc and washed with 1M HCl, dried over anhydrous Na 2 SO 4, filtered and concentrated under reduced pressure. The crude product was purified by SiO 2 flash column chromatography (Hexanes: EtOAc = 13: 7) to give diol 14a (3.20 mmol, 1.14 g, a 1: 1 mixture of stereoisomers) in 92% yield.

Rf = 0.14 (Hexanes:EtOAc = 3:2)Rf = 0.14 (Hexanes: EtOAc = 3: 2)

1H NMR δ 1.36 (br s, 2H), 2.13-2.38 (m, 4H), 2.61-2.80 (m, 2H), 3.53-3.70 (m, 4H), 3.79 (d, J = 0.8 Hz, 6H), 5.25-5.34 (m, 2H), 6.81-6.89 (m, 4H), 7.00-7.09 (m, 4H) ppm 1 H NMR δ 1.36 (br s , 2H), 2.13-2.38 (m, 4H), 2.61-2.80 (m, 2H), 3.53-3.70 (m, 4H), 3.79 (d, J = 0.8 Hz, 6H) , 5.25-5.34 (m, 2H), 6.81-6.89 (m, 4H), 7.00-7.09 (m, 4H) ppm

13C NMR δ 35.5(35.6), *47.6(47.6), *55.2, 66.8(66.9), *113.9, 128.9(128.9), *129.7(129.7), *134.0, 158.3 ppm; IR (KBr) 3365, 2931, 1611, 1513, 1459, 1248, 1036, 830 cm-1 HRMS (FAB+) calcd for C22H28O4 356.1988, found 356.1996. 13 C NMR? 35.5 (35.6), 47.6 (47.6), 55.2, 66.8 (66.9), 113.9, 128.9 (128.9), 129.7 (129.7), 134.0, 158.3 ppm; IR (KBr) 3365, 2931, 1611, 1513, 1459, 1248, 1036, 830 cm -1 HRMS (FAB + ) calcd for C 22 H 28 O 4 356.1988, found 356.1996.

*: 괄호 안의 13C NMR 피크는 diastereoisomer에서 유래한 것이다.*: The 13 C NMR peak in parentheses is derived from the diastereoisomer.

1-3. (E)-2,7-1-3. (E) -2,7- BisBis -(p-- (p- methoxy메틸oxy -- phenylphenyl )-) - octoct -4--4- enedialenedial (5a)의 제조 (5a)

Oxalyl chloride(3.50 mmol, 0.30 mL, 3.5 equiv)을 -78℃에서 DMSO(3.80 mmol, 0.29 g, 3.8 equiv)의 CH2Cl2 용액(10 mL)에 첨가하였다. 상기 혼합물을 15분 동안 교반하고, diol 14a(1.00 mmol, 0.36 g, 1.0 equiv)의 CH2Cl2 용액(5 mL)을 첨가하였다. 상기 혼합물을 8℃에서 40분 동안 교반하고, Et3N(10.00 mmol, 1.40 mL, 10 equiv)을 첨가하였다. -78℃에서 20분 동안 교반하고, 상기 혼합물을 상온까지 가열하고, 1M HCl 용액으로 퀀칭하였다. 상기 혼합물을 CH2Cl2로 추출하고 1M HCl로 세척하고, 무수 Na2SO4로 건조시킨 후 여과하고, 감압하에 농축하였다. 상기 조 생성물을 SiO2 flash column chromatography (Hexanes:EtOAc = 4:1)로 정제하여 dial 5a(0.85 mmol, 0.30 g, a 1:1 mixture of stereoisomers)를 85% 수율로 얻었다. Oxalyl chloride (3.50 mmol, 0.30 mL, 3.5 equiv) was added to a CH 2 Cl 2 solution (10 mL) of DMSO (3.80 mmol, 0.29 g, 3.8 equiv) at -78 ° C. The mixture was stirred for 15 min and a CH 2 Cl 2 solution (5 mL) of diol 14a (1.00 mmol, 0.36 g, 1.0 equiv) was added. The mixture was stirred at 8 ℃ for 40 minutes, followed by addition of Et 3 N (10.00 mmol, 1.40 mL, 10 equiv). Stir at-78 C for 20 min, heat the mixture to room temperature and quench with 1 M HCl solution. The mixture was extracted with CH 2 Cl 2 , washed with 1M HCl, dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure. The crude product was purified by SiO 2 flash column chromatography (Hexanes: EtOAc = 4: 1) to give dial 5a (0.85 mmol, 0.30 g, a 1: 1 mixture of stereoisomers) in 85% yield.

Rf = 0.52 (Hexanes:EtOAc = 3:2)Rf = 0.52 (Hexanes: EtOAc = 3: 2)

1H NMR δ 2.26-2.40 (m, 2H), 2.62-2.73 (m, 2H), 3.42 (ddd, J = 8.4, 8.0, 7.0 Hz, 2H), 3.81 (d, J = 2.0 Hz, 6H), 5.29-5.37 (m, 2H), 6.85-6.91 (m, 4H), 6.98-6.05 (m, 4H), 9.58 (d, J = 1.8 Hz, 2H) ppm 1 H NMR δ 2.26-2.40 (m, 2H), 2.62-2.73 (m, 2H), 3.42 (ddd, J = 8.4, 8.0, 7.0 Hz, 2H), 3.81 (d, J = 2.0 Hz, 6H), 2H), 6.85-6.91 (m, 4H), 6.98-6.05 (m, 4H), 9.58

13C NMR δ 32.7(32.7), *55.1, 58.0(58.1), *114.3(114.7), *127.4(127.4), *129.1(129.1), *129.8(129.8), *158.9(158.9), *200.1(200.2) ppm; 13 C NMR 隆 32.7 (32.7), 55.1, 58.0 (58.1), 114.3, 114.7, 127.4, 129.1, 129.8, 158.9, 158.9, 200.2) ppm;

IR (KBr) 2933, 1722, 1609, 1512, 1366, 1250, 1032, 829 cm-1 IR (KBr) 2933, 1722, 1609, 1512, 1366, 1250, 1032, 829 cm -1

HRMS (FAB+) calcd for C22H24O4 352.1675, found 352.1687. HRMS (FAB +) calcd for C 22 H 24 O 4 352.1675, found 352.1687.

*: 괄호 안의 13C NMR 피크는 diastereoisomer에서 유래한 것이다.*: The 13 C NMR peak in parentheses is derived from the diastereoisomer.

1-4. (1S,2R)-2-1-4. (LS, 2R) -2- MethylMethyl -1-(4-(-1- (4- ( methylthio메틸thio )) phenylphenyl )-2-(phenylsulfonylmethyl)-3-buten-1-ol (10)의 제조) -2- (phenylsulfonylmethyl) -3-buten-1-ol (10)

4-메틸술파닐벤즈알데하이드(3.93 g, 24.52 mmol, 1.2 equiv) 및 Indium(2.58 g, 22.47 mmol, 1.1 equiv)을 4-클로로-2-메틸-2-부텐-1-술포닐)-벤젠(5.0 g, 20.43 mmol, 1.0 equiv)의 THF(10 mL) 및 H2O(40 mL)의 용액에 첨가하였다. 상기 혼합물을 80℃에서 2.5시간 동안 가열하고, 상온으로 냉각하였다. 상기 혼합물을 EtOAc(30 mL × 3)로 추출하고 1M HCl(100 mL)로 세척하고, 무수 Na2SO4로 건조시킨 후 여과하고, 감압하에 농축하였다. 상기 조 생성물을 silica gel flash column chromatography로 정제하여 homoallylic alcohol 10(6.72 g, 18.54 mmol)를 91% 수율로 얻었다. (3.93 g, 24.52 mmol, 1.2 equiv) and Indium (2.58 g, 22.47 mmol, 1.1 equiv) were added to a solution of 4-chloro-2-methyl-2-butene- 5.0 g, 20.43 mmol, 1.0 equiv) in THF (10 mL) and H 2 O (40 mL). The mixture was heated at 80 &lt; 0 &gt; C for 2.5 hours and cooled to room temperature. The mixture was extracted with EtOAc (30 mL x 3), washed with 1 M HCl (100 mL), dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to obtain homoallylic alcohol 10 (6.72 g, 18.54 mmol) in 91% yield.

1H NMR δ 1.26 (s, 3H), 2.45 (s, 3H), 3.01 (br s, 1H), 3.14 (A of ABq, JAB = 14.1 Hz, 1H), 3.51 (B of ABq, JAB = 14.1 Hz, 1H), 4.89 (d, J = 17.5 Hz, 1H), 4.91 (br s, 1H), 5.08 (d, J = 10.9 Hz, 1H), 5.90 (dd, J =17.5, 10.9 Hz, 1H), 7.12-7.22 (m, 4H), 7.50-7.66 (m, 3H), 7.85-7.92 (m, 2H) ppm 1 H NMR δ 1.26 (s, 3H), 2.45 (s, 3H), 3.01 (br s, 1H), 3.14 (A of ABq, JAB = 14.1 Hz, 1H), 3.51 (B of ABq, JAB = 14.1 Hz (D, J = 17.5 Hz, 1H), 4.89 (d, J = 17.5 Hz, 1H) 7.12-7.22 (m, 4H), 7.50-7.66 (m, 3H), 7.85-7.92 (m, 2H) ppm

13C NMR δ 15.6, 19.6, 46.2, 62.5, 78.1, 115.9, 125.5, 127.7, 128.5, 129.2, 133.6, 136.5, 137.9, 139.7, 141.2 ppm 13 C NMR δ 15.6, 19.6, 46.2, 62.5, 78.1, 115.9, 125.5, 127.7, 128.5, 129.2, 133.6, 136.5, 137.9, 139.7, 141.2 ppm

IR(KBr) 3502, 1598, 1447, 1305, 1147 cm-1 IR (KBr) 3502, 1598, 1447, 1305, 1147 cm &lt; -1 &gt;

HRMS (FAB+) m/z cacld for C19H23O5S 363.1266, found 363.1265. HRMS (FAB +) m / z cacld for C 19 H 23 O 5 S 363.1266, found 363.1265.

Data for syn: 1H NMR δ 1.12 (s, 3H), 2.46 (s, 3H), 6.21 (dd, J = 17.4, 10.8 Hz, 1H) ppm.Data for syn: 1 H NMR δ 1.12 (s, 3H), 2.46 (s, 3H), 6.21 (dd, J = 17.4, 10.8 Hz, 1H) ppm.

1-5. Methyl(4-((1E,3E)-4-1-5. Methyl (4 - ((1E, 3E) -4- methylmethyl -5-(-5- ( phenylsulfonylphenylsulfonyl )-1,3-pentadienyl)phenyl)sulfane (4)의 제조) -1,3-pentadienyl) phenyl) sulfane (4)

4-메틸술파닐벤즈알데하이드(2.94 g, 18.33 mmol, 1.1 equiv) 및 10-캄포술폰산(4.34 g, 18.33 mmol, 1.1 equiv)을 homoallylic alcohol 10(6.04 g, 16.66 mmol, 1.0 equiv)의 벤젠 용액(50 mL)에 첨가하였다. 상기 혼합물을 80℃에서 3.5시간 동안 가열하고, 상온으로 냉각하였다. 상기 혼합물을 EtOAc(30 mL × 3)로 추출하고 1M HCl(100 mL)로 세척하고, 무수 Na2SO4로 건조시킨 후 여과하고, 감압하에 농축하였다. 상기 조 생성물을 EtOH로 재결정화하여 흰색 고체형태의 all-(E)-allylic sulfone 4 (4.55 g, 13.22 mmol)을 79%의 수율로 얻었다. (2.94 g, 18.33 mmol, 1.1 equiv) and 10-camphorsulfonic acid (4.34 g, 18.33 mmol, 1.1 equiv) were added to a benzene solution of homoallylic alcohol 10 (6.04 g, 16.66 mmol, 1.0 equiv) 50 mL). The mixture was heated at 80 &lt; 0 &gt; C for 3.5 hours and cooled to ambient temperature. The mixture was extracted with EtOAc (30 mL x 3), washed with 1 M HCl (100 mL), dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure. The crude product was recrystallized from EtOH to give all- (E) -allylic sulfone 4 (4.55 g, 13.22 mmol) in the form of a white solid in 79% yield.

1H NMR δ 1.95 (s. 3H), 2.48 (s, 3H), 3.83 (s, 2H), 5.81 (d, J = 10.9 Hz, 1H), 6.34 (d, J = 15.4 Hz, 1H), 6.84 (dd, J = 15.4, 10.9 Hz, 1H), 7.17-7.32 (m, 4H), 7.51-7.67 (m, 3H), 7.85 - 7.89 (m, 2H) ppm 1 H NMR δ 1.95 (s. 3H), 2.48 (s, 3H), 3.83 (s, 2H), 5.81 (d, J = 10.9 Hz, 1H), 6.34 (d, J = 15.4 Hz, 1H), 6.84 (d, J = 15.4, 10.9 Hz, 1H), 7.17-7.32 (m, 4H), 7.51-7.67 (m, 3H), 7.85-7.89

13C NMR δ 15.7, 17.7, 66.7, 123.3, 124.9, 126.5, 126.9, 128.5, 129.0, 133.6, 133.6, 133.9, 134.6, 138.4, 138.5 ppm 13 C NMR δ 15.7, 17.7, 66.7, 123.3, 124.9, 126.5, 126.9, 128.5, 129.0, 133.6, 133.6, 133.9, 134.6, 138.4, 138.5 ppm

IR (KBr) 1588, 1489, 1446, 1307, 1149 cm-1 IR (KBr) 1588, 1489, 1446, 1307, 1149 cm &lt; -1 &

HRMS (FAB+) m/z cacld for C19H21O2S2 345.0983, found 345.0981. HRMS (FAB +) m / z cacld for C 19 H 21 O 2 S 2 345.0983, found 345.0981.

1-6. (1E,3E,9E,15E,17E)-7,12-Bis(p-methoxyphenyl)-1,18-bis(p-(1-6. (1E, 3E, 9E, 15E, 17E) -7,12-Bis (p-methoxyphenyl) -1,18- bis methylthio메틸thio )) phenylphenyl )-5,14-) -5,14- bisbis (( phenylsulfonylphenylsulfonyl )-4,15-) -4,15- dimethyldimethyl -- octadecaoctadeca -1,3,9,15,17-pentaene-6,13-diol (7a)의 제조-1,3,9,15,17-pentaene-6,13-diol (7a)

n-BuLi(9.23 mL, 14.77 mmol, 2.6 equiv)의 1.6M 헥산 용액을 -78℃에서 allylic sulfone 4(4.3 g, 12.48 mmol, 2.2 equiv)의 THF 용액(50 mL)에 첨가하였다. 상기 오렌지색의 용액을 40분 동안 교반하고, dialdehyde 5a(2.0 g, 5.68 mmol, 1 equiv)의 THF 용액(10 mL)을 5분 동안 첨가하였다. 상기 혼합물을 -78℃에서 70분 동안 교반하고, 1M HCl(20 mL)를 첨가하였다. 상기 반응 혼합물을 상온까지 가열하고, EtOAc(20 mL × 2)로 추출하고 1M HCl (15 mL × 2)로 세척하고, 무수 Na2SO4로 건조시킨 후 여과하고, 감압하에 농축하였다. 상기 조 생성물을 silica gel flash column chromatography로 정제하여 7a(5.37 g, 5.20 mmol)를 91% 수율로 얻었다. A 1.6 M hexane solution of n-BuLi (9.23 mL, 14.77 mmol, 2.6 equiv) was added to a THF solution (50 mL) of allylic sulfone 4 (4.3 g, 12.48 mmol, 2.2 equiv) at -78 < The orange solution was stirred for 40 min and a THF solution (10 mL) of dialdehyde 5a (2.0 g, 5.68 mmol, 1 equiv) was added over 5 min. The mixture was stirred at -78 &lt; 0 &gt; C for 70 min and 1M HCl (20 mL) was added. The reaction mixture was heated to room temperature, extracted with EtOAc (20 mL x 2), washed with 1 M HCl (15 mL x 2), dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to give 7a (5.37 g, 5.20 mmol) in 91% yield.

1H NMR δ 1.67 - 1.85 (s, 6H; CH3), 2.10 - 2.67 (m, 8H), 2.47 - 2.48 (s, 6H; SCH3), 3.71 - 3.87 (m, 2H; PhO2SCH), 3.74 - 3.77 (s, 6H; OCH3), 4.40 - 4.61 (m, 2H; HOCH), 4.94 - 5.08 (m, 2H), 5.67 - 5.92 (m, 2H), 6.24 - 6.39 (m, 2H), 6.52 - 6.68 (m, 2H), 6.68 - 6.88 (m, 4H), 6.94 - 7.08 (m, 4H), 7.16 - 7.25 (m, 4H), 7.27 - 7.36 (m, 4H), 7.40 - 7.52 (m, 4H), 7.52 - 7.60 (m, 2H), 7.64 - 7.84 (m, 4H) ppm 1 H NMR δ 1.67 - 1.85 ( s, 6H; CH 3), 2.10 - 2.67 (m, 8H), 2.47 - 2.48 (s, 6H; SCH 3), 3.71 - 3.87 (m, 2H; PhO 2 SCH), 3.74 - 3.77 (s, 6H; OCH 3), 4.40 - 4.61 (m, 2H; HOCH), 4.94 - 5.08 (m, 2H), 5.67 - 5.92 (m, 2H), 6.24 - 6.39 (m, 2H), (M, 4H), 7.16-7.25 (m, 4H), 7.27-7.66 (m, 4H), 7.40-7.52 , 4H), 7.52-7.60 (m, 2H), 7.64-7.84 (m, 4H) ppm

13C NMR (major isomer) δ 15.9, 16.3, 31.5, 48.2, 55.4, 74.1, 78.3, 113.8, 123.1, 123.6, 126.8, 127.2, 127.6, 129.0, 129.7, 129.8, 130.6, 132.7, 133.9, 134.3, 135.3, 136.5, 138.7, 158.5 ppm 13 C NMR (major isomer) δ 15.9, 16.3, 31.5, 48.2, 55.4, 74.1, 78.3, 113.8, 123.1, 123.6, 126.8, 127.2, 127.6, 129.0, 129.7, 129.8, 130.6, 132.7, 133.9, 134.3, 135.3, 136.5, 138.7, 158.5 ppm

IR (KBr) 3511, 3033, 2921, 2836, 1610, 1587, 1511, 1492, 1446, 1301, 1248, 1178, 1142, 1090, 1035, 967, 912, 732 cm-1 IR (KBr) 3511, 3033, 2921, 2836, 1610, 1587, 1511, 1492, 1446, 1301, 1248, 1178, 1142, 1090, 1035, 967, 912, 732 cm -1

HRMS (FAB+) m/z cacld for C48H53O4S2 [C60H65O8S4 - 2 × (C6H6O2S)] 757.3385, found 757.3389. HRMS (FAB +) m / z cacld for C 48 H 53 O 4 S 2 [C 6 0H 65 O 8 S 4 - 2 × (C 6 H 6 O 2 S)] 757.3385, found 757.3389.

1-7. 1-7. BisBis -- MOMMOM -- etherether (9a)의 제조(9a)

디메톡시메탄(18 mL, 50 equiv) 및 P2O5(1.68 g, 11.85 mmol, 3 equiv)를 7a(4.11 g, 3.95 mmol, 1 equiv)의 CH2Cl2 용액(40 mL)에 첨가하였다. 상기 갈색의 용액을 상온에서 14시간 동안 교반하고, CH2Cl2(40 mL)로 희석하였다. 상기 혼합물을 포화 NaHCO3 용액(10 mL × 2)으로 세척하고, 무수 K2CO3로 건조하고, 여과한 후 감압하에 농축하였다. 상기 조 생성물을 silica gel flash column chromatography(deactivated by 1% Et3N)로 정제하여 bis-MOM-ether 9a(4.30 g, 3.81mmol)를 96% 수율로 얻었다. Dimethoxymethane (18 mL, 50 equiv) and P 2 O 5 (1.68 g, 11.85 mmol, 3 equiv) were added to a CH 2 Cl 2 solution (40 mL) of 7a (4.11 g, 3.95 mmol, 1 equiv) . The brown solution was stirred at room temperature for 14 hours and diluted with CH 2 Cl 2 (40 mL). The mixture was washed with saturated NaHCO 3 solution (10 mL x 2), dried over anhydrous K 2 CO 3 , filtered and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (deactivated by 1% Et 3 N) to give bis-MOM-ether 9a (4.30 g, 3.81 mmol) in 96% yield.

1H NMR δ 1.46-1.92(s, 6H; CH3), 2.23-2.87(m, 6H), 2.46(s, 6H; SCH3), 3.27-3.47(s, 6H, OCH3), 3.70-3.80(s, 6H; OCH3), 3.82-3.96(m, 2H; PhO2SCH), 4.23-4.36(m, 2H; MOMOCH), 4.50-4.68(m, 4H), 5.00-5.20(m, 2H), 5.92-6.10(m, 2H), 6.15-6.46(m,2H), 6.54-6.72(m, 2H), 6.72-6.88(m, 4H), 6.88-7.11(m, 4H), 7.11-7.23(m, 4H), 7.23-7.32(m, 4H), 7.32-7.60(m, 6H), 7.60-7.80(m, 4H) ppm 1 H NMR δ 1.46-1.92 (s, 6H; CH 3), 2.23-2.87 (m, 6H), 2.46 (s, 6H; SCH 3), 3.27-3.47 (s, 6H, OCH 3), 3.70-3.80 (s, 6H; OCH 3) , 3.82-3.96 (m, 2H; PhO 2 SCH), 4.23-4.36 (m, 2H; MOMOCH), 4.50-4.68 (m, 4H), 5.00-5.20 (m, 2H) (M, 2H), 5.92-6.10 (m, 2H), 6.15-6.46 (m, 2H), 6.54-6.72 m, 4H), 7.23-7.32 (m, 4H), 7.32-7.60 (m, 6H), 7.60-7.80

13C NMR (major isomer) δ 15.2, 15.9, 32.0, 48.6, 55.4, 57.2, 76.8, 81.6, 98.9, 113.8, 123.2, 126.7, 127.2, 128.1, 128.4, 128.8, 129.0, 129.9, 130.3, 133.1, 134.0, 134.2, 135.0, 138.8, 141.0, 158.5 ppm 13 C NMR (major isomer) δ 15.2, 15.9, 32.0, 48.6, 55.4, 57.2, 76.8, 81.6, 98.9, 113.8, 123.2, 126.7, 127.2, 128.1, 128.4, 128.8, 129.0, 129.9, 130.3, 133.1, 134.0, 134.2, 135.0, 138.8, 141.0, 158.5 ppm

IR (KBr) 2923, 2834, 1610, 1588, 1513, 1492, 1304, 1248, 1178, 1145, 1085, 1030, 967, 912, 832, 808, 730 cm-1 IR (KBr) 2923, 2834, 1610, 1588, 1513, 1492, 1304, 1248, 1178, 1145, 1085, 1030, 967, 912, 832, 808, 730 cm -1

HRMS (FAB+) m/z cacld for C48H51O3S2 [C64H73O10S4 - 2 × (C6H5O2S) - 2 × (CH3OCH2) - H2O] 739.3280, found 739.3292HRMS (FAB + ) m / z cacld for C 48 H 51 O 3 S 2 [C 64 H 73 O 10 S 4 -2 × (C 6 H 5 O 2 S) - 2 × (CH 3 OCH 2 ) 2 O] 739.3280, found 739.3292

1-8. (1E,3E,5E,7Z,9E,11Z,13E,15E,17E)-7,12-Bis(p-methoxyphenyl)-1,18-1-8. (P-methoxyphenyl) -1,18-bis (p-methoxyphenyl) -1,2,3,4-tetrahydronaphthalene (1E, 3E, 5E, 7Z, 9E, 11Z, 13E, 15E, 17E) bisbis (p-(p- methylthiophenyl메틸THiophenyl )-4,15-) -4,15- dimethyldimethyl -- octadecaoctadeca -1,3,5,7,9,11,13,15,17-nonaene(BAS)의 제조Preparation of -1,3,5,7,9,11,13,15,17-nonaene (BAS)

KOMe(4.6 g, 62.68 mmol, 20 equiv)를 bis-MOM-ether 9a(3.54 g, 3.13 mmol, 1 equiv)의 사이클로헥산(100 mL) 및 벤젠(20 mL) 용액에 첨가하였다. 상기 혼합물을 80-90℃에서 17시간 동안 가열하고, 상온으로 냉각하였다. 대부분의 용매를 감압하에 제거하였다. 상기 혼합물을 CH2Cl2로 희석하고, 1M HCl 및 H2O로 세척하고, 무수 K2CO3로 건조하고, 여과한 후 감압하에 농축하였다. 상기 조 생성물(2.08 g, 2.77 mmol, 88% yield)을 THF 및 EtOH로 재결정화하여 붉은색 고체의 all-trans carotene BAS(1.3 g, 1.8 mmol)를 58% 수율로 얻었다. KOMe (4.6 g, 62.68 mmol, 20 equiv) was added to a solution of bis-MOM-ether 9a (3.54 g, 3.13 mmol, 1 equiv.) In cyclohexane (100 mL) and benzene (20 mL). The mixture was heated at &lt; RTI ID = 0.0 &gt; 80-90 C &lt; / RTI &gt; for 17 hours and cooled to room temperature. Most of the solvent was removed under reduced pressure. The mixture was diluted with CH 2 Cl 2 , washed with 1 M HCl and H 2 O, dried over anhydrous K 2 CO 3 , filtered and concentrated under reduced pressure. The crude product (2.08 g, 2.77 mmol, 88% yield) was recrystallized from THF and EtOH to give red solid all-trans carotene BAS (1.3 g, 1.8 mmol) in 58% yield.

1H NMR δ 1.98(s, 6H), 2.47(s, 6H), 3.88(s, 6H), 6.02(d, J = 15.6 Hz, 2H), 6.10(d, J = 11.6 Hz, 2H), 6.21-6.30(m, 2H), 6.30-6.37(m, 2H), 6.42(d, J = 15.2 Hz, 2H), 6.51(d, J = 15.6 Hz, 2H), 6.96(d, J = 8.4 Hz, 4H), 7.06(dd, J = 15.2, 11.6 Hz, 2H), 7.11(d, J = 8.8 Hz, 4H), 7.17(d, J = 8.4 Hz, 4H), 7.30(d, J = 8.4 Hz, 4H) ppm 1 H NMR δ 1.98 (s, 6H), 2.47 (s, 6H), 3.88 (s, 6H), 6.02 (d, J = 15.6 Hz, 2H), 6.10 (d, J = 11.6 Hz, 2H), 6.21 J = 15.2 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.30 (m, 2H), 6.30-6.37 J = 8.8 Hz, 4H), 7.17 (d, J = 8.4 Hz, 4H), 7.30 (d, J = 8.4 Hz, 4H) ppm

13C NMR δ 13.0, 16.0, 55.5, 113.9, 125.2, 126.9, 126.9, 130.2, 131.3, 132.1, 132.2, 132.7, 132.8, 133.2, 135.0, 136.4, 136.5, 137.8, 143.0, 159.1 ppm 13 C NMR δ 13.0, 16.0, 55.5, 113.9, 125.2, 126.9, 126.9, 130.2, 131.3, 132.1, 132.2, 132.7, 132.8, 133.2, 135.0, 136.4, 136.5, 137.8, 143.0, 159.1 ppm

IR (KBr) 3031, 2920, 1608, 1509, 1491, 1435, 1288, 1246, 1176, 1093, 1033, 965, 909, 836, 805, 732 cm-1 IR (KBr) 3031, 2920, 1608, 1509, 1491, 1435, 1288, 1246, 1176, 1093, 1033, 965, 909, 836, 805, 732 cm -1

UV (c = 5×10-6M in CH2Cl2) λmax (ε) 464(126,000), 492(160,000), 526(126,000) nmUV (c = 5 x 10 -6 M in CH 2 Cl 2 )? Max (?) 464 (126,000), 492 (160,000), 526

HRMS (FAB+) m/z calcd for C48H48O2S2 720.3096, found 720.3085HRMS (FAB + ) m / z calcd for C 48 H 48 O 2 S 2 720.3096, found 720.3085

제조예Manufacturing example 2:  2: BTSBTS 카로티노이드의 제조 Preparation of carotenoids

BAS 카로티노이드는 논문 'Juwan Maeng, Soo Bong Kim, Nam Joo Lee et al., Conductance Control in Stabilized Carotenoid Wires, Chem. Eur. J. 2010, 16, 7395-7399'을 참고하여 제조하였으며, 구체적으로 하기 반응식과 같이 제조하였다.BAS carotenoids are described in the paper 'Juwan Maeng, Soo Bong Kim, Nam Joo Lee et al., Conductance Control in Stabilized Carotenoid Wires, Chem. Eur. J. 2010, 16, 7395-7399 &quot;, and specifically prepared according to the following reaction formula.

Figure 112015052806652-pat00004
Figure 112015052806652-pat00004

2-1. (E)-2,7-2-1. (E) -2,7- DiDi -p--p- tolyltolyl -- octoct -4--4- enedioicenedioic acidacid , , diethyldiethyl esterester (11b)의 제조(11b)

에틸 p-톨릴아세테이트(23.38 mmol, 4.21 mL)의 THF 용액(10 mL)을 -78℃에서 40분 동안 LDA[diisopropylamine(32.73 mmol, 4.67mL) 및 1.6 M hexane solution of n-BuLi(29.92 mmol, 18.70 mL) in THF (25 mL)]와 반응시키고, -78℃에서 1시간 동안 1,4-디브로모-2-부텐(9.35 mmol, 2.00 g, 1.0 eq)과 반응시킨 후, SiO2 column chromatography(Hexanes:EtOAc = 19:1)로 정제하여 diester 11b(7.47 mmol, 3.05 g, a 1:1 mixture of stereoisomers)를 80% 수율로 제조하였다. A solution of LDA (32.73 mmol, 4.67 mL) and 1.6 M hexane solution of n-BuLi (29.92 mmol, 0.35 mmol) was added dropwise to a THF solution (10 mL) of ethyl p-tolylacetate (23.38 mmol, 4.21 mL) 18.70 mL) in THF (25 mL )] and then reacted, at -78 ℃ for 1 hour, 1,4-dibromo-2-butene (9.35 mmol, 2.00 g, react with 1.0 eq), SiO 2 column The residue was purified by chromatography (Hexanes: EtOAc = 19: 1) to give diester 11b (7.47 mmol, 3.05 g, a 1: 1 mixture of stereoisomers) in 80% yield.

Rf = 0.80 (Hexanes:EtOAc = 4:1)Rf = 0.80 (Hexanes: EtOAc = 4: 1)

1H NMR δ 1.17(dt, Jd = 1.6, Jt = 7.2 Hz, 6H), 2.30(d, J = 2.4 Hz, 6H), 2.32-2.42(m, 2H), 2.63-2.76(m, 2H), 3.46(ddd, J = 6.0, 5.7, 5.4 Hz, 2H), 3.99-4.15(m, 4H), 5.32-5.45(m, 2H), 7.06-7.16(m, 8H) ppm 1 H NMR δ 1.17 (dt, Jd = 1.6, Jt = 7.2 Hz, 6H), 2.30 (d, J = 2.4 Hz, 6H), 2.32-2.42 (m, 2H), 2.63-2.76 (m, 2H), 2H), 7.06-7.16 (m, 8H) ppm (m, 2H), 3.46 (ddd, J = 6.0,5.7,5.4 Hz, 2H), 3.99-4.15

13C NMR δ 14.3, 21.1, 36.9, 51.7, 60.6, 128.0, 129.3(129.4)*, 129.7, 136.2(136.2)*, 136.5(136.7)*, 173.3(173.3)* ppm 13 C NMR δ 14.3, 21.1, 36.9, 51.7, 60.6, 128.0, 129.3 (129.4) *, 129.7, 136.2 (136.2) *, 136.5 (136.7) *, 173.3

IR (KBr) 2981, 1733, 1514, 1154, 1037, 973, 820 cm-1 IR (KBr) 2981, 1733, 1514, 1154, 1037, 973, 820 cm -1

HRMS (CI+) calcd for C26H33O4 409.2379, found 409.2379HRMS (CI + ) calcd for C 26 H 33 O 4 409.2379, found 409.2379

*: 괄호 안의 13C NMR 피크는 diastereoisomer에서 유래한 것이다.*: The 13 C NMR peak in parentheses is derived from the diastereoisomer.

2-2. (E)-2,7-2-2. (E) -2,7- DiDi -p--p- tolyltolyl -- octoct -4--4- eneene -1,8--1,8- dioldiol (14b)의 제조(14b)

LiAlH4(15.88 mmol, 0.63 g)의 THF 용액(20 mL)을 0℃에서 30분 동안 diester 11b(7.56 mmol, 3.09 g)와 반응시킨 후, SiO2 column chromatography (Hexanes:EtOAc = 13:7)로 정제하여 diol 14b(6.78 mmol, 2.20 g, a 1:1 mixture of stereoisomers)를 90% 수율로 얻었다. A THF solution (20 mL) of LiAlH 4 (15.88 mmol, 0.63 g) was reacted with diester 11b (7.56 mmol, 3.09 g) at 0 ° C for 30 minutes and then subjected to SiO 2 column chromatography (Hexanes: EtOAc = 13: To give diol 14b (6.78 mmol, 2.20 g, a 1: 1 mixture of stereoisomers) in 90% yield.

Rf = 0.42 (Hexanes:EtOAc = 3:2)Rf = 0.42 (Hexanes: EtOAc = 3: 2)

1H NMR δ 1.43(br s, 2H), 2.15-2.36(m, 4H), 2.32(s, 6H), 2.70(tt, J = 5.9, 5.2 Hz, 2H), 3.54-3.68(m, 4H), 5.24-5.38(m, 2H), 6.98-7.04(m, 4H), 7.08-7.13(m, 4H) ppm 1 H NMR δ 1.43 (br s , 2H), 2.15-2.36 (m, 4H), 2.32 (s, 6H), 2.70 (tt, J = 5.9, 5.2 Hz, 2H), 3.54-3.68 (m, 4H) , 5.24-5.38 (m, 2H), 6.98-7.04 (m, 4H), 7.08-7.13 (m, 4H) ppm

13C NMR δ 21.3(21.4)*, 35.8(35.8)*, 48.3(48.4)*, 66.9(67.0)*, 128.2, 129.5, 130.0(130.0)*, 136.3, 139.4(139.5)* ppm 13 C NMR? 21.3 (21.4) *, 35.8 (35.8) *, 48.3 (48.4) *, 66.9 (67.0) *, 128.2, 129.5, 130.0

IR (KBr) 3280, 2919, 1513, 1441, 1376, 1066, 1050, 1021, 978, 815, 735 cm-1 IR (KBr) 3280, 2919, 1513, 1441, 1376, 1066, 1050, 1021, 978, 815, 735 cm -1

HRMS (CI+) calcd for C22H29O2 325.2167, found 325.2167 HRMS (CI +) calcd for C 22 H 29 O 2 325.2167, found 325.2167

*: 괄호 안의 13C NMR 피크는 diastereoisomer에서 유래한 것이다.*: The 13 C NMR peak in parentheses is derived from the diastereoisomer.

2-3. (E)-2,7-2-3. (E) -2,7- DiDi -p--p- tolyltolyl -- octoct -4--4- enedialenedial (5b)의 제조(5b)

Diol 14b(3.14 mmol, 1.02 g)의 Swern oxidation 반응[DMSO(13.82 mmol, 1.08 g), oxalyl chloride(6.91 mmol, 0.62 mL), 및 Et3N(31.40 mmol, 4.36 mL) in CH2Cl2(15mL)]시킨 후, SiO2 column chromatography(Hexanes:EtOAc = 9:1)로 정제하여 dial 5b(2.65 mmol, 0.85 g, a 1:1 mixture of stereoisomers)를 84% 수율로 얻었다. (13.82 mmol, 1.08 g), oxalyl chloride (6.91 mmol, 0.62 mL), and Et 3 N (31.40 mmol, 4.36 mL) in CH 2 Cl 2 (3.14 mmol, 1.02 g) 15 mL) and purified by SiO 2 column chromatography (Hexanes: EtOAc = 9: 1) to give dialb 5b (2.65 mmol, 0.85 g, a 1: 1 mixture of stereoisomers) in 84% yield.

Rf = 0.81 (Hexanes:EtOAc = 3:2)Rf = 0.81 (Hexanes: EtOAc = 3: 2)

1H NMR δ 2.28-2.40(m, 2H), 2.35(s, 6H), 2.64-2.73(m, 2H), 3.42(ddd, J = 7.8, 6.0, 5.7 Hz, 2H), 5.30-5.38(m, 2H), 6.94-7.02(m, 4H), 7.10-7.20(m, 4H), 9.59(d, J = 1.2 Hz, 2H) ppm 1 H NMR δ 2.28-2.40 (m, 2H), 2.35 (s, 6H), 2.64-2.73 (m, 2H), 3.42 (ddd, J = 7.8, 6.0, 5.7 Hz, 2H), 5.30-5.38 (m , 2H), 6.94-7.02 (m, 4H), 7.10-7.20 (m, 4H), 9.59

13C NMR δ 21.3(21.3)*, 33.0(33.1)*, 58.8(58.9)*, 129.0(129.0)*, 129.4(129.5)*, 129.9, 132.9(132.9)*, 137.5, 200.5(200.6)* ppm 13 C NMR? 21.3 (21.3) *, 33.0 (33.1) *, 58.8 (58.9) *, 129.0 (129.0) *, 129.4 (129.5) *, 129.9, 132.9

IR (KBr) 2921, 1721, 1606, 1514, 1440, 1039, 813 cm-1 IR (KBr) 2921, 1721, 1606, 1514, 1440, 1039, 813 cm -1

HRMS (CI+) calcd for C22H25O2 321.1854, found 321.1852 HRMS (CI +) calcd for C 22 H 25 O 2 321.1854, found 321.1852

*: 괄호 안의 13C NMR 피크는 diastereoisomer에서 유래한 것이다.*: The 13 C NMR peak in parentheses is derived from the diastereoisomer.

2-4. (1E,3E,9E,15E,17E)-1,18-Bis(p-(methylthio)phenyl)-5,14-2-4. (1E, 3E, 9E, 15E, 17E) -1,18-Bis (p- (methylthio) bisbis (( phenylsulfonylphenylsulfonyl )-4,15-) -4,15- dimethyldimethyl -7,12--7,12- didi -p--p- tolyltolyl -- octadecaoctadeca -1,3,9,15,17-pentaene-6,13-diol(7b)의 제조-1,3,9,15,17-pentaene-6,13-diol (7b)

n-BuLi(1.6 M solution in hexane, 4.5 mL, 7.13 mmol, 2.9 equiv)을 THF (50 mL)에서 -78℃로 50분 동안 처리된 allylic sulfone 4(2.15 g, 6.23 mmol, 2.5 equiv)를 THF (10 mL)에서 dialdehyde 5b(0.80 g, 2.49 mmol, 1 equiv)와 -78℃에서 1시간 동안 반응시켜 7b(2.31 g, 2.28 mmol)를 92% 수율로 얻었다. The allylic sulfone 4 (2.15 g, 6.23 mmol, 2.5 equiv), which had been treated with n-BuLi (1.6 M solution in hexane, 4.5 mL, 7.13 mmol, 2.9 equiv) in THF (50 mL) (2.31 g, 2.28 mmol) was obtained in 92% yield by reaction with dialdehyde 5b (0.80 g, 2.49 mmol, 1 equiv) in tetrahydrofuran (10 mL) at -78 ° C for 1 hour.

1H NMR δ 1.65-1.85(s, 6H; CH3), 1.90-2.70(m, 6H), 2.24-2.33(s, 6H; CH3), 2.43-2.52(s, 6H; SCH3), 3.18-4.04(m, 2H; PhO2SCH), 3.30-3.70(br s, 2H; OH), 4.40-4.64(m, 2H; HOCH), 4.90-5.12(m, 2H), 5.66-5.95(m, 2H), 6.20-6.38(m, 2H), 6.44-6.87(m, 2H), 6.87-7.09(m, 8H), 7.15-7.25(m, 4H), 7.25-7.38(m, 4H), 7.38-7.50 (m, 4H), 7.50-7.63 (m, 2H), 7.63-7.88 (m, 4H) ppm 1 H NMR δ 1.65-1.85 (s, 6H; CH 3), 1.90-2.70 (m, 6H), 2.24-2.33 (s, 6H; CH 3), 2.43-2.52 (s, 6H; SCH 3), 3.18 -4.04 (m, 2H; PhO 2 SCH), 3.30-3.70 (br s, 2H; OH), 4.40-4.64 (m, 2H; HOCH), 4.90-5.12 (m, 2H), 5.66-5.95 (m, 2H), 6.20-6.38 (m, 2H), 6.44-6.87 (m, 2H), 6.87-7.09 (m, 8H), 7.15-7.25 (m, 4H), 7.25-7.38 7.50 (m, 4H), 7.50-7.63 (m, 2H), 7.63-7.88 (m, 4H) ppm

IR (KBr) 3513, 3021, 2921, 1589, 1513, 1492, 1446, 1303, 1293, 1142, 1084, 967, 911, 730, 688 cm-1 IR (KBr) 3513, 3021, 2921, 1589, 1513, 1492, 1446, 1303, 1293, 1142, 1084, 967, 911, 730, 688 cm -1

HRMS (FAB+) m/z cacld for C48H53O2S2 [C60H65O6S4 - 2 × (C6H6O2S)] 725.3487, found 725.3475HRMS (FAB + ) m / z cacld for C 48 H 53 O 2 S 2 [C 60 H 65 O 6 S 4 -2 × (C 6 H 6 O 2 S)] 725.3487, found 725.3475

2-5. 2-5. BisBis -- MOMMOM -- etherether (9b)의 제조(9b)

7b(2.20 g, 2.22 mmol, 1 equiv) 및 디메톡시메탄(9.83 mL, 50 equiv)을 P2O5(0.90 g, 6.65 mmol, 3 equiv)하에 CH2Cl2(50 mL)에서 상온에서 18시간 동안 반응시켜 bis-MOM-ether 9b(2.24 g, 2.04 mmol)를 92% 수율로 얻었다. 7b (2.20 g, 2.22 mmol, 1 equiv) and dimethoxymethane (9.83 mL, 50 equiv) of P 2 O 5 (0.90 g, 6.65 mmol, 3 equiv) under CH 2 Cl 2 18 at room temperature in (50 mL) For 2 hours to give bis-MOM-ether 9b (2.24 g, 2.04 mmol) in 92% yield.

1H NMR δ 1.46-1.95(s, 6H; CH3), 2.02-2.96(m, 6H), 2.20-2.36(s, 6H, CH3), 2.35-2.53(s, 6H; SCH3), 3.20-3.52(s, 6H; OCH3), 3.72-3.98(m, 2H; PhO2SCH), 4.22-4.39(m, 2H; MOMOCH), 4.40-4.72(m, 4H), 4.83-5.36(m, 2H), 5.66-6.12(m, 2H), 6.16-6.41(m, 2H), 6.45-6.85(m, 2H), 6.85-7.10(m, 8H), 7.11-7.22(m, 4H), 7.23-7.33(m, 4H), 7.33-7.61(m, 6H), 7.62-7.88(m, 4H) ppm 1 H NMR δ 1.46-1.95 (s, 6H; CH 3), 2.02-2.96 (m, 6H), 2.20-2.36 (s, 6H, CH 3), 2.35-2.53 (s, 6H; SCH 3), 3.20 -3.52 (s, 6H; OCH 3 ), 3.72-3.98 (m, 2H; PhO 2 SCH), 4.22-4.39 (m, 2H; MOMOCH), 4.40-4.72 (m, 4H), 4.83-5.36 (m, 2H), 5.66-6.12 (m, 2H), 6.16-6.41 (m, 2H), 6.45-6.85 (m, 2H), 6.85-7.10 (m, 8H), 7.11-7.22 7.33 (m, 4H), 7.33-7.61 (m, 6H), 7.62-7.88 (m, 4H) ppm

IR (KBr) 3021, 2921, 1589, 1514, 1492, 1304, 1144, 1085, 1026, 967, 911, 808, 732, 689 cm-1 IR (KBr) 3021, 2921, 1589, 1514, 1492, 1304, 1144, 1085, 1026, 967, 911, 808, 732, 689 cm -1

HRMS (FAB+) m/z cacld for C48H51OS2 [C64H73O8S4 - 2 × (C6H5O2S) - 2 × (CH3OCH2) - H2O] 707.3381, found 707.3400 HRMS (FAB +) m / z cacld for C 48 H 51 OS 2 [C 64 H 73 O 8 S 4 - 2 × (C 6 H 5 O 2 S) - 2 × (CH 3 OCH 2) - H 2 O ] 707.3381, found 707.3400

2-6. (1E,3E,5E,7Z,9E,11Z,13E,15E,17E)-1,18-2-6. (1E, 3E, 5E, 7Z, 9E, 11Z, 13E, 15E, 17E) BisBis (p-(p- methylthiophenyl메틸THiophenyl )-4,15-dimethyl-7,12-di-p-tolyloctadeca-1,3,5,7,9,11,13,15,17-nonaene(BTS)의 제조) -4,15-dimethyl-7,12-di-p-tolyloctadeca-1,3,5,7,9,11,13,15,17-nonaene (BTS)

bis-MOM-ether 9b(1.60 g, 1.45 mmol) 및 KOMe(2.04 g, 29.15 mmol, 20 equiv)를 사이클로헥산(50 mL) 및 벤젠(10 mL)에서 80-90℃에서 15시간 동안 반응시켜, 조 carotene product(0.75 g, 1.08 mmol, 74% yield)를 얻었고, 이를 THF 및EtOH로 재결정화하여 붉은색 고체의 all-trans carotene BTS(0.52 g, 0.75 mmol)를 52% 수율로 얻었다. bis-MOM-ether 9b (1.60 g, 1.45 mmol) and KOMe (2.04 g, 29.15 mmol, 20 equiv) were reacted in cyclohexane (50 mL) and benzene (10 mL) A crude carotene product (0.75 g, 1.08 mmol, 74% yield) was obtained which was recrystallized from THF and EtOH to give red solid all-trans carotene BTS (0.52 g, 0.75 mmol) in 52% yield.

1H NMR δ 1.97(s, 6H), 2.43(s, 6H), 2.47(s, 6H), 6.01(d, J = 15.2 Hz, 2H), 6.10(d, J = 11.2 Hz, 2H), 6.18-6.27(m, 2H), 6.27-6.38(m, 2H), 6.42(d, J = 15.2 Hz, 2H), 6.50(d, J = 15.6 Hz, 2H), 7.06(dd, J = 15.2, 11.6 Hz, 2H), 7.07(d, J = 6.8 Hz, 4H), 7.17(d, J = 7.6 Hz, 4H), 7.23(d, J = 7.6 Hz, 4H), 7.30(d, J = 8.0 Hz, 4H) ppm 1 H NMR δ 1.97 (s, 6H), 2.43 (s, 6H), 2.47 (s, 6H), 6.01 (d, J = 15.2 Hz, 2H), 6.10 (d, J = 11.2 Hz, 2H), 6.18 J = 15.2 Hz, 2H), 6.50 (d, J = 15.6 Hz, 2H), 7.06 (dd, J = 8.0 Hz, 2H), 7.07 (d, J = 6.8 Hz, 4H), 7.17 (d, J = 7.6 Hz, 4H), 7.23 4H) ppm

IR (KBr) 3031, 2920, 1608, 1509, 1491, 1435, 1093, 965, 816, 617 cm-1 IR (KBr) 3031, 2920, 1608, 1509, 1491, 1435, 1093, 965, 816, 617 cm -1

UV (c = 5×10-6M in CH2Cl2) λmax (ε) 464(96,000), 491(128,000), 526(105,000) nmUV (c = 5 x 10 -6 M in CH 2 Cl 2 )? Max (?) 464 (96,000), 491 (128,000), 526 (105,000) nm

HRMS (FAB+) m/z calcd for C48H49S2 689.3276, found 689.3285HRMS (FAB + ) m / z calcd for C 48 H 49 S 2 689.3276, found 689.3285

실시예Example 1:  One: BASBAS 카로티노이드 나노입자의 제조 Production of carotenoid nanoparticles

항온 수조기를 이용해 50℃로 중탕한 아세톤에 각각 1 mM에 해당하는 BAS 카로티노이드를 넣어주고 투입 즉시 자석 교반기(magnetic stirrer)를 통해 1분간 녹였다. BAS carotenoids were added to acetone, which had been pre-warmed at 50 ° C, using a thermostatic water bath, and the mixture was dissolved for 1 minute through a magnetic stirrer.

상기 아세톤 용액에 용해한 카로티노이드 용액을 갈색 뷰렛으로 옮겨 담아 50℃로 중탕한 1% 트윈 20 (Tween 20) 수용액에 약 0.4 mL/sec의 속도로 떨어트려 주었다. 이때, 수용액과 유기용액의 비율은 1:9이며 혼합될 시에는 용액을 자석 교반하여 카로티노이드가 원활히 분산되도록 하였다. 수용액과 혼합할 때까지의 시간은 5분으로 제한하였다.The carotenoid solution dissolved in the acetone solution was transferred to a brown buret and dropped at a rate of about 0.4 mL / sec into a 1% Tween 20 aqueous solution which had been warmed to 50 캜. At this time, the ratio of the aqueous solution to the organic solution was 1: 9, and when mixed, the solution was magnetically stirred to ensure smooth dispersion of the carotenoids. The time until mixing with the aqueous solution was limited to 5 minutes.

상기 카로티노이드 용해 아세톤과 수용액 혼합물을 감압 증류기에서 70℃에서 30분간 처리하여 아세톤을 제거한 후, 0.2 ㎛ 필터링을 하여 잔존하는 불순물을 제거하였다.The mixture of carotenoid-dissolving acetone and aqueous solution was treated at 70 캜 for 30 minutes in a vacuum distiller to remove acetone, and the remaining impurities were removed by 0.2 탆 filtering.

실시예Example 2:  2: BTSBTS 카로티노이드 나노입자의 제조 Production of carotenoid nanoparticles

항온 수조기를 이용해 50℃로 중탕한 아세톤에 각각 1 mM에 해당하는 BTS 카로티노이드를 넣어주고 투입 즉시 자석 교반기(magnetic stirrer)를 통해 1분간 녹였다. The BTS carotenoids corresponding to 1 mM were added to the acetone, which had been heated to 50 ° C, using a thermostatic water bath, and the mixture was dissolved for 1 minute through a magnetic stirrer immediately after the addition.

상기 아세톤 용액에 용해한 카로티노이드 용액을 갈색 뷰렛으로 옮겨 담아 50℃로 중탕한 1% 트윈 20 (Tween 20) 수용액에 약 0.4 mL/sec의 속도로 떨어트려 주었다. 이때, 수용액과 유기용액의 비율은 1:9이며 혼합될 시에는 용액을 자석 교반하여 카로티노이드가 원활히 분산되도록 하였다. 수용액과 혼합할 때까지의 시간은 5분으로 제한하였다.The carotenoid solution dissolved in the acetone solution was transferred to a brown buret and dropped at a rate of about 0.4 mL / sec into a 1% Tween 20 aqueous solution which had been warmed to 50 캜. At this time, the ratio of the aqueous solution to the organic solution was 1: 9, and when mixed, the solution was magnetically stirred to ensure smooth dispersion of the carotenoids. The time until mixing with the aqueous solution was limited to 5 minutes.

상기 카로티노이드 용해 아세톤과 수용액 혼합물을 감압 증류기에서 70℃에서 30분간 처리하여 아세톤을 제거한 후, 0.2 ㎛ 필터링을 하여 잔존하는 불순물을 제거하였다.The mixture of carotenoid-dissolving acetone and aqueous solution was treated at 70 캜 for 30 minutes in a vacuum distiller to remove acetone, and the remaining impurities were removed by 0.2 탆 filtering.

실시예Example 3: 베타카로틴 나노입자의 제조 3: Preparation of beta-carotene nanoparticles

항온 수조기를 이용해 50℃로 중탕한 아세톤에 각각 1 mM에 해당하는 베타카로틴(Wako Pure Chemical, Tokyo, Japan에서 구입)을 넣어주고 투입 즉시 자석 교반기(magnetic stirrer)를 통해 1분간 녹였다. Beta-carotene (purchased from Wako Pure Chemical, Tokyo, Japan), which corresponds to 1 mM, was added to acetone, which had been warmed to 50 ° C, using a thermostatic water bath, and the mixture was dissolved for 1 minute through a magnetic stirrer.

상기 아세톤 용액에 용해한 카로티노이드 용액을 갈색 뷰렛으로 옮겨 담아 50℃로 중탕한 1% 트윈 20 (Tween 20) 수용액에 약 0.4 mL/sec의 속도로 떨어트려 주었다. 이때, 수용액과 유기용액의 비율은 1:9이며 혼합될 시에는 용액을 자석 교반하여 카로티노이드가 원활히 분산되도록 하였다. 수용액과 혼합할 때까지의 시간은 5분으로 제한하였다.The carotenoid solution dissolved in the acetone solution was transferred to a brown buret and dropped at a rate of about 0.4 mL / sec into a 1% Tween 20 aqueous solution which had been warmed to 50 캜. At this time, the ratio of the aqueous solution to the organic solution was 1: 9, and when mixed, the solution was magnetically stirred to ensure smooth dispersion of the carotenoids. The time until mixing with the aqueous solution was limited to 5 minutes.

상기 카로티노이드 용해 아세톤과 수용액 혼합물을 감압 증류기에서 70℃에서 30분간 처리하여 아세톤을 제거한 후, 0.2 ㎛ 필터링을 하여 잔존하는 불순물을 제거하였다. 상기 방법에 의해서 베타카로틴 나노입자를 83% 수율로 수득하였다.The mixture of carotenoid-dissolving acetone and aqueous solution was treated at 70 캜 for 30 minutes in a vacuum distiller to remove acetone, and the remaining impurities were removed by 0.2 탆 filtering. Beta carotene nanoparticles were obtained in 83% yield by the above method.

실험예Experimental Example 1: 나노입자 사이즈의 분석 1: Analysis of nanoparticle size

상기 실시예 1 내지 3에서 제조한 카로티노이드 나노입자의 사이즈를 알아보기 위해 동적광산란법(Dynamic Light Scattering: DLS)이 차용된 나노입자분석기(HPPS, malvern Instrument., England)를 통해 분석하였고, 얻어진 결과를 도 1에 나타내었다.In order to examine the sizes of the carotenoid nanoparticles prepared in Examples 1 to 3, analysis was carried out using a nanoparticle analyzer (HPPS, Malvern Instrument, England) loaded with Dynamic Light Scattering (DLS) Is shown in Fig.

도 1(a)는 BAS 나노입자의 사이즈이며 80 nm 전후의 직경을 가진다는 것을 확인할 수 있었다. 도 1(b)는 BTS 나노입자의 사이즈이며 90 nm 전후의 직경을 가진다는 것을 확인할 수 있었다. 도 1(c)는 베타카로틴 나노입자 (Wako Pure Chemical, Tokyo, Japan에서 구입)의 사이즈이며 10 nm 전후의 직경을 가진다는 것을 알 수 있었다. 도 1(a), (b), (c)를 통해 수십 나노미터(nm)의 직경 크기를 갖는 나노입자가 제조된 것을 확인할 수 있었고 각각의 카로티노이드마다 다른 사이즈의 나노입자가 형성된다는 것을 확인할 수 있었다.Fig. 1 (a) shows that the size of the BAS nanoparticles is about 80 nm in diameter. Fig. 1 (b) shows the size of BTS nanoparticles, and it was confirmed that they had a diameter of about 90 nm. 1 (c) shows the size of beta-carotene nanoparticles (purchased from Wako Pure Chemical, Tokyo, Japan) and has a diameter of about 10 nm. 1 (a), (b) and (c), it was confirmed that nanoparticles having a diameter of several tens of nanometers (nm) were produced, and that nanoparticles of different sizes were formed for each of the carotenoids there was.

실험예Experimental Example 2:  2: UVUV // VisVis 스펙트럼 분석 Spectrum analysis

상기 실시예 1, 2에서 제조된 카로티노이드 나노입자의 UV/Vis 스펙트럼 변화를 알아보기 위해 분광광도계(UV/Vis spectrophotometer, Termo scientific Inc,, Germany)로 200 nm 내지 800 nm의 흡광도를 분석하였고, 얻어진 결과를 도 2에 나타내었다. The UV / Vis spectral change of the carotenoid nanoparticles prepared in Examples 1 and 2 was analyzed using a spectrophotometer (UV / Vis spectrophotometer, Thermo Scientific Inc, Germany), and the absorbance at 200 nm to 800 nm was analyzed. The results are shown in Fig.

각각의 BAS 카로티노이드와 BTS 카로티노이드가 나노입자 형태를 갖게 됨으로써 최대 흡수 파장이 달라지는 것을 확인 할 수 있었다.It was confirmed that the maximum absorption wavelength was changed by each BAS carotenoid and BTS carotenoid having a nanoparticle form.

실험예Experimental Example 3: 주사전자현미경 분석 3: Scanning Electron Microscopy Analysis

상기 실시예 1 내지 3에서 제조한 카로티노이드 나노입자의 표면 형태 및 미세구조를 알아보기 위해 주사전자현미경(Scanning Electron Microscopy; SEM)으로 분석하였고, 얻어진 결과를 도 3에 나타내었다. The surface morphology and microstructure of the carotenoid nanoparticles prepared in Examples 1 to 3 were analyzed by Scanning Electron Microscopy (SEM). The results obtained are shown in FIG.

도 3은 형태학적 분석을 위해 여러 번의 중첩과정을 거쳐 얻은 결과로 나노입자는 수용액상 내에 카로티노이드 분자들이 뭉쳐 구형으로 존재한다는 것을 확인 할 수 있었다. FIG. 3 shows that the nanoparticles were spherical in shape of aggregation of carotenoid molecules in the aqueous phase as a result of several superposition processes for morphological analysis.

실험예Experimental Example 4:  4: 항산화능Antioxidant ability 분석 analysis

상기 실시예 1 및 2에서 제조된 BAS 카로티노이드와 BTS 카로티노이드 나노입자가 항산화적 기능성을 향상시키는지를 알아보기 위해 DPPH(1,1-diphenyl-2-picryl hydrazyl) 라디칼 소거능을 확인해 보았고, 얻어진 결과를 도 4와 도 5에 나타내었다. DPPH (1,1-diphenyl-2-picryl hydrazyl) radical scavenging activity was examined to see whether the BAS carotenoids and BTS carotenoid nanoparticles prepared in Examples 1 and 2 improved the antioxidative function. 4 and Fig. 5, respectively.

도 4에서 일반적인 수용액상에서의 카로티노이드의 항산화 능력과 나노입자화 되었을 때의 항산화 능력을 비교한 결과로서, 여기에서의 'water'군은 나노입자화가 되지 않은 수용액상에서의 카로티노이드를 의미한다. 최대한 나노입자와 사이즈나 농도 조건을 동일하게 만들어주기 위해서 1 mM 카로티노이드가 포함되어 있는 유기용매 1 ml에 증류수 9 ml를 섞어 초음파(Ultrasonication)처리 하였다.FIG. 4 shows a comparison of the antioxidative capacity of carotenoids in a normal aqueous solution with the antioxidative capacity in the case of nanoparticles. Herein, the term "water" refers to carotenoids in an aqueous solution which has not been converted into nanoparticles. To make the nanoparticles and nanoparticles have the same size and concentration conditions, 9 ml of distilled water was mixed with 1 ml of an organic solvent containing 1 mM carotenoid and subjected to ultrasonication treatment.

그 결과, 신규카로티노이드 BAS, BTS는 비나노입자상태에서 항산화적 활성이 미비한 반면, 나노입자상태(NP)에서 라디칼 소거능이 증진되는 것을 확인 할 수 있었다.As a result, it was confirmed that the novel carotenoids BAS and BTS exhibit an antioxidative activity in the non-nanoparticle state while the radical scavenging ability is enhanced in the nanoparticle state (NP).

도 5는 나노입자의 시간에 따른 라디칼 소거능을 확인한 결과로서, 시간이 지남에 따라 활성이 줄어들지 않고 장시간 동안 항산화능이 증진된다는 것을 확인할 수 있었다.FIG. 5 shows the results of confirming radical scavenging ability of the nanoparticles over time. As a result, it was confirmed that the antioxidant activity was improved over a long period of time without decreasing the activity over time.

실험예Experimental Example 5: 보관 안정성 분석 5: Storage stability analysis

상기 실시예 1 및 2에서 제조된 BAS 카로티노이드와 BTS 카로티노이드 나노입자의 보관 안정성을 평가하기 위해 제조 당일의 나노입자와 4주간 보관한 나노입자의 크기를 나노입자분석기(HPPS, Malvern instrument, England)를 통해 분석하였고, 얻어진 결과를 도 6에 나타내었다.To evaluate the storage stability of BAS carotenoids and BTS carotenoid nanoparticles prepared in Examples 1 and 2, the size of the nanoparticles stored on the day of manufacture and the nanoparticles stored for 4 weeks were measured using a nanoparticle analyzer (HPPS, Malvern instrument, England) , And the results obtained are shown in Fig.

도 6(a), (b), (c)는 각각 BAS 카로티노이드 나노입자, BTS 카로티노이드 나노입자, 베타카로틴 나노입자가 만들어진 직후와 4주간 보관하였을 때의 크기가 큰 차이가 없는 것을 보여주며, 본 발명에 따른 신규한 카로티노이드 형태의 나노입자가 장기간 보관에도 불구하고 카로티노이드가 서로 뭉치지 않고 수용액상에 안정적으로 분산되어 있는 것을 확인할 수 있었다.6 (a), 6 (b) and 6 (c) show that there is no significant difference in size between immediately after production of BAS carotenoid nanoparticles, BTS carotinoid nanoparticles, and beta carotene nanoparticles and after storage for 4 weeks, It was confirmed that the novel carotenoid-type nanoparticles according to the present invention were stably dispersed in the aqueous solution without aggregation of the carotenoids despite the storage for a long period of time.

실험예Experimental Example 6: 노출 안정성 분석 6: Exposure stability analysis

상기 실시예 1 및 2에서 제조된 BAS 카로티노이드와 BTS 카로티노이드 나노입자가 빛과 열에 노출되었을 때의 유효카로티노이드의 수가 감소되는 현상을 분석하기 위해 비나노입자와 나노입자를 직사광선과 열에 노출시키고 한 시간 뒤 DPPH (1,1-diphenyl-2-picryl hydrazyl) 라디칼 소거능을 확인하였고, 얻어진 결과를 도 7에 나타내었다.To analyze the reduction of the number of effective carotenoids when BAS carotenoids and BTS carotenoid nanoparticles prepared in Examples 1 and 2 were exposed to light and heat, non-nanoparticles and nanoparticles were exposed to direct sunlight and heat for one hour The DPPH (1,1-diphenyl-2-picryl hydrazyl) radical scavenging ability was confirmed, and the obtained results are shown in Fig.

도 7(a)는 비나노입자의 자극 노출 후 라디칼 소거능을 보여주는 결과이며, 항산화적 활성을 가진 유효카로티노이드가 전량 분해되는 것을 확인할 수 있었다. 도 7(b)는 나노입자의 자극 노출 후 라디칼 소거능을 보여주는 결과이며, 유효 카로티노이드의 수가 자극 후 줄어들었으나 비나노입자에 비해 상당히 많은 양 보존되어 있다는 것을 확인할 수 있었다. FIG. 7 (a) shows the radical scavenging ability of non-nanoparticles after exposure to stimulation, and it was confirmed that all of the effective carotenoids having antioxidant activity were degraded. Fig. 7 (b) shows the results of the radical scavenging ability after nanoparticle stimulation. It was confirmed that the number of effective carotenoids was reduced after stimulation but was considerably larger than that of non-nanoparticles.

Claims (5)

하기 화학식 2로 표시되는 카로티노이드 화합물을 1000 nm 이하의 직경을 가지는 입자로 나노입자화하는 단계를 포함하는,
나노입자화되지 않은 카로티노이드 대비, 카로티노이드의 항산화능, 또는 광 또는 열 안정성을 개선하는 방법:
[화학식 2]
Figure 112015093081326-pat00006
.
Comprising nanoparticles of a carotenoid compound represented by the following formula (2) into particles having a diameter of 1000 nm or less,
Methods for improving antioxidant potential, or light or thermal stability, of carotenoids versus non-nanoparticulated carotenoids:
(2)
Figure 112015093081326-pat00006
.
1000 nm 이하의 직경을 가지는 입자로서 하기 화학식 2로 표시되는 카로티노이드 화합물이 존재하는 카로티노이드 나노입자를 포함하는,
나노입자화되지 않은 카로티노이드 대비, 카로티노이드의 항산화능, 또는 광 또는 열 안정성의 개선용 조성물:
[화학식 2]
Figure 112015093081326-pat00008
.
A carotenoid nanoparticle comprising a carotenoid compound represented by the following formula (2) as particles having a diameter of 1000 nm or less,
Compositions for improving the antioxidant ability, or the optical or thermal stability, of carotenoids versus non-nanoparticulate carotenoids:
(2)
Figure 112015093081326-pat00008
.
제2항에 있어서, 상기 나노입자는 1 nm 내지 100 nm의 직경을 가지는 것을 특징으로 하는, 조성물.
3. The composition of claim 2, wherein the nanoparticles have a diameter of from 1 nm to 100 nm.
제2항에 있어서, 상기 나노입자는 선형알킬벤젠술폰산나트륨, 알파술폰산나트륨, 알파올레핀술폰산나트륨, 알킬에테르유산에스테르나트륨, 폴리옥시에틸렌알킬에테르염, 소디움라우릴설페이트, 소듐라우레스설페이트, 및 이들의 혼합물로 구성된 군으로부터 선택되는 어느 하나 이상의 합성계면활성제를 추가로 포함하는 것을 특징으로 하는, 조성물.
The nanoparticle as set forth in claim 2, wherein the nanoparticle is selected from the group consisting of sodium linear alkylbenzenesulfonate, sodium alpha-sulfonate, sodium alpha-olefinsulfonate, sodium alkyl ether esterate, polyoxyethylene alkyl ether salt, sodium lauryl sulfate, sodium laureth sulfate, &Lt; / RTI &gt; wherein the composition further comprises one or more synthetic surfactants selected from the group consisting of a mixture of a surfactant and a surfactant.
제2항에 있어서, 상기 나노입자는 코코베타인, 레시틴, 사포닌, 밀납, 붕사, 술포석시네이트, 및 이들의 혼합물로 구성된 군으로부터 선택되는 어느 하나 이상의 천연계면활성제를 추가로 포함하는 것을 특징으로 하는, 조성물.The method according to claim 2, wherein the nanoparticles further comprise at least one natural surfactant selected from the group consisting of coco betaine, lecithin, saponin, beeswax, borax, sulphosuccinate, and mixtures thereof &Lt; / RTI &gt;
KR1020150077522A 2015-06-01 2015-06-01 Novel carotenoid nanoparticles KR101599195B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150077522A KR101599195B1 (en) 2015-06-01 2015-06-01 Novel carotenoid nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150077522A KR101599195B1 (en) 2015-06-01 2015-06-01 Novel carotenoid nanoparticles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR20130094616A Division KR20150018710A (en) 2013-08-09 2013-08-09 Novel carotenoid nanoparticles

Publications (2)

Publication Number Publication Date
KR20150071001A KR20150071001A (en) 2015-06-25
KR101599195B1 true KR101599195B1 (en) 2016-03-04

Family

ID=53517397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150077522A KR101599195B1 (en) 2015-06-01 2015-06-01 Novel carotenoid nanoparticles

Country Status (1)

Country Link
KR (1) KR101599195B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518829A (en) * 2007-02-23 2010-06-03 ビーエーエスエフ ソシエタス・ヨーロピア Use of water-dispersible carotenoid nanoparticles as taste-modifying substances, taste-modifying substances containing water-dispersible carotenoid nanoparticles, and methods for taste modification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518829A (en) * 2007-02-23 2010-06-03 ビーエーエスエフ ソシエタス・ヨーロピア Use of water-dispersible carotenoid nanoparticles as taste-modifying substances, taste-modifying substances containing water-dispersible carotenoid nanoparticles, and methods for taste modification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1:CHEM.EUR.J.,2010,16,7395~7399*

Also Published As

Publication number Publication date
KR20150071001A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
CA1340614C (en) Cyclopentano-vitamin d analogs
Khachik et al. Identification of lutein and zeaxanthin oxidation products in human and monkey retinas.
JP2733656B2 (en) Novel naphthalene derivative having retinoid-type action, method for producing the same, and pharmaceutical and cosmetic compositions containing the same
KR100295977B1 (en) New Vitamin D Homologs and Methods for Making the Same
Edge et al. Properties of carotenoid radicals and excited states and their potential role in biological systems
EP0037318A1 (en) Composition, particularly useful in the treatment and prevention of dandruff and containing metallic derivatives of thiobenzoic acid
JP7348663B2 (en) Co-crystals of ubiquinol and compositions containing them
DE19842416A1 (en) Secondary amines for the prevention and therapy of diseases caused or intensified by oxidation processes
DE60010925T2 (en) VITAMIN D - ANALOGUE
KR101599195B1 (en) Novel carotenoid nanoparticles
CA2065849C (en) Vitamin d analogues
KR20150018710A (en) Novel carotenoid nanoparticles
US20120157547A1 (en) Compositions and applications of carotenoids of improved absorption and bioavailability
KR101468308B1 (en) Method for preparing carotenoid nanoparticle
Sacramento et al. Synthesis and Evaluation of Antioxidant, Anti‐Edematogenic and Antinociceptive Properties of Selenium‐Sulfa Compounds
US20140323562A1 (en) Thiosulfinate antioxidants and methods of use thereof
RU2006114673A (en) NEW DERIVATIVES 4A, 5,9,10,11,12-HEXAHYDROBENZENOFURO- [3A, 3.2] [2] BENZAZEPINE, METHOD FOR PRODUCING THEM, AND ALSO APPLICATION FOR PRODUCING MEDICINES
US11773060B2 (en) Method for synthesis of 9-cis-beta-carotene and formulations thereof
KR20020061167A (en) Retinol derivatives and process for preparing same
WO2022025117A1 (en) Fluorinating agent and method for producing fluorine-containing compounds
RU2013124033A (en) 23-IN-VITAMIN D3 DERIVATIVE
Kim et al. Convergent synthesis of new types of stabilized carotenoid compounds
El-Agamey et al. Carotenoid radical ions: A laser flash photolysis study
Pintea et al. Impact of esterification on the antioxidant capacity of β-cryptoxanthin.
Fong The origin of the antioxidant capacity against oxidative and photooxidative stress, singlet oxygen reactivity, and the excited states in skin and eye related diseases of astaxanthin and other carotenoids, isomers and esters in the cell membrane and cytosol

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant