KR101598730B1 - 자동-조정식 유입 제어 장치 - Google Patents

자동-조정식 유입 제어 장치 Download PDF

Info

Publication number
KR101598730B1
KR101598730B1 KR1020147006392A KR20147006392A KR101598730B1 KR 101598730 B1 KR101598730 B1 KR 101598730B1 KR 1020147006392 A KR1020147006392 A KR 1020147006392A KR 20147006392 A KR20147006392 A KR 20147006392A KR 101598730 B1 KR101598730 B1 KR 101598730B1
Authority
KR
South Korea
Prior art keywords
fluid
pressure
flow
upstream
reservoir
Prior art date
Application number
KR1020147006392A
Other languages
English (en)
Other versions
KR20140074890A (ko
Inventor
샤오후아 조우
Original Assignee
사우디 아라비안 오일 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사우디 아라비안 오일 컴퍼니 filed Critical 사우디 아라비안 오일 컴퍼니
Publication of KR20140074890A publication Critical patent/KR20140074890A/ko
Application granted granted Critical
Publication of KR101598730B1 publication Critical patent/KR101598730B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/08Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • E03B3/08Obtaining and confining water by means of wells
    • E03B3/16Component parts of wells
    • E03B3/18Well filters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Flow Control (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Pipe Accessories (AREA)
  • Lift Valve (AREA)

Abstract

유입 제어 장치는 표면 아래의 유체 저장부로부터 생산 배관 스트링으로의 유체 유동율을 제어한다. 유입 제어 장치는 저장부 유체로부터의 입자상 물질을 제거하기 위한 입자 스크린과, 적어도 두 개의 유동 제한기를 포함한다. 유동 제한기는 유입 제어 장치의 원주방향으로 반대쪽에 위치하고 그리고 격리된 유체 통로에 의해 연결된다. 유동 제한기는, 저장부 유체가 큰 물-대-오일이나 또는 가스-대-오일 비를 가질 때, 저장부 유체의 유동율을 제한한다. 유입 제어 장치는 또한 적어도 한 개의 압력 강하 장치를 포함하고, 상기 압력 강하 장치는 저장부에서의 유체 압력에 응답하여 저장부 유체에 대해 압력 강하를 발생시킨다. 유입 제어 장치는 또한 저장부 유체의 유동이 차단될 수 있게 되고 유입 제어 장치가 홀에서 제 위치에 있으면서 입자 스크린이 세정될 수 있게 되는 쵸킹 기기(choking apparatus)를 포함한다.

Description

자동-조정식 유입 제어 장치{Self-Controlled Inflow Control Device}
본 출원은 "자동-조정식 유입 제어 장치"를 발명의 명칭으로 하여 2011년 09월 16일에 출원된 본 출원인의 미국 가출원번호 제61/535,802호를 우선권 주장하고 있으며, 참조를 위해 상기 특허문헌의 내용은 모두 본 발명에 포함된다.
본 발명은 전반적으로 유정 생산 장치(well production device)에 관한 것으로, 더욱 상세하게는 자동-조정식 유입 제어 장치에 관한 것이다.
저장부를 수평방향으로 관통하도록 측면 라인을 사용하여 여러 유정이 완성된다. 이들 수평방향 유정 부분은 수직 유정 주위의 국부 영역보다는 저장부로부터 유체를 만들기 위해 동일한 높이에서 상기 저장부를 통해 뻗어있다. 측면 라인은 상기 측면 라인의 단부에서 선단부에 수직한 라인을 갖는 측면 라인의 결합점에서 힐부(heel)로부터 뻗어있다. 수평방향 유정보어 프로파일에 따른 유체가 모든 측면부를 따라 생산 배관으로 유동할 것이다. 그러나, 힐부(heel)로 유동하는 유체는 선단부로부터의 유동을 차단하여, 총 저장부 프로파일으로부터 표면까지의 유체의 생산을 방지할 것이다. 대신에, 다수의 만들어진 유체가 힐부 주위의 성형 영역으로부터 빼내질 것이다. 이는 원추형을 초래할 수 있다. 원추형은, 유정의 단일의 존으로부터 매우 많은 저장부가 생산될 때, 콘 형상 저장부 유체 이동 전방, 즉 원하는 저장부 유체와 원치않는 저장부 유체 사이의 경계를 의미한다. 저장부 유체가 성형부로부터 만들어짐에 따라, 물과 같은 주변 유체가 만들어진 영역으로 유동할 것이다. 만들어진 유체 유동율이 매우 크다면, 물은 원하는 유체가 만들어진 유체를 대신하기 전에 영역을 채울 것이다. 측면 유정에 있어서, 힐부에서만의 생산이 상기 힐부에서의 성형부로 물을 빼낼 것이다. 힐부가 물을 만듬에 따라, 선단부로부터의 성형 유체를 차단할 것이다. 이러한 상황에서, 유입 제어 장치(ICD, inflow control device)는 성형부로부터의 저장부 유체를 만들고 원추형을 방지하는 더욱 규칙적인 생산 프로파일을 만들도록 성형부의 여러 고 압력 영역 및 힐부로부터의 저장부 유체의 유동을 제한하도록 사용된다.
유입 제어 장치는 차동 압력을 생성하기 위해 제한된 통로를 통해 유체를 가압함으로써 유동을 제한한다. 이러한 차동 압력은 유입 제어 장치를 둘러싸는 저장부에서의 압력에 의해 반드시 극복된다. 저장부 압력이 큰 곳에서, 상기 압력은 표면에 대해 만들어져 유입 제어 장치 차동 압력을 극복할 것이다. 생산이 유입 제어 장치 주위의 저장부에서 압력 강하를 야기시킴에 따라, 저장부 압력이 유입 제어 장치 차동 압력을 더 이상 극복하지 못하여, 상기 저장부 압력이 증가할 때까지 상기 영역으로부터의 생산을 제한할 것이다. 저장부 성형부는 유입 제어 장치가 런-인-홀(run-in-hole)에 있기 전에 테스트되고, 그리고 상기 유입 제어 장치는 상기 유입 제어 장치가 배치되는 저장부의 특정 구역에 대해 압력을 수용하도록 런-인(run-in)되기 전에 조정된다. 이들 유입 제어 장치는 보다 긴 생산기간 동안에 원하는 생산 프로파일을 유지하는데 어려움을 가지므로, 저장부 압력이 강하함에 따라 결국에는 완전하게 생산을 멈출 것이다. 이를 극복하기 위하여, 여러 유입 제어 장치가 메카니즘을 포함하고 상기 메카니즘에 의해 유입 제어 장치가 저장부 압력 변화를 수용하도록 차동 압력을 변경시킬 수 있다. 이들 유입 제어 장치는 표면으로부터 유체 압력을 제공하는 유압식 엄빌리컬(umbilical)에 의해 동력이 공급되는 유압 제어식 작동을 사용한다. 이들 유입 제어 장치는 유압식 엄빌리컬을 설치하고 표면으로부터 상기 엄빌리컬을 모니터하는데 필요한 전문 설비를 사용하기 때문에 상당히 더 고가이다.
더욱이, 많은 유입 제어 장치가 유입 제어 장치를 통한 저장부 유체의 유체 유동율을 능동적으로 제한할 수 없고 그리고 큰 볼륨의 가스나 또는 유동에서의 큰 볼륨의 물이나 또는 큰 볼륨의 가스를 갖는 저장부 유체 유동에 대해 조정될 수 없다. 따라서, 유정의 일부가 가스나 또는 물을 만들기 시작한다면, 유입 제어 장치는 표면에서 만들어진 유체에서의 물이나 또는 가스의 퍼센티지를 한정하도록 유동을 더 이상 제한할 수 없다. 여러 유입 제어 장치는 물 및 가스 제한 작동을 실행하기 위한 값비싼 유압식 또는 전기 엄빌리컬을 필요로 하는 유압식 압력 조정 설비와 유사하지만, 이들 상황을 수용하도록 표면으로부터 작동될 수 있는 설비를 포함한다. 이들 유입 제어 장치는 또한 유정의 어느 부분이 물 및 가스를 만들고 있는 지를 판정하기 위한 대규모의 그리고 값비싼 테스팅 공정을 필요로 한다. 더욱이, 여러 유입 제어 장치가 저장부에서의 가변 유체 밀도에 응답하는 장치를 사용하는, 물 및 가스 유동을 제한하는 수단을 포함한다. 이들 장치는 이후 유체 유동을 제한하도록 대응하는 노즐과 반드시 짝지워져야 한다. 그러나, 많은 이들 장치는 특별한 알려진 밀도 상태를 벗어나 성공적으로 작동할 수 없다. 따라서, 예측된 저장부 유체 밀도에서의 상당한 변화가 있는 경우에, 장치는 물이나 또는 가스의 유동을 적절하게 제한할 수 없다. 전형적으로, 이들 장치는 물이나 또는 가스 모두가 아닌 이들 중 어느 하나의 제한만을 수용할 수 있다.
특히 개방홀 생산 공정을 사용하는 유정 성형부에서, 유입 제어 장치의 사용에 의해 직면하게 된 다른 하나의 문제점은 필터 매체의 폐색이다. 유입 제어 장치가 사용됨에 따라, 입자상 물질은 필터 상에 형성되고 그리고 저장부로부터 유입 제어 장치 및 생산 배관으로의 유체의 유동을 차단한다. 계속해서 유입 제어 장치에 의해 직면하게 되는 다른 하나의 문제점은 사전결정된 상태 하에서 유입 제어 장치를 통한 저장부 유체의 유동을 방지하기 위하여 표면에서 조작자에 의해 정지되거나(turn off) 또는 억제(choked back)되는 상기 유입 제어 장치의 불능(inability)이다. 따라서, 상기 기술된 종래 기술의 문제점을 극복하는 유입 제어 장치가 바람직하다.
이들 여러 문제점은 일반적으로 해결되거나 극복되고, 그리고 기술적인 장점이 자동-조정식 유입 제어 장치와 상기 유입 제어 장치를 사용하는 방법을 제시하는 본 발명의 바람직한 실시예에 의해 전반적으로 달성된다.
본 발명의 실시예에 따라, 표면 아래의 유체 저장부로부터 생산 배관 스트링(string)으로의 유체 유동을 제어하기 위한 유입 제어 장치가 개시되어 있다. 유입 제어 장치는 축선을 갖는 중앙 보어를 형성하는 관형 부재를 포함하고, 상기 관형 부재의 상류 단부 및 하류 단부는 생산 배관 스트링과 연결될 수 있다. 복수의 통로는 관형 부재의 벽부에 형성된다. 유입 제어 장치는 유체를 수용하는 관형 부재의 외측으로 나아가는 복수의 통로에 대한 상류 유입구를 포함한다. 각각의 통로는 유체의 밀도에 응답하여 유동 제한기를 통한 유동을 제한하도록 선택된 그리고 상이한 밀도의 부유 부재를 갖는 적어도 두 개의 유동 제한기를 구비한다. 유입 제어 장치는 유동 제한기의 유출물과 유체 연통하는 각각의 통로 내에 위치된 적어도 한 개의 압력 강하 장치를 포함하고, 상기 압력 강하 장치는 저장부 유체 압력에 기초하여 유동하는 유체에 차동 압력을 생성하기 위한 압력 피스톤을 구비한다. 압력 강하 장치의 유출물은 중앙 보어와 연통하는 유입 유체 포트로 유동한다.
본 발명의 다른 일 실시예에 따라, 표면 아래의 유체 저장부로부터 표면에 대한 생산을 위한 생산 배관 스트링으로의 유체 유동을 제어하기 위한 유입 제어 장치가 개시된다. 유입 제어 장치는 복수의 통로가 관형 부재의 벽부에 형성된 상태에서, 축선을 갖는 중앙 보어를 형성하는 상기 관형 부재를 포함한다. 각각의 통로는 관형 부재를 적어도 부분적으로 둘러싸서, 각각의 통로의 종단부가 통로의 헤드로부터 180 도이다. 유입 제어 장치는 또한 큰 물-대-오일 비 및 큰 가스-대-오일 비를 갖는 저장부 유체의 유동을 제한하는 각각의 유동 제한기 내에 위치되어 선택된 상이한 밀도의 부유 부재를 구비한 적어도 두 개의 유동 제한기를 포함한다. 복수의 통로 중 하나의 통로가 수직으로 정위되어, 대응하는 유동 제한기 중 적어도 한 개의 유동 제한기가 유입 제어 장치의 최고 높이에 위치하고, 그리고 대응하는 유동 제한기 중 적어도 하나의 유동 제한기가 상기 유입 제어 장치의 최저 높이에 위치한다. 적어도 한 개의 압력 강하 장치는 유동 제한기의 유출물과 유체 연통하는 각각의 통로 내에 위치된다. 압력 강하 장치는 저장부 유체 압력에 응답하여 압력 피스톤으로써 유동하는 유체에 차동 압력을 생성한다. 압력 강하 장치의 유출물은 중앙 보어와 연통하는 유입 유체 포트로 유동한다. 압력 기동식 쵸크 기기(choke apparatus)는 표면에서의 생산 배관 스트링에 가해진 유체 압력에 응답하여 복수의 통로로부터 중앙 보어로의 유체의 유동을 제한하기 위해 압력 강하 장치의 하류에 위치된다. 필터 매체는 유입 제어 장치의 상류 단부 근방의 관형 부재에 의해 형성된 환형 개구 내에 위치되어, 상기 필터 매체는 표면 아래의 유체 저장부와 복수의 통로 사이의 유체 연통을 가능하게 한다. 유입 제어 장치는 또한 상기 유입 제어 장치의 상류 단부에 위치되고 그리고 중앙 보어 내의 압력에 응답하여 기동가능한 압력 작동식 부재를 포함하여, 상기 중앙 보어로부터 필터 매체까지의 유체 연통이 가능해져 상기 필터 매체를 세정할 수 있다.
본 발명의 다른 일 실시예에 따라, 유입 제어 장치로써 표면 아래의 저장부로부터 유체를 만들기 위한 방법이 개시된다. 본 방법은 적어도 한 개의 유입 제어 장치를 생산 배관 스트링과 결합하고, 그리고 상기 생산 배관 스트링을 유정보어로 뻗어있다. 본 방법은 이후 생산 배관 스트링의 런-인 작동 동안에 유입 제어 장치를 통한 저장부 유체의 유동을 방지하도록 상기 배관 스트링에 유체 압력을 적용한다. 본 방법은 이후 생산 배관 스트링으로부터 유체 압력을 제거하여, 저장부 유체가 유입 제어 장치를 통해 상기 생산 배관 스트링으로 유동할 수 있게 하는 동안, 큰 물-대-오일 비 및 큰 가스-대-오일 비를 갖는 저장부 유체의 유동을 제한하고 그리고 상기 유입 제어 장치로서 상기 저장부 유체의 유동율을 제어한다. 저장부 유체 유동의 실질적인 중단이 발생하는 경우에, 본 방법은 런-인 동안에 가해진 유체 압력보다 더 큰 유체 압력을 생산 배관 스트링에 가하여 유체가 유입 제어 장치를 통해 그리고 저장부로 유동하게 된다. 본 방법은 이후 저장부 유체의 생산을 계속하도록 유체 압력을 제거한다.
개시된 실시예의 장점은 저장부 유체 유동을 감소시키고 다수의 생산 존을 가로지른, 특히 동일한 높이에서의 존을 가로지른 균형이 맞춰진 생산 프로파일을 유지하도록, 압력 강하를 만드는데 사용될 수 있는 유입 제어 장치를 제공한다는 것이다. 개시된 유입 제어 장치는 저장부 압력에 응답하여 차동 압력을 변경시킴으로써 가변 저장부 압력을 수용한다. 더욱이, 개시된 실시예는 저장부 유체 내의 볼륨의 물질의 비에 기초하여 큰 볼륨의 물 또는 가스를 갖는 생산 유체의 유동을 제한할 것이다. 더욱이, 개시된 실시예는 저장부 유체 유동으로부터 고체 입자상 물질을 제거할 것이다. 개시된 실시예는 입자를 제거하고 그리고 홀(hole)에서 제 위치에 위치하면서 유입 제어 장치의 세정을 허용하는 공정을 포함한다. 이는 다른 유입 제어 장치와 비교하여 막힘이나 또는 차단과 관련된 문제점이 보다 적은 유입 제어 장치의 수명을 증대시킬 수 있다.
본 발명의 특징, 장점 및 목적뿐만 아니라 여러 명확한 사항이 얻어지는 방식이 더욱 상세하게 이해될 수 있도록, 상기 간단하게 요약된 본 발명의 더욱 상세한 설명은 본 명세서의 일부를 이루는 첨부된 도면에 도시된 본 발명의 실시예를 참조하고 있다. 그러나, 도면은 단지 본 발명의 바람직한 실시예를 나타내고 있으며 이에 따라서 본 발명이 다른 동일하게 효과적인 실시예를 포함하는 범위를 한정하지 않음을 알 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 생산 유정의 일부의 개략적인 도면이다.
도 2a는 본 발명의 일 실시예에 따른 생산 공정 동안의 유입 제어 장치의 개략적인 측 단면도이다.
도 2b는 생산 공동 동안의 도 2a의 유입 제어 장치를 통한 유체 유동의 개략적인 도면이다.
도 2c는 보수 또는 역류 공정 동안의 도 2a의 유입 제어 장치를 통한 유체 유동의 개략적인 도면이다.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른, 선 3A-3A 및 3B-3B을 따라 취한 도 2a의 유동 제한기 장치의 각각의 도면이다.
도 3c는 도 3a 및 도 3b에서의 선 3C-3C을 따라 취한 도 3a 및 도 3b의 단면도이다.
도 3d 및 도 3e는 도 3c의 하류 포팅 벽부 및 상류 포팅 벽부의 각각의 정면도이다.
도 4 내지 도 8은 예측된 저장부 유체의 생산 동안에 도 3a 내지 도 3c의 유동 제한기의 일부를 개략적으로 나타낸 도면이다.
도 9 내지 도 13은 큰 가스-대-오일 비의 저장부 유체의 생산 동안에 도 3a 내지 도 3c의 유동 제한기의 일부를 개략적으로 나타낸 도면이다.
도 14 내지 도 18은 큰 물-대-오일 비의 저장부 유체의 생산 동안의 도 3a 내지 도 3c의 유동 제한기의 일부를 개략적으로 나타낸 도면이다.
도 19는 본 발명의 일 실시예에 따른 도 2a의 압력 강하 장치의 끝면도이다.
도 20은 도 19의 선 20-20에 따라 취한 도 2a의 압력 강하 장치의 단면도이다.
도 21 및 도 22는 도 20의 선 21-21 및 선 22-22에 따라 취한 도 2a의 압력 강하 장치의 각각의 단면도이다.
도 23 내지 도 26은 압력 강하 장치 사용의 작동 단계를 나타낸 도 2a의 압력 강하 장치의 단면도이다.
도 27 및 도 28은 유동 제한 공정의 작동 단계를 나타낸 도 2a의 압력 강하 장치의 상세한 단면도이다.
도 29는 런-인-홀 공정에서의 도 1의 유입 제어 장치의 단면도이다.
도 30은 보수 공정에서의 도 1의 유입 제어 장치의 단면도이다.
도 31은 보수 공정 동안의 압력 강하 장치의 작동 단계를 나타낸 도 30의 압력 강하 장치의 단면도이다.
본 발명은 본 발명의 실시예를 나타내고 있는 첨부한 도면을 참조하여 아래에서 더욱 상세하게 기재되어 있다. 그러나, 본 발명은 많은 상이한 형태로 구체화될 수 있고 그리고 본 명세서에서 설명된 도시된 실시예만으로 한정되도록 구성되지 않음을 알 수 있을 것이다. 차라리, 이들 실시예는 본 발명의 이해와 완성을 위해 제공되어 있고, 그리고 당업자라면 본 발명을 완전하게 이해할 수 있을 것이다. 동일한 부재번호는 동일한 구성요소를 전반적으로 지시하고 있고, 프라임 기호가 사용되었는데, 이는 대안적인 실시예 또는 위치에서의 유사한 부재를 지시한다.
아래 기재된 사항에 있어서, 여러 특별한 상세한 사항이 본 발명의 전반적인 이해를 돕도록 설명되어 있다. 그러나, 본 발명이 이러한 특별한 상세한 사항 없이도 실행될 수 있다는 것은 당업자에게 명확하다. 부가적으로, 주로, 유정 드릴링, 저장부 테스팅, 유정 완성 등과 관련된 상세한 사항은 본 발명을 완전하게 이해하는데 이러한 상세한 사항이 필요하다고 여겨지지 않고 관련 기술의 당업자의 범주 내에 속하는 사항이라고 여겨지므로 생략되어 있다.
도 1을 살펴보면, 유정 시스템(11)은 케이싱 스트링(15, casing string)으로서 적어도 부분적으로 완성된 유정보어(13)를 포함한다. 도시된 실시예에 있어서, 유정보어(13)는 상기 유정보어(13)로부터 수평방향으로 뻗어있는 힐부(18) 및 선단부(20)를 구비한 측면부(17)를 포함한다. 유정보어(13)는 시멘트 층(9)에 의해 제 위치에 시멘트 적용된 케이싱 스트링(15)과 통합될 수 있다. 시멘트 층(9)은 케이싱(15)을 보호할 수 있고 그리고 격리 장벽으로 작용한다. 측면부(17)는 도시된 바와 같이 케이스에서 꺼내질 수 있다(uncase). 선택적으로, 측면부(17)는 케이싱 스트링(15)과 유사한 케이싱 스트링으로 완성될 수 있다. 생산 배관 스트링(19)은 케이싱 스트링(15) 및 측면부(17) 내에서 매달린다. 생산 배관 스트링(19)과 케이싱 스트링(15) 사이의 환형부 내에 배치된 생산 패커(7, packer)는 케이싱 스트링(15)의 단부 아래에서 생산 배관 스트링(19)을 격리할 수 있다. 생산 배관 스트링(19)은, 아래에서 더욱 상세하게 기재된 바와 같이, 성형부 주변 측면부(17)로부터 생산 배관 스트링(19)으로의 유체의 제어된 유동에 도움이 되도록 유입 제어 장치(21)(3개가 도시됨)를 포함할 수 있다. 도시된 실시예에 있어서, 각각의 유입 제어 장치(21)는 2개가 도시되어 있는 개방홀 패커(5)에 의해 별도의 존에서 격리된다. 생산 배관 스트링(19)은 선단부(20)에서 폐쇄될 수 있거나, 또는 대안적으로 상기 생산 배관 스트링(19)의 상류 단부에서 패커를 포함하여, 상기 생산 배관 스트링(19)의 보어로의 저장부 유체의 직접적인 유동을 방지한다. 도 1에서 점선으로 도시된, 대안적인 실시예에 있어서, 유정보어(13)는 측면부(17)를 포함하지 않을 수 있고 유정보어(13')의 종단부에 수직으로 뻗어있을 것이다. 케이싱 스트링(15')은 유입 제어 장치(21')를 구비한 생산 배관(19')과 유정 보어(13')의 종단부까지 뻗어있을 수 있고, 수평방향 부분을 포함하지 않지만, 그러나 도시된 바와 같이 수직 방식으로 유정을 완성할 것이다.
도 2a를 살펴보면, 유입 제어 장치(21)는 측단면도로 도시되어 있다. 유입 제어 장치(21)는 즉, 측면부(17)의 선단부(20)에 보다 근접한 관형 부재(23)의 다운홀 단부에서 나사산이 형성된 핀 연결부(25)를 구비한 관형 부재(23)일 수 있고, 그리고 즉, 상기 측면부(17)의 힐부(18)에 보다 근접한 상기 관형 부재(23)의 업홀 단부에서의 나사산이 형성된 박스 연결부(27)일 수 있다. 관형 부재(23)는 외경(29)을 갖고 그리고 축선(33)을 갖는 중앙 보어(31)를 형성한다. 생산 배관 스트링(19)은 나사산이 형성된 연결부(25, 27)에서 관형 부재(23)와 결합될 수 있어, 저장부 유체, 드릴링 유체, 클리닝 유체 등과 같은 유체가 중앙 보어(31)를 통해 순환될 수 있다.
원추형 단부(37)를 구비한 관형 하우징(35)은 관형 부재(23)를 둘러싼다. 원추형 단부(37)는 관형 부재(23)의 외경(29)에서 상기 관형 부재(23)와 연결되어, 유체가 상기 관형 부재(23)의 상기 외경(29)을 따라 관형 하우징(35)으로 유동하지 않는다. 관형 하우징(35) 및 관형 부재(23)가 비록 별도의 구성요소로 본 명세서에 기재되어 있을지라도, 단일의 몸체로 형성된 통합 구성요소일 수 있다. 관형 하우징(35)은 상기 관형 하우징(35)의 양 단부에서 상기 관형 하우징(35)의 외경에 위치된 환형 스탠드오프(39, standoff)를 포함한다. 스탠드오프(39)는 케이싱 스트링(15)(도 1)이나 또는 유정보어(17)(도 1)의 내경과 접촉하여, 환형부가 유입 제어 장치(21) 주위에 유지될 수 있다. 관형 하우징(35)은 외경(29) 보다 더 큰 내경을 구비하여, 관형 부재(23)와 상기 관형 하우징(35) 사이에서 환형부(41)를 형성한다. 관형 하우징(35)은 환형부(41)와 유체 연통하는 환형 리세스나 또는 개구(43)를 형성할 수 있다. 필터 매체(45)는 환형 개구(43) 내에 위치되어, 케이싱 스트링(15)이나 또는 측면부(17) 내의 유체가 상기 필터 매체(45)를 통해 환형부(41)로 유동할 수 있다. 필터 매체(45)는, 만약 선택된 매체가 측면부(17)로부터 환형부(41)로의 원치않는 입자상 물질의 유동을 방지한다면, 와이어 스크린 등과 같은 임의의 적당한 매체 타입일 수 있다.
환형부(41)는 관형 하우징(35)에 형성된 유체 통로를 통해 중앙 보어(31)와 연통할 수 있다. 도시된 실시예에 있어서, 유체 세정 포트(47)는 나사산이 형성된 핀 연결부(25) 근방에 위치되고 그리고 중앙 보어(31)로부터 환형부(41)로 뻗어있다. 유체 세정 포트(47)는 관형 하우징(35)의 원추형 단부(37)와 개구(43) 사이에 위치될 수 있어, 아래에서 더욱 상세하게 기재된 바와 같이, 유체는 사전 결정된 상태 하에서 중앙 보어(31)로부터 환형부(41)로 필터 매체(45)를 통해 유동할 수 있다. 유체 세정 포트(47)는 환형 유동 통로이고, 그리고 압축가능한 디스크(49)는 상기 유체 세정 포트(47) 내에 위치될 수 있다. 압축가능한 디스크(49)는 적당한 재료로 형성된 환형 부재이므로, 상기 압축가능한 디스크(49)가, 아래에서 더욱 상세하게 기재된 바와 같이, 중앙 보어(31)와 환형부(41) 사이에서의 유체 연통이 가능하도록 소정의 유체 압력을 받을 때 압축될 수 있다.
도시된 실시예에 있어서, 환형부(41)는 유체 수집 챔버(51)를 형성한다. 유체 수집 챔버(51)는 유체 세정 포트(47)의 마주한 필터 매체(45) 및 개구(43) 근방의 환형 챔버이다. 유체는 측면부(17)로부터 필터 매체(45)를 통해 그리고 유체 수집 챔버(51)로 유동할 수 있다. 복수의 격리된 통로(53)는 유체 수집 챔버(51)로부터 박스 단부 연결부(27) 근방 및 유체 세정 포트(47)의 마주한 피스톤 유체 포트(55)까지 뻗어있을 수 있다. 도시된 실시예에 있어서, 8개의 통로(53)가 사용되지만; 그러나, 당업자는 수개 이상의 통로(53)가 유입 제어 장치(21)가 배치되는 유정의 특성에 따라 사용될 수 있음을 알 수 있을 것이다. 대안적인 실시예에 있어서, 12개의 통로(53)가 사용된다. 각각의 통로(53)는 인접한 통로(53)로부터 관형 부재(23)의 원주부 주위에 동일한 간격으로 이격될 것이다. 각각의 통로(53)는 유체 수집 챔버(51) 근방 통로(53) 내에 위치된 2개의 유동 제한기(57)를 포함하여, 유체 수집 챔버(51) 내의 유체가 유동 제한기(57)를 통해 유동할 수 있다. 압력 강하 장치(59)는 이후 유동 제한기(57) 근방의 통로(53) 내에 위치되어, 유동 제한기(57)를 통해 유동하는 유체가 압력 강하 장치(59)로 유동할 수 있다. 압력 강하 장치(59)를 통해 유동하는 유체가 이후 배관 유입 포트(61) 외측에서 중앙 보어(31)로 유동할 수 있다. 피스톤(63)은 압력 강하 장치(59)로부터 유동하는 유체의 유체 유동 경로에서의 통로(53) 내측에 위치될 것이다. 피스톤(63)은 압력 강하 장치(59)로부터의 유동이 가변적으로 중앙 보어(31)에 진입할 수 있거나 또는 진입 방지하도록 이동할 수 있다. 피스톤 유체 포트(55)는 중앙 보어(31)와 압력 강하 장치(59)에 마주한 피스톤(63) 사이의 유체 연통을 가능하게 하여 배관 유입 포트(61)를 통한 유체 유동을 방지하기 위해 상기 피스톤(63)의 이동을 기동시킨다.
도 2b에 도시된 바와 같이, 생산 단계 동안에, 저장부 주변 측면부(17)(도 1)로부터의 유체가 유체(46)로 지시된 바와 같이 유입 제어 장치(21)를 통해 유동할 수 있다. 유체는 필터 매체(45)를 통해 유입 제어 장치(21)로 통과할 것이다. 아래에서 더욱 상세하게 기재된 바와 같이, 상류 및 하류 유동 제한기(57)를 통해 나아가게 되는 유체가 있을 것이다. 유체가 유동 제한기(57)를 통해 유동한 이후에, 압력 강하 장치(59)를 통해 나아갈 것이다. 압력 강하 장치(59)로부터, 유체가 아래에서 더욱 상세하게 기재된 바와 같이, 중앙 보어(31)로 유동할 수 있다. 도 2c를 살펴보면, 보수 또는 역류 단계 동안에, 유체가, 유체(48)로 지시된 바와 같이, 아래 생산 배관 스트링(19)(도 1)으로부터 유입 제어 장치(21)의 중앙 보어(31)로 순환될 수 있다. 피스톤(63)은, 아래에서 더욱 상세하게 기재된 바와 같이, 중앙 보어(31)로부터 압력 강하 장치(59)와 하류 및 상류 유동 제한기(57)로의 유체(48)의 유동을 방지할 것이다. 유체(48)는 압력 디스크(49)를 기동시키는데 충분한 유체 압력을 가질 것이다. 유체(48)는, 아래에서 더욱 상세하게 기재된 바와 같이, 이후 압력 디스크(49)를 통해 그리고 필터 매체(45)를 통해 유입 제어 장치(21)를 둘러싼 성형부로 유동할 수 있다.
도 3a를 살펴보면, 8개의 통로(53A 내지 53H)가 도시되어 있다. 통로(53)는 관형 부재(23)를 부분적으로 둘러싸서, 각각의 통로를 통과하는 유체가 상기 관형 부재(23) 주위에서 적어도 어느 정도 유동한다. 런-인-홀일 경우, 적어도 한 개의 통로(53)가 유입 제어 장치(21)의 최고 높이에, 즉 도 3a에 도시된 바와 같은 12시 위치에 위치될 것이다. 이와 유사하게, 적어도 한 개의 통로(53)가 유입 제어 장치(21)의 최저 높이에, 즉 도 3a에 도시된 바와 같은 6시 위치에 위치될 것이다. 도 3b에 도시된 바와 같이, 각각의 통로의 종단부는 유체 수집 챔버(51)에서의 개별 통로(53)의 헤드로부터 180°이다(도 2a). 도 3c에 도시된 바와 같이, 유동 제한기(57)는 통로(53)의 각각의 단부에 위치된다. 예를 들면, 도시된 실시예의 8개의 통로가 이 경우 통로(53A, 53B, 53C, 53D, 53E, 53F, 53G, 및 53H)일 수 있다. 통로(53A)는 유체 수집 챔버(51) 근방의 통로(53A)에서 유동 제한기(57A')를 포함할 것이다. 도시된 실시예에 있어서, 유동 제한기(57A')는 도 3a에 도시된 바와 같은 12시 위치나 또는 표면에 가장 가까운 위치를 점유할 것이다. 유동 제한기(57A'')는 또한 압력 강하 장치(59) 근방의 통로(53A)에 위치될 것이다(도 2a). 유동 제한기(57A'')는, 도 3b에 도시된 바와 같이 6시 위치나 또는 표면에 가장 먼 위치를 점유할 것이다. 이와 유사하게, 통로(53E)는 유체 수집 챔버(51) 근방의 통로(53E)에서 유동 제한기(57E')를 포함할 것이다. 유동 제한기(57E')는 도 3a에 도시된 바와 같이 6시 위치나 또는 표면에 가장 먼 위치를 점유할 것이다. 유동 제한기(57E'')는 또한 압력 강하 장치(59) 근방의 통로(53E)에 위치될 것이다(도 2a). 유동 제한기(57E')는 도 3a에 도시된 바와 같은 12시 위치나 또는 표면에 가장 가까운 위치를 점유할 것이다. 유입 제어 장치(21)가 측면부(17)에 배치되어, 적어도 한 개의 통로(53A, 53B, 53C, 53D, 53E, 53F, 53G, 및 53H)가 최고 위치, 즉 12시 위치를 점유할 것이고, 그리고 적어도 한 개의 통로가 최저 위치, 즉 6시 위치를 점유할 것이다.
도 3c를 살펴보면, 각각의 유동 제한기(57)는 상류 챔버(65) 및 하류 챔버(67)를 포함한다. 상류 볼(69)은 상류 챔버(65) 내에 위치되고, 하류 볼(71)은 하류 챔버(67) 내에 위치된다. 포트(75)를 구비한 상류 포팅(porting) 벽부(73)가 상류 챔버(65)를 하류 챔버(67)와 분리시키고, 그리고 포트(79)를 구비한 하류 포팅 벽부(77)가 상기 하류 챔버(67)를 통로(53)에서의 다음 작동부와 분리시킨다. 도 3d에 도시된 바와 같이, 하류 포팅 벽부(77)는 하류 챔버(67)의 단면적에 상당하는 영역을 갖는 격벽(bulkhead)일 수 있으므로, 상기 하류 챔버(67)를 통한 유체 유동이 단지 포트(79)를 통해 발생할 수 있다. 이와 유사하게, 도 3e에 도시된 바와 같이, 상류 포팅 벽부(73)는 상류 챔버(65)의 단면적에 상당하는 영역을 갖는 격벽일 수 있어, 상기 상류 챔버(65)를 통한 유체 유동이 포트(75)를 통해서만 발생할 수 있다.
각각의 통로(53)에서의 각각의 쌍의 유동 제한기(57)가 도 4 내지 도 8과 관련하여 기재된 바와 같이 작동할 수 있다. 도 4에 도시된 바와 같이, 각각의 유동 제한기(57)는 상류 및 하류 볼(69, 71)의 직경에 실질적으로 상당하는 폭을 가져서, 상기 볼(69, 71)은 관형 부재(23)의 원주부 주위를 이동할 수 없다. 도 3c에 도시된 바와 같이, 볼(69, 71)은 관형 부재(23)의 외경(29) 쪽으로(도 1) 또는 관형 하우징(35)의 내경 쪽으로 방사상 이동할 수 있다. 더욱이, 볼(69, 71)은 축선(33) 방향과 비슷하게 이동할 수 있다(도 1). 상류 볼(69) 및 하류 볼(71)의 원주방향 이동을 제한함으로써, 아래에서 더욱 상세하게 기재된 바와 같이, 큰 물-대-오일 비 및 가스-대-오일 비의 유체의 효과적인 제거는 중앙 보어(31)로의 통과로부터 제한된다. 상류 볼(69)은 성형 저장부에서의 오일의 밀도보다 더 낮은 밀도를 가져서, 상류 볼(69)이 저장부 오일에서 부유할 수 있게 된다. 하류 볼(71)은 성형 저장부에서의 오일의 밀도와 동일한 밀도를 가져서, 상기 하류 볼(71)이 저장부 오일에 가라앉거나 부유할 수 없게 된다. 상류 볼(69) 및 하류 볼(71)의 실제 밀도는 유입 제어 장치(21)가 사용될 특별한 유정에 대한 테스팅 데이터에 기초하여 선택될 것이다.
도 5 및 도 6은 생산 유동에서 주로 낮은 또는 최소 물-대-오일 및 가스-대-오일 비를 갖는 저장부 오일인 유동 제한기(57A' 및 57A'')를 개별적으로 나타낸 도면이다. 유동 제한기(57A' 및 57A'')는 측면부(17) 내에 위치될 것이므로(도 1), 상기 유동 제한기(57A' 및 57A'')는 각각, 도 3a 내지 도 3c에 도시된 바와 같이, 최고 및 최저 유동 제한기(57)이다. 당업자라면 유동 제한기(57E'')의 작동이 유동 제한기(57A')의 작동과 유사할 것이고, 그리고 유동 제한기(57E')의 작동이 유동 제한기(57A'')의 작동과 유사할 것이라는 것을 알 수 있을 것이다. 도 5 및 도 6에 도시된 바와 같이, 그리고 도 4 내지 도 18에 적용가능한 바와 같이, 상류 포팅 벽부(73)는 상류 볼(69)의 직경의 2배와 동일한 높이를 갖는다. 상류 포팅 벽부(73)에 포트(75)가 위치되어, 중앙 보어(31) 근방의 유동 제한기(57)의 한 부분으로부터 반경방향 외측으로 뻗어있는 상류 포팅 벽부(73)의 한 부분이 상류 볼(69)의 직경에 상당하는 높이를 갖는다. 하류 포팅 벽부(77)는 하류 볼(71)의 직경의 두 배와 동일한 높이를 갖는다. 하류 포팅 벽부(77)에서의 포트(79)가 관형 하우징(35) 근방에 위치되어, 포트(79)의 중심은 하류 볼(71)이 상기 관형 하우징(35) 및 상기 하류 포팅 벽부(77)와 접촉할 때, 상기 하류 볼(71)의 중심과 정렬될 것이다.
유동 제한기(57A' 및 57A'')를 통해 유동하는 유체가 낮은 가스-대-오일 비 및 낮은 물-대-오일 비를 가질 때, 도 4, 도 5 및 도 6에 도시된 바와 같이, 저장부 유체의 밀도보다 낮은 밀도를 갖는 상류 볼(69A' 및 69A'')은 부유할 것이고, 그리고 하류 볼(71A' 및 71A'')이 유체와 혼합될 것이다. 도 4를 살펴보면, 상류 볼(69A)이 유체 유동에 의해 상류 포팅 벽부(73)에 대해 가압될 것이다. 하류 볼(71A)은 저장부 오일 내에서 혼합될 것이고 그리고 부유하거나 가라앉지 않을 것이다. 하류 챔버를 통해 유동하는 유체가 난류이거나 또는 약간 불안정할 수 있다. 이러한 유체 유동율에 있어서, 하류 볼(71A)의 밀도에 의해 하류 포팅 벽부(77A)에서 포트(79A)를 차단하도록 이동하기보다는 하류 챔버(67A) 내에서 구르고 이동할 수 있다. 도 5를 살펴보면, 상류 볼(69A')은 관형 하우징(35) 및 상류 포팅 벽부(73A')와 접촉하는 위치로 부유할 것이다. 이러한 위치에서, 상류 볼(69A')은 상류 포팅 벽부(73A')에서 포트(75A')를 부분적으로 차단하여, 저장부 오일의 부분 유동을 허용할 것이다. 하류 볼(71A')은 저장부 오일 내에서 혼합될 것이다. 저장부 오일은 하류 볼(71A')에 의해 구속되지 않는 하류 포팅 벽부(77A')의 포트(79A')를 통해 유동할 수 있다. 도 6을 살펴보면, 상류 볼(69A'')은 관형 하우징(35) 및 상류 포팅 벽부(73A'')와 접촉하는 위치로 부유할 것이다. 이러한 위치에서, 상류 볼(69A'')은 상류 포팅 벽부(73A'')에서 포트(75A'')를 차단하지 않으므로, 상기 상류 볼(69A'')에 의해 구속되지 않는 저장부 오일의 유동을 가능하게 한다. 하류 볼(71A'')은 저장부 오일 내에서 혼합될 것이다. 저장부 오일은 하류 볼(71A'')에 의해 구속되지 않는 하류 포팅 벽부(77A'')의 포트(79A'')를 통해 유동할 수 있다.
도 7 및 도 8은 유입 제어 장치(21)가 측면부(17)에 설치될 때, 상기 유입 제어 장치(21)의 최고 위치 및 최저 위치를 점유하지 않는 유동 제한기(57B, 57C, 57D, 57F, 57G, 및 57H)와 같은 예시적인 유동 제한기(57)를 도시한 도면이다. 도시된 바와 같이, 낮은 가스-대-오일 비 및 낮은 물-대-오일 비를 갖는 저장부 오일 유동에 있어서, 상류 볼(69) 및 하류 볼(71) 모두가 유체 유동 스트림에 의해 이송되어, 상기 상류 볼(69)은 상류 포팅 벽부(73)에서의 포트(75)를 차단하고 그리고 상기 하류 볼(71)은 하류 포팅 벽부(77)에서 포트(79)를 차단하여, 도시된 실시예에서 유동 제한기(57B, 57C, 57D, 57F, 57G, 및 57H)를 통한 유체의 유동을 방지한다. 따라서, 도시된 바와 같이, 낮은 가스-대-오일 비 및 낮은 물-대-오일 비를 갖는 유체 유동에 있어서, 단지 유동 제한기(57A 및 57E)에 의하여 유동 제한기(57)를 통한 유체 유동이 가능하게 될 것이다.
도 9 내지 도 13은 큰 가스-대-오일 비를 갖는 저장부로부터의 유체 유동에서의 유동 제한기(57)의 작동을 나타낸 도면이다. 도 9에 도시된 바와 같이, 큰 가스-대-오일 비를 갖는 유체 유동이 상류 포팅 벽부(73A) 및 하류 포팅 벽부(77A)에 대해 개별적으로 상류 볼(69A) 및 하류 볼(71A)을 이동시킬 것이다. 도 10을 살펴보면, 큰 가스-대-오일 비의 저장부 유체보다 더 큰 밀도를 갖는 상류 볼(69A') 및 하류 볼(71A')이 가라앉을 것이다. 유체 유동은 상류 볼(69A')을 관형 부재(23) 및 상류 포팅 벽부(73A')와의 접촉 위치로 이송시킬 것이다. 이러한 위치에서, 상류 볼(69A')은 상류 포팅 벽부(73A')의 포트(75A')를 통한 유동을 방지하지 않을 것이다. 이와 유사하게, 유체 유동은 하류 볼(71A')을 관형 부재(23) 및 하류 포팅 벽부(77A')와의 접촉 위치로 이송시킬 것이다. 이러한 위치에서, 하류 볼(71A')은 하류 포팅 벽부(77A')의 포트(79A')를 통한 유동을 방지하지 않을 것이다.
도 11을 살펴보면, 큰 가스-대-오일 비의 저장부 유체보다 더 큰 밀도를 갖는 상류 볼(69A'') 및 하류 볼(71A'')은 가라앉을 것이다. 유체 유동은 상류 볼(69A'')을 관형 하우징(35) 및 상류 포팅 벽부(73A'')와 접촉하는 위치로 이송시킬 것이다. 이러한 위치에서, 상류 볼(69A'')은 상류 포팅 벽부(73A'')의 포트(75A'')를 통한 유동을 부분적으로 방지할 것이다. 이와 유사하게, 유체 유동은 관형 하우징(35) 및 하류 포팅 벽부(77A'')와 접촉하는 위치로 하류 볼(71A'')을 이송시킬 것이다. 이러한 위치에서, 하류 볼(71A'')은 하류 포팅 벽부(77A'')의 포트(79A'')를 통한 유동을 방지할 것이다.
도 12 및 도 13은 유입 제어 장치(21)가 측면부(17)에 설치될 때, 상기 유입 제어 장치(21)의 최고 위치 및 최저 위치를 점유하지 않는 유동 제한기(57B, 57C, 57D, 57F, 57G, 및 57H)와 같은 예시적인 유동 제한기(57)를 나타낸 도면이다. 도시된 바와 같이, 큰 가스-대-오일 비를 갖는 저장부 오일 유동에 있어서, 상류 볼(69) 및 하류 볼(71) 모두가 유체 유동 스트림에 의해 이송되어, 상류 볼(69)이 상류 포팅 벽부(73)에서 포트(75)를 차단하고 그리고 하류 볼(71)이 하류 포팅 벽부(77)에서 포트(79)를 차단하여, 도시된 실시예에서의 유동 제한기(57B, 57C, 57D, 57F, 57G, 및 57H)를 통한 유체의 유동을 방지한다. 따라서, 도시된 실시예에 있어서, 큰 가스-대-오일 비를 갖는 유체 유동에서, 유동 제한기(57)를 통한 유체 유동이 유입 제어 장치(21)의 최저 유동 제한기(57) 위치에서의 유동 제한기(57A'' 및 57E')에 의해 방지될 것이다.
도 14 내지 도 18은 큰 물-대-오일 비를 갖는 저장부로부터의 유체 유동에서의 유동 제한기(57)의 작동을 나타낸 도면이다. 도 14에 도시된 바와 같이, 큰 물-대-오일 비를 갖는 유체 유동은 상류 포팅 벽부(73A) 및 하류 포팅 벽부(77A)에 대해, 개별적으로 상류 볼(69A) 및 하류 볼(71A)을 이동시킬 것이다. 도 15를 살펴보면, 큰 물-대-오일 비의 저장부 유체보다 더 작은 밀도를 갖는 상류 볼(69A') 및 하류 볼(71A')은 부유할 것이다. 유체 유동은 관형 하우징(35) 및 상류 포팅 벽부(73A')와 접촉하는 위치로 상류 볼(69A')을 이송시킬 것이다. 이러한 위치에서, 상류 볼(69A')은 상류 포팅 벽부(73A')의 포트(75A')를 통한 유동을 부분적으로 방지할 것이다. 이와 유사하게, 유체 유동은 관형 하우징(35) 및 하류 포팅 벽부(77A')와 접촉하는 위치로 하류 볼(71A')을 이송시킬 것이다. 이러한 위치에서, 하류 볼(71A')은 하류 포팅 벽부(77A')의 포트(79A')를 통한 유동을 방지할 것이다.
도 16을 살펴보면, 큰 물-대-오일 비의 저장부 유체보다 더 작은 밀도를 갖는 상류 볼(69A'') 및 하류 볼(71A'')은 부유할 것이다. 유체 유동은 관형 부재(23) 및 상류 포팅 벽부(73A'')와 접촉하는 위치로 상류 볼(69A'')을 이송시킬 것이다. 이러한 위치에서, 상류 볼(69A'')은 상류 포팅 벽부(73A'')의 포트(75A'')를 통한 유동을 방지하지 않을 것이다. 이와 유사하게, 유체 유동은 관형 부재(23) 및 하류 포팅 벽부(77A'')와 접촉하는 위치로 하류 볼(71A'')을 이송시킬 것이다. 이러한 위치에서, 하류 볼(71A'')은 하류 포팅 벽부(77A'')의 포트(79A'')를 통한 유동을 방지하지 않을 것이다.
도 17 및 도 18은, 유입 제어 장치(21)가 측면부(17) 설치될 때, 유입 제어 장치(21)의 최고 위치 및 최저 위치를 점유하지 않는 유동 제한기(57B, 57C, 57D, 57F, 57G, 및 57H)와 같은 예시적인 유동 제한기(57)를 나타낸 도면이다. 도시된 바와 같이, 큰 물-대-오일 비를 갖는 저장부 오일 유동에 있어서, 상류 볼(69) 및 하류 볼(71) 모두가 유체 유동 스트림에 의해 이송되어, 상기 상류 볼(69)이 상류 포팅 벽부(73)에서의 포트(75)를 차단하고 그리고 상기 하류 볼(71)이 하류 포팅 벽부(77)에서의 포트(79)를 차단하여, 도시된 실시예에서 유동 제한기(57B, 57C, 57D, 57F, 57G, 및 57H)를 통한 유체의 유동을 방지한다. 따라서, 도시된 실시예에 있어서, 큰 물-대-오일 비를 갖는 유체 유동에 있어서, 유동 제한기(57)를 통한 유체 유동이 유입 제어 장치(21)의 최고 유동 제한기(57) 위치에 위치된 유동 제한기(57A' 및 57E'')에 의해 방지될 것이다.
도 19를 살펴보면, 압력 강하 장치 (PDD, pressure drop device)(59)의 끝면도가 도시되어 있다. PDD(59)는 유동 제한기(57)의 하류의 각각의 통로(53)에 위치되어, 각각의 쌍의 유동 제한기(57)를 통해 유동하는 유체가 별도의 상기 PDD(59)로 유동할 것이다. 도 19에 도시된 바와 같이, 관형 하우징(35) 및 관형 부재(23)는 PDD(59)에 실질적으로 시일될 수 있어, 유체가 상기 PDD(59)의 외부 주위를 유동할 수 없다. PDD(59)는 PDD 하우징(81), 유체 유출 포트(83), 및 압력 균등화 포트(85)를 포함할 수 있다.
도 20 내지 도 22를 살펴보면, 압력 균등화 포트(85)는 로드 하우징(87)의 내부와 유체 연통가능하게 한다. 로드 하우징(87)은 샤프트 챔버(89) 및 피스톤 헤드 챔버(91)를 갖는 유체 챔버를 형성한다. 샤프트 챔버(89)는 피스톤 헤드 챔버(91)의 직경보다 더 작은 직경을 가질 것이다. 피스톤 샤프트(95) 및 피스톤 헤드(97)를 구비한 압력 피스톤(93)이 로드 하우징(87) 내측에 위치될 수 있어, 피스톤 샤프트(95)가 샤프트 챔버(89) 내측에 위치되고 그리고 피스톤 헤드(97)가 피스톤 헤드 챔버(91) 내에 위치된다. 압력 피스톤(93)은 도시된 바와 같이 T 형상을 가질 수 있다. 도시된 실시예에 있어서, 압력 피스톤(93)은 저장부 물의 밀도보다 더 큰 밀도를 갖는 비-금속 재료로 형성된다. 당업자라면, 만약 압력 피스톤(93)이 아래 기재된 바와 같이 작동한다면, 상기 압력 피스톤(93)은 여러 재료 및 상이한 구성으로 형성될 수 있다는 것을 알 수 있을 것이다.
피스톤 샤프트(95)는 샤프트 챔버(89)에 이동가능하게 시일될 수 있어, 피스톤 헤드 챔버(91) 내의 유체가 피스톤 샤프트(95) 주위에서 샤프트 챔버(89)로 유동할 수 없다. 통로(53)가 피스톤 헤드 챔버(91)의 단부와 유체 연통하여, 유동 제한기(57)로부터 유동하는 유체가 피스톤 헤드 챔버(91)로 유동할 수 있다. 피스톤 헤드 챔버(91)는 PDD 하우징(81)과 로드 하우징(87) 사이에 형성된 환형부(99)와 피스톤 헤드 챔버(91) 사이의 유체 연통을 허용하는 복수의 포트(101)를 포함할 것이다. 환형부(99)는 유체 유출 포트(83)와 유체 연통할 수 있다. 피스톤 헤드(97)는 피스톤 헤드 챔버(91)의 내경과 실질적으로 동일한 외경을 갖는다. 피스톤 헤드(97)는 피스톤 헤드 챔버(91) 내에서 이동할 수 있어, 하나 이상의 복수의 포트(101)를 통한 유체 유동을 방지한다. 압력 피스톤(93)의 이동은 피스톤 샤프트(95) 및 피스톤 헤드(97)의 길이만큼 부분적으로 영향을 받는다. 아래에서 더욱 상세하게 기재된 바와 같이, 피스톤 샤프트(95) 및/또는 피스톤 헤드(97)의 증가된 길이는 통로(53)로부터 유동하는 유체가 유입 생산 포트(61)로 유동하도록 반드시 이동하는 압력 피스톤(93)의 질량(mass)을 증가시킬 것이다. 복수의 포트(101)를 통한 유동이 상기 포트(101)의 수에 기초하여 가변 차동 압력을 만들고, 상기 포트를 통해 유체가 자유롭게 유동할 수 있다. 따라서, 복수의 포트(101)는 유입 유체 포트(61)로의 유동율을 감소시킨다. 피스톤 샤프트 챔버(89) 내의 유체가 압력 균등화 포트(85)를 통해 유입 유체 포트(61)와 유체 연통할 수 있다. PDD 필터 매체(103)가 압력 균등화 포트(85) 내에 위치될 수 있어, 피스톤 샤프트 챔버(89)로의 입자상 물질의 이동을 방지한다.
PDD(59)가 도 23 내지 도 26과 관련하여 아래에 기재된 바와 같이 작동할 수 있다. 유입 제어 장치(21)(도 2a)가 측면부(17) 내의 위치로 뻗어있을 때(도 1), 압력 피스톤(93)은 도 25에 도시된 위치에 위치할 것이다. 통로(53)로부터의 유체 유동이 복수의 포트(101)를 통해 제한되거나 또는 방지될 것이다. 압력 피스톤(93)은 저장부 오일 유동의 압력에 응답하여 이동할 것이다. 도 23에 도시된 바와 같이, 낮은 가스-대-오일 비, 낮은 물-대-오일 비, 및 낮은 압력 저장부 오일 유동을 갖는 저장부 오일 유동에서, 압력 피스톤(93)은 복수의 포트(101)를 지나 부분적으로 이동할 것이므로, 상기 복수의 포트(101)의 단지 한 부분만이 통로(53)로부터 환형부(99)로의 유체의 자유 유동을 허용할 것이다. 따라서, 생산 유동은 저장부에서의 유체 압력이 감소될 때 감소되어, 저장부의 특별한 존으로부터의 과 생산과 관련된 원추형의 방지에 도움이 된다. 도 24에 도시된 바와 같이, 낮은 가스-대-오일 비, 낮은 물-대-오일 비, 및 큰 압력 저장부 오일 유동을 갖는 저장부 오일 유동에 있어서, 압력 피스톤(93)은 복수의 포트(101)를 지나 이동하여, 대부분의 상기 복수의 포트(101)가 통로(53)로부터 환형부(99)로의 유체의 자유 유동을 가능하게 한다. 따라서, 생산 유동은 저장부에서의 유체 압력이 증가할 때 감소되어, 충분한 저장부 압력에 의해 보장될 때 유체 유동을 향상시킬 수 있다.
도 25에 도시된 바와 같이, 낮은 가스-대-오일 비, 큰 물-대-오일 비, 및 낮은 압력 저장부 오일 유동을 갖는 저장부 오일 유동에 있어서, 압력 피스톤(93)은 무시가능하게 이동하여, 유체가 단지 피스톤 헤드(97)와 피스톤 헤드 챔버(91) 사이의 갭에서 복수의 포트(101)를 통해서 유동할 수 있다(도 22). 따라서, 저장부에서의 유체 압력이 감소될 때, 생산 유동이 심각하게 제한되고, 그리고 유입 제어 장치(21) 주위의 존이 실질적인 양의 물을 만들어, 표면에 만들어진 물의 양을 더욱 제한한다. 도 26에 도시된 바와 같이, 낮은 가스-대-오일 비, 큰 물-대-오일 비, 및 큰 압력 저장부 오일 유동을 갖는 저장부 오일 유동에 있어서, 압력 피스톤(93)은 복수의 포트(101)를 지나 부분적으로 이동하여, 상기 복수의 포트(101)의 단지 한 부분만이 통로(53)로부터 환형부(99)로의 유체의 자유 유동을 가능하게 한다. 따라서, 생산 유동은 저장부에서의 유체 압력이 증가할 때 감소되지만, 그러나 예측된 물의 양보다 많은 양의 물을 만들어, 상기 저장부로부터의 물의 감소에 도움이 된다. 개시된 실시예에 있어서, 압력 피스톤(93)은 큰 물-대-오일 비의 저장부 유체의 밀도보다 더 큰 밀도를 갖는다. 따라서, 저장부 유체가 큰 물-대-오일 비를 가질 때, 압력 피스톤(93)을 이동시키도록 상당하게 더 큰 압력을 취할 것이다. 압력 피스톤(93)이 로드 하우징(87) 내에서 이동함에 따라, 샤프트 챔버(89) 내의 유체가 압력 균등화 포트(85)를 통해 유동할 수 있어, 통로(53)로부터 먼 압력 피스톤(93)의 이동을 방지할 수 있는 상기 샤프트 챔버(89)의 과도한 가압을 방지한다. 이와 유사하게, 샤프트 챔버(89) 내의 유체가 압력 균등화 포트(85)를 통해 유동할 수 있어, 압력 피스톤(93)이 통로(53) 쪽으로 이동함에 따라 샤프트 챔버(89) 내의 진공의 생성을 방지한다. 압력 피스톤(93)은, 아래에서 더욱 상세하게 기재된 방식으로, 유입 제어 장치(21)가 작동하는 동안에 항상 도 25에 도시된 위치로 리셋될 수 있다.
도 27을 지금 살펴보면, 유체 유출 포트(83)를 통한 유체 유동은 PDD(59)의 하류에 위치된 피스톤(63)에 의해 제한될 수 있다. 피스톤(63)은 유입 유체 포트(61) 근방의 제 1 단부(105), 및 피스톤 유체 포트(55) 근방의 제 2 단부(107)를 구비할 수 있다. 유체 유출 포트(83)는 피스톤(63)의 제 1 단부(105)와 마주한 유입 유체 포트(61)에서 종결한다. 피스톤(63)은 이동가능하므로, 제 1 단부(105)는 아래 기재된 바와 같이 PDD(59)로부터의 유체의 유동을 방지하도록 유체 유출 포트(83)와 접촉할 수 있다. 피스톤 가압식 스프링(109)은 유체 유출 포트(83) 근방의 관형 하우징(35)에 반대로 향한 벽부와, 피스톤(63)의 제 1 단부(105) 사이에 위치된다. 도시된 실시예에 있어서, 피스톤 가압식 스프링(109)은 피스톤(63)을 도 27에 도시된 위치로 가압하여, 유체가 PDD(59)로부터 유체 유출 포트(83)를 통해 유입 유체 포트(61)로 그리고 이후 표면에 대한 생산용 중앙 보어(31)로 유동할 수 있다. 피스톤(63)은 대응하는 원통형 챔버 내에 위치된 원통형 부재일 수 있어, 상기 피스톤(63)의 제 1 단부(105)가 대응하는 유체 유출 포트(83)와 접촉할 때, 상기 피스톤(63)이 개별 유동 통로(53)를 통한 유동을 방지할 수 있다. 이들 실시예에 있어서, 별도의 피스톤(63)이 각각의 유동 통로(53)와 대응할 것이다. 대안적인 실시예에 있어서, 피스톤(63)이 대응하는 환형 챔버 내에 위치된 환형 부재일 수 있어, 상기 피스톤(63)이 모든 유동 통로(53)를 통한 유동을 동시에 방지할 수 있다.
도 28을 살펴보면, 유체는 표면으로부터 가압될 수 있어, 유체가 피스톤 유체 포트(55)로 유동할 것이다. 유체는 유체 유출 포트(83)에 대해 피스톤(63)을 이동시키는 피스톤(63)의 제 2 표면(107) 상에서 작용하여, PDD(59)으로부터 유입 유체 포트(61)로의 유체의 유동을 차단한다. 피스톤 가압식 스프링(109)은 압축할 것이다. 유체 압력이 중앙 보어(31)로부터 제거될 때, PDD(59)의 유체 유출 포트(83)로부터 유동하는 저장부 유체 압력과 함께, 피스톤 가압식 스프링(109)은 유입 유체 포트(61) 외측으로 피스톤(63)을 이동시켜서, 표면에 대한 저장부 유체의 생산을 가능하게 한다.
도 29는 유입 제어 장치(21)로 실행될 수 있는 런-인-홀, 림(ream), 또는 순환 공정을 나타낸 도면이다. 도 29와 관련하여 기재된 바와 같은 공정은 유입 제어 장치(21)를 측면부(17) 내의 제 위치에 설치하면서 안내될 수 있는 공정이다(도 1). 도 29의 런-인-홀 공정 동안에, 유체가 표면으로부터 생산 배관 스트링(19)을 통해 중앙 보어(31) 아래로 순환될 것이다. 유체는 피스톤(63)을 중앙 보어(31)로부터 PDD(59)을 방지하는 도 28의 위치로 이동시키는데 충분한 압력에서 순환되어, 유동 제한기(57) 및 필터 매체(45)를 통한 순환 유체의 유동을 방지한다. 도 29의 작동 실시예에서 중앙 보어(31)를 통해 순환된 유체 압력은 압력 디스크(49)를 기동시키는데 필요한 것보다 더 낮은 압력을 가질 것이다. 따라서, 압력 디스크(49)는 중앙 보어(31)로부터 유체 세정 포트(47)로의 유체의 유동을 방지할 것이다.
생산 공정 동안에, 도 2a에 도시된 바와 같이, 유체 압력이 중앙 보어(31)에 적용되지 않을 것이다. 저장부 유체가 필터 매체(45)를 통해 그리고 유체 수집 챔버(51)로 유동할 수 있게 될 것이다. 유체 수집 챔버(51)로부터, 유체가 유체 통로(53)(도 3a 내지 도 3c)로 유동할 것이다. 도시된 실시예에 있어서, 통로(53A)는 측면부(17) 내의 표면에 가장 근접한 지점에 위치하도록 위치될 것이다(도 1). 저장부 유체가 통로(53)를 통해 그리고 개별 유동 제한기(57)로 유동할 것이다. 유동 제한기(57)가 도 4 내지 도 18과 관련하여 상기 기재된 바와 같이 작동하여, 큰 가스-대-오일 비 및 큰 물-대-오일 비의 저장부 유체의 유동이 유동 제한기(57)를 통과하는 것을 방지하거나 또는 제한한다. 유동 제한기(57)를 통해 유동할 수 있게 되는 저장부 유체가 이후 PDD(59)로 유동할 것이다. 각각의 PDD(59)가 측면부(17) 전체를 가로지른 균형이 맞춰진 생산 프로파일의 생성에 도움이 되도록, 도 19 내지 도 26와 관련하여 상기 기재된 바와 같은 가변 차동 압력을 생성할 것이다(도 1). 저장부로부터의 유체의 생산이 개시된 이후에 항상, 압력 피스톤(93)(도 29)은 도 29와 관련하여 상기 기술된 방식으로 생산 배관 스트링(19)에 유체 압력을 가함으로써 도 29의 런-인-홀 위치로 리셋될 수 있다. 적용된 유체 압력이 유출 포트(83)를 폐쇄하도록 피스톤(63)을 기동시킬 것이다. 그러나, 피스톤(63)이 압력 균등화 포트(85)를 통한 유체 압력의 흐름을 방지하지 않을 것이다. 따라서, 유체 압력이 피스톤 샤프트(95)에 가해져, 압력 피스톤(93)이 도 25에 도시된 위치로 이동될 수 있게 된다.
도 2a의 생산 공정 동안에, 생산 로깅(logging) 작동은 유입 제어 장치(21)가 배치되는 유정 간격의 기준선 달성(performance)을 이루도록 안내될 수 있다. 유정 생산이 상당하게 그리고 예기치 못하게 편차가 있을 때, 어느 유정 간격이 불량하게 실행되는지를 판정하도록 부가적인 생산 로깅 작동으로 안내될 수 있다. 일단 간격이 확인되면, 보수 공정이 실행될 수 있다. 선택적으로, 설치된 모든 생산 배관 스트링(19) 및 모든 유입 제어 장치(21)가 동일한 작동에서 세정될 수 있다. 도 30을 살펴보면, 보수 또는 소제(cleanout) 공정이 도시되어 있다. 보수 공정 동안에, 세정 유체(예를 들면, 산성의 염수(brine)와 같은 산 세정제)가 중앙 보어(31)에 공급될 것이고 그리고 런-인-홀 공정 동안에 가해진 유체 압력보다 더 큰 유체 압력으로 상승될 것이다. 예를 들면, 압력 디스크(49)를 기동시키는데 필요한 유체 압력이 도 2a의 생산 공정 동안에 중앙 보어(31) 내의 유체 압력보다 더 큰 1,500 p.s.i.일 수 있다. 더욱이, 압력 디스크(49)를 기동시키는데 필요한 유체 압력은 대략적으로 도 29의 런-인-홀 또는 순환 공정 동안에 중앙 보어(31) 내의 유체 압력보다 더 큰 1,000 p.s.i.일 수 있다.
세정 유체는 도 31과 관련하여 상기 기술된 바와 같은 피스톤(63)을 이동시켜, 유입 유체 포트(61)를 통해 PDD(59) 및 유동 제한기(57)로의 세정 유체의 유동을 방지할 것이다. 세정 유체의 유체 압력에 의해 압력 디스크(49)가 반경방향 외측으로 압축되어, 상기 세정 유체가 유체 세정 포트(47)로 유동할 수 있을 것이다. 세정 유체는 이후 유체 세정 포트(47)를 통해 그리고 필터 매체(45)를 통해 저장부로 유동할 수 있다. 따라서, 필터 매체(45)에 포함될 수 있는 임의의 입자상 물질은 필터 매체(45)를 통한 유체의 역전에 의해 제거될 수 있다. 실시예에 있어서, 세정 유체는 산성의 세정 유체를 압축하여, 유정보어가 탄산염 저장부를 관통하는 탄산염 재료로 만들어진 입자가 세정 유체에 의해 용해될 수 있다. 압력 디스크(49) 및 세정 포트(47)를 통해 공급된 세정 유체 압력은 또한 유체 수집 챔버(51) 및 통로(53)에 공급될 수 있다. 이러한 방식으로, PDD(59)는 또한 유동 제한기(57)를 통해 세정 유체 압력을 수용할 수 있다. 따라서, PDD(59)의 압력 피스톤(93)은 유동 제한기(57)를 통한 피스톤 헤드(97)에서의 세정 유체 압력과, 유입 유체 포트(61)에서의 압력 균등화 포트(85)를 통한 피스톤 샤프트(95)에서의 세정 유체 압력을 수용할 수 있다. 피스톤 헤드(97)는 피스톤 샤프트(95)보다 세정 유체 압력을 받게 되는 더 큰 표면적을 가질 수 있고; 이에 따라서, 압력 피스톤(93)은 도 30의 보수 작동 동안에 도 31의 위치로 이동할 수 있다. 이러한 방식으로 PDD(59)를 개방시킴으로써, 세정 유체 압력이 생산 배관 스트링(19)으로부터 제거될 때, 저장부로 가압된 세정 유체가 유입 제어 장치(21)를 통해 중앙 보어(31)로 다시 유동할 수 있다. 이는 세정 유체가 생산 배관 스트링(19) 외측에서 순환될 수 있게 할 것이다. 압력 디스크(49)의 기동 압력보다 더 낮은 유체 압력이 이후 PDD(59)를 복귀시키기 위한 표면으로부터 상기 기재된 바와 같은 생산 작동을 위한 도 25의 위치까지 공급될 수 있다. 일 실시예에 있어서, 코일형 배관과 같은 별도의 작동 매체가 PDD(59)를 설정하기 위한 유체 압력을 상기 기재한 바와 같은 생산 작동을 위한 도 25의 위치로 공급할 수 있다.
당업자라면 개시된 유입 제어 장치(21)가 수평방향 유정 완성과 관련하여 도시 및 기재되어 있을지라도, 도 1에 도시된 바와 같은 수직의 유정 완성에 사용될 수 있다는 것을 알 수 있을 것이다. 유입 제어 장치(21)는 중력의 부가적인 제한적인 효과를 보상하기 위한 부가적인 저장부 압력을 필요로 하면서, 도 2 내지 도 30과 관련하여 상기 기재된 바와 같이 전반적으로 작동할 수 있다.
이에 따라, 개시된 실시예는 종래 기술의 실시예 보다 우수한 다수의 장점을 제공한다. 예를 들면, 개시된 실시예는 유입 제어 장치를 제공하고, 상기 유입 제어 장치는 저장부 유체 유동을 감소시키고 그리고 다수의 생산 존을, 특히 동일한 높이에서의 존을 가로지른 균형이 맞춰진 생산 프로파일을 유지하도록 압력 강하를 생성하는데 사용될 수 있다. 개시된 유입 제어 장치는 저장부 압력과 관련하여 차동 압력을 변경시킴으로써 가변 저장부 압력을 수용한다. 더욱이, 개시된 실시예는 저장부 유체 내에서의 물질의 볼륨의 비에 기초하여 큰 볼륨의 물이나 또는 가스를 갖는 생산 유체의 유동을 제한할 것이다. 더욱이, 개시된 실시예는 저장부 유체 유동으로부터 고체 입자상 물질을 제거할 것이다. 개시된 실시예는 입자를 제거하고 그리고 홀에서의 제 위치에 있으면서 유입 제어 장치의 세정이 가능하도록 공정을 포함한다. 이는 점성의 또는 무거운 오일의 보다 우수한 조정을 가능하게 하고 유입 제어 장치의 수명이 더욱 연장시키면서 다른 유입 제어 장치에 비해 막힘이나 또는 차단과 관련된 문제점이 더 적다. 더욱이, 개시된 실시예에 의해 조작자가 부가적인 유압 설비나 또는 전기 설비 및 엄빌리컬을 필요로 하지 않으면서 표면으로부터 장치를 개폐할 수 있다.
본 발명은 많은 형태와 실시예를 취할 수 있다는 것을 알 수 있을 것이다. 이에 따라, 본 발명의 범주나 또는 사상을 벗어나지 않으면서 상기 기재된 사항에 대한 여러 변경이 가능하다. 본 발명의 바람직한 특정 실시예를 참조하여 본 발명이 기재되어 있으므로, 기재된 실시예가 특징을 제한하지 않으면서 예시적으로 기재되어 있고 그리고 폭 넓은 범위의 변경, 수정, 교체 및 대체가 상기 기재로부터 고려될 수 있고, 여러 경우에 있어서, 본 발명의 여러 특징이 다른 특징의 대응하는 사용 없이도 채택될 수 있다는 것을 알 수 있을 것이다. 이러한 많은 변경 및 수정은 바람직한 실시예의 상기 기재를 살펴본다면 당업자에게 명확하다고 여겨질 수 있다. 이에 따라, 첨부된 청구범위가 본 발명의 범주 내에서 폭넓게 구성될 수 있음을 알 수 있을 것이다.

Claims (20)

  1. 표면 아래의 유체 저장부로부터 생산 배관 스트링으로의 유체 유동을 제어하기 위한 유입 제어 장치로서,
    축선을 갖는 중앙 보어를 형성하는 관형 부재;
    상기 관형 부재의 벽부에 형성된 복수의 통로;
    유체를 받아들이도록 상기 관형 부재의 외측으로 유도하는 상기 복수의 통로에 대한 상류 유입구;
    상기 유체의 밀도에 응답하여 유동 제한기를 통한 유동을 제한하기 위해 선택된 및 상이한 밀도의 부유 부재를 구비한 적어도 두 개의 유동 제한기를 갖는 각각의 통로; 및
    상기 저장부 유체 압력에 기초하여 유동하는 유체에 차동 압력을 만들기 위해 압력 피스톤을 구비하고, 상기 유동 제한기의 유출구와 연통하는 각각의 통로 내에 위치된 적어도 한 개의 압력 강하 장치;를 포함하고,
    상기 관형 부재의 상류 단부 및 하류 단부는 상기 생산 배관 스트링과 결합될 수 있고,
    상기 압력 강하 장치의 유출물은 상기 중앙 보어와 연통하는 유입 유체 포트로 유동하는 유입 제어 장치.
  2. 청구항 1에 있어서,
    상기 유입 제어 장치의 상류 단부 근처의 상기 관형 부재에 의해 형성된 환형 개구 내에 위치된 필터 매체를 더 포함하고, 상기 필터 매체는 상기 표면 아래의 유체 저장부와 상기 상류 유입구 사이의 유체 연통을 가능하게 하고 그리고 상기 유입 제어 장치로의 입자상 물질의 유동을 제한하는 유입 제어 장치.
  3. 청구항 2에 있어서,
    상기 관형 부재의 벽부 내에 압력 작동식 부재가 위치되고, 상기 압력 작동식 부재는 상기 필터 매체로부터 입자를 제거하기 위해 상기 중앙 보어로부터 상기 필터 매체로의 유체 연통을 허용하는 상기 중앙 보어 내의 압력에 응답하여 기동가능한 유입 제어 장치.
  4. 청구항 1에 있어서,:
    상기 복수의 통로의 각각의 통로는, 각각의 통로의 종단부가 상기 통로의 헤드로부터 180 도 이도록, 상기 관형 부재를 부분적으로 둘러싸고; 그리고
    상기 적어도 두 개의 유동 제한기는 큰 물-대-오일 비 및 큰 가스-대-오일 비를 갖는 저장부 유체의 유동을 제한하도록 각각의 통로 내에 위치되는 유입 제어 장치.
  5. 청구항 4에 있어서,
    상기 복수의 통로 중 적어도 한 개의 통로가 수직으로 정위된 헤드 및 수직으로 정위된 종단부를 구비하고;
    상기 적어도 두 개의 유동 제한기 중 적어도 한 개의 유동 제한기가 상기 유입 제어 장치의 최고 높이에 위치되고; 그리고
    상기 적어도 두 개의 유동 제한기 중 적어도 한 개의 유동 제한기가 상기 유입 제어 장치의 최저 높이에 위치되는 유입 제어 장치.
  6. 청구항 1에 있어서,
    상기 유동 제한기는 상기 부유 부재의 반경방향 및 축방향 이동을 가능하게 하고 그리고 상기 부유 부재의 원주방향 이동을 제한하는 유입 제어 장치.
  7. 청구항 1에 있어서,
    압력 피스톤은 제 1 피스톤을 포함하고, 그리고 표면으로부터의 상기 생산 배관 스트링에 가해진 유체 압력에 응답하여 상기 유입 유체 포트를 통한 유체의 유동을 억제하도록 상기 복수의 통로 근방에 제 2 쵸크 기기가 위치되는 유입 제어 장치.
  8. 청구항 1에 있어서,
    상기 관형 부재를 둘러싸는 관형 하우징을 더 포함하고;
    상기 관형 하우징의 내경이 상기 관형 하우징과 상기 관형 부재 사이에서 환형부를 형성하고; 그리고
    상기 복수의 통로, 상기 적어도 두 개의 유동 제한기, 및 상기 압력 강하 장치가 상기 환형부 내에 형성되는 유입 제어 장치.
  9. 청구항 1에 있어서,
    상기 압력 강하 장치는
    압력 강하 장치 하우징; 및
    상기 압력 강하 장치 하우징 내에 위치된 압력 피스톤;을 포함하고,
    상기 압력 강하 장치 하우징은 상기 압력 강하 장치 하우징의 축선에 따른 복수의 포트, 상류 단부에서의 개구, 및 하류 단부에서의 압력 균등화 포트를 구비하고,
    상기 압력 강하 장치 하우징은 상기 압력 강하 장치 하우징과 상기 관형 부재 사이에 위치되고, 상기 유입 유체 포트와 유체 연통하는 압력 강하 장치 환형부를 형성하고,
    상기 압력 피스톤은 상기 유입 유체 포트로 통과하는 저장부 유체의 유동을 제한하고 상기 복수의 포트의 부분을 노출시키도록 상기 압력 균등화 포트에서의 유체 압력과 상기 개구에서의 유체 압력에 응답하여 이동하는 유입 제어 장치.
  10. 청구항 9에 있어서,
    상기 개구를 통해 유동하는 상기 저장부 유체가 예측된 가스-대-오일 비 및 물-대-오일 비와 낮은 압력을 갖는 경우에, 상기 압력 피스톤은 상기 저장부 유체가 상기 압력 강하 장치 환형부 및 상기 유입 유체 포트로 유동할 수 있도록 상기 압력 강하 장치 하우징에서의 상기 복수의 포트의 한 부분을 노출시키기 위해 부분적으로 이동하고;
    상기 개구를 통해 유동하는 상기 저장부 유체가 예측된 가스 대 오일 비 및 물-대-오일 비와 큰 압력을 갖는 경우에, 상기 압력 피스톤은 상기 저장부 유체가 상기 압력 강하 장치 환형부로 그리고 상기 유입 유체 포트를 통해 유동할 수 있도록 상기 압력 강하 장치 하우징에서의 다수의 상기 복수의 포트를 노출시키기 위해 이동하고;
    상기 개구를 통해 유동하는 상기 저장부 유체가 큰 물-대-오일 비 및 낮은 압력을 갖는 경우에, 상기 압력 피스톤은 무시가능할 정도로 이동하여, 상기 압력 강하 장치 하우징에서의 상기 개구를 통한 유체의 유동을 위한 복수의 포트를 실질적으로 차단하며;
    상기 개구를 통해 유동하는 상기 저장부 유체가 큰 물-대-오일 비 및 큰 압력을 갖는 경우에, 상기 압력 피스톤은 저장부 유체가 상기 압력 강하 장치 환형부로 그리고 상기 유입 유체 포트를 통해 유동할 수 있도록 상기 압력 강하 장치 하우징에서의 상기 복수의 포트의 한 부분을 노출시키도록 부분적으로 이동하는 유입 제어 장치.
  11. 표면 아래의 유체 저장부로부터 표면에 대한 생산을 위한 생산 배관 스트링으로의 유체 유동을 제어하기 위한 유입 제어 장치로서,
    축선을 갖는 중앙 보어를 형성하는 관형 부재;
    상기 관형 부재의 벽부에 형성된 복수의 통로;
    큰 물-대-오일 비 및 큰 가스-대-오일 비를 갖는 저장부 유체의 유동을 제한하도록 각각의 유동 제한기 내에 위치된, 선택되고 상이한 밀도의 부유 부재를 갖는 적어도 두 개의 유동 제한기;
    상기 유동 제한기의 유출물과 유체 연통하는 각각의 통로에 위치되고, 상기 저장부 유체 압력에 응답하여 압력 피스톤으로써 유동하는 유체에 차동 압력을 생성하는 적어도 한 개의 압력 강하 장치;
    상기 표면에서 상기 생산 배관 스트링에 가해진 유체 압력에 응답하여 상기 복수의 통로로부터 상기 중앙 보어로의 유체의 유동을 제한하도록 상기 압력 강하 장치의 하류에 위치된 압력 기동식 피스톤;
    상기 유입 제어 장치의 상류 단부 근처의 상기 관형 부재에 의해 형성된 환형 개구 내에 위치되고, 상기 표면 아래의 유체 저장부와 상기 복수의 통로 사이에서 유체 연통을 가능하게 하는 필터 매체; 및
    상기 필터 매체를 세정하기 위해 상기 중앙 보어로부터 상기 필터 매체로 유체 연통할 수 있도록 상기 중앙 보어 내의 압력에 응답하여 기동가능하고 상기 유입 제어 장치의 상류 단부에 위치된 압력 작동식 부재;를 포함하고,
    각각의 통로는 상기 각각의 통로의 종단부가 상기 통로의 헤드로부터 180 도이도록, 상기 관형 부재를 부분적으로 둘러싸고,
    상기 복수의 통로 중 한 통로는, 대응하는 유동 제한기 중 적어도 하나의 유동 제한기가 상기 유입 제어 장치의 최고 높이에 위치되고 상기 대응하는 유동 제한기 중 적어도 하나의 유동 제한기가 상기 유입 제어 장치의 최저 높이에 위치되도록, 수직으로 정위되고, 그리고
    상기 압력 강하 장치의 유출물은 상기 중앙 보어와 연통하는 유입 유체 포트로 유동하는 유입 제어 장치.
  12. 청구항 11에 있어서,
    상기 복수의 통로 중 각각의 통로에서의 상기 적어도 두 개의 유동 제한기는 서로 직렬인 상류 유동 제한기 및 하류 유동 제한기를 포함하고;
    상기 상류 유동 제한기는 상기 통로의 상기 헤드에서 유체 수집 챔버 근방에 위치되고, 그리고 상기 하류 유동 제한기는 상기 통로의 상기 종단부에 인접하며; 그리고
    상기 유체 저장부가 큰 가스-대-오일 비 및 큰 물 대 오일 비 중 적어도 하나를 갖는 경우에, 상기 상류 유동 제한기 및 상기 하류 유동 제한기 중 적어도 한 개가 상기 저장부 유체의 밀도에 응답하여 상기 저장부 유체의 유동을 제한하는 유입 제어 장치.
  13. 청구항 11에 있어서,
    각각의 유동 제한기는:
    상류 챔버 및 하류 챔버;
    상기 상류 챔버를 상기 하류 챔버와 분리하고, 상류 포트를 형성하는 상류 포팅 벽부;
    상기 하류 챔버를 상기 통로와 분리하고, 하류 포트를 형성하는 하류 포팅 벽부;
    상기 상류 챔버 내에 위치된 보다 가벼운 밀도의 상류 부재; 및
    상기 하류 챔버 내에 위치된 보다 무거운 밀도의 하류 부재;를 포함하고,
    상기 상류 챔버 및 상기 하류 챔버는 상기 상류 부재 및 상기 하류 부재의 반경방향 및 축방향 이동을 허용하고 그리고 상기 상류 부재 및 상기 하류 부재의 원주방향 이동을 제한하며,
    상기 상류 부재 및 상기 하류 부재는 큰 가스-대-오일 비 및 큰 물-대-오일 비를 갖는 유체의 유동을 제한하기 위하여, 개별적으로, 상기 상류 포팅 벽부 포트 및 상기 하류 포팅 벽부 포트와 짝지워지도록 상기 유동 제한기를 통과하는 상기 유체의 밀도에 응답하여 이동하는 유입 제어 장치.
  14. 청구항 13에 있어서,
    상기 상류 포트는, 상기 상류 부재가 상기 상류 포팅 벽부 및 상기 관형 부재와 접촉할 때, 상기 상류 포트의 외측 엣지가 상기 상류 부재의 중심과 일치하도록, 상기 관형 부재의 외경 근방에 위치되고, 그리고
    상기 하류 포트는, 상기 하류 부재가 상기 하류 포팅 벽부 및 상기 관형 부재와 접촉할 때, 상기 하류 포트의 중심이 상가 하류 부재의 중심과 일치하도록, 상기 관형 부재의 상기 외경 근방에 위치되는 유입 제어 장치.
  15. 청구항 13에 있어서,
    상기 저장부 유체가 예측된 가스-대-오일 비 및 물-대-오일 비를 갖는 경우에, 상기 상류 부재는 상기 저장부 유체에서 부유하고 그리고 상기 하류 부재가 상기 저장부 유체에서 부유하지 않거나 가라앉지 않고;
    상기 저장부 유체가 큰 가스-대-오일 비를 갖는 경우에, 상기 상류 부재 및 상기 하류 부재가 상기 저장부 유체에서 가라앉으며; 그리고
    상기 저장부 유체가 큰 물-대-오일 비를 갖는 경우에, 상기 상류 부재 및 상기 하류 부재는 상기 저장부 유체에서 가라앉는 유입 제어 장치.
  16. 청구항 11에 있어서,
    상기 압력 강하 장치는,
    압력 강하 장치 하우징; 및
    상기 압력 강하 장치 하우징 내에 위치된 압력 피스톤;을 포함하고,
    상기 압력 강하 장치 하우징은 상기 압력 강하 장치 하우징의 축선에 따른 복수의 포트, 상류 단부에서의 개구, 및 하류 단부에서의 압력 균등화 포트를 구비하고,
    상기 압력 강하 장치 하우징은 상기 유입 유체 포트와 유체 연통하는, 상기 압력 강하 장치 하우징과 상기 관형 부재 사이의 압력 강하 장치 환형부를 형성하고, 그리고
    상기 압력 피스톤은 상기 유입 유체 포트로 통과하는 저장부 유체의 유동을 제한하고 상기 복수의 포트의 부분을 노출시키기 위해 상기 압력 균등화 포트에서의 유체 압력과 상기 개구에서의 유체 압력에 응답하여 이동하는 유입 제어 장치.
  17. 청구항 16에 있어서,
    상기 개구를 통해 유동하는 상기 저장부 유체가 예측된 가스-대-오일 비 및 물-대-오일 비와 낮은 압력을 갖는 경우에, 상기 압력 피스톤은 상기 저장부 유체가 상기 압력 강하 장치 환형부 및 상기 유입 유체 포트로의 유동할 수 있도록 상기 압력 강하 장치 하우징에서의 상기 복수의 포트의 한 부분을 노출시키도록 부분적으로 이동하고;
    상기 개구를 통해 유동하는 상기 저장부 유체가 예측된 가스 대 오일 비 및 물-대-오일 비와 큰 압력을 갖는 경우에, 상기 압력 피스톤은 상기 저장부 유체가 상기 압력 강하 장치 환형부로 그리고 상기 유입 유체 포트를 통해 유동할 수 있도록 상기 압력 강하 장치 하우징에서의 다수의 상기 복수의 포트를 노출시키도록 이동하고;
    상기 개구를 통해 유동하는 상기 저장부 유체가 큰 물-대-오일 비 및 낮은 압력을 갖는 경우에, 상기 압력 피스톤은 무시가능할 정도로 이동하여, 상기 압력 강하 장치 하우징에서의 상기 개구를 통한 유체의 유동을 위한 상기 복수의 포트를 실질적으로 차단하며; 그리고
    상기 개구를 통해 유동하는 상기 저장부 유체가 큰 물-대-오일 비 및 큰 압력을 갖는 경우에, 상기 압력 피스톤은 상기 저장부 유체가 상기 압력 강하 장치 환형부로 그리고 상기 유입 유체 포트를 통해 유동할 수 있도록 상기 압력 강하 장치 하우징에서의 상기 복수의 포트의 한 부분을 노출시키도록 부분적으로 이동하는 유입 제어 장치.
  18. 청구항 11에 있어서,
    상기 압력 기동식 피스톤은:
    피스톤 유체 포트와 유체 연통하는 하류 단부와, 상기 유입 유체 포트와 유체 연통하는 상류 단부를 구비한 피스톤을 포함하고,
    상기 압력 기동식 피스톤은 적어도 한 개의 압력 강하 장치로부터 상기 유입 유체 포트로의 유체 유동을 허용하거나 또는 방지하기 위해 상기 생산 배관 스트링에 가해진 유체 압력에 응답하여 억제된 위치와 억제되지 않은 위치 사이에서 이동가능한 유입 제어 장치.

  19. 삭제
  20. 삭제
KR1020147006392A 2011-09-16 2012-09-14 자동-조정식 유입 제어 장치 KR101598730B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161535802P 2011-09-16 2011-09-16
US61/535,802 2011-09-16
PCT/US2012/055310 WO2013040298A2 (en) 2011-09-16 2012-09-14 Self-controlled inflow control device

Publications (2)

Publication Number Publication Date
KR20140074890A KR20140074890A (ko) 2014-06-18
KR101598730B1 true KR101598730B1 (ko) 2016-02-29

Family

ID=47049350

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147006392A KR101598730B1 (ko) 2011-09-16 2012-09-14 자동-조정식 유입 제어 장치

Country Status (5)

Country Link
US (1) US8833466B2 (ko)
EP (1) EP2756162A2 (ko)
JP (1) JP5755376B2 (ko)
KR (1) KR101598730B1 (ko)
WO (1) WO2013040298A2 (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505773B1 (en) * 2011-03-30 2013-05-08 Welltec A/S Downhole pressure compensating device
US8925633B2 (en) * 2012-01-13 2015-01-06 Baker Hughes Incorporated Inflow control device with adjustable orifice and production string having the same
NO20121391A1 (no) * 2012-11-21 2014-05-12 Acona Innovalve As Apparat og fremgangsmåte for å styre en fluidstrøm i eller inn i en brønn
NO3037552T3 (ko) 2013-10-03 2018-09-22
GB201401653D0 (en) * 2014-01-31 2014-03-19 Swellfix Bv Flow control device
NO338579B1 (no) * 2014-06-25 2016-09-12 Aadnoey Bernt Sigve Autonom brønnventil
US10233726B2 (en) * 2014-08-22 2019-03-19 Baker Hughes, A Ge Company, Llc Pressure differential device with constant pressure drop
CN105626003A (zh) * 2014-11-06 2016-06-01 中国石油化工股份有限公司 一种用于调节地层流体的控制装置
CN105625991B (zh) * 2014-11-06 2018-03-13 中国石油化工股份有限公司 一种用于采油系统的控水稳油流入控制器
US9920601B2 (en) 2015-02-16 2018-03-20 Baker Hughes, A Ge Company, Llc Disintegrating plugs to delay production through inflow control devices
US10563475B2 (en) 2015-06-11 2020-02-18 Saudi Arabian Oil Company Sealing a portion of a wellbore
US9482062B1 (en) 2015-06-11 2016-11-01 Saudi Arabian Oil Company Positioning a tubular member in a wellbore
US9650859B2 (en) 2015-06-11 2017-05-16 Saudi Arabian Oil Company Sealing a portion of a wellbore
CA2938715C (en) * 2015-08-13 2023-07-04 Packers Plus Energy Services Inc. Inflow control device for wellbore operations
CA3018313A1 (en) 2016-05-27 2017-11-30 Halliburton Energy Services, Inc. Real-time water flood optimal control with remote sensing
US11713647B2 (en) * 2016-06-20 2023-08-01 Schlumberger Technology Corporation Viscosity dependent valve system
NO20161700A1 (en) * 2016-10-27 2018-03-12 Acona Innovalve As An apparatus and a method for controlling fluid flow in, into or out of a well, and an orientation means for orienting the apparatus
MY196673A (en) 2016-12-27 2023-04-29 Halliburton Energy Services Inc Sand control screen assembly having flow control devices with pressure-balanced pistons
CN108625846B (zh) * 2017-03-23 2021-09-10 中国石油化工股份有限公司 一种用于调流控水仪的评价装置
NO344014B1 (en) 2018-02-13 2019-08-19 Innowell Solutions As A valve and a method for closing fluid communication between a well and a production string, and a system comprising the valve
US11280168B2 (en) 2018-02-21 2022-03-22 Halliburton Energy Services, Inc. Method and apparatus for inflow control with vortex generation
GB2612213B (en) * 2018-07-19 2023-11-15 Halliburton Energy Services Inc Electronic flow control node to aid gravel pack & eliminate wash pipe
WO2020040847A1 (en) * 2018-08-23 2020-02-27 Halliburton Energy Services, Inc. Shuttle valve for autonomous fluid flow device
NO20201290A1 (en) * 2018-08-23 2020-11-24 Halliburton Energy Services Inc Density-Based Autonomous Flow Control Device
NO346099B1 (en) * 2018-08-27 2022-02-14 Innowell Solutions As A valve for closing fluid communication between a well and a production string, and a method of using the valve
US10890067B2 (en) * 2019-04-11 2021-01-12 Saudi Arabian Oil Company Method to use a buoyant body to measure two-phase flow in horizontal wells
CN111364951B (zh) * 2019-08-16 2022-06-03 中国海洋石油集团有限公司 一种密度敏感自适应流量控制阀
US11512575B2 (en) * 2020-01-14 2022-11-29 Schlumberger Technology Corporation Inflow control system
US11506016B2 (en) 2020-04-20 2022-11-22 Baker Hughes Oilfield Operations Llc Wellbore system, a member and method of making same
CN114075947B (zh) * 2020-08-13 2024-06-18 中国石油化工股份有限公司 一种自适应控水及酸洗一体化管柱及酸洗方法
CN112177569A (zh) * 2020-10-29 2021-01-05 太仓优尼泰克精密机械有限公司 一种用于油井油水含水量的控制装置
AU2021442340A1 (en) * 2021-04-22 2023-08-31 Halliburton Energy Services, Inc. Fluid flow control system employing gravity driven floats and a valve
WO2022240589A1 (en) * 2021-05-12 2022-11-17 Schlumberger Technology Corporation Autonomous inflow control device system and method
US20240076954A1 (en) * 2022-09-01 2024-03-07 Halliburton Energy Services, Inc. Fluid tight float for use in a downhole environment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622794B2 (en) 2001-01-26 2003-09-23 Baker Hughes Incorporated Sand screen with active flow control and associated method of use
US20070246210A1 (en) 2006-04-24 2007-10-25 William Mark Richards Inflow Control Devices for Sand Control Screens

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309988A (en) 1992-11-20 1994-05-10 Halliburton Company Electromechanical shifter apparatus for subsurface well flow control
US5494109A (en) 1995-01-19 1996-02-27 Stren Company Backflush filter system for downhole pumps
NO314701B3 (no) 2001-03-20 2007-10-08 Reslink As Stromningsstyreanordning for struping av innstrommende fluider i en bronn
WO2006015277A1 (en) 2004-07-30 2006-02-09 Baker Hughes Incorporated Downhole inflow control device with shut-off feature
CA2530995C (en) 2004-12-21 2008-07-15 Schlumberger Canada Limited System and method for gas shut off in a subterranean well
US7413022B2 (en) 2005-06-01 2008-08-19 Baker Hughes Incorporated Expandable flow control device
US7802621B2 (en) * 2006-04-24 2010-09-28 Halliburton Energy Services, Inc. Inflow control devices for sand control screens
US20080041582A1 (en) 2006-08-21 2008-02-21 Geirmund Saetre Apparatus for controlling the inflow of production fluids from a subterranean well
US20080041580A1 (en) * 2006-08-21 2008-02-21 Rune Freyer Autonomous inflow restrictors for use in a subterranean well
US20080041588A1 (en) * 2006-08-21 2008-02-21 Richards William M Inflow Control Device with Fluid Loss and Gas Production Controls
US20090120647A1 (en) 2006-12-06 2009-05-14 Bj Services Company Flow restriction apparatus and methods
US7828067B2 (en) 2007-03-30 2010-11-09 Weatherford/Lamb, Inc. Inflow control device
US20080283238A1 (en) 2007-05-16 2008-11-20 William Mark Richards Apparatus for autonomously controlling the inflow of production fluids from a subterranean well
US7789145B2 (en) 2007-06-20 2010-09-07 Schlumberger Technology Corporation Inflow control device
US7578343B2 (en) 2007-08-23 2009-08-25 Baker Hughes Incorporated Viscous oil inflow control device for equalizing screen flow
US7775284B2 (en) 2007-09-28 2010-08-17 Halliburton Energy Services, Inc. Apparatus for adjustably controlling the inflow of production fluids from a subterranean well
US8312931B2 (en) 2007-10-12 2012-11-20 Baker Hughes Incorporated Flow restriction device
US20090101354A1 (en) 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Devices and Methods Utilizing Same to Control Flow of Subsurface Fluids
US8069921B2 (en) 2007-10-19 2011-12-06 Baker Hughes Incorporated Adjustable flow control devices for use in hydrocarbon production
US8474535B2 (en) * 2007-12-18 2013-07-02 Halliburton Energy Services, Inc. Well screen inflow control device with check valve flow controls
US7597150B2 (en) 2008-02-01 2009-10-06 Baker Hughes Incorporated Water sensitive adaptive inflow control using cavitations to actuate a valve
WO2009103036A1 (en) 2008-02-14 2009-08-20 Schlumberger Canada Limiteds Valve apparatus for inflow control
NO332898B1 (no) 2008-05-07 2013-01-28 Bech Wellbore Flow Control As Anordning ved stromningsregulator for regulering av en fluidstrom mellom et petroleumsreservoar og et rorlegeme
US7857061B2 (en) 2008-05-20 2010-12-28 Halliburton Energy Services, Inc. Flow control in a well bore
US8631877B2 (en) 2008-06-06 2014-01-21 Schlumberger Technology Corporation Apparatus and methods for inflow control
WO2011037914A2 (en) 2009-09-22 2011-03-31 Schlumberger Canada Limited Inflow control device and methods for using same
GB2476148B (en) 2009-12-03 2012-10-10 Baker Hughes Inc Method of making a flow control device that reduces flow of the fluid when a selected property of the fluid is in selected range
US8469105B2 (en) 2009-12-22 2013-06-25 Baker Hughes Incorporated Downhole-adjustable flow control device for controlling flow of a fluid into a wellbore
US8469107B2 (en) 2009-12-22 2013-06-25 Baker Hughes Incorporated Downhole-adjustable flow control device for controlling flow of a fluid into a wellbore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622794B2 (en) 2001-01-26 2003-09-23 Baker Hughes Incorporated Sand screen with active flow control and associated method of use
US20070246210A1 (en) 2006-04-24 2007-10-25 William Mark Richards Inflow Control Devices for Sand Control Screens

Also Published As

Publication number Publication date
WO2013040298A3 (en) 2013-12-19
US20130068467A1 (en) 2013-03-21
KR20140074890A (ko) 2014-06-18
JP5755376B2 (ja) 2015-07-29
EP2756162A2 (en) 2014-07-23
WO2013040298A2 (en) 2013-03-21
US8833466B2 (en) 2014-09-16
JP2014531536A (ja) 2014-11-27

Similar Documents

Publication Publication Date Title
KR101598730B1 (ko) 자동-조정식 유입 제어 장치
US7051812B2 (en) Fracturing tool having tubing isolation system and method
RU2551599C2 (ru) Устройство для регулирования притока в эксплуатационной обсадной трубе
US6474419B2 (en) Packer with equalizing valve and method of use
US20140151052A1 (en) Kobe sub with inflow control, wellbore tubing string and method
US9562414B2 (en) Isolation assembly for inflow control device
US20150308226A1 (en) Apparatus For Controlling Fluid Flow In Or Into A Well and Method Of Using Same
US10145219B2 (en) Completion system for gravel packing with zonal isolation
WO2012106804A1 (en) Wellbore injection system
EP2906779B1 (en) Flow restrictor for a service tool
US20100212895A1 (en) Screen Flow Equalization System
RU2136856C1 (ru) Система завершения скважины для применения при разделении потоков текучих сред, добываемых из боковых скважин, внутренние концы которых сообщены с главной скважиной (варианты) и способ разделения потоков текучих сред, добываемых из указанных скважин
RU2721041C2 (ru) Скважинная система для откачивания жидкости
US10982514B2 (en) Tubing and annular gas lift
CA2924608C (en) Flexible zone inflow control device
US11933139B1 (en) Shifting tool for spotting filter cake remover
WO2014168485A1 (en) An arrangement and a method for removing debris in a well
OA17377A (en) Flow restrictor for a service tool.
OA17510A (en) Wellbore injection system.

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190129

Year of fee payment: 4