KR101591484B1 - Rare earth europium coordination complex and application using same as light emitting material - Google Patents

Rare earth europium coordination complex and application using same as light emitting material Download PDF

Info

Publication number
KR101591484B1
KR101591484B1 KR1020137034396A KR20137034396A KR101591484B1 KR 101591484 B1 KR101591484 B1 KR 101591484B1 KR 1020137034396 A KR1020137034396 A KR 1020137034396A KR 20137034396 A KR20137034396 A KR 20137034396A KR 101591484 B1 KR101591484 B1 KR 101591484B1
Authority
KR
South Korea
Prior art keywords
group
substituted
molecules
alkyl group
halogen
Prior art date
Application number
KR1020137034396A
Other languages
Korean (ko)
Other versions
KR20140049991A (en
Inventor
쭈치앙 비안
후이보 웨이
페이 딩
춘후이 후앙
Original Assignee
페킹 유니버시티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 페킹 유니버시티 filed Critical 페킹 유니버시티
Publication of KR20140049991A publication Critical patent/KR20140049991A/en
Application granted granted Critical
Publication of KR101591484B1 publication Critical patent/KR101591484B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 희토 유로퓸 착물 및 발광 재료로서의 응용에 관한 것이다. 상기 유로퓸 착물 구조식은 Eu(ND)xAyLm이다. 그 중, ND는 4-히드록시-1,5-나프티리딘계 음이온 리간드이고, A는 기타 음이온 리간드며, L은 중성 리간드이고, x=1, 2 또는 3이고, y=0, 1 또는 2이며, x+y=3; m=1, 2 또는 3이다. 이러한 유로퓸 착물은 고효율 광발광 양자수율을 가지고, 열안정성이 우수하며, 캐리어 전송효과가 우수하고, 광 발광 및 전계 발광 재료로 사용할 수 있다.The present invention relates to a rare earth europium complex and its application as a light emitting material. The europium complex structure formula is Eu (ND) x A y L m . Wherein ND is a 4-hydroxy-1,5-naphthyridine based anionic ligand, A is other anionic ligand, L is a neutral ligand, x = 1, 2 or 3, y = 0, 1 or 2 X + y = 3; m = 1, 2 or 3; Such a europium complex has a high efficiency in light emitting quantum yield, excellent thermal stability, excellent carrier transfer effect, and can be used as a light emitting and electroluminescent material.

Description

희토 유로퓸 착물 및 발광 재료로서의 응용{RARE EARTH EUROPIUM COORDINATION COMPLEX AND APPLICATION USING SAME AS LIGHT EMITTING MATERIAL}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth europium complex,

본 발명은 희토류 착물 발광 재료 분야에 관한 것으로, 특히, 고효율 광발광 및 전계발광 성능을 가지는 새로운 희토 유로퓸 착물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth complex light emitting material, and more particularly, to a rare earth europium complex having high efficiency light emission and electroluminescence.

주지하는 바와 같이, 에너지는 21세기 인류사회 발전을 위해 반드시 해결해야 할 과제이다. 사람들은 새로운 에너지를 개발함과 동시에 에너지를 절약하는 것도 중요한 조치이다. 일상생활 중 에너지 소모에 있어서, 조명 사용량만해도 총 에너지량의 약 20%를 차지한다. 그러나, 현재 조명광원의 에너지에 대한 이용율은 여전히 만족스러운 효과를 얻지 못하고 있다. LED(Light-emitting Diode)광원은 고효율적인 에너지 전환율로 큰 주목을 받고 있다. 특히, OLED(Organic Light-emitting Diode, 유기발광다이오드)는 대면적, 박형화 등 잠재적인 장점이 있으며, 이론상 발광 효율이 높아 연구해야 할 과제로 되고 있다. As we all know, energy is a task that must be solved for the development of human society in the 21st century. It is also important for people to save energy while developing new energy. In everyday life, energy consumption alone accounts for about 20% of total energy consumption. However, the utilization rate of the energy of the current illumination source still has not obtained a satisfactory effect. Light-emitting diode (LED) light sources are attracting much attention because of their high efficiency of energy conversion. Particularly, organic light-emitting diodes (OLEDs) have potential advantages such as large area and thinness, and theoretically, the efficiency of light emission is high, which is a problem to be studied.

풀 컬러 디스플레이에 있어서, OLED의 사용 전망도 주목할 만하다. 현재, 사람들이 사용하고 있는 컬러 디스플레이는 대부분 음극선관 또는 액정 디스플레이이다. 음극선관은 체적이 크고, 응답속도가 느리며, 효율이 낮아, 현재 거의 사용되지 않고 있다. 현재 많이 사용되고 있는 액정 디스플레이는 체적이 작고, 성능도 향상되었으나, 수동광원이고, 시야각이 좁으며, 응답속도가 느린 단점이 있다. 유기전계발광은 매우 큰 흡인력이 있으며, 하기 특징이 있다. 1. 풀 컬러 능동 발광하고, 색채가 선명하다(액정 스크린이 배경 조명을 필요로 한다). 2. 초박형화 디스플레이 가능하고, 유연하게 완곡할 수 있다. 3. 응답속도가 빠르고(액정의 100배), 시야각 범위가 180°(액정 스크린은 겨우 45°)로 넓다. 4. 구동전압이 낮아 3 내지 10볼트의 직류전압만 필요하며, 발광 효율이 높다. 5. 제조가 간단하고, 비용이 적게 든다.In full-color displays, the use of OLEDs is also noteworthy. Currently, most of the color displays that people use are cathode ray tubes or liquid crystal displays. Cathode ray tubes are large in volume, slow in response, low in efficiency, and are rarely used at present. Liquid crystal displays, which are widely used today, have a small volume and improved performance, but they are passive light sources, narrow viewing angles, and slow response times. Organic electroluminescence has a very large attractive force and has the following characteristics. 1. Full color active light, color is clear (liquid crystal screen requires backlight). 2. Ultra-thin display is possible, and it can be smoothly softened. 3. The response speed is fast (100 times of liquid crystal), wide viewing angle range is 180 ° (LCD screen is only 45 °). 4. Since the driving voltage is low, only a DC voltage of 3 to 10 volts is required, and the luminous efficiency is high. 5. Easy to manufacture and low cost.

그리하여, 조명이나 디스플레이에 있어서, 유기분자 발광 재료는 그 응용 발전성이 매우 크다. 그 중에서, 희토류 발광 재료는 그 독특한 성질로 인해 가장 바람직하게 사용될 수 있다. 희토류 착물 발광 재료의 장점은 주로 다음과 같은 면에서 구현된다. Thus, in an illumination or a display, an organic molecular light emitting material has a very high applicability. Among them, rare-earth luminescent materials can be most preferably used because of their unique properties. The advantages of the rare earth complex light emitting material are mainly realized in the following aspects.

1. 협대역 발사, 단색성 양호. 이는 색순도가 높은 디스플레이 기기에 매우 유리하다. 희토원소는 독특한 전자 배열과 에너지 레벨 구조를 갖는다. 특히, 4f전자층은 에너지 레벨이 풍부하여, 희토원소는 이 4f층 에너지 레벨 사이에서 발광한다. 희토류 착물 발광 재료는 에너지 레벨이 높고, 내층 전자, 외층 전자가 차단작용을 하기 때문에 발광 시 외부요소의 간섭을 적게 받는다. 이에 의해 협대역 발사가 가능하다. 컬러 디스플레이에 유기 소분자 전계발광을 이용함에 있어서, 적색, 녹색, 청색(RGB)의 기본색을 필터 또는 기타 방법으로 얻어야 하기 때문에 일부 에너지가 낭비된다. 희토류 화합물은 색좌표가 10nm보다 작은 협대역 발사가 가능하기 때문에 이를 유기전계 발광 재료에 사용하는 것은 중요한 의미가 있다.1. Narrow-band firing, good monochromaticity. This is very advantageous for display devices having high color purity. Rare earth elements have a unique electronic arrangement and energy level structure. Particularly, the 4f electron layer is enriched in energy level, and the rare earth element emits light between these 4f layer energy levels. Since the rare earth complex luminescent material has a high energy level and the inner layer electrons and the outer layer electrons have a blocking action, they are less affected by external factors during light emission. This enables narrow-band firing. In using the organic small molecule electroluminescence for a color display, some energy is wasted because a basic color of red, green, and blue (RGB) must be obtained by a filter or other method. Since rare-earth compounds are capable of narrow-band emission with a color coordinate of less than 10 nm, it is important to use them in organic electroluminescent materials.

2. 이론상 높은 양자 효율. 순수 유기형광 발광 재료는 회전통계의 제한을 받아, 그 최대 내부양자 효율에 이론극한이 존재한다(25% 이하). 이에 대해, 희토류 착물 발광 과정은 유기 리간드의 단일항의 여기 상태(excited singlet states)로부터 3중항의 여기 상태로 계간 교차(intersystem crossing)하고, 다시 에너지를 희토류 이온에 전달하여 4f전자가 여기되도록 한 후, 바닥상태(ground state)로 돌아가 발광한다. 단일항의 상태와 3중항의 상태가 모두 에너지를 전달할 수 있기 때문에, 이론상 내부양자 효율이 100%에 달할 수 있다.2. High quantum efficiency in theory. Pure organic fluorescent light emitting materials are subject to rotational statistics, and there is a theoretical limit on their maximum internal quantum efficiency (less than 25%). On the other hand, the light emitting process of the rare earth complexes intersystem crossing from excited singlet states of the organic ligand to the triplet excited state, and then the energy is again transferred to the rare earth ions to excite 4f electrons , And returns to the ground state to emit light. Theoretically, the internal quantum efficiency can reach 100%, because both the singlet state and the triplet state can carry energy.

3. 리간드 수식(modification)이 발광 파장에 영향을 주지 않는다. 양호한 에너지 레벨 매칭과 캐리어 전도성을 달성하기 위해, 일반적으로 리간드에 대해 각종 수식을 진행한다. 희토류 착물의 발광기가 중심희토류 이온이기 때문에, 리간드 수식은 스펙트럼 피크의 변위를 초래하지 않는다. 따라서, 재료 설계 개질면에서, 희토류 착물 발광 재료는 독특한 장점을 가지고 있다.3. The ligand modification does not affect the emission wavelength. In order to achieve good energy level matching and carrier conductivity, various modifications are generally made to the ligand. Since the light emitter of the rare earth complex is a central rare earth ion, the ligand modification does not cause a shift in the spectral peak. Thus, in terms of material design modification, the rare earth complex luminescent material has unique advantages.

이로부터 알 수 있는 바, 희토류 착물은 발광 성능이 우수하고, 광발광 및 전계발광 분야에서 광범위하게 응용될 수 있다. 발광분야에서, 일반적으로, 적색광 유로퓸과 녹색광 테르븀의 다운 컨버젼 발광 재료는 형광 분말로 사용할 수 있다. 현재, 조명 형광등에서 가장 보편적으로 사용되는 3가지 기본색 형광 분말은 바로 희토류 녹색분말(Ce,Tb)MgAl11O19, 청색분말(Ba,Mg,Eu)3Al16027 및 적색분말Y2O3:Eu3+이다. 이들은 모두 희토를 함유한 무기 고체 발광 재료다. 희토류 유기 착물은 발광 효율이 더 높지만 화학적 안정성 및 형광 열안정성이 무기재료보다 떨어진다. 따라서, 열 및 자외선 방사에 대해 안정적인 유기 착물 형광재료를 개발함으로써 희토 사용량을 줄일 수 있고, 비용을 낮출 수 있다. 3가 유로퓸 착물은 자외선을 효과적으로 흡수할 수 있고, 선명한 적색광을 발광할 수 있으며, 유기 적색광 다운 컨버젼 재료로 사용할 수 있다. 중국 중산대학교 꿍멍랜(

Figure 112013118526304-pct00001
孟濂) 등은 카바졸을 함유한 β-디케톤 리간드의 희토류 Eu착물을 합성하였으며, 이러한 착물을 다운 컨버젼 발광 형광 분말로서 근자외선광을 발사하는 InGaN기질에 도포하여 적색광을 발사하는 LED소자(M.L.Gong et al, Appl. Phys. B, 2010,99, 757)를 제조하였다. 그러나, 이러한 Eu착물 발광을 이용한 LED소자에서 퀸칭 및 전압의 변화에 따라 혼색이 나타나는 불안정한 문제가 발생하였다.As can be seen from the above, the rare earth complex has excellent light emitting performance and can be widely applied in the field of light emission and electroluminescence. In the field of luminescence, in general, a down-converted luminescent material of red light europium and green light terbium can be used as a fluorescent powder. At present, the three most commonly used fluorescent color powders used in illumination fluorescent lamps are rare earth green powder (Ce, Tb) MgAl 11 O 19 , blue powder (Ba, Mg, Eu) 3 Al 16 0 27 and red powder Y 2 O 3 : Eu 3+ . These are inorganic solid light emitting materials containing rare earths. The rare earth organic complexes have higher luminous efficiency but lower chemical stability and fluorescent thermal stability than inorganic materials. Therefore, by developing an organic complex fluorescent material which is stable against heat and ultraviolet radiation, the amount of rare earth used can be reduced and the cost can be reduced. The trivalent europium complex can effectively absorb ultraviolet rays, emit clear red light, and can be used as an organic red light downconversion material. Zhongshan University of China
Figure 112013118526304-pct00001
Meng, et al.) Synthesized a rare earth-Eu complex of a β-diketone ligand containing carbazole, and applied this complex to an InGaN substrate emitting near-ultraviolet light as a down-conversion luminescent fluorescent powder to emit red light MLGong et al, Appl. Phys. B, 2010, 99, 757). However, an unstable problem has arisen in the LED device using this Eu complex emission, in which color mixture appears due to quenching and voltage change.

전계발광 분야에서, 희토류 Eu착물의 OLED에 대한 응용은 이미 많은 사람들이 관련 연구를 진행하였다. 현재, 사용하고 있는 유로퓸 리간드 기질은 모두 β-디케톤계 화합물이다. 1991년, 일본 Kido 등은 처음으로 희토 유로퓸 착물Eu(TTA)3·2H2O를 발광 재료로 하여 유기 전계발광소자를 제조하여 협대역 적색광 발광을 실현하였다. 얼마 전, 본 발명가들은 옥사디아졸을 함유한 페난트롤린 유도체를 중성 제2리간드로 하여 Eu(TTA)3PhO를 합성하였으며, 나아가서 OLED소자를 제조하였다. 이러한 OLED소자는 최대 휘도가 1086cd/m2인 순수 유로퓸 적색광을 발사할 수 있으며, 최대 전력효율이 5.5LPW에 달할 수 있어, Eu(TTA)3계 발광 재료를 OLED소자에 사용한 연구에서 높은 수준에 달한다(ZhuqiChen et al, New J. Chem., 2010,34, 487).In the field of electroluminescence, the application of rare earth Eu complex to OLED has already been studied by many people. Currently, the europium ligand substrates used are all? -Diketone compounds. In 1991, Kido et al. First fabricated an organic electroluminescent device using rare earth europium complex Eu (TTA) 3 .2H 2 O as a light emitting material, thereby realizing narrow band red light emission. Not long ago, the present inventors synthesized Eu (TTA) 3 PhO using a phenanthroline derivative containing oxadiazole as a neutral second ligand, and further fabricated an OLED device. Such an OLED device can emit pure europium red light having a maximum luminance of 1086 cd / m 2 and can reach a maximum power efficiency of 5.5 LPW, so that the Eu (TTA) 3 light emitting material is used in OLED devices at a high level (Zhuqi Chen et al, New J. Chem., 2010, 34, 487).

현재, 연구에 이용하고 있는 희토 유로퓸 착물은 기본적으로 β-디케톤계 화합물을 안테나 리간드(Antenna ligand)로 사용하고 있으며, 그 중, 광발광 양자수율이 매우 높은 화합물은 부족하지 않으나, 다운 컨버젼 LED재료 또는 전계발광 OLED에의 응용이 순조롭게 이루어지지 않고 있다. 그 주요 원인으로, 1. β-디케톤 구조 착물이 발광 시 퀸칭이 발생하기 쉽고, 2. β-디케톤 구조 착물이 전계발광 시 캐리어 수송성능이 비교적 떨어지기 때문이다. 이러한 결함은 β-디케톤계 유로퓸 착물의 전계발광 효율 및 이들의 소자 동작 중 온도 상승에 대한 안정성에 심각한 영향을 준다.At present, rare-earth europium complexes used in the research basically use an? -Diketone compound as an antenna ligand, among which a compound having a very high photoluminescence quantum yield is not sufficient, but a down conversion LED material Or the application to the electroluminescent OLED is not performed smoothly. The main reason is that 1. β-diketone structure complex is prone to quenching at the time of light emission, and 2. β-diketone structure complex exhibits relatively poor carrier transport performance upon electroluminescence. These defects seriously affect the electroluminescent efficiency of the? -Diketone-based europium complex and the stability against temperature rise during operation of the device.

본 발명의 목적은 광발광 및 전계발광 등 면에 사용되는 4-히드록시-1,5-나프티리딘계 리간드에 의한 희토 유로퓸 착물을 제공하는 것이다.It is an object of the present invention to provide a rare earth europium complex with a 4-hydroxy-1,5-naphthyridine based ligand used for light emitting and electroluminescent islands.

본 발명의 유로퓸 착물의 구조식은 Eu(ND)xAyLm이다.The structural formula of the europium complex of the present invention is Eu (ND) x A y L m .

구조식에서, ND는 화학식 I로 나타내는 4-히드록시-1,5-나프티리딘계 음이온 리간드이고,A는 ND이외의 기타 음이온 리간드이며, L은 중성 리간드이고; x=1, 2 또는 3,y=0, 1 또는 2,또한, x+y=3; m=0, 1, 2 또는 3이다. m은 서로 다른 중성 리간드에 의해 결정된다.In the structural formula, ND is a 4-hydroxy-1,5-naphthyridine based anion ligand represented by the formula (I), A is other anion ligand other than ND, L is a neutral ligand; x = 1, 2 or 3, y = 0, 1 or 2, and x + y = 3; m = 0, 1, 2 or 3; m is determined by different neutral ligands.

Figure 112013118526304-pct00002
Figure 112013118526304-pct00002

화학식 IFormula I

화학식 I에서,R1, R2, R3, R4 및 R5는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 알켄닐기, 알키닐기, 아미노기, N-치환 아미노기, 알콕시기, 카복시기, 에스테르기, 아실기, 아실아미노기, N-치환 아실아미노기, 아릴기 또는 헤테로 아릴기이다.Wherein R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen substituted alkyl group, an alkenyl group, an alkynyl group, A substituted amino group, an alkoxy group, a carboxy group, an ester group, an acyl group, an acylamino group, an N-substituted acylamino group, an aryl group or a heteroaryl group.

여기서, 상기 할로겐 원자는 F, Cl 등을 나타낸다.Here, the halogen atom represents F, Cl, or the like.

상기 알킬기는, 바람직하게는 C1-C24의 직쇄 또는 측쇄 알킬기이고, 더 바람직하게는 C1-C6의 직쇄 또는 측쇄 알킬기이며, 예를 들어, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 3차 부틸, 2차 부틸, 펜틸, 네오펜틸, 헥실 등이다. 특히 바람직하게는 C1-C4의 직쇄 또는 측쇄 알킬이다.The alkyl group is preferably a straight-chain or branched alkyl group having 1 to 24 carbon atoms, more preferably a straight or branched alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, 3 Sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, and the like. Particularly preferably a straight or branched alkyl of C1-C4.

상기 할로겐 치환 알킬기는, 바람직하게는 C1-C24의 직쇄 또는 측쇄 할로겐 치환 알킬기이고, 더 바람직하게는 C1-C6의 직쇄 또는 측쇄 할로겐 치환 알킬기이며, 예를 들어 할로겐화 메틸, 할로겐화 에틸, 할로겐화 프로필, 할로겐화 이소프로필, 할로겐화 부틸, 할로겐화 이소부틸, 할로겐화 3차 부틸, 할로겐화 2차 부틸이다. 특히 바람직하게는 C1-C3의 직쇄 또는 측쇄 할로겐화 알킬기이며, 예를 들어, 트리플루오로메틸, 펜타플루오로에틸이다.The halogen-substituted alkyl group is preferably a C1-C24 linear or branched halogen-substituted alkyl group, more preferably a C1-C6 linear or branched halogen substituted alkyl group, and examples thereof include halogenated methyl, halogenated ethyl, Isopropyl, halogenated butyl, isobutyl halide, tert-butyl halide, and secondary butyl halide. Particularly preferably a straight-chain or branched-chain halogenated alkyl group of C1-C3, for example, trifluoromethyl or pentafluoroethyl.

상기 알켄닐기 또는 알키닐기는 바람직하게는 C2-C24의 직쇄 또는 측쇄 알켄닐기 또는 알키닐기이고, 더 바람직하게는 C2-C6의 직쇄 또는 측쇄 알켄닐기 또는 알키닐기이며, 특히 바람직하게는 C2-C4의 직쇄 또는 측쇄 알켄닐기 또는 알키닐기이다. 예를 들어, 에틸렌, 에티닐, 1-프로필렌, 1-프로파길, 1-부틸렌, 1-부틴, 부타디엔 등이다.The alkenyl group or the alkynyl group is preferably a C2-C24 linear or branched alkenyl group or an alkynyl group, more preferably a C2-C6 linear or branched alkenyl group or an alkynyl group, particularly preferably a C2-C4 A straight chain or branched alkenyl group or an alkynyl group. For example, ethylene, ethynyl, 1-propylene, 1-propargyl, 1-butylene, 1-butyne, butadiene and the like.

상기 N-치환 아미노기는 바람직하게는 C1-C6알킬기 치환된 아미노기이며, 예를 들어, 디메틸아미노기이다.The N-substituted amino group is preferably a C1-C6 alkyl group-substituted amino group, and is, for example, a dimethylamino group.

상기 알콕시기는 바람직하게는 C1-C24의 직쇄 또는 측쇄 알콕시기이고, 더 바람직하게는 C1-C6의 직쇄 또는 측쇄 알콕시기이며, 특히 바람직하게는 C1-C4의 직쇄 또는 측쇄 알콕시기이다. 예를 들어, 메톡시기, 에톡시기, 프로폭시기, 이소프로폭시기, 부톡시기, 이소부톡시기 등이다.The alkoxy group is preferably a straight-chain or branched alkoxy group of C1-C24, more preferably a straight-chain or branched alkoxy group of C1-C6, particularly preferably a straight-chain or branched alkoxy group of C1-C4. For example, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, and an isobutoxy group.

상기 에스테르는 구조가 -COOR의 카복실레이트이다. 여기서, R은 바람직하게 C1-C24의 직쇄 또는 측쇄 알킬기 또는 할로겐 치환 알킬기이고, 더 바람직하게 R은 C1-C6의 직쇄 또는 측쇄 알킬기 또는 할로겐 치환 알킬기이며, 특히 바람직하게 R은 C1-C4의 직쇄 또는 측쇄 알킬기 또는 할로겐 치환 알킬기이다. 상기 에스테르는 예를 들어, 메틸 카복실레이트, 에틸 카복실레이트, 프로필 카복실레이트, 이소 프로필 카복실레이트, 부틸 카복실레이트, 메틸 트리플루오로 카복실레이트, 에틸 퍼플루오로 카복실레이트 등이다. The ester is a carboxylate of structure -COOR. R is preferably a linear or branched alkyl group or halogen-substituted alkyl group of C1-C24, more preferably R is a C1-C6 linear or branched alkyl group or halogen substituted alkyl group, particularly preferably R is C1-C4 linear or branched A branched alkyl group or a halogen-substituted alkyl group. The esters are, for example, methyl carboxylate, ethyl carboxylate, propyl carboxylate, isopropyl carboxylate, butyl carboxylate, methyltrifluorocarboxylate, ethyl perfluorocarboxylate, and the like.

상기 아실기 구조는 -COR기이며, 여기서, R은 바람직하게는 C1-C24의 직쇄 또는 측쇄 알킬기이고, 더 바람직하게는 C1-C6의 직쇄 또는 측쇄 알킬기이며, 특히 바람직하게는 C1-C4의 직쇄 또는 측쇄 알킬기이다. 상기 아실기는 예를 들어, 아세틸기, 프로피오닐기, 이소프로피오닐기, 부티릴기 등이다.The acyl group structure is a -COR group, wherein R is preferably a linear or branched alkyl group having 1 to 24 carbon atoms, more preferably a linear or branched alkyl group having 1 to 6 carbon atoms, particularly preferably a linear or branched alkyl group having 1 to 4 carbon atoms Or a branched alkyl group. The acyl group includes, for example, an acetyl group, a propionyl group, an isopropionyl group, and a butyryl group.

상기 N-치환 아실아미노기는, 바람직하게는 N상의 치환기가 바람직하게 C1-C24의 직쇄 또는 측쇄 알킬기의 아실아미노기이고, 더 바람직하게는 N상의 치환기가 C1-C6의 직쇄 또는 측쇄 알킬기의 아실아미노기이며, 특히 바람직하게는 N상의 치환기가 C1-C4의 직쇄 또는 측쇄 알킬기의 아실아미노기이이다. 예를 들어, N,N-디메틸포름아미드, N,N-디에틸포름아미드 등이다.The N-substituted acylamino group is preferably an N-phase substituent preferably an acylamino group of a straight-chain or branched alkyl group of C1-C24, more preferably an N-phase substituent is an acylamino group of a C1-C6 linear or branched alkyl group , Particularly preferably the substituent on the N-phase is an acylamino group of C1-C4 linear or branched alkyl group. For example, N, N-dimethylformamide, N, N-diethylformamide and the like.

상기 아릴기 또는 헤테로 아릴기는 바람직하게는 C5-C10의 비치환 아릴기, 헤테로 아릴기 또는 치환기를 함유한 아릴기, 헤테로 아릴기이다. 예를 들어, 페닐, 푸란, 피라졸릴, 피리딜, 옥사디아졸 등이다.The aryl group or the heteroaryl group is preferably an unsubstituted aryl group, a heteroaryl group or an aryl group or a heteroaryl group containing a substituent. For example, phenyl, furan, pyrazolyl, pyridyl, oxadiazole, and the like.

R5가 질소 또는 산소 배위점 함유기가 아닐 경우, 본 발명의 4-히드록시-1,5-나프티리딘계 유로퓸 착물 구조는 하기와 같이 나타낼 수 있다(화학식 Ⅱ)When R 5 is not a nitrogen or oxygen coordination-point containing group, the 4-hydroxy-1,5-naphthyridine based europium complex structure of the present invention can be represented as follows (formula (II)

Figure 112013118526304-pct00003
Figure 112013118526304-pct00003

화학식 Ⅱ(II)

화학식 Ⅱ에서, R1, R2, R3, R4 및 R5는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 알켄닐기, 알키닐기, 아미노기, N-치환 아미노기, 알콕시기, 카복시기, 에스테르기, 아실기, 아실아미노기, N-치환 아실아미노기, 아릴기 또는 헤테로 아릴기이고,R5은 질소 또는 산소 불함유 배위점이며; A는 ND 이외의 기타 음이온 리간드이고, L은 중성 리간드이고; x=1, 2 또는 3,y=0, 1 또는 2, x+y=3; m=0, 1, 2 또는 3이다. m은 서로 다른 중성 리간드에 의해 결정되며, 각 기의 바람직한 범위는 위에서 설명한 바와 같다.In formula Ⅱ, R 1, R 2, R 3, R 4 and R 5 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen-substituted alkyl group, an alkenyl group, an alkynyl group, an amino group, N- An amino group, a substituted amino group, an alkoxy group, a carboxy group, an ester group, an acyl group, an acylamino group, an N-substituted acylamino group, an aryl group or a heteroaryl group, and R 5 is a nitrogen or oxygen-free coordination point; A is other anionic ligand other than ND, L is a neutral ligand; x = 1, 2 or 3, y = 0, 1 or 2, x + y = 3; m = 0, 1, 2 or 3; m is determined by different neutral ligands, and the preferred range of each group is as described above.

구체적으로, 예를 들어, R1, R3이 메틸기이고, R2, R4, R5가 수소원자일 경우, 착물 구조식은 다음과 같다.Specifically, when, for example, R 1 and R 3 are methyl groups and R 2 , R 4 and R 5 are hydrogen atoms, the following complex formula is obtained.

Figure 112013118526304-pct00004
Figure 112013118526304-pct00004

R1이 시아노겐이고, R3이 메틸기이며, R2, R4, R5가 수소원자일 경우, 착물의 구조식은 다음과 같다.When R 1 is cyano, R 3 is a methyl group, and R 2 , R 4 and R 5 are hydrogen atoms, the structure of the complex is as follows.

Figure 112013118526304-pct00005
Figure 112013118526304-pct00005

R1이 트리플루오로메틸이고, R3이 불소원자이며, R2, R4, R5가 수소원자일 경우, 착물의 구조식은 다음과 같다.When R 1 is trifluoromethyl, R 3 is a fluorine atom, and R 2 , R 4 , and R 5 are hydrogen atoms, the following formula is shown.

Figure 112013118526304-pct00006
Figure 112013118526304-pct00006

음이온 리간드 A가 β-디케톤계 리간드일 경우, 착물의 구조식은 다음과 같다.When the anion ligand A is a? -Diketone-based ligand, the structure of the complex is as follows.

Figure 112013118526304-pct00007
Figure 112013118526304-pct00007

상기 화학식에서, Ra, Rb은 각각 독립적으로 페닐기, 나프틸기 등 방향기, 또는 티에닐, 푸란, 피리딜 등 헤테로 아릴기, 또는 트리플루오로메틸, 펜타플루오로에틸 등 함불소 알킬기이다. 바람직하게, β-디케톤 음이온 리간드는 디벤조일메탄(DBM), 테노일트리플루오로아세톤(TTA), 디나프틸메탄포밀기(DNM), 메탄트리플르오르아세틸나프토일기(NTA) 등이 있다. x=1 또는 2,y=1 또는 2, x+y=3; m=0, 1, 2 또는 3이다.In the above formulas, R a and R b are each independently an aromatic group such as a phenyl group or a naphthyl group, or a heteroaryl group such as thienyl, furan, or pyridyl, or a fluoroalkyl group such as trifluoromethyl or pentafluoroethyl. Preferably, the? -Diketone anion ligand is selected from the group consisting of dibenzoylmethane (DBM), decanoyl trifluoroacetone (TTA), dinaphthyl methane formyl group (DNM), methane triflouroacetyl naphthoyl group have. x = 1 or 2, y = 1 or 2, x + y = 3; m = 0, 1, 2 or 3;

Figure 112013118526304-pct00008
Figure 112013118526304-pct00008

중성 리간드 L은 물분자, 알코올 분자, 아세톤 등의 배위 소분자 및 페난트롤린(phen), 비피리딘(bpy), 트리아릴포스핀옥사이드(ArPO)계 구조의 분자 및 그 유도체일 수 있다.The neutral ligand L may be water molecules, alcohol molecules, coordination small molecules such as acetone, and molecules and derivatives of phenanthroline (phen), bipyridine (bpy), and triarylphosphine oxide (ArPO) system structures.

Figure 112013118526304-pct00009
Figure 112013118526304-pct00009

특히, R5가 질소 또는 산소배위점 함유기일 경우, 상기 4-히드록시-1,5-나프티리딘 리간드(ND)는 세자리의 음이온 리간드가 되어, 형성된 착물 구조식은 Eu(ND)xAyLm이다. 여기서, A는 ND 이외의 기타 음이온 리간드이고, L은 중성 리간드이며; x=1, 2 또는 3,y=0, 1 또는 2, x+y=3; m=0, 1 또는 2이고, m은 서로 다른 중성 리간드에 의해 결정된다. 이 유형의 세자리 음이온 리간드는 새로운 리간드로서, 배위가 안정적이고, 착물 승화 성막성이 양호하고, 3개의 세자리 음이온 리간드가 하나의 3가 유로퓸 이온과 배위한 후 다시는 중성 리간드가 필요없는 등 장점이 있다. 따라서, 이러한 새로운 세자리 음이온 리간드 및 합성된 유로퓸 착물은 모두 본 발명의 보호범위에 속한다.In particular, R 5 is nitrogen or oxygen, if contained date coordinated regard, the 4-hydroxy-1,5-naphthyridin-ligand (ND) is the anion of a tridentate ligand, complexes formed structural formula is Eu (ND) x A y L m . Where A is other anionic ligand other than ND and L is a neutral ligand; x = 1, 2 or 3, y = 0, 1 or 2, x + y = 3; m = 0, 1 or 2, and m is determined by a different neutral ligand. This type of tridentate anion ligand is a new ligand that has advantages such as stable coordination, good complex sublimation, three tridentate anion ligands with one trivalent europium ion and no need for neutral ligand have. Accordingly, both of these new tridentate anion ligands and the synthesized europium complexes fall within the scope of protection of the present invention.

상기 질소 배위점 함유기에서 예를 들어, 피롤릴, 이미다졸, 피리딜, 옥사졸릴 등 아자 5원환 아릴기(aza five-membered ring aromatic group) 및 아자 6원환 아릴기가 가장 통상적인 것이다. R5가 피리딜기일 경우, 상기 세자리 리간드와 Eu로 형성된 착물의 구조식은 다음과 같다(화학식 Ⅲ).In the nitrogen-containing point-containing group, an aza five-membered ring aromatic group such as pyrrolyl, imidazole, pyridyl or oxazolyl, and an aza 6-membered ring aryl group are the most common. When R5 is a pyridyl group, the structure of the complex formed with the tridentate ligand and Eu is represented by the following formula (III).

Figure 112013118526304-pct00010
Figure 112013118526304-pct00010

화학식 Ⅲ(III)

Figure 112013118526304-pct00011
Figure 112013118526304-pct00011

상술한 바와 같이, 상기 세자리 리간드는 엔올형과 케토형의 공진구조를 가진다. 여기서, R1, R2, R3 및 R4는 상술한 바와 같다. R6, R7, R8 및 R9는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 아미노기, N-치환 아미노기 또는 알콕시기에서 선택된다. 각 기의 바람직한 범위는 상술한 바와 같다. A는 ND 이외의 기타 음이온 리간드이고, L은 중성 리간드이다. x=1, 2 또는 3,y=0, 1 또는 2, x+y=3; m=0, 1 또는 2, m은 서로 다른 중성 리간드에 의해 결정된다. As described above, the tridentate ligand has a resonance structure of an enol type and a keto type. Here, R 1 , R 2 , R 3 and R 4 are as described above. R 6, R 7, R 8 and R 9 are each independently selected from a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen-substituted alkyl group, an amino group, N- substituted amino group or an alkoxy group. The preferable range of each group is as described above. A is other anion ligand other than ND, and L is a neutral ligand. x = 1, 2 or 3, y = 0, 1 or 2, x + y = 3; m = 0, 1 or 2, m is determined by different neutral ligands.

상기 산소배위점 함유기는 주로 카르보닐 함유기이며, R5가 카르보닐기 함유기일 경우, 상기 세자리 리간드와 Eu로 형성된 착물의 구조식은 다음과 같다(화학식 Ⅳ).When the oxygen-coordination-point-containing group is mainly a carbonyl-containing group, and when R 5 is a carbonyl group-containing group, the complex of the tridentate ligand and Eu is represented by the following formula (IV).

Figure 112013118526304-pct00012
Figure 112013118526304-pct00012

화학식 Ⅳ(IV)

Figure 112013118526304-pct00013
Figure 112013118526304-pct00013

상술한 바와 같이, 상기 세자리 리간드는 엔올형과 케토형의 공진구조를 가진다. 여기서, R1, R2, R3 및 R4는 상술한 바와 같다. R10은 히드록실기, 알킬기, 할로겐 치환 알킬기, 아미노기, N-치환 아미노기 또는 알콕시기에서 선택된다. 각 기의 바람직한 범위는 상술한 바와 같다. A는 ND 이외의 기타 음이온 리간드이고, L은 중성 리간드이다. x=1, 2 또는 3,y=0, 1 또는 2, x+y=3; m=0, 1 또는 2, m은 서로 다른 중성 리간드에 의해 결정된다. As described above, the tridentate ligand has a resonance structure of an enol type and a keto type. Here, R 1 , R 2 , R 3 and R 4 are as described above. R 10 is selected from a hydroxyl group, an alkyl group, a halogen-substituted alkyl group, an amino group, an N-substituted amino group or an alkoxy group. The preferable range of each group is as described above. A is other anion ligand other than ND, and L is a neutral ligand. x = 1, 2 or 3, y = 0, 1 or 2, x + y = 3; m = 0, 1 or 2, m is determined by different neutral ligands.

화학식 Ⅲ의 착물에 대해, R1이 시아노겐이고, R2, R3, R4, R6, R7, R8, R9가 수소원자일 경우, 착물의 구조식은 다음과 같다.For a complex of formula (III), R 1 is cyano, R 2 , R 3 , R 4 , R 6 , R 7 , When R 8 and R 9 are hydrogen atoms, the following is a structural formula of the complex.

Figure 112013118526304-pct00014
Figure 112013118526304-pct00014

더욱이, x=3일 경우, y=0이고, m=0, 이때 착물의 구조식은 다음과 같다.Further, when x = 3, y = 0 and m = 0, the structure of the complex is as follows.

Figure 112013118526304-pct00015
Figure 112013118526304-pct00015

화학식 Ⅳ의 착물에 대해, R1이 시아노겐이고, R2, R3, R4가 수소원자이고, R10이 메틸기일 경우, 착물의 구조식은 다음과 같다.For a complex of formula (IV), R 1 is cyano, R 2 , R 3 , When R 4 is a hydrogen atom and R 10 is a methyl group, the following is a structural formula of the complex.

Figure 112013118526304-pct00016
Figure 112013118526304-pct00016

더욱이, x=3일 경우, y=0이고, m=0, 이때 착물의 구조식은 다음과 같다.Further, when x = 3, y = 0 and m = 0, the structure of the complex is as follows.

Figure 112013118526304-pct00017
Figure 112013118526304-pct00017

본 발명의 4-히드록시-1,5-나프티리딘계 리간드는 통상의 전계발광 재료 중의 성상체 분자(star molecule)Alq3 중의 8-하이드록시퀴놀린(8-hydroxyquinoline) 구조와 유사하며, Alq3는 가장 우수한 전자수송능력을 가진다. 8-하이드록시퀴놀린에 비해, 4-히드록시-1,5-나프티리딘계 리간드의 HOMO에너지 레벨이 낮고, LUMO에너지 레벨은 거의 변하지 않고 유지되기 때문에, LUMO에너지 레벨에서 전자가 양호하게 주입 및 전도됨과 함께 정공이 HOMO에너지 레벨에서의 전도 능력도 대대적으로 증강할 수 있다. 4-히드록시-1,5-나프티리딘계 리간드의 양호한 전자 및 정공수송능력에 의해 3가 유로퓸 이온과 상기 리간드로 형성된 착물을 이용하여 적색광 유로퓸의 전계발광소자를 제조할 수 있다.The 4-hydroxy-1,5-naphthyridine-based ligand of the present invention is similar to the 8-hydroxyquinoline structure in the star molecule Alq 3 in a conventional electroluminescent material, and Alq 3 Has the best electron transporting ability. Since the HOMO energy level of the 4-hydroxy-1,5-naphthyridine based ligand is low and the LUMO energy level is kept almost unchanged, as compared to 8-hydroxyquinoline, the electrons are well injected and conducted at the LUMO energy level The hole can greatly enhance the conduction capability at the HOMO energy level. An electroluminescent element of red light europium can be produced by using a complex formed of a trivalent europium ion and the ligand by the good electron and hole transporting ability of a 4-hydroxy-1,5-naphthyridine based ligand.

광발광 양자수율은 광발광 및 전계발광 재료의 또 하나의 중요한 매개변수이다. 본 발명의 유로퓸 착물Eu(8mCND)3L는 승화를 거치면 Eu(8mCND)3을 얻을 수 있다. 디피리딜 루테튬 수용액을 기준비로 하여, 측정하여 얻은 광발광 양자 수율은 약 40%이고(아세토닐트릴 용액 중에서 산소를 제거하지 않음), 유로퓸 착물 중에서 높은 레벨에 처해있다.The photoluminescence quantum yield is another important parameter of photoluminescent and electroluminescent materials. Europium complex Eu (8mCND) 3 L of the invention geochimyeon the sublimation can be obtained Eu (8mCND) 3. The yield of the photoluminescence quantum obtained by measurement with an aqueous solution of dipyridyl lutetium as a reference is about 40% (oxygen is not removed in the acetonyltriyl solution) and is at a high level in the europium complex.

본 발명의 4-히드록시-1,5-나프티리딘계 유로퓸 착물은 통상의 리간드의 β-디케톤계 유로퓸 착물에 비해, 구조 강성이 컴팩트하고, 열안정성이 좋고, 캐리어 수송능력이 강한 등 장점이 있으며, 전계발광 재료 및 광발광 재료로서 매우 적합하다.The 4-hydroxy-1,5-naphthyridine based europium complex of the present invention has advantages such as compact structure stiffness, good thermal stability and strong carrier transport ability as compared with the? - diketone based europium complex of a typical ligand And is very suitable as an electroluminescent material and a photoluminescent material.

Figure 112013118526304-pct00018
Figure 112013118526304-pct00018

도 1은 본 발명의 실시예 5에서 측정한 Eu(8mCND)3의 광발광 스펙트럼이다.
도 2는 본 발명의 실시예 5에서 제조된 전계 발광소자의 구조를 나타내는 도면이다.
도 3은 본 발명의 실시예 5의 전계발광소자의 전압 변화에 따른 전계발광 스펙트럼이다.
도 4는 본 발명의 실시에 5의 전계발광소자의 전력효율-전류효율-전압도이다.
1 is a photoluminescence spectrum of Eu (8mCND) 3 measured in Example 5 of the present invention.
2 is a view showing a structure of an electroluminescent device manufactured in Example 5 of the present invention.
3 is an electric field emission spectrum according to a voltage change of an electroluminescent device of Example 5 of the present invention.
4 is a power efficiency-current efficiency-voltage diagram of an electroluminescent device according to Embodiment 5 of the present invention.

이하, 구체적인 실시예를 통해 본 발명의 제품 및 제조방법에 대해 구체적으로 설명한다. 그러나 본 발명의 보호범위가 이러한 구체적인 실시방식에 의해 한정되는 것은 아니다.Hereinafter, the product and the production method of the present invention will be described in detail with reference to specific examples. However, the scope of protection of the present invention is not limited by these specific embodiments.

실시예 1Example 1

본 실시예에 따른 합성법은 다음과 같다.The synthesis method according to this embodiment is as follows.

(1) 8mCND(3-시아노-4-히드록시-8-메틸-1,5나프티리딘, 4-hydroxy-8-methyl-1,5-naphthyridine-3-carbonitrile)의 합성:(1) Synthesis of 8mCND (3-cyano-4-hydroxy-8-methyl-1,5-naphthyridine-3-carbonitrile)

100mL의 라운드 버텀 플라스크(round-bottomed flask)에서 3.24g(30mmol)의 4-메틸-3아미노피리딘과 5.07g(30mmol)의 2-시아노-에틸3-에톡시아크릴레이트(Ethyl 3-ethoxyacrylate)를 혼합하고 30mL의 톨루엔을 첨가하고, 아르곤 보호하에 15분간 역류한다. 대부분의 톨루엔을 증발 건조한 후 석유에테르를 첨가하면 바로 생성물이 석출된다. 여과 후, 디클로로메탄/석유에테르(체적비 1:3)를 재결정하여 6.51g의 담황색의 중간체pre-8mCND 결정을 얻으며, 수율은 95%이다. 1H NMR(400MHz,CDCI3,δ):10.84(br,d,J=12.8Hz,1H),8.48(s,1H),8.36(d,J=5.2Hz,1H),7.91(d,J=12.8Hz,1H),7.19(d,J=5.2Hz,1H),4.32(q,J=7.2Hz,2H),2.39(s,3H),1.38(t,J=7.2Hz,3H).MS(m/z,ESI):calcd for C12H13N302 231,found232(+H+).In a 100 mL round-bottomed flask, 3.24 g (30 mmol) of 4-methyl-3-aminopyridine and 5.07 g (30 mmol) of 2-cyano-ethyl 3-ethoxyacrylate were added, Are mixed, 30 mL of toluene is added, and refluxed for 15 minutes under argon protection. Most of the toluene is evaporated to dryness and petroleum ether is added to precipitate the product. After filtration, dichloromethane / petroleum ether (volume ratio 1: 3) was recrystallized to obtain 6.51 g of pale yellow intermediate pre-8mCND crystal with a yield of 95%. 1H NMR (400MHz, CDCI 3, δ): 10.84 (br, d, J = 12.8Hz, 1H), 8.48 (s, 1H), 8.36 (d, J = 5.2Hz, 1H), 7.91 (d, J = J = 7.2 Hz, 3H), 2.39 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H) (m / z, ESI): calcd for C 12 H 13 N 3 0 2 231, found232 (+ H +).

중간체는 진공 건조 후, 250mL의 디페닐에테르에 3.25g넣고, 아르곤 보호하에 4시간 역류한다. 냉각하면 생성물이 석출되고, 소량의 디클로로메탄으로 세정한 다음 진공 건조한다. 조생성물은 승화 정제하여(10-1Pa, 220℃), 1.66g의 담황색의 생성물8mCND 을 얻으며, 수율은 65%이다. 1H NMR(300MHz,D2O,Na2C03,δ):8.11(dJ=4.5Hz,1H),7.93(s,1H),7.04(d,J=4.5Hz,1H),2.10(s,3H).MS(m/z,ESI):calcd for C10H7N3O 185, found186(+H+).EAforC10H7N3O:C,64.86; H,3.81; N,22.69FoundC,64.86; H,3.89; N,22.60.After drying in vacuo, 3.25 g of the intermediate is added to 250 mL of diphenyl ether and refluxed under argon protection for 4 hours. Upon cooling, the product precipitates, washed with a small amount of dichloromethane and then vacuum dried. The crude product is purified by sublimation (10-1 Pa, 220 [deg.] C) to give 1.66 g of a light yellow product, 8 mCND, with a yield of 65%. 1H NMR (300MHz, D 2 O , Na 2 C0 3, δ): 8.11 (dJ = 4.5Hz, 1H), 7.93 (s, 1H), 7.04 (d, J = 4.5Hz, 1H), 2.10 (s, 3H) .MS (m / z, ESI): calcd for C 10 H 7 N 3 O 185, found186 (+ H +) .EAforC 10 H 7 N 3 O: C, 64.86; H, 3.81; N, 22.69Found C, 64.86; H, 3.89; N, 22.60.

(2) 유로퓸 착물Eu(8mCND)3phen의 합성(2) Synthesis of europium complex Eu (8mCND) 3phen

366mg(1mmol)의 염화유로퓸6수화물을 20mL의 메탄올에 용해시키고, 페난트롤린(198mg.lmmol)의 메탄올 용액(30mL)을 떨구어 넣고, 30분간 교반한다. 그 다음, 8mCND의 나트륨염의 메탄올 용액(8mCND 555mg,3mmol,NaOH 3mmol,메탄올100mL)을 천천히 떨구어 넣고, 50℃에서 2시간 반응시킨다. 반응액을 30mL까지 농축시키고, 석출된 백색 고체를 여과한다. 소량의 물과 메탄올로 세정하고, 진공 건조하여 724mg의 유로퓸 착물 목표생성물을 얻는다. 수율은 82%이다. MS(m/z,ESI):calcd for C42H26EuN11O3 885,found 886(+H+).
366 mg (1 mmol) of europium chloride hexahydrate was dissolved in 20 mL of methanol, a methanol solution (30 mL) of phenanthroline (198 mg, lmmol) was added dropwise, and the mixture was stirred for 30 minutes. Then, a methanol solution of 8 mCND of sodium salt (555 mg of 8 mCND, 3 mmol, 3 mmol of NaOH, 100 mL of methanol) was slowly added dropwise and reacted at 50 ° C. for 2 hours. The reaction solution was concentrated to 30 mL, and the precipitated white solid was filtered. Washed with a small amount of water and methanol, and dried in vacuo to give 724 mg of the europium complex target product. The yield is 82%. MS (m / z, ESI): calcd for C 42 H 26 EuN 11 O 3 885, found 886 (+ H + ).

실시예 2Example 2

본 실시예에 따른 합성방법은 다음과 같다.The synthesis method according to this embodiment is as follows.

(1) 3m8mND(3-메틸-4-히드록실-8-메틸-1,5나프티리딘, 3,8-dimethyl-1,5-naphthyridin-4-ol)의 합성(1) Synthesis of 3m8mND (3-methyl-4-hydroxyl-8-methyl-1,5naphthyridine, 3,8-dimethyl-1,5-naphthyridin-4-ol)

3m8mND의 합성은 8mCND와 유사하며, 원료 2-시아노-에틸3-에톡시아크릴레이트를 2-메틸-3-메톡시아크릴레이트로 바꾸었을 뿐이다. 100mL의 라운드 버텀 플라스크에서 5.16g(46mmol)의 4-메틸-3아미노피리딘과 6.5g(50mmol)의 2-메틸-메틸3-메톡시아크릴레이트를 혼합하고, 20mL의 톨루엔을 첨가한 후, 아르곤 보호하에서 36시간 역류한다. 톨루엔을 증발 건조한 후 석출된 미반응 원료4-메틸-3아미노피리딘을 여과하여 회수한다(3.5g). 여과액은 칼럼크로마토그래피(용리제:디클로로메탄/석유에테르=1:1, 체적비)로 중간체pre-3m8mND를 분리해낼 수 있으며, 동시에, 4.5g의 원료2-메틸-3-메톡시아크릴레이트를 회수한다.The synthesis of 3m8mND is similar to 8mCND and only the source 2-cyano-ethyl 3-ethoxyacrylate is replaced with 2-methyl-3-methoxyacrylate. In a 100 mL round bottom flask, 5.16 g (46 mmol) of 4-methyl-3-aminopyridine and 6.5 g (50 mmol) of 2-methyl-methyl 3-methoxyacrylate were mixed, 20 mL of toluene was added, Protected for 36 hours under protection. The toluene was evaporated to dryness and the precipitated unreacted starting material 4-methyl-3-aminopyridine was collected by filtration (3.5 g). The filtrate was able to separate the intermediate pre-3m8mND by column chromatography (eluent: dichloromethane / petroleum ether = 1: 1, volume ratio), and at the same time, 4.5 g of the raw material 2-methyl-3-methoxyacrylate Recall.

488mg의 백색고체 중간체pre-3m8mND를 얻고, 수율은 5%이다. 1H NMR(400MHz,CDCI3,δ):9.82(br,d,J=12.8Hz,1H),8.36(s,1H),8.12(d,J=4.8Hz,1H),7.24(d,J=12.8Hz,1H),7.07(d,J=4.8Hz,1H),3.79(s,3H),2.31(s,3H),1.88(s,3H).MS(m/z,ESI):calcd for C11H14N2O2 206,found 207(+H+).488 mg of a white solid intermediate pre-3m8mND is obtained, the yield being 5%. 1H NMR (400MHz, CDCI 3, δ): 9.82 (br, d, J = 12.8Hz, 1H), 8.36 (s, 1H), 8.12 (d, J = 4.8Hz, 1H), 7.24 (d, J = (S, 3H), 1.88 (s, 3H). MS (m / z, ESI): calcd for C 11 H 14 N 2 O 2 206, found 207 (+ H + ).

중간체pre-3m8mND로부터 3m8mND를 얻는 방법은 실시예 1과 동일하며, 생성물 3m8mND은 담황색 고체(300mg)이고, 수율은 77%이다. 1H NMR(300MHz,D2O,Na2CO3,δ):8.61(d,J=4.5Hz,1H),8.00(s,1H),7.60(d,J=4.5Hz,1H),2.67(s,3H),2.24(s,3H).MS(m/z,ESI):calcd for C10H10N2O 174,found 175(+H+).EA for C10H10N2O:N:16.1; C:68.95; H:5.8 Found N:16.0; C:68.8; H:5.8.The method for obtaining 3m8mND from the intermediate pre-3m8mND is the same as in Example 1, and the product 3m8mND is a pale yellow solid (300mg) and the yield is 77%. 1H NMR (300MHz, D 2 O , Na 2 CO 3, δ): 8.61 (d, J = 4.5Hz, 1H), 8.00 (s, 1H), 7.60 (d, J = 4.5Hz, 1H), 2.67 ( s, 3H), 2.24 (s , 3H) .MS (m / z, ESI): calcd for C 10 H 10 N 2 O 174, found 175 (+ H +) .EA for C 10 H 10 N 2 O: N: 16.1; C: 68.95; H: 5.8 Found N: 16.0; C: 68.8; H: 5.8.

(2) 유로퓸 착물 Eu(3m8mND)3phen의 합성(2) Synthesis of europium complex Eu (3m8mND) 3phen

착물 Eu(3m8mND)3phen의 합성과 마찬가지로, 3m8mND착물로 8mCND를 대체하여 유로퓸 착물Eu(3m8mND)3phen을 얻고, 수율은 95%이다. MS(m/z,ESI):calcd for C42H35EuN803 852,found 853(+H+).
Complex of Eu (3m8mND) 3phen The europium complex Eu (3m8mND) 3phen was obtained by replacing 8mCND with a 3m8mND complex, and the yield was 95%. MS (m / z, ESI): calcd for C 42 H 35 EuN 8 O 3 852, found 853 (+ H + ).

실시예 3Example 3

본 실시예에 따른 합성방법은 다음과 같다.The synthesis method according to this embodiment is as follows.

(1) Ac-CND(3-시아노-4히드록실-6-아세틸-1,5나프티리딘,6-acetyl-4-hydroxy-1,5-naphthyridine-3-carbonitrile)의 합성:(1) Synthesis of Ac-CND (3-cyano-4-hydroxy-1,5-naphthyridine-3-carbonitrile)

Ac-CND의 합성은 8Mcnd와 유사하며, 4-메틸-3-아미노피리딘을 2-아세틸-5-아미노피리딘으로 바꾸었을 뿐이다. 2-아세틸-5-아미노피리딘은 2-시아노-5-아미노피리딘과 메틸 그리나드 시약을 반응시켜 얻는다.Synthesis of Ac-CND is similar to 8Mcnd and only 4-methyl-3-aminopyridine is replaced with 2-acetyl-5-aminopyridine. 2-Acetyl-5-aminopyridine is obtained by reacting 2-cyano-5-aminopyridine with methyl Grignard reagent.

중간체 pre-AcCND의 수율은 63%이다. 1H NMR(300MHz,CDCI3,δ):10.96(br,d,J=12.8Hz,1H),8.47(d,J=2.7Hz,1H),8.12(d,J=8.7Hz,1H),7.93(d,J=13.2Hz,1H),7.54(dd,J=8.7,2.7Hz,1H),4.34(q,J=7.2Hz,2H),2.71(s,3H),1.39(t,J=7.2Hz,3H).MS(m/z,ESI):calcd for C13H13N3O3 259,found 260(+H+).The yield of the intermediate pre-AcCND is 63%. 1H NMR (300MHz, CDCI 3, δ): 10.96 (br, d, J = 12.8Hz, 1H), 8.47 (d, J = 2.7Hz, 1H), 8.12 (d, J = 8.7Hz, 1H), 7.93 (d, J = 13.2 Hz, 1H), 7.54 (dd, J = 8.7, 2.7 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H) 7.2Hz, 3H) .MS (m / z, ESI): calcd for C 13 H 13 N 3 O 3 259, found 260 (+ H +).

생성물 Ac-CND의 수율은 40%이다. 1H NMR(300MHz,DMSO-d6,δ):13.13(br,s,1H),8.88(s1H),8.27(d,J=8.7Hz,1H),8.19(d,J=8.7Hz,1H),2.71(s,3H).MS(m/z,ESI):calcd for C11H7N3O2 213,found 214(+H+).The yield of the product Ac-CND is 40%. J = 8.7 Hz, 1H), 8.19 (d, J = 8.7 Hz, 1H), 8.28 (d, J = 2.71 (s, 3H) .MS ( m / z, ESI): calcd for C 11 H 7 N 3 O 2 213, found 214 (+ H +).

3.2 유로퓸 착물Eu(Ac-CND)3의 합성3.2 Synthesis of europium complex Eu (Ac-CND) 3

366mg(1mmol)의 염화유로퓸6수화물을 10mL의 메탄올에 용해시키고, Ac-CND의 나트륨염의 메탄올 용액(Ac-CND 642mg,3mmol,NaOH 3mmol,메탄올100mL)을 천천히 떨구어 넣고, 50℃에서 2시간 반응시키고, 용매는 증발 건조시킨다. 소량의 물로 염류를 제거하고, 소량의 메탄올로 세정한 다음 진공 건조하여 유로퓸 착물 목표생성물을 얻는다. 수율은 90%이다. MS(m/z,ESI):calcd for C33H18EuN9O6 789,found 790(+H+).
366 mg (1 mmol) of europium chloride hexahydrate was dissolved in 10 mL of methanol, and a methanol solution of sodium salt of Ac-CND (Ac-CND 642 mg, 3 mmol, NaOH 3 mmol, methanol 100 mL) was slowly dropped and reacted at 50 ° C for 2 hours And the solvent is evaporated to dryness. The salts are removed with a small amount of water, washed with a small amount of methanol, and then vacuum dried to obtain the target product of the europium complex. The yield is 90%. MS (m / z, ESI): calcd for C 33 H 18 Eu 9 O 6 789, found 790 (+ H + ).

실시예 4Example 4

본 실시예에 따른 합성방법은 다음과 같다.The synthesis method according to this embodiment is as follows.

(1) pyND(6-(피리딘-2-일)-4히드록실-1,5나프티리딘, 6-(pyridin-2-yl)-1,5-naphthyridin-4-ol)의 합성:(1) Synthesis of pyND (6- (pyridin-2-yl) -4hydroxyl-1,5 naphthyridine, 6- (pyridin- 2- yl) -1,5- naphthyridin-

2g(11.7mmol)의 5-아미노-2,2'-디피리딜, 2.52g(17.5mmol, 1.5gq)의 이소프로필리덴 말로네이트(ISOPROPYLIDENE MALONATE), 8.65g(58.4mmol,5eq)의 트리에톡시 메탄을 혼합하고, 아르곤 가스 보호 하에 100℃까지 가열하면, 즉시 백색 슬러리 형상의 물질이 나타난다. 5분 후 가열을 중지하고, 냉각시킨 후 50ml의 메탄올을 추가한다. 백색의 고체 분말을 여과한 다음 메탄올로 수차례 세정한다. 건조하여 중간체 생성물pre-pyND가 얻어지며, 수율은 92%이다. 1H NMR(400MHz,CDCI3,δ):11.34(br,d,J=14.0Hz,1H),8.71~8.67(m,2H),8.63(d,J=2.7Hz,1H),8.54(d,J=8.6Hz,1H),8.40(d,J=7.9Hz,1H),7.87~7.83(m,1H),7.74(dd,J=8.9,2.7Hz,1H),7.36~7.34(m,1H),1.78(s,6H).MS(m/z,ESI):calcd for C17H15N3O4 325,found 326(+H+).A mixture of 2 g (11.7 mmol) of 5-amino-2,2'-dipyridyl, 2.52 g (17.5 mmol, 1.5 gq) of ISOPROPYLIDENE MALONATE, 8.65 g (58.4 mmol, When methoxymethane is mixed and heated to 100 DEG C under argon gas protection, a white slurry-like substance appears immediately. After 5 minutes, stop the heating, cool and add 50 ml of methanol. The white solid powder is filtered and washed several times with methanol. Drying yielded an intermediate product, pre-pyND, with a yield of 92%. 1H NMR (400MHz, CDCI 3, δ): 11.34 (br, d, J = 14.0Hz, 1H), 8.71 ~ 8.67 (m, 2H), 8.63 (d, J = 2.7Hz, 1H), 8.54 (d, J = 8.6 Hz, 1H), 8.40 (d, J = 7.9 Hz, 1H), 7.87-7.83 (m, 1H), 7.74 (dd, J = 8.9, 2.7 Hz, 1H), 7.36-7.34 ), 1.78 (s, 6H) .MS (m / z, ESI): calcd for C 17 H 15 N 3 O 4 325, found 326 (+ H +).

중간체로부터 생성물pyND의 합성방법은 8mCND와 동일하며, 수율은 84%이다. 1H NMR(400MHz,DMSO-d6,δ):11.98(br,1H),8.70~8.67(m,2H),8.60(d,J=7.9Hz,1H),8.12(d,J=9.1Hz,1H),7.94~7.88(m,2H),7.42~7.40(m,1H),6.36(d,J=7.2Hz,1H).MS(m/z,ESI):calcd for C13H9N30 223,found 224(+H+).EA for C13H9N3O:N:18.82; C:69.95; H:4.06 Found N:18.86; C:70.12; H:4.10.The method of synthesizing the product pyND from the intermediate is the same as that of 8 mCND, and the yield is 84%. (M, 2H), 8.60 (d, J = 7.9 Hz, 1H), 8.12 (d, J = 9.1 Hz, 1H) ), 7.94 ~ 7.88 (m, 2H), 7.42 ~ 7.40 (m, 1H), 6.36 (d, J = 7.2Hz, 1H) .MS (m / z, ESI): calcd for C 13 H 9 N 3 0 223, found 224 (+ H + ) .EA for C 13 H 9 N 3 O: N: 18.82; C: 69.95; H: 4.06 Found N: 18.86; C: 70.12; H: 4.10.

(2) 유로퓸 착물Eu(pyND)3 의 합성:(2) Synthesis of europium complex Eu (pyND) 3:

(Ac-CND)3 와 마찬가지로 리간드 pyND로 Ac-CND를 대체하고, 수율은 90%이다. MS(m/z,ESI):calcd for C39H24EuN9O3 819,found 820(+H+).EA for C39H24EuN9O3·2H2O:N:14.75; C:54.81; H:3.30 Found N:14.74; C:55.45; H:3.40.
(Ac-CND) 3 , Ac-CND is substituted for the ligand pyND, and the yield is 90%. MS (m / z, ESI) calcd for C 39 H 24 EuN 9 O 3 819, found 820 (+ H + ) .EA for C 39 H 24 EuN 9 O 3 .2H 2 O: N: 14.75; C: 54.81; H: 3.30 Found N: 14.74; C: 55.45; H: 3.40.

실시예 5Example 5

(1) 광발광 성질(1) Photoluminescence property

유로퓸 착물 Eu(8mCND)3을 예로 들고, 디피리딜 루테튬 수용액을 기준비로 하여, 측정하여 얻은 광발광 양자 수율은 약 40%이고(아세토닐트릴 용액 중에서 산소를 제거하지 않음), 유로퓸 착물 중에서 높은 레벨에 처해있다. 도 1에 나타낸 바와 같이, 착물의 여기 스펙트럼(EuL3-ex) 및 발광스펙트럼(EuL3-em)으로부터 볼 때, 이 유형의 유로퓸 착물은 자외선을 흡수할 수 있을 뿐만 아니라 적색광을 하향 변환(down conversion)하여 발광할 수 있으며, LED 중의 적색 형광 분말로 사용할 수 있다. 현재 통상적으로 사용되는 무기 적색 형광 분말에 비해(예를 들어, Y2O3:Eu3+), 형광 양자수율이 더 높다. 또한, 상기 착물 분자 구조는 비교적 컴팩트하여 퀸칭이 발생하기 어려우며, 발광 열 안정성이 양호하다. 이러한 유로퓸 착물을 LED형광 분말에 사용하면 희토류 Eu의 용량을 효과적으로 줄일 수 있어 비용을 대폭 저감할 수 있다. Taking europium complex Eu (8mCND) 3 as an example, the photoluminescence quantum yield obtained by measurement using a dipyridyl lutetium aqueous solution as a reference ratio is about 40% (oxygen is not removed in the acetonyltri solution) I'm in a level. As shown in FIG. 1, in view of the excitation spectrum (EuL 3 -ex) and the emission spectrum (EuL 3 -em) of the complex, this type of europium complex can not only absorb ultraviolet rays but also down- conversion, and can be used as a red fluorescent powder in an LED. (For example, Y 2 O 3 : Eu 3+ ), the fluorescent quantum yield is higher than that of the inorganic red fluorescent powder which is currently used. In addition, the complex molecular structure is relatively compact, quenching is difficult to occur, and the light emitting thermal stability is good. When such a europium complex is used for the LED fluorescent powder, the capacity of the rare earth Eu can be effectively reduced, and the cost can be greatly reduced.

(2) 전계발광소자의 제조(2) Fabrication of electroluminescent device

본 실시예의 희토 유로퓸 착물 전계발광소자에 사용되는 재료는 도전유리(ITO) 기재층을 포함하며, 정공수송층은 N,N'-디페닐-N,N'-비스(1-나프틸)-1,1'-디페닐-4,4'-디아민(NPB)을 사용하고, 발광층은 Eu(8mCND)3을 사용하며, 정공 차단층은 2,9-디메틸-4,7-디페닐-1,10-페난트롤린(BCP)을 사용하며, 전자수송층은 8-hydroxyquinolinate aluminum(AIQ)이며, 음극층은 마그네슘 은합금이다. ITO/NPB(30nm)/Eu:BCPO(1:1, 20nm)/BCP(10nm)/AIQ(30nm)/Mg0.9Ag0.1로 표시할 수 있다(소자구조는 도 2 참조).The material used in the rare earth-europium complex electroluminescent device of this embodiment includes a conductive glass (ITO) base layer and the hole transport layer is made of N, N'-diphenyl-N, N'-bis (1-naphthyl) -1 (NPB), Eu (8mCND) 3 was used as a light emitting layer, and 2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline (BCP) is used, the electron transport layer is 8-hydroxyquinolinate aluminum (AIQ), and the cathode layer is magnesium silver alloy. The device structure can be expressed by ITO / NPB (30 nm) / Eu: BCPO (1: 1, 20 nm) / BCP (10 nm) / AIQ (30 nm) /Mg0.9Ag0.1.

전계발광소자는 본 기술분야에서 공지의 방법으로 제조할 수 있으며, 예를 들어, 참고문헌(Appl.Phys.Lett.1987,51,913)에 공개된 방법으로 제조할 수 있다. 구체적으로, 고진공(8×10-5Pa보다 낮다) 조건하에 세정을 거친 도전유리(ITO) 기재상에 정공수송재료, 발광 재료, 전자수송재료 및 음극재료를 차례로 증착한다.The electroluminescent device can be manufactured by a method known in the art and can be produced, for example, by the method disclosed in the reference (Appl. Phys. Lett. 1987, 51, 913). Specifically, a hole transporting material, a light emitting material, an electron transporting material, and a cathode material are sequentially deposited on a conductive glass (ITO) substrate cleaned under a high vacuum (lower than 8 × 10 -5 Pa).

ITO유리시트(유효면적3×3mm2)는 유기용매로 깨끗하게 초음세척한 다음 건조하고, 오존으로 세척 후 진공 필름 코팅기에 넣고, 8×10-5Pa보다 낮은 고진공 조건하에서 수정발진기를 이용하여 각 층의 두께를 제어하고, 정공수송재료, 유기 소분자, 전자수송재료 및 금속 음극마그네슘은합금(Mg0.9Ag0.1)을 차례로 도전유리상에 증착한다. 각 유기층의 두께는 변경할 수 있다.ITO glass sheet (effective area of 3 × 3mm 2) each using a crystal oscillator, under the three ultrasonic cleaning with an organic solvent and then dried, after washing with ozone into a vacuum film coating, is lower than 8 × 10 -5 Pa vacuum conditions (Mg 0.9 Ag 0.1 ) are sequentially deposited on the conductive glass to control the thickness of the layer, the hole transporting material, the organic small molecule, the electron transporting material, and the metal cathode magnesium. The thickness of each organic layer can be changed.

소자 성능 및 전계발광 스펙트럼을 측정할 때, ITO전극은 항상 양극에 연결된다. 전계발광 스펙트럼의 측정은 PR650분광기 또는 Hitachi F4500형광 분광기에서 소자에 정압(통상 3-30볼트 사이)을 가하는 동시에 발광 스펙트럼을 기록한다(도 3 참조).When measuring device performance and electroluminescence spectrum, the ITO electrode is always connected to the anode. The measurement of the electroluminescence spectrum is performed by applying a positive pressure (usually between 3 and 30 volts) to the device in the PR650 spectrometer or Hitachi F4500 fluorescence spectrometer and recording the emission spectrum (see FIG. 3).

전압-전류(I-V) 곡선과 전압-휘도(L-V)곡선은 컴퓨터에 의해 제어되는 Keithley2400 소스미터 유닛으로 측정된 것이고, 휘도는 규소 포토 다이오드에 의해 조절된다(도 4 참조).The voltage-current (I-V) curves and the voltage-luminance (L-V) curves are measured with a Keithley 2400 source meter unit controlled by a computer and the luminance is controlled by a silicon photodiode (see FIG.

상기 유로퓸 착물 전계발광소자는 9V에서 점등하기 시작하여, 15.5V에서는 100 cd m-2로 밝아진다. 이때의 전력효율은 0.34 lm W-1이고, 전류효율은 1.67 cd A-1이며, 최대휘도는 868 cd m-2이다. 이 소자는 최적화를 거치지 않은 결과로서 유로퓸 착물 전계발광에서 중등레벨이다. 최적화 처리를 거치면 발광성능이 더 한층 높아질 것으로 생각된다.The europium complex electroluminescent device starts to light up at 9V and becomes bright at 100 cd m -2 at 15.5V. The power efficiency at this time is 0.34 lm W -1 , the current efficiency is 1.67 cd A -1 , and the maximum luminance is 868 cd m -2 . This device is a moderate level in europium complex electroluminescence as a result of unoptimized. It is believed that the light emitting performance will be further enhanced by performing the optimization process.

Claims (10)

구조식이 Eu(ND)xAyLm인 것을 특징으로 하는 유로퓸 착물:
상기 구조식에서, ND는 화학식 I로 나타내는 4-히드록시-1,5-나프티리딘계 음이온 리간드이고,A는 β-디케톤계 리간드이며, L은 물분자, 알코올 분자, 아세톤 중에서 선택되는 배위 소분자, 페난트롤린(phen), 비피리딘(bpy), 트리아릴포스핀옥사이드(ArPO)계 구조의 분자 및 그 유도체로부터 선택되는 중성 리간드이고; x=1, 2 또는 3,y=0, 1 또는 2, x+y=3; m=0, 1, 2 또는 3이다.
Figure 112015070639308-pct00019

화학식 I
화학식 I에서,R1, R2, R3, R4 및 R5는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 알켄닐기, 알키닐기, 아미노기, N-치환 아미노기, 알콕시기, 카복시기, 에스테르기, 아실기, 아실아미노기, N-치환 아실아미노기, 아릴기 또는 헤테로 아릴기이다.
A europium complex characterized in that the structural formula is Eu (ND) x A y L m :
ND is a 4-hydroxy-1,5-naphthyridine based anion ligand represented by the formula (I), A is a? -Diketone-based ligand, L is a coordination small molecule selected from water molecules, alcohol molecules, A neutral ligand selected from molecules of phenanthroline (phen), bipyridine (bpy), triarylphosphine oxide (ArPO) based structures and derivatives thereof; x = 1, 2 or 3, y = 0, 1 or 2, x + y = 3; m = 0, 1, 2 or 3;
Figure 112015070639308-pct00019

Formula I
Wherein R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen substituted alkyl group, an alkenyl group, an alkynyl group, A substituted amino group, an alkoxy group, a carboxy group, an ester group, an acyl group, an acylamino group, an N-substituted acylamino group, an aryl group or a heteroaryl group.
제 1 항에 있어서,
화학식 Ⅱ로 나타내는 구조를 갖는 것을 특징으로 하는 유로퓸 착물:
Figure 112015070639308-pct00020

화학식 Ⅱ
화학식 Ⅱ에서, R1, R2, R3, R4 및 R5는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 알켄닐기, 알키닐기, 아미노기, N-치환 아미노기, 알콕시기, 카복시기, 에스테르기, 아실기, 아실아미노기, N-치환 아실아미노기, 아릴기 또는 헤테로 아릴기이고,R5은 질소 또는 산소 배위점을 함유하지 않으며; A는 β-디케톤계 리간드이고, L은 물분자, 알코올 분자, 아세톤 중에서 선택되는 배위 소분자, 페난트롤린, 비피리딘, 트리아릴포스핀옥사이드계 구조의 분자 및 그 유도체로부터 선택되는 중성 리간드이며; x=1, 2 또는 3,y=0, 1 또는 2,x+y=3; m=0, 1, 2 또는 3이다.
The method according to claim 1,
A europium complex having the structure represented by the formula (II):
Figure 112015070639308-pct00020

(II)
In formula Ⅱ, R 1, R 2, R 3, R 4 and R 5 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen-substituted alkyl group, an alkenyl group, an alkynyl group, an amino group, N- A substituted or unsubstituted amino group, an alkoxy group, a carboxy group, an ester group, an acyl group, an acylamino group, an N-substituted acylamino group, an aryl group or a heteroaryl group, R 5 does not contain a nitrogen or oxygen coordination point; A is a? -Diketone-based ligand, L is a neutral ligand selected from water molecules, alcohol molecules, coordination small molecules selected from acetone, molecules of phenanthroline, bipyridine, triarylphosphine oxide structure and derivatives thereof; x = 1, 2 or 3, y = 0, 1 or 2, x + y = 3; m = 0, 1, 2 or 3;
제 2 항에 있어서,
하기 구조 중의 하나를 갖는 것을 특징으로 하는 유로퓸 착물:
Figure 112013118526304-pct00021

식에서, A, L, x, y 및 m은 청구항 2에 기재한 바와 같다.
3. The method of claim 2,
A europium complex having one of the following structures:
Figure 112013118526304-pct00021

In the formula, A, L, x, y and m are as defined in claim 2.
제 2 항에 있어서,
하기 구조를 갖는 것을 특징으로 하는 유로퓸 착물:
Figure 112015070639308-pct00022

상기 화학식에서, R1, R2, R3, R4 및 R5은 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 알켄닐기, 알키닐기, 아미노기, N-치환 아미노기, 알콕시기, 카복시기, 에스테르기, 아실기, 아실아미노기, N-치환 아실아미노기, 아릴기 또는 헤테로 아릴기이고,또한, R5는 질소 또는 산소 배위점을 함유하지 않으며; Ra, Rb은 각각 독립적으로 아릴기, 헤테로 아릴기 또는 함불소알킬기이고; L은 물분자, 알코올 분자, 아세톤 중에서 선택되는 배위 소분자, 페난트롤린, 비피리딘, 트리아릴포스핀옥사이드계 구조의 분자 및 그 유도체로부터 선택되는 중성 리간드이며; x=1 또는 2,y=1 또는 2, x+y=3; m=0, 1, 2 또는 3이다.
3. The method of claim 2,
A europium complex having the structure:
Figure 112015070639308-pct00022

Wherein R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen substituted alkyl group, an alkenyl group, an alkynyl group, A substituted or unsubstituted amino group, an alkoxy group, a carboxy group, an ester group, an acyl group, an acylamino group, an N-substituted acylamino group, an aryl group or a heteroaryl group, and R 5 does not contain a nitrogen or oxygen coordination point; R a and R b are each independently an aryl group, a heteroaryl group or a fluorine alkyl group; L is a neutral ligand selected from water molecules, alcohol molecules, coordination small molecules selected from acetone, molecules of phenanthroline, bipyridine, triarylphosphine oxide structure and derivatives thereof; x = 1 or 2, y = 1 or 2, x + y = 3; m = 0, 1, 2 or 3;
제 1 항에 있어서,
화학식 1의 R5가 질소 또는 산소 배위점 함유기이고, 상기 4-히드록시-1,5-나프티리딘계 리간드가 세자리 음이온 리간드이며, 형성된 착물 Eu(ND)xAyLm에서 A는 β-디케톤계 리간드이고, L은 물분자, 알코올 분자, 아세톤 중에서 선택되는 배위 소분자, 페난트롤린, 비피리딘, 트리아릴포스핀옥사이드계 구조의 분자 및 그 유도체로부터 선택되는 중성 리간드이며; x=1, 2 또는 3,y=0, 1 또는 2, x+y=3; m=0, 1 또는 2인 것을 특징으로 하는 유로퓸 착물.
The method according to claim 1,
Wherein R 5 in the general formula (1) is a nitrogen or oxygen coordination-point containing group and the 4-hydroxy-1,5-naphthyridine based ligand is a tridentate anion ligand. In the complex Eu (ND) x A y L m , -Diketone-based ligand, L is a neutral ligand selected from water molecules, alcohol molecules, coordination small molecules selected from acetone, molecules of phenanthroline, bipyridine, triarylphosphine oxide structure and derivatives thereof; x = 1, 2 or 3, y = 0, 1 or 2, x + y = 3; and m is 0, 1 or 2.
제 5 항에 있어서,
상기 R5가 아자 5원환 아릴기(aza five-membered ring aromatic group), 아자 6원환 아릴기 또는 카르보닐함유기인 것을 특징으로 하는 유로퓸 착물.
6. The method of claim 5,
Wherein said R < 5 > is an aza five-membered ring aromatic group, an aza-6-membered ring aryl group or a carbonyl-containing group.
제 6 항에 있어서,
하기 화학식 Ⅲ 또는 화학식 Ⅳ로 나타내는 것을 특징으로 하는 유로퓸 착물:
Figure 112015070639308-pct00023

화학식 Ⅲ 및 화학식 Ⅳ에서, R1, R2, R3 및 R4는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 알켄닐기, 알키닐기, 아미노기, N-치환 아미노기, 알콕시기, 카복시기, 에스테르기, 아실기, 아실아미노기, N-치환 아실아미노기, 아릴기 또는 헤테로 아릴기이고; R6, R7, R8 및 R9는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 아미노기, N-치환 아미노기 또는 알콕시기이며; R10은 히드록실기, 알킬기, 할로겐 치환 알킬기, 아미노기, N-치환 아미노기 또는 알콕시기이고; A는 β-디케톤계 리간드이며, L은 물분자, 알코올 분자, 아세톤 중에서 선택되는 배위 소분자, 페난트롤린, 비피리딘, 트리아릴포스핀옥사이드계 구조의 분자 및 그 유도체로부터 선택되는 중성 리간드이고; x=1, 2 또는 3,y=0, 1 또는 2, x+y=3; m=0, 1 또는 2이다.
The method according to claim 6,
A europium complex represented by the following formula (III) or (IV):
Figure 112015070639308-pct00023

R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen-substituted alkyl group, an alkenyl group, an alkynyl group, A substituted amino group, an alkoxy group, a carboxy group, an ester group, an acyl group, an acylamino group, an N-substituted acylamino group, an aryl group or a heteroaryl group; R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen substituted alkyl group, an amino group, an N-substituted amino group or an alkoxy group; R 10 is a hydroxyl group, an alkyl group, a halogen-substituted alkyl group, an amino group, an N-substituted amino group or an alkoxy group; A is a? -Diketone-based ligand, L is a neutral ligand selected from water molecules, alcohol molecules, coordination small molecules selected from acetone, molecules of phenanthroline, bipyridine, triarylphosphine oxide structure and derivatives thereof; x = 1, 2 or 3, y = 0, 1 or 2, x + y = 3; m = 0, 1 or 2.
제 1 항에 있어서,
하기 착물 중의 하나인 것을 특징으로 하는 유로퓸 착물:
Figure 112013118526304-pct00024

Figure 112013118526304-pct00025
The method according to claim 1,
Wherein the europium complex is one of the following complexes:
Figure 112013118526304-pct00024

Figure 112013118526304-pct00025
하기 화학식 1a 또는 화학식 1b로 나타내는 구조를 갖는 것을 특징으로 하는 세자리 리간드:
Figure 112015070639308-pct00026

화학식 la 및 화학식 lb로 나타내는 세자리 리간드는 모두 엔올형과 케토형의 공진구조를 가진다. 화학식에서:R1, R2, R3 및 R4는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 알켄닐기, 알키닐기, 아미노기, N-치환 아미노기, 알콕시기, 카복시기, 에스테르기, 아실기, 아실아미노기, N-치환 아실아미노기, 아릴기 또는 헤테로 아릴기이고; R6, R7, R8 및 R9는 각각 독립적으로 수소원자, 할로겐 원자, 니트로기, 시아노기, 알킬기, 할로겐 치환 알킬기, 아미노기, N-치환 아미노기 또는 알콕시기이고; R10은 히드록실기, 알킬기, 할로겐 치환 알킬기, 아미노기, N-치환 아미노기 또는 알콕시기이다.
A tridentate ligand having a structure represented by the following formula (1a) or (1b):
Figure 112015070639308-pct00026

The tridentate ligands represented by the formulas la and lb all have a resonance structure of an enol type and a keto type. Wherein R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen substituted alkyl group, an alkenyl group, an alkynyl group, A carboxyl group, an ester group, an acyl group, an acylamino group, an N-substituted acylamino group, an aryl group or a heteroaryl group; R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group, a halogen substituted alkyl group, an amino group, an N-substituted amino group or an alkoxy group; R 10 is a hydroxyl group, an alkyl group, a halogen-substituted alkyl group, an amino group, an N-substituted amino group or an alkoxy group.
제1항 내지 제8항 중 어느 한 항에 따른 유로퓸 착물을 포함하는 발광 재료.9. A light-emitting material comprising a europium complex according to any one of claims 1 to 8.
KR1020137034396A 2011-05-27 2012-02-19 Rare earth europium coordination complex and application using same as light emitting material KR101591484B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110139842.1A CN102796133B (en) 2011-05-27 2011-05-27 Rare-earth europium complex and application thereof as luminescence material
CN201110139842.1 2011-05-27
PCT/CN2012/071298 WO2012163108A1 (en) 2011-05-27 2012-02-19 Rare earth europium coordination complex and application using same as light emitting material

Publications (2)

Publication Number Publication Date
KR20140049991A KR20140049991A (en) 2014-04-28
KR101591484B1 true KR101591484B1 (en) 2016-02-18

Family

ID=47195466

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137034396A KR101591484B1 (en) 2011-05-27 2012-02-19 Rare earth europium coordination complex and application using same as light emitting material

Country Status (4)

Country Link
JP (1) JP5957518B2 (en)
KR (1) KR101591484B1 (en)
CN (1) CN102796133B (en)
WO (1) WO2012163108A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588800B (en) * 2013-11-22 2016-03-30 中国计量学院 A kind of rare-earth complexes luminous material and its preparation method and application
CN104844594B (en) * 2015-03-24 2017-06-06 北京大学 Ion type rareearth complex luminescent material and preparation method and application
CN105017329B (en) * 2015-07-23 2017-11-03 北京大学 Tridentate anionic ligand-based europium complex luminescent material
CN109852377B (en) * 2019-01-18 2023-03-21 江西师范大学 Seven-core Ln-Ba cluster crystalline material and preparation method and application thereof
CN109796661A (en) * 2019-01-24 2019-05-24 淄博舜明荧光科技有限公司 Agricultural fluorescent conversion film and preparation method thereof
CN113416337A (en) * 2021-06-21 2021-09-21 河北工业大学 Solar concentrator with anti-reflection and high transmittance and preparation method thereof
CN114133406A (en) * 2021-11-24 2022-03-04 南京邮电大学 Conjugated organic complex of europium (III) and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143760A (en) 1997-08-25 2000-11-07 Neurogen Corporation Substituted 4-oxo-napthyridine-3-carboxamides: GABA brain receptor ligands
CN101066975A (en) 2007-06-15 2007-11-07 北京大学 Europium complex with visible light sensitized light emitting performance and its synthesis process
CN100587343C (en) 2003-07-30 2010-02-03 Lg电子株式会社 Indoor unit for air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736881B2 (en) * 1996-01-25 2006-01-18 三星エスディアイ株式会社 Organic thin film EL device
EP0970082A2 (en) * 1997-02-18 2000-01-12 Neurocrine Biosciences, Inc. Biazacyclic crf antagonists
JPH10231479A (en) * 1997-02-19 1998-09-02 Oki Electric Ind Co Ltd Red-luminescent organic el element
TWI224473B (en) * 2003-06-03 2004-11-21 Chin-Hsin Chen Doped co-host emitter system in organic electroluminescent devices
CN100395308C (en) * 2004-07-09 2008-06-18 复旦大学 Electroluminescent material of high efficiency rare-earth organic ligand and its preparing method
CN1242949C (en) * 2004-09-28 2006-02-22 中国科学院上海光学精密机械研究所 Chromium ion blended red light emitting glass and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143760A (en) 1997-08-25 2000-11-07 Neurogen Corporation Substituted 4-oxo-napthyridine-3-carboxamides: GABA brain receptor ligands
CN100587343C (en) 2003-07-30 2010-02-03 Lg电子株式会社 Indoor unit for air conditioner
CN101066975A (en) 2007-06-15 2007-11-07 北京大学 Europium complex with visible light sensitized light emitting performance and its synthesis process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, Zhuqi et al., NEW JOURNAL O F CHEMISTRY, 2010, vol. 34, pages 487-494

Also Published As

Publication number Publication date
JP2014516040A (en) 2014-07-07
CN102796133B (en) 2015-05-20
JP5957518B2 (en) 2016-07-27
WO2012163108A1 (en) 2012-12-06
CN102796133A (en) 2012-11-28
KR20140049991A (en) 2014-04-28

Similar Documents

Publication Publication Date Title
KR101591484B1 (en) Rare earth europium coordination complex and application using same as light emitting material
KR101278000B1 (en) Novel compound and utilization of same
Tang et al. Novel yellow phosphorescent iridium complexes containing a carbazole–oxadiazole unit used in polymeric light-emitting diodes
WO2010093176A2 (en) Iridium complex and organic light-emitting diodes
TW202018060A (en) Blue phosphorescent imidazophenanthridine materials
WO2019153980A1 (en) Quinoline triazole rare earth complex, preparation method thereof, and application thereof
CN104370974B (en) One kind is using nitrogen heterocyclic ring Cabbeen as complex of iridium of the second main part and preparation method thereof
Han et al. 1.42-fold enhancement of blue OLED device performance by simply changing alkyl groups on the acridine ring
Tang et al. Two novel orange cationic iridium (III) complexes with multifunctional ancillary ligands used for polymer light-emitting diodes
JP7458483B2 (en) Metal complexes and their uses
Zhang et al. Photo-and electro-luminescence of four cuprous complexes with sterically demanding and hole transmitting diimine ligands
EP2053112B1 (en) Novel red electroluminescent compounds and organic electroluminescent device using the same
WO2014000581A1 (en) Bipyridyl triazole rare earth complex and preparation process therefor
CN110372756B (en) Bivalent platinum complex and preparation method and application thereof
CN110551157A (en) bivalent platinum complex and preparation method and application thereof
Venkatakrishnan et al. Twisted bimesitylene-based oxadiazoles as novel host materials for phosphorescent OLEDs
Li et al. Synthesis and characterization of novel rhenium (I) complexes with large Stokes shift for applications in organic electroluminescent devices
Yin et al. Rational utilization of intramolecular and intermolecular hydrogen bonds to achieve desirable electron transporting materials with high mobility and high triplet energy
Sarada et al. New sky-blue and bluish–green emitting Ir (III) complexes containing an azoline ancillary ligand for highly efficient PhOLEDs
Lee et al. Cyclometalated iridium (III) complexes with 5-acetyl-2-phenypyridine derived ligands for red phosphorescent OLEDs
WO2014138912A1 (en) Luminescent compounds and methods of using same
Yu et al. Synthesis, characterization, and photo-and electro-luminescence of new Ir (III) complexes with carrier transporting group-functionalized dibenzoylmethane ligand for green phosphorescent OLEDs
CN114605383B (en) Red light delayed fluorescent material and exciplex acceptor material based on naphthalene anhydride
Girase et al. Unipolar 1-phenylimidazo [1, 5-a] pyridine: a new class of ultra-bright sky-blue emitters for solution-processed organic light emitting diodes
CN113735912B (en) Aromatic amine donor substituted benzene-based donor-acceptor type four-tooth ring metal platinum or palladium complex phosphorescent material and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190109

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 5