KR101586236B1 - Distributed Antenna System Considering the Frequency Reuse and Method of Adaptive Cooperative Transmission Therein - Google Patents

Distributed Antenna System Considering the Frequency Reuse and Method of Adaptive Cooperative Transmission Therein Download PDF

Info

Publication number
KR101586236B1
KR101586236B1 KR1020140145722A KR20140145722A KR101586236B1 KR 101586236 B1 KR101586236 B1 KR 101586236B1 KR 1020140145722 A KR1020140145722 A KR 1020140145722A KR 20140145722 A KR20140145722 A KR 20140145722A KR 101586236 B1 KR101586236 B1 KR 101586236B1
Authority
KR
South Korea
Prior art keywords
rrh
base station
small base
enb
sinr
Prior art date
Application number
KR1020140145722A
Other languages
Korean (ko)
Inventor
황인태
이칠우
문상미
김보라
말리크 사란쉬
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Priority to KR1020140145722A priority Critical patent/KR101586236B1/en
Application granted granted Critical
Publication of KR101586236B1 publication Critical patent/KR101586236B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a distributed antenna system considering frequency reuse, and an adaptive cooperate transmission method therein. The distributed antenna system considering frequency reuse comprises: a base station (eNB) for using the whole frequency band; at least two small base stations (RRH) wherein the two small base stations use the same frequency band; and a user terminal for controlling interference through frequency reuse.

Description

주파수 재사용을 고려한 분산 안테나 시스템 및 그 시스템에서의 적응적 협력 전송 방법{Distributed Antenna System Considering the Frequency Reuse and Method of Adaptive Cooperative Transmission Therein}[0001] The present invention relates to a distributed antenna system considering frequency reuse and an adaptive cooperative transmission method in the system. ≪ RTI ID = 0.0 > [0002] <

본 발명은 주파수 재사용을 고려한 분산 안테나 시스템 및 그 시스템에서의 적응적 협력 전송 방법에 관한 것으로, 특히 분산 안테나 시스템에서 주파수 재사용을 고려하여 높은 스펙트럼 효율을 얻을 수 있도록 하고, 목표 신호대간섭및잡음비(SINR: Signal to Interference plus Noise Ratio)을 기반으로 협력 및 비협력 모드를 적응적으로 작동될 수 있도록 하기 위한 주파수 재사용을 고려한 분산 안테나 시스템 및 그 시스템에서의 적응적 협력 전송 방법에 관한 것이다.The present invention relates to a distributed antenna system considering frequency reuse and an adaptive cooperative transmission method in the system, and more particularly to a distributed antenna system capable of achieving a high spectral efficiency considering frequency reuse, and a target signal interference and noise ratio (SINR The present invention relates to a distributed antenna system considering frequency reuse and a method for adaptive cooperative transmission in the cooperative and noncooperative mode based on the signal to interference plus noise ratio.

최근 스마트폰의 보급으로 언제 어디서나 양질의 데이터 서비스를 지원 받고자 하는 사용자의 요구가 급증하고 있다. 이에 따라 사용자가 밀집한 지역에서도 고속의 데이터 서비스 제공이 가능하도록 하기 위하여 매크로셀의 영역 내 소형 셀을 설치하는 이종 네트워크(HetNet; Heterogeneous Network)가 대두되고 있다.Recently, the demand of users who want to receive high quality data service anytime and anywhere due to the spread of smart phones is rapidly increasing. Accordingly, a heterogeneous network (HetNet) for installing small cells in a macro cell area is emerging in order to provide high-speed data service even in a dense region.

이와 같은 이종 네트워크(HetNet)의 도입을 통해 대규모 트래픽 수요가 존재하는 핫-스팟(hot-spot)들의 용량을 증대하여, 이미 한계치에 근접한 이동통신 시스템의 스펙트럼 효율 증대를 기대할 수 있다. 그러나 이 경우 링크 성능을 더욱 개선시키기 위해서는 송신단과 수신단 사이의 단일 링크뿐만 아니라, 타 링크로부터 들어오는 간섭 신호에 대한 보다 적극적인 대처가 필요하다.Through the introduction of such a heterogeneous network (HetNet), the capacity of hot-spots in which there is a large amount of traffic demand can be increased, and the spectral efficiency of a mobile communication system close to the limit value can be expected to increase. However, in order to further improve the link performance in this case, a more aggressive countermeasure against interference signals coming from other links as well as a single link between the transmitting end and the receiving end is required.

또한, 셀 중심뿐만 아니라 셀 가장자리에 있는 단말들에도 높은 데이터 속도를 지원할 수 있는 기술이 필요하게 되었다.In addition, there is a need for a technique capable of supporting a high data rate in terminals not only at the cell center but also at the cell edge.

데이터 속도를 지원하기 위해서 셀 중심에서는 안테나 수를 늘려 데이터 전송 속도를 증가시키는 것이 가능하였다. 하지만, 셀 가장자리에 있는 단말들은 인접 셀의 간섭 신호로 인해 급격한 성능 저하를 겪게 되어 셀 간 협력 없이는 어느 한계점 이상으로 데이터 속도를 증가시키기 어렵다. 이에 따라 전송 지점 간 효율적인 간섭 제어 방법은 그 필요성이 더욱 증대되고 있다.In order to support the data rate, it was possible to increase the data transmission rate by increasing the number of antennas at the cell center. However, the UEs at the edge of the cell are subject to abrupt performance degradation due to the interference signal of the adjacent cell, so that it is difficult to increase the data rate beyond a certain limit without cooperation between the cells. Accordingly, there is a growing need for an efficient interference control method between transmission points.

이에 따라 전송지점 간 간섭을 제어하는 기술이 현재 표준 및 학계의 주요 사안으로 주목 받고 있으며, 3GPP(3rd Generation Partnership Project)에서는 이를 다중 포인트 협력 통신(CoMP; Coordinated Multi-Point)이라 명명하고 LTE-A (Long Term Evolution-Advanced) Release 11의 워크 아이템으로 선정하였다. 특히, 기지국의 안테나들이 셀 전 영역에 분산 배치되어 통신 서비스를 지원하는 분산 안테나 시스템(DAS: Distributed Antenna System)가 이종 네트워크(HetNet)를 고려한 협력 통신기술 중의 하나로 분류된다.Accordingly, the technology for controlling inter-transmission-point interference is currently attracting attention as a major issue of standards and academia. In the 3rd Generation Partnership Project (3GPP), it is called Coordinated Multi-Point (CoMP) (Long Term Evolution-Advanced) Release 11 work items. Particularly, a distributed antenna system (DAS: Distributed Antenna System) in which antennas of base stations are distributed in the entire cell area and supports communication services is classified as one of cooperative communication technologies considering HetNet.

이와 같은 다중 포인트 협력 통신 서비스를 지원하는 통신 시스템은 효율적인 시스템 구성을 위해 셀(cell) 구조를 갖는다. 셀이란 주파수를 효율적으로 이용하기 위하여 넓은 지역을 작은 구역으로 세분한 영역을 의미한다. 셀 구조를 가지는 시스템을 셀룰러 시스템(Cellular System)이라 한다. 셀룰러 시스템은 매크로 셀(macro cell)을 제어하는 복수의 매크로 기지국들과, 셀룰러 네트워크의 피코 셀(pico cell)을 제어하는 적어도 하나의 피코 기지국을 포함하고, 피코 셀은 적어도 하나의 매크로 셀 내에서 적어도 부분적으로 위치해 있다.The communication system supporting the multi-point cooperative communication service has a cell structure for efficient system configuration. A cell is a region in which a large area is subdivided into small areas in order to utilize the frequency efficiently. A system having a cell structure is called a cellular system. A cellular system includes a plurality of macro base stations controlling a macro cell and at least one pico base station controlling a pico cell of a cellular network, wherein the pico cell is arranged in at least one macrocell At least partially.

이러한 셀룰러 시스템 셀 경계에 위치한 단말은 인접 셀 간 간섭(inter-cell interference)을 많이 받는다. 인접 셀 간 간섭은 해당 단말에 대한 신호대간섭및잡음비(Signal to Interference and Noise Ratio, SINR) 또는 신호대잡음비(Signal to Noise Ratio, SNR)를 낮추어 서비스 품질(Quality of Service, QoS)과 채널 용량을 감소시키고, 전체 시스템의 성능을 저하시킨다.The UE located at the cell system cell boundary receives a lot of inter-cell interference. Inter-cell interference reduces the quality of service (QoS) and channel capacity by lowering the signal-to-interference and noise ratio (SINR) or signal-to-noise ratio (SNR) And degrades the performance of the entire system.

이에 따라 셀 가장자리에 있는 단말들까지 골고루 높은 데이터 전송 속도를 지원하기 위해 전송 지점 간의 간섭 제어가 표준의 새로운 중요 사안으로 대두되고 있다.Accordingly, interference control between transmission points is emerging as a new important issue in order to support a high data transmission rate even to the terminals at the cell edge.

이로 인해 전송지점 간의 간섭을 제어하기 위한 주요 기술인 다중 포인트 협력(CoMP; 이하, CoMP라고 기재하도록 함.) 통신이 LTEA-dvanced Release 11의 study item으로 합의되었고 표준화를 통한 CoMP 통신 기술의 지원이 현실화되고 있는 상황이다.As a result, CoMP (CoMP) communication, which is a key technology for controlling interference between transmission points, has been agreed upon as a study item of LTEA-enhanced Release 11, and support of CoMP communication technology through standardization is realized .

이러한 CoMP 기법은 크게 JP(Joint Processing) 및 CS/CB(Coordinated Scheduling and/or Coordinated Beamforming)로 구분된다.Such CoMP techniques are classified into JP (Joint Processing) and CS / CB (Coordinated Scheduling and / or Coordinated Beamforming).

먼저, CoMP JP 방식은 주변 기지국들과의 협력을 통해, 사용자 단말이 존재하는 셀의 기지국뿐만 아니라 주변 셀에 존재하는 기지국에서도 같은 데이터를 사용자 단말에 전송하도록 하는 방식이다. 이를 통해, 사용자 단말은 주변 기지국에서 전송하는 신호 또한 간섭신호가 아닌 유용한 신호로 사용할 수 있다.The CoMP JP scheme is a scheme for transmitting the same data to a user terminal not only in a base station of a cell in which a user terminal exists but also in a base station in a neighboring cell through cooperation with peripheral base stations. Accordingly, the user terminal can use a signal transmitted from a neighboring base station as a useful signal instead of an interference signal.

또한, CoMP CB 방식은 각 셀 내에 위치한 사용자 단말의 수신된 신호로부터 각각의 SINR을 측정하여, SINR을 최대화할 수 있는 프리코딩을 적용함으로써 주변 셀로부터 오는 간섭은 최소화하고 수신 신호 세기는 최대화할 수 있다.In addition, the CoMP CB scheme minimizes the interference from neighboring cells and maximizes the received signal strength by measuring the SINR from the received signal of the user terminal located in each cell and applying precoding to maximize the SINR have.

상기한 바와 같이 전송지점 간 간섭을 제어하기 위해 기지국의 안테나들을 셀 전 영역에 분산 배치하여 통신 서비스를 지원하는 분산 안테나 시스템에서 셀 간 간섭을 완화시키고, 셀 가장자리에 있는 단말들에도 높은 데이터 속도를 지원할 수 있도록 전송 효율을 높이기 위한 기술 개발이 요구되고 있다.As described above, in order to control the inter-transmission-point interference, the antennas of the base station are distributed in the entire cell area to mitigate the inter-cell interference in the distributed antenna system supporting communication service, and the high- It is required to develop a technique for improving the transmission efficiency so as to be able to support it.

이에 따라 본 발명은 분산 안테나 시스템(DAS)에서 주파수 재사용을 통해 셀 간 간섭을 완화시키고, 셀 가장자리에 있는 단말들에 대해서도 전송 효율을 높일 수 있도록 하기 위한 주파수 재사용을 고려한 분산 안테나 시스템 및 그 시스템에서의 적응적 협력 전송 방법을 제공하고자 한다.Accordingly, it is an object of the present invention to provide a distributed antenna system that mitigates inter-cell interference through frequency reuse in a distributed antenna system (DAS) and considers frequency reuse in order to increase transmission efficiency for terminals located at cell edges, To provide an adaptive cooperative transmission method.

상술한 과제의 해결 수단으로, 본 발명에 따른 주파수 재사용을 고려한 분산 안테나 시스템은 전체 주파수 대역을 사용하는 기지국(eNB); 두 개의 소형 기지국이 같은 주파수 대역을 사용하는 적어도 둘 이상의 소형 기지국(RRH); 주파수 재사용을 통해 간섭을 제어하는 사용자 단말을 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a distributed antenna system including frequency reuse according to the present invention, comprising: a base station (eNB) using an entire frequency band; At least two small base stations (RRH) in which two small base stations use the same frequency band; And a user terminal for controlling interference through frequency reuse.

또한, 본 발명에 따른 상기 기지국(eNB)은, 셀 중심 영역에 위치하고, 인접 셀로부터의 간섭이 적으므로 주파수 재사용률 1을 적용하여 전체 주파수 대역을 사용하는 것을 특징으로 한다.In addition, the base station (eNB) according to the present invention is located in a cell center area and has a small frequency interference from adjacent cells, so that the frequency reuse factor 1 is applied to use the entire frequency band.

또한, 본 발명에 따른 상기 둘 이상의 소형 기지국(RRH)은, 셀 경계 영역의 위치하고, 주파수 재사용률 3을 적용하여 두 개의 소형 기지국(RRH)이 같은 주파수 대역을 사용하는 것을 특징으로 한다.Also, the two or more small base stations (RRH) according to the present invention are characterized by using two frequency bands (RRH) using the frequency reuse factor of 3, located in the cell boundary region.

또한, 본 발명에 따른 상기 사용자 단말은, 상기 각각의 기지국(eNB) 및 소형 기지국(RRH)들로부터 신호를 받을 때 주변 기지국(eNB) 또는 소형 기지국(RRH)에서 오는 간섭 신호를 함께 받고, 협력전송(CT-n)의 SINR(Signal to Interference plus Noise Ratio)은 하기 <수학식 1>과 같이 정의할 수 있는 것을 특징으로 한다.In addition, the user terminal according to the present invention receives interference signals from a neighboring base station (eNB) or a small base station (RRH) together when receiving signals from the respective base stations (eNB) and small base stations (RRH) The signal to interference plus noise ratio (SINR) of the transmission (CT-n) can be defined as Equation (1).

[수학식 1][Equation 1]

Figure 112014102460383-pat00001
Figure 112014102460383-pat00001

여기서,

Figure 112014102460383-pat00002
Figure 112014102460383-pat00003
는 각각 협력 전송하는 안테나와 간섭 안테나의 세트이다. P는 안테나의 송신 전력, G는 사용자와 안테나 사이의 채널이고 N는 잡음을 나타냄.here,
Figure 112014102460383-pat00002
Wow
Figure 112014102460383-pat00003
Are a set of cooperating antennas and interference antennas, respectively. P is the transmit power of the antenna, G is the channel between the user and the antenna, and N is the noise.

또한, 본 발명에 따른 상기 협력전송(CT-n)의 정규화된 스펙트럼 효율은 하기 <수학식 2>와 같이 정의할 수 있는 것을 특징으로 한다.In addition, the normalized spectral efficiency of the cooperative transmission (CT-n) according to the present invention can be defined as Equation (2).

[수학식 2]&Quot; (2) &quot;

Figure 112014102460383-pat00004
Figure 112014102460383-pat00004

상기 <수학식 2>는 소형 기지국(RRH) 당 스펙트럼 효율을 나타내며, 그 단위는 bps/Hz/RRH임.Equation (2) represents the spectrum efficiency per small base station (RRH), and its unit is bps / Hz / RRH.

또한, 본 발명에 따른 상기 기지국(eNB)은, 셀 중심 영역에 위치하여 전체 주파수 대역을 사용하고, 상기 적어도 둘 이상의 소형 기지국(RRH)은, 상기 셀 중심 영역에 인접한 6개의 셀 경계 영역에 위치하고, 각각의 셀 경계 영역에 제1 소형 기지국(RRH), 제2 소형 기지국(RRH), 제3 소형 기지국(RRH), 제4 소형 기지국(RRH), 제5 소형 기지국(RRH), 제6 소형 기지국(RRH)으로 위치하고, 제1 소형 기지국(RRH), 제2 소형 기지국(RRH)은 제1 주파수 대역(

Figure 112014102460383-pat00005
), 제3 소형 기지국(RRH), 제4 소형 기지국(RRH)은 제2 주파수 대역(
Figure 112014102460383-pat00006
), 그리고 제5 소형 기지국(RRH), 제6 소형 기지국(RRH)은 제3 주파수 대역(
Figure 112014102460383-pat00007
)을 사용하는 것을 특징으로 한다.Also, the base station (eNB) according to the present invention is located in a cell center area and uses the entire frequency band, and the at least two small base stations (RRH) are located in six cell boundary areas adjacent to the cell center area A first small base station RRH, a second small base station RRH, a third small base station RRH, a fourth small base station RRH, a fifth small base station RRH, The first small base station RRH and the second small base station RRH are located in a first frequency band
Figure 112014102460383-pat00005
), The third small base station (RRH), and the fourth small base station (RRH)
Figure 112014102460383-pat00006
), And the fifth small base station (RRH) and the sixth small base station (RRH)
Figure 112014102460383-pat00007
) Is used.

또한, 본 발명에 따른 상기 기지국(eNB)와 상기 소형 기지국(RRH)는, 상기 사용자 단말로 수신한 SINR에 따라 하기 <수학식 3>과 같은 모드 선택 기준에 따라 수신 SINR과 목표 SINR을 비교함으로써 협력 및 비협력 모드를 적응적으로 작동하는 것을 특징으로 한다.The base station eNB and the RRH according to the present invention compare the reception SINR and the target SINR according to the mode selection criterion according to the following Equation 3 according to the SINR received by the user terminal Cooperatively and non-cooperatively modes.

[수학식 3]&Quot; (3) &quot;

Figure 112014102460383-pat00008
Figure 112014102460383-pat00008

여기서,

Figure 112014102460383-pat00009
Figure 112014102460383-pat00010
는 각각 수신 SINR과 목표 SINR임.here,
Figure 112014102460383-pat00009
and
Figure 112014102460383-pat00010
Are the reception SINR and the target SINR, respectively.

상술한 과제의 해결 수단으로, 본 발명에 따른 분산 안테나 시스템에서의 적응적 협력 전송 방법은 셀 중심 영역에 위치하는 기지국(eNB)이 전체 주파수 대역을 사용하도록 설정하는 과정; 상기 셀 중심 영역에 인접한 적어도 둘 이상의 셀 경계 영역에 위치하는 적어도 둘 이상의 소형 기지국(RRH)이 두 개의 소형 기지국이 같은 주파수 대역을 사용하도록 설정하는 과정; 상기 기지국(eNB)와 상기 적어도 둘 이상의 소형 기지국(RRH)가 사용자 단말로부터 수신한

Figure 112014102460383-pat00011
이 목표 SINR인
Figure 112014102460383-pat00012
이하이면 통신 장치인 기지국(eNB)과 소형 기지국(RRH)들이 협력 전송 모드로 작동하는 과정; 상기 수신한
Figure 112014102460383-pat00013
이 목표 SINR인
Figure 112014102460383-pat00014
을 초과하면 통신 장치인 기지국(eNB)과 소형 기지국(RRH)들은 비협력 전송 모드로 작동하는 과정을 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided an adaptive cooperative transmission method in a distributed antenna system, the method including: setting a base station (eNB) located in a cell center area to use an entire frequency band; Setting at least two or more small base stations (RRH) located in at least two cell boundary regions adjacent to the cell center region to use the same frequency band; (ENB) and the at least two or more small base stations (RRH)
Figure 112014102460383-pat00011
This target SINR
Figure 112014102460383-pat00012
A process in which a base station eNB and a small base station RRH operating as communication devices operate in a cooperative transmission mode; The received
Figure 112014102460383-pat00013
This target SINR
Figure 112014102460383-pat00014
(ENB) and a small base station (RRH), which are communication devices, operate in a non-cooperative transmission mode.

또한, 본 발명에 따른 방법에서 상기 협력 전송 모드로 작동하는 과정과 상기 비협력 전송 모드로 작동하는 과정은, 상기 사용자 단말로 수신한 SINR에 따라 하기 <수학식 3>과 같은 모드 선택 기준에 따라 수신 SINR과 목표 SINR을 비교함으로써 협력 및 비협력 모드를 적응적으로 작동하는 과정인 것을 특징으로 한다.Also, in the method according to the present invention, the process of operating in the cooperative transmission mode and the non-cooperative transmission mode may be performed according to a mode selection criterion according to Equation (3) according to the SINR received by the user terminal And is a process of adaptively operating the cooperative and noncooperation modes by comparing the received SINR and the target SINR.

[수학식 3]&Quot; (3) &quot;

Figure 112014102460383-pat00015
Figure 112014102460383-pat00015

여기서,

Figure 112014102460383-pat00016
Figure 112014102460383-pat00017
는 각각 수신 SINR과 목표 SINR임.
here,
Figure 112014102460383-pat00016
and
Figure 112014102460383-pat00017
Are the reception SINR and the target SINR, respectively.

본 발명은 셀 중심 영역의 기지국(eNB)은 인접 셀로부터의 간섭이 적으므로 주파수 재사용률 1을 적용하여 전체 주파수 대역을 사용하고, 셀 경계 영역의 소형 기지국(RRH)은 셀 간 간섭이 크기 때문에 주파수 재사용률 3을 적용하여 두 개의 소형 기지국(RRH)과 같은 주파수 대역을 사용하도록 함으로써 셀 경계 영역에서 다른 셀로부터 간섭의 영향을 감소시켜 SINR 성능 향상시킨다.In the present invention, since the base station eNB of the cell center area uses the frequency reuse factor 1 because the interference from the adjacent cell is small, the entire frequency band is used, and the small base station RRH of the cell boundary area has large inter- The frequency reuse factor 3 is applied to use the same frequency band as the two small base stations (RRH), thereby reducing the influence of interference from other cells in the cell boundary region, thereby improving the SINR performance.

또한, 본 발명은 사용자 단말로부터 수신한

Figure 112014102460383-pat00018
이 목표 SINR인
Figure 112014102460383-pat00019
이하이면 통신 장치인 기지국(eNB)과 소형 기지국(RRH)들이 협력 전송 모드로 작동한다. 또한, 수신한
Figure 112014102460383-pat00020
이 목표 SINR인
Figure 112014102460383-pat00021
을 초과하면 통신 장치인 기지국(eNB)(110)과 소형 기지국(RRH)들은 비협력 전송 SAT 모드로 작동한다.In addition, the present invention provides
Figure 112014102460383-pat00018
This target SINR
Figure 112014102460383-pat00019
The base station eNB and the small base stations RRH serving as communication devices operate in the cooperative transmission mode. Also,
Figure 112014102460383-pat00020
This target SINR
Figure 112014102460383-pat00021
The base station (eNB) 110 and the small base stations (RRH), which are communication devices, operate in the non-cooperative transmission SAT mode.

이와 같이 적응적 협력 전송을 적용함에 따라 협력 및 비협력 모드의 장점을 결합함으로써 성능이 향상시킬 수 있는 효과가 있다.
As such, adaptive cooperative transmission can be applied to improve the performance by combining the advantages of cooperation and non-cooperative mode.

도 1은 본 발명의 실시예가 적용되는 LTE-A 네트워크를 도시하는 도면이다.
도 2는 본 발명의 실시예에 따른 분산 안테나 시스템에서 주파수 재사용 기법을 보여주는 도면이다.
도 3은 본 발명의 실시예에 따른 분산 안테나 시스템에서 주파수 재사용률 3이 적용될 시 공간 다이버시티를 보여주는 도면이다.
도 4는 본 발명의 실시예에 따른 분산 안테나 시스템에서 주파수 재사용률에 따른 SINR을 보여주는 도면이다.
도 5는 본 발명의 실시예에 따른 분산 안테나 시스템에서 주파수 재사용률에 따른 스펙트럼 효율을 보여주는 도면이다.
도 6은 본 발명의 실시예에 따른 분산 안테나 시스템에서 적응적 협력 전송의 정규화된 스펙트럼 효율을 보여주는 도면이다.
1 is a diagram illustrating an LTE-A network to which an embodiment of the present invention is applied.
2 is a diagram illustrating a frequency reuse technique in a distributed antenna system according to an embodiment of the present invention.
3 is a diagram illustrating spatial diversity when frequency reuse factor 3 is applied in a distributed antenna system according to an embodiment of the present invention.
4 is a graph illustrating SINR according to a frequency reuse ratio in a distributed antenna system according to an embodiment of the present invention.
5 is a graph illustrating spectral efficiency according to a frequency reuse ratio in a distributed antenna system according to an embodiment of the present invention.
6 is a diagram illustrating normalized spectral efficiency of an adaptive cooperative transmission in a distributed antenna system according to an embodiment of the present invention.

이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 다만, 하기의 설명 및 첨부된 도면에서 본 발명의 요지를 흐릴 수 있는 공지 기능 또는 구성에 대한 상세한 설명은 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 핵심을 흐리지 않고 더욱 명확히 전달하기 위함이다. 또한, 도면 전체에 걸쳐 동일한 구성 요소들은 가능한 한 동일한 도면 부호로 나타내고 있음에 유의하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description and the accompanying drawings, detailed description of well-known functions or constructions that may obscure the subject matter of the present invention will be omitted. This is to omit the unnecessary description so as to convey the key of the present invention more clearly without fading. It should be noted that the same constituent elements are denoted by the same reference numerals as possible throughout the drawings.

먼저, 도 1은 본 발명의 실시 예가 적용되는 LTE-A 네트워크를 도시하는 도면이다.1 is a diagram illustrating an LTE-A network to which an embodiment of the present invention is applied.

도 1을 참조하면, LTE-Advanced 네트워크는 LTE-A Release 11의 시나리오 4(Homogeneous Network)을 따른다. 이러한 LTE-Advanced Release 11의 시나리오 4의 경우 HetNet에서의 고전력 기지국(eNB)와 모든 같은 셀 아이디(ID)를 같은 저전력 소형 기지국(RRH: Remote Ratio Head)들 간의 CoMP로 LTE-A에서 고려하고 있는 시나리오이다.Referring to FIG. 1, the LTE-Advanced network follows the scenario 4 (homogeneous network) of LTE-A Release 11. In case of Scenario 4 of LTE-Advanced Release 11, LTE-A considers CoNM between the high-power base station (eNB) and the same cell ID (ID) in HetNet as the CoMP between the same low power small base stations (RRH) It is a scenario.

도 1을 참조하면, 매크로셀은 하나의 중심 영역(10)과 6개의 경계 영역(20, 30, 40, 50, 60, 70)으로 구성되며, 중심 영역(10)에는 기지국(eNB)(110)가 경계 영역(20, 30, 40, 50, 60, 70)에는 각각 낮은 전송 전력을 가지는 소형 기지국(RRH)(120, 122, 123, 124, 125, 126)이 배치된다. 이러한 기지국(eNB)(110)과 각각의 소형 기지국(RRH)(120, 122, 123, 124, 125, 126)은 광파이버(Optical fiber)로 연결된다. 이때 사용자 단말이 셀 내에 무작위로 균일하게 분포함을 가정한다.1, a macro cell is composed of one central region 10 and six boundary regions 20, 30, 40, 50, 60 and 70, and the central region 10 includes a base station (eNB) 110 (RRH) 120, 122, 123, 124, 125, 126 having low transmission power are arranged in the border regions 20, 30, 40, 50, 60, The base station (eNB) 110 and each of the small base stations (RRH) 120, 122, 123, 124, 125, and 126 are connected by an optical fiber. At this time, it is assumed that the user terminal is uniformly distributed in the cell in a random manner.

분산 안테나 시스템(DAS)에서 협력통신 방식은 JP(Joint Processing) 및 CS/CB(Coordinated Scheduling and/or Coordinated Beamforming)로 3GPP의 LTE-A에서 논의되고 있다. 본 발명의 실시예에서는 이런 방식들 중 JP 방식을 주파수 재사용과 함께 고려하여, 공간 다이버시티(spatial diversity)를 얻을 수 있도록 하는 방안에 대하여 설명하도록 한다.Collaborative communication schemes in Distributed Antenna Systems (DAS) are discussed in 3GPP LTE-A with JP (Joint Processing) and CS / CB (Coordinated Scheduling and / or Coordinated Beamforming). In the embodiment of the present invention, a method of achieving spatial diversity by considering the JP scheme together with frequency reuse among these schemes will be described.

이때, 하나의 소형 기지국(RRH)에서 비협력 전송인 단일 안테나 전송(SAT: Single Antenna Transmission)과 n개의 안테나로 동일한 신호를 전송하는 경우인 협력전송(CT-n: Cooperative Transmission by n antenna)으로 표현한다.At this time, Cooperative transmission by n antenna (CT-n), which is a cooperative transmission of Single Antenna Transmission (SAT) and n antennas transmitting the same signal in one small base station (RRH) Express.

사용자 단말들이 각각의 기지국(eNB) 및 소형 기지국(RRH)으로부터 신호를 받을 때 주변 기지국(eNB) 또는 소형 기지국(RRH)에서 오는 간섭 신호를 함께 받으며, 이때 협력전송(CT-n)의 SINR(Signal to Interference plus Noise Ratio)은 하기 <수학식 1>과 같다.When the user terminals receive a signal from each of the base station eNB and the small base station RRH, the base station eNB or the small base station RRH receives an interference signal and the SINR of the cooperative transmission CT- Signal to Interference plus Noise Ratio) is expressed by Equation (1).

Figure 112014102460383-pat00022
Figure 112014102460383-pat00022

여기서,

Figure 112014102460383-pat00023
Figure 112014102460383-pat00024
는 각각 협력 전송하는 안테나와 간섭 안테나의 세트이다. P는 안테나의 송신 전력, G는 사용자와 안테나 사이의 채널이고 N는 잡음을 나타낸다.here,
Figure 112014102460383-pat00023
Wow
Figure 112014102460383-pat00024
Are a set of cooperating antennas and interference antennas, respectively. P is the transmit power of the antenna, G is the channel between the user and the antenna, and N is noise.

따라서 협력전송(CT-n)의 정규화된 스펙트럼 효율은 하기 <수학식 2>와 같이 정의할 수 있다.Therefore, the normalized spectral efficiency of the cooperative transmission (CT-n) can be defined as Equation (2) below.

Figure 112014102460383-pat00025
Figure 112014102460383-pat00025

상기 <수학식 2>는 소형 기지국(RRH) 당 스펙트럼 효율을 나타내며, 그 단위는 bps/Hz/RRH이다.Equation (2) represents spectral efficiency per small base station (RRH), and its unit is bps / Hz / RRH.

상기와 같이 구성되는 분산 안테나 시스템에서 주파수 재사용 기법을 적용하는 실시예에 대하여 도 2를 참조하여 살펴보도록 한다.An embodiment in which the frequency reuse scheme is applied in the distributed antenna system configured as above will be described with reference to FIG.

도 2는 본 발명의 실시예에 따른 분산 안테나 시스템에서 주파수 재사용 기법을 보여주는 도면이다. 본 발명에서는 셀 간 간섭 관리를 위해 도 2와 같이 기지국(eNB)과 소형 기지국(RRH)에 주파수 대역을 할당한다.2 is a diagram illustrating a frequency reuse technique in a distributed antenna system according to an embodiment of the present invention. In the present invention, frequency bands are assigned to the base station (eNB) and the small base station (RRH) as shown in FIG. 2 for inter-cell interference management.

도 2를 참조하여 구체적으로 설명하면, 매크로셀은 기지국(eNB)이 배치된 셀 중심 영역과 소형 기지국(RRH)이 배치된 셀 경계 영역으로 구분되며, 전체 주파수 밴드는 세 부분 제1 주파수 대역(

Figure 112014102460383-pat00026
), 제2 주파수 대역(
Figure 112014102460383-pat00027
) 및 제3 주파수 대역(
Figure 112014102460383-pat00028
)으로 나누어진다.2, a macro cell is divided into a cell center area in which a base station eNB is arranged and a cell boundary area in which a small base station RRH is arranged, and the entire frequency band is divided into three first frequency bands
Figure 112014102460383-pat00026
), A second frequency band (
Figure 112014102460383-pat00027
) And the third frequency band (
Figure 112014102460383-pat00028
).

이때, 셀 중심 영역의 기지국(eNB)은 인접 셀로부터의 간섭이 적으므로 주파수 재사용률 1을 적용하여 전체 주파수 대역을 사용하고, 셀 경계 영역의 소형 기지국(RRH)은 셀 간 간섭이 크기 때문에 주파수 재사용률 3을 적용하여 두 개의 소형 기지국(RRH)과 같은 주파수 대역을 사용한다.At this time, since the base station eNB of the cell center area uses the frequency reuse factor 1 because the interference from the adjacent cell is small, the inter-cell interference of the small base station RRH of the cell boundary area is large, The same frequency band as the two small base stations (RRH) is used by applying reuse rate 3.

즉, 도면부호 20, 30의 소형 기지국(RRH) 1, 2는 제1 주파수 대역(

Figure 112014102460383-pat00029
), 도면부호 60, 70의 소형 기지국(RRH)3, 4는 제2 주파수 대역(
Figure 112014102460383-pat00030
), 그리고 도면부호 40, 50의 소형 기지국(RRH) 5, 6은 제3 주파수 대역(
Figure 112014102460383-pat00031
)을 사용한다.That is, the small base stations (RRH) 1 and 2 of the reference numerals 20 and 30 correspond to the first frequency band
Figure 112014102460383-pat00029
, The small base stations (RRH) 3 and 4 at 60 and 70 denote the second frequency band (
Figure 112014102460383-pat00030
, And the small base stations (RRH) 5 and 6 of the reference numeral 40 and 50 are connected to the third frequency band
Figure 112014102460383-pat00031
) Is used.

셀 중심 영역의 기지국(eNB)은 충분히 높은 송신 전력을 가지고 있기 때문에, 협력 전송을 고려하지 않은 단일 안테나 전송(SAT)을 적용한다. 반면, 셀 경계 영역의 경우 인접 셀 간 간섭이 크고 낮은 전력으로 송신이 이루어져 소형 기지국(RRH) 간의 협력 전송을 고려할 수 있다.Since the base station (eNB) in the cell center area has a sufficiently high transmission power, a single antenna transmission (SAT) without cooperative transmission is applied. On the other hand, in the case of the cell boundary region, cooperative transmission between small base stations (RRH) can be considered because interference between adjacent cells is large and transmission is performed with low power.

이와 같이 본 발명의 실시예에 따라 주파수 재사용률 3이 적용될 경우, 2개의 소형 기지국(RRH)가 동일한 주파수 대역을 사용하고, 하나의 기지국(eNB)이 전체 주파수 대역을 사용하기 때문에 도 3과 같이 공간 다이버시티를 최대 3까지 얻을 수 있다.3, when two frequency bands RRH use the same frequency band and one base station eNB uses the entire frequency band according to the embodiment of the present invention, Space diversity can be achieved up to 3.

도 3을 참조하면, 사용자 단말이 하나의 기지국(eNB)(110)과 2개의 소형 기지국(RRH)(123, 124)로부터 동일한 주파수 대역인 제3 주파수 대역(

Figure 112014102460383-pat00032
)으로 신호를 수신하게 된다.3, when a user terminal receives a third frequency band (eNB) 110, which is the same frequency band, from a single base station (eNB) 110 and two small base stations (RRH)
Figure 112014102460383-pat00032
As shown in FIG.

따라서 다른 안테나로부터 오는 신호 또한 간섭 신호가 아닌 유용한 신호로 사용되어 상기 <수학식 1>에서 신호를 방해하는 요소로는 잡음만 존재하여 사용자 단말의 수신 SINR이 향상된다.Therefore, a signal from another antenna is also used as a useful signal instead of an interference signal. In the Equation (1), there is noise only as an element that interferes with the signal, thereby improving the reception SINR of the user terminal.

도 6을 참조하면, 도 6에서 단일 안테나 전송(SAT)과 협력전송(CT-n)의 경우 각각 비협력 및 협력 전송 모드의 성능을 보여주고 있으며, 단일 안테나 전송(SAT)과 협력전송(CT-3) 사이에 교차점이 발생한 것을 알 수 있다.Referring to FIG. 6, in the case of the single antenna transmission (SAT) and the cooperative transmission (CT-n), the performance of the non-cooperative and cooperative transmission modes is shown in FIG. -3). &Lt; / RTI &gt;

즉, 사용자 단말의 수신 SINR이 좋지 않은 환경에서는 협력 전송(CT-n)이 이루어진 CT-3의 성능이 우수하며, 반대의 경우에는 비협력 전송 SAT의 성능이 우수함을 알 수 있다.That is, the performance of the CT-3 in which the cooperative transmission (CT-n) is performed is excellent in an environment where the reception SINR of the user terminal is poor, and in the opposite case, the performance of the non-cooperative transmission SAT is excellent.

따라서 사용자 단말의 환경에 따라 적응적 협력 전송기법이 필요하며, 본 발명에서는 하기 <수학식 3>과 같은 모드 선택 기준에 따라 수신 SINR과 목표 SINR을 비교함으로써 협력 및 비협력 모드를 적응적으로 작동될 수 있다.Therefore, an adaptive cooperative transmission scheme is required according to the environment of the user terminal. In the present invention, the cooperative and noncooperation modes are adaptively operated by comparing the received SINR and the target SINR according to a mode selection criterion as shown in Equation (3) .

Figure 112014102460383-pat00033
Figure 112014102460383-pat00033

여기서,

Figure 112014102460383-pat00034
Figure 112014102460383-pat00035
는 각각 수신 SINR과 목표 SINR이다.here,
Figure 112014102460383-pat00034
and
Figure 112014102460383-pat00035
Are the received SINR and the target SINR, respectively.

즉, 사용자 단말로부터 수신한

Figure 112014102460383-pat00036
이 목표 SINR인
Figure 112014102460383-pat00037
이하이면 통신 장치인 기지국(eNB)(110)과 소형 기지국(RRH)(120, 122, 123, 124, 125, 126)이 협력 전송 모드로 작동한다. 또한, 수신한
Figure 112014102460383-pat00038
이 목표 SINR인
Figure 112014102460383-pat00039
을 초과하면 통신 장치인 기지국(eNB)(110)과 소형 기지국(RRH)(120, 122, 123, 124, 125, 126)은 비협력 전송 SAT 모드로 작동한다.That is,
Figure 112014102460383-pat00036
This target SINR
Figure 112014102460383-pat00037
The base station (eNB) 110 and the small base stations (RRH) 120, 122, 123, 124, 125 and 126, which are communication devices, operate in the cooperative transmission mode. Also,
Figure 112014102460383-pat00038
This target SINR
Figure 112014102460383-pat00039
(ENB) 110 and the small base stations (RRH) 120, 122, 123, 124, 125, and 126, which are communication devices, operate in the non-cooperative transmission SAT mode.

도 4는 본 발명의 실시예에 따른 분산 안테나 시스템에서 주파수 재사용률에 따른 SINR을 보여주는 도면이고, 도 5는 본 발명의 실시예에 따른 분산 안테나 시스템에서 주파수 재사용률에 따른 스펙트럼 효율을 보여주는 도면이다.FIG. 4 is a graph showing SINR according to a frequency reuse ratio in a distributed antenna system according to an embodiment of the present invention, and FIG. 5 is a diagram illustrating spectral efficiency according to a frequency reuse ratio in a distributed antenna system according to an embodiment of the present invention .

도 4 및 5를 참조하여 본 발명의 실시예와 같이 주파수 재사용을 적용한 분산 안테나 시스템의 성능 평가를 살펴보도록 한다.Referring to FIGS. 4 and 5, performance evaluation of a distributed antenna system using frequency reuse as an embodiment of the present invention will be described.

여기서, 모의실험은 기지국(eNB)과 소형 기지국(RRH)들로 구성된 HetNet에서 LTE-A 표준에 따라 간략화한 시스템 레벨 모의실험으로 이루어니다. 주요 파라미터 값들은 하기 <표 1)과 같이 도시할 수 있다.Here, the simulation is a simplified system-level simulation based on the LTE-A standard in HetNet consisting of base station (eNB) and small base stations (RRH). The main parameter values are shown in Table 1 below.

Figure 112014102460383-pat00040
Figure 112014102460383-pat00040

본 발명에 따른 분산 안테나 시스템에서 주파수 재사용의 성능 평가를 위해 기지국(eNB)과 소형 기지국(RRH) 모두 주파수를 재사용하지 않은 경우(FRF 1)와 소형 기지국(RRH)에 주파수 재사용률 3을 적용한 경우(FRF 3)에 대하여 비교 분석을 한다. 도 4와 5는 각각 전체 사용자 단말의 SINR 및 스펙트럼 효율에 대한 CDF를 보이고 있다.In the case of applying the frequency reuse factor 3 to both the FRF 1 and the RRH in the case where the frequency is not reused in both the base station eNB and the small base station RRH in order to evaluate the frequency reuse performance in the distributed antenna system according to the present invention, (FRF 3). Figures 4 and 5 show the CDF for the SINR and spectral efficiency of the entire user terminal, respectively.

셀 중심 영역의 기지국(eNB)에서 전체 주파수 대역을 사용하고, 셀 경계 영역에서 주파수 재사용을 적용하여 다른 셀로부터 간섭의 영향을 감소시켜 SINR 성능 향상시킨다. 따라서 주파수 재사용에 따른 이용 가능한 주파수와 간섭을 고려한 결과, 주파수 재사용률 1 보다 3을 적용한 경우 스펙트럼 효율이 향상 된 것을 알 수 있다.The entire frequency band is used in the base station (eNB) of the cell center region, and the frequency reuse is applied in the cell boundary region, thereby reducing the influence of interference from other cells, thereby improving the SINR performance. Therefore, considering the available frequencies and interference due to frequency reuse, it can be seen that the spectral efficiency is improved when 3 is applied to frequency reuse ratio 1.

또한, 단일 안테나 전송(SAT)과 협력전송(CT-n)의 정규화된 스펙트럼 효율의 경우 약 2.0 bps/Hz/RRH에서 교차점이 발생한다.In addition, the intersection occurs at about 2.0 bps / Hz / RRH for a normalized spectral efficiency of a single antenna transmission (SAT) and a cooperative transmission (CT-n).

이는 높은 스펙트럼 효율의 경우 비협력 통신의 성능이 우수한 것을 알 수 있다. 또한, 적응적 협력 전송을 적용할 경우 협력 및 비협력 모드의 장점을 결합함으로써 성능이 향상된 것을 확인할 수 있다.It can be seen that the non-cooperative communication performance is excellent in the case of high spectral efficiency. In addition, when adaptive cooperative transmission is applied, it can be confirmed that the performance is improved by combining the advantages of cooperation and non-cooperative mode.

이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으나, 여기에 개시된 실시 예외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한, 본 명세서와 도면에서 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It will be apparent to those skilled in the art. Furthermore, although specific terms are used in this specification and the drawings, they are used in a generic sense only to facilitate the description of the invention and to facilitate understanding of the invention, and are not intended to limit the scope of the invention.

본 발명을 통해 얻게 되는 차세대 이동통신 핵심기술은 이동통신 성능의 향상은 물론, 단말기ㅇ부품 수출 및 네트워크 구축에도 크게 기여할 것으로 예상된다. 구체적으로 표준화 경쟁에서 우위 확보 및 차세대 이동통신 시장 선점에 기여할 것이며, 차세대 이동통신 관련 특허와 같은 지적소유권의 산업체 이전을 통한 국내 이동통신 산업의 기술 자립도 향상 및 가격 경쟁력 제고와, 확보된 특허의 국제적 상호사용승인(cross-licensing)으로 인한 이동통신 산업의 비용절감은 물론, 차세대 이동통신의 핵심기술 확보를 통한 기술료 지불경감 및 수입대체 효과가 예상된다.The next generation mobile communication core technology obtained through the present invention is expected to contribute not only to enhancement of mobile communication performance but also to export of parts and network construction of terminals. Specifically, it will contribute to securing superiority in standardization competition and leading the next generation mobile communication market. It will improve technology self-reliance and price competitiveness of domestic mobile communication industry through transfer of intellectual property rights such as patents related to next generation mobile communication, In addition to reducing the cost of mobile communication industry due to cross-licensing, it is anticipated to reduce royalty payment and import substitution effect by securing core technology of next generation mobile communication.

100: 사용자 단말
10: 중신 영역
20, 30, 40, 50, 60, 70: 경계 영역
110: 기지국(eNB)
120, 122, 123, 124, 125, 126: 소형 기지국(RRH)
100: user terminal
10: Medium area
20, 30, 40, 50, 60, 70: boundary area
110: base station (eNB)
120, 122, 123, 124, 125, 126: Small Base Station (RRH)

Claims (9)

전체 주파수 대역을 사용하는 기지국(eNB);
두 개의 소형 기지국이 같은 주파수 대역을 사용하는 적어도 둘 이상의 소형 기지국(RRH);
주파수 재사용을 통해 간섭을 제어하는 사용자 단말;
을 포함하고,
상기 기지국(eNB)은,
셀 중심 영역에 위치하여 전체 주파수 대역을 사용하고,
상기 적어도 둘 이상의 소형 기지국(RRH)은,
상기 셀 중심 영역에 인접한 6개의 셀 경계 영역에 위치하고, 각각의 셀 경계 영역에 제1 소형 기지국(RRH), 제2 소형 기지국(RRH), 제3 소형 기지국(RRH), 제4 소형 기지국(RRH), 제5 소형 기지국(RRH), 제6 소형 기지국(RRH)으로 위치하고, 제1 소형 기지국(RRH), 제2 소형 기지국(RRH)은 제1 주파수 대역(
Figure 112015112884374-pat00068
), 제3 소형 기지국(RRH), 제4 소형 기지국(RRH)은 제2 주파수 대역(
Figure 112015112884374-pat00069
), 그리고 제5 소형 기지국(RRH), 제6 소형 기지국(RRH)은 제3 주파수 대역(
Figure 112015112884374-pat00070
)을 사용하는 것을 특징으로 하는 주파수 재사용을 고려한 분산 안테나 시스템.
A base station (eNB) using the entire frequency band;
At least two small base stations (RRH) in which two small base stations use the same frequency band;
A user terminal for controlling interference through frequency reuse;
/ RTI &gt;
The base station (eNB)
The entire frequency band is used in the center region of the cell,
The at least two small base stations (RRH)
(RRH), a third small base station (RRH), a fourth small base station (RRH), a second small base station (RRH), and a fourth small base station (RRH) are located in six cell boundary regions adjacent to the cell center region. The first small base station RRH and the second small base station RRH are located in the first frequency band (RRH), the fifth small base station RRH and the sixth small base station RRH,
Figure 112015112884374-pat00068
), The third small base station (RRH), and the fourth small base station (RRH)
Figure 112015112884374-pat00069
), And the fifth small base station (RRH) and the sixth small base station (RRH)
Figure 112015112884374-pat00070
) Is used for the frequency reuse.
제 1항에 있어서, 상기 기지국(eNB)은,
셀 중심 영역에 위치하고, 인접 셀로부터의 간섭이 적으므로 주파수 재사용률 1을 적용하여 전체 주파수 대역을 사용하는 것을 특징으로 하는 주파수 재사용을 고려한 분산 안테나 시스템.
The method of claim 1, wherein the base station (eNB)
And the frequency reuse factor 1 is applied to the entire frequency band because the interference from the adjacent cell is small.
제 1항에 있어서, 상기 둘 이상의 소형 기지국(RRH)은,
셀 경계 영역의 위치하고, 주파수 재사용률 3을 적용하여 두 개의 소형 기지국(RRH)이 같은 주파수 대역을 사용하는 것을 특징으로 하는 주파수 재사용을 고려한 분산 안테나 시스템.
The method of claim 1, wherein the two or more small base stations (RRH)
And the two frequency bands (RRH) use the same frequency band by applying the frequency reuse factor of 3, which is located in the cell boundary region.
제 1항에 있어서, 상기 사용자 단말은,
상기 각각의 기지국(eNB) 및 소형 기지국(RRH)들로부터 신호를 받을 때 주변 기지국(eNB) 또는 소형 기지국(RRH)에서 오는 간섭 신호를 함께 받고, 협력전송(CT-n)의 신호대간섭및잡음비(SINR)은 하기 <수학식 1>과 같이 정의할 수 있는 것을 특징으로 하는 주파수 재사용을 고려한 분산 안테나 시스템.
[수학식 1]
Figure 112014102460383-pat00041

여기서,
Figure 112014102460383-pat00042
Figure 112014102460383-pat00043
는 각각 협력 전송하는 안테나와 간섭 안테나의 세트이다. P는 안테나의 송신 전력, G는 사용자와 안테나 사이의 채널이고 N는 잡음을 나타냄.
2. The method of claim 1,
(ENB) or a small base station (RRH) when receiving a signal from each of the base stations eNB and RRH, and outputs a signal-to-interference and noise ratio (SINR) can be defined as Equation (1) below. &Lt; EMI ID = 1.0 >
[Equation 1]
Figure 112014102460383-pat00041

here,
Figure 112014102460383-pat00042
Wow
Figure 112014102460383-pat00043
Are a set of cooperating antennas and interference antennas, respectively. P is the transmit power of the antenna, G is the channel between the user and the antenna, and N is the noise.
제 4항에 있어서, 상기 협력전송(CT-n)의 정규화된 스펙트럼 효율은 하기 <수학식 2>와 같이 정의할 수 있는 것을 특징으로 하는 주파수 재사용을 고려한 분산 안테나 시스템.
[수학식 2]
Figure 112014102460383-pat00044

상기 <수학식 2>는 소형 기지국(RRH) 당 스펙트럼 효율을 나타내며, 그 단위는 bps/Hz/RRH임.
5. The distributed antenna system according to claim 4, wherein the normalized spectral efficiency of the cooperative transmission (CT-n) is defined by Equation (2).
&Quot; (2) &quot;
Figure 112014102460383-pat00044

Equation (2) represents the spectrum efficiency per small base station (RRH), and its unit is bps / Hz / RRH.
삭제delete 제 1항에 있어서, 상기 기지국(eNB)와 상기 소형 기지국(RRH)는,
상기 사용자 단말로 수신한 SINR에 따라 하기 <수학식 3>과 같은 모드 선택 기준에 따라 수신 SINR과 목표 SINR을 비교함으로써 협력 및 비협력 모드를 적응적으로 작동하는 것을 특징으로 하는 주파수 재사용을 고려한 분산 안테나 시스템.
[수학식 3]
Figure 112014102460383-pat00048

여기서,
Figure 112014102460383-pat00049
Figure 112014102460383-pat00050
는 각각 수신 SINR과 목표 SINR임.
The mobile communication system according to claim 1, wherein the base station (eNB) and the small base station (RRH)
And cooperative and non-cooperative modes are adaptively operated by comparing a received SINR and a target SINR according to a mode selection criterion according to an SINR received by the user terminal, Antenna system.
&Quot; (3) &quot;
Figure 112014102460383-pat00048

here,
Figure 112014102460383-pat00049
and
Figure 112014102460383-pat00050
Are the reception SINR and the target SINR, respectively.
셀 중심 영역에 위치하는 기지국(eNB)이 전체 주파수 대역을 사용하도록 설정하는 과정;
상기 셀 중심 영역에 인접한 적어도 둘 이상의 셀 경계 영역에 위치하는 적어도 둘 이상의 소형 기지국(RRH)이 두 개의 소형 기지국이 같은 주파수 대역을 사용하도록 설정하는 과정;
상기 기지국(eNB)와 상기 적어도 둘 이상의 소형 기지국(RRH)가 사용자 단말로부터 수신한 신호대간섭및잡음비(SINR)인
Figure 112015112884374-pat00051
이 목표 SINR인
Figure 112015112884374-pat00052
이하이면 통신 장치인 기지국(eNB)과 소형 기지국(RRH)들이 협력 전송 모드로 작동하는 과정;
상기 수신한
Figure 112015112884374-pat00053
이 목표 SINR인
Figure 112015112884374-pat00054
을 초과하면 통신 장치인 기지국(eNB)과 소형 기지국(RRH)들은 비협력 전송 모드로 작동하는 과정;
을 포함하고,
상기 기지국(eNB)은,
셀 중심 영역에 위치하여 전체 주파수 대역을 사용하고,
상기 적어도 둘 이상의 소형 기지국(RRH)은,
상기 셀 중심 영역에 인접한 6개의 셀 경계 영역에 위치하고, 각각의 셀 경계 영역에 제1 소형 기지국(RRH), 제2 소형 기지국(RRH), 제3 소형 기지국(RRH), 제4 소형 기지국(RRH), 제5 소형 기지국(RRH), 제6 소형 기지국(RRH)으로 위치하고, 제1 소형 기지국(RRH), 제2 소형 기지국(RRH)은 제1 주파수 대역(
Figure 112015112884374-pat00071
), 제3 소형 기지국(RRH), 제4 소형 기지국(RRH)은 제2 주파수 대역(
Figure 112015112884374-pat00072
), 그리고 제5 소형 기지국(RRH), 제6 소형 기지국(RRH)은 제3 주파수 대역(
Figure 112015112884374-pat00073
)을 사용하는 것을 특징으로 하는 분산 안테나 시스템에서의 적응적 협력 전송 방법.
Setting a base station (eNB) located in a cell center area to use the entire frequency band;
Setting at least two or more small base stations (RRH) located in at least two cell boundary regions adjacent to the cell center region to use the same frequency band;
And a signal-to-interference-and-noise ratio (SINR) received from the base station (eNB) and the at least two small base stations (RRH)
Figure 112015112884374-pat00051
This target SINR
Figure 112015112884374-pat00052
A process in which a base station eNB and a small base station RRH operating as communication devices operate in a cooperative transmission mode;
The received
Figure 112015112884374-pat00053
This target SINR
Figure 112015112884374-pat00054
(ENB) and a small base station (RRH), which are communication devices, operate in a non-cooperative transmission mode;
/ RTI &gt;
The base station (eNB)
The entire frequency band is used in the center region of the cell,
The at least two small base stations (RRH)
(RRH), a third small base station (RRH), a fourth small base station (RRH), a second small base station (RRH), and a fourth small base station (RRH) are located in six cell boundary regions adjacent to the cell center region. The first small base station RRH and the second small base station RRH are located in the first frequency band (RRH), the fifth small base station RRH and the sixth small base station RRH,
Figure 112015112884374-pat00071
), The third small base station (RRH), and the fourth small base station (RRH)
Figure 112015112884374-pat00072
), And the fifth small base station (RRH) and the sixth small base station (RRH)
Figure 112015112884374-pat00073
) Is used for the adaptive cooperative transmission method in the distributed antenna system.
제 8항에 있어서, 상기 협력 전송 모드로 작동하는 과정과 상기 비협력 전송 모드로 작동하는 과정은,
상기 사용자 단말로 수신한 SINR에 따라 하기 <수학식 3>과 같은 모드 선택 기준에 따라 수신 SINR과 목표 SINR을 비교함으로써 협력 및 비협력 모드를 적응적으로 작동하는 과정인 것을 특징으로 하는 분산 안테나 시스템에서의 적응적 협력 전송 방법.
[수학식 3]
Figure 112014102460383-pat00055

여기서,
Figure 112014102460383-pat00056
Figure 112014102460383-pat00057
는 각각 수신 SINR과 목표 SINR임.
9. The method of claim 8, wherein the step of operating in the cooperative transmission mode and the step of operating in the non-
And cooperating and non-cooperating modes are adaptively operated by comparing a received SINR and a target SINR according to a mode selection criterion according to an SINR received by the user terminal, A method for adaptive cooperative transmission in a mobile communication system.
&Quot; (3) &quot;
Figure 112014102460383-pat00055

here,
Figure 112014102460383-pat00056
and
Figure 112014102460383-pat00057
Are the reception SINR and the target SINR, respectively.
KR1020140145722A 2014-10-27 2014-10-27 Distributed Antenna System Considering the Frequency Reuse and Method of Adaptive Cooperative Transmission Therein KR101586236B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140145722A KR101586236B1 (en) 2014-10-27 2014-10-27 Distributed Antenna System Considering the Frequency Reuse and Method of Adaptive Cooperative Transmission Therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140145722A KR101586236B1 (en) 2014-10-27 2014-10-27 Distributed Antenna System Considering the Frequency Reuse and Method of Adaptive Cooperative Transmission Therein

Publications (1)

Publication Number Publication Date
KR101586236B1 true KR101586236B1 (en) 2016-01-19

Family

ID=55306256

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140145722A KR101586236B1 (en) 2014-10-27 2014-10-27 Distributed Antenna System Considering the Frequency Reuse and Method of Adaptive Cooperative Transmission Therein

Country Status (1)

Country Link
KR (1) KR101586236B1 (en)

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
KR20180124098A (en) * 2016-03-18 2018-11-20 노키아 오브 아메리카 코포레이션 System and method for remotely analyzing the RF environment of a remote wireless head
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100071896A (en) * 2008-12-19 2010-06-29 엘지전자 주식회사 Apparatus and method for downlink control channel allocation
KR20100074803A (en) * 2008-12-24 2010-07-02 엘지전자 주식회사 Method of multi cell cooperation
KR20120105696A (en) * 2011-03-16 2012-09-26 서울대학교산학협력단 Method and apparatus for dynamic inter-cell interference avoidance
KR20140077304A (en) * 2012-12-14 2014-06-24 연세대학교 산학협력단 Method of channel allocation for mitigating interference inside basestation cell and inter basestation cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100071896A (en) * 2008-12-19 2010-06-29 엘지전자 주식회사 Apparatus and method for downlink control channel allocation
KR20100074803A (en) * 2008-12-24 2010-07-02 엘지전자 주식회사 Method of multi cell cooperation
KR20120105696A (en) * 2011-03-16 2012-09-26 서울대학교산학협력단 Method and apparatus for dynamic inter-cell interference avoidance
KR20140077304A (en) * 2012-12-14 2014-06-24 연세대학교 산학협력단 Method of channel allocation for mitigating interference inside basestation cell and inter basestation cell

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
KR102166187B1 (en) 2016-03-18 2020-10-15 노키아 오브 아메리카 코포레이션 System and method for remotely analyzing RF environment of remote wireless head
KR20180124098A (en) * 2016-03-18 2018-11-20 노키아 오브 아메리카 코포레이션 System and method for remotely analyzing the RF environment of a remote wireless head
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10944466B2 (en) 2016-12-07 2021-03-09 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10256896B2 (en) 2016-12-07 2019-04-09 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10447377B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Similar Documents

Publication Publication Date Title
KR101586236B1 (en) Distributed Antenna System Considering the Frequency Reuse and Method of Adaptive Cooperative Transmission Therein
US10972158B2 (en) Distributed FD-MIMO: cellular evolution for 5G and beyond
Kishiyama et al. Evolution concept and candidate technologies for future steps of LTE-A
KR101591204B1 (en) Coordinated set selecting method and device
Kiiski LTE-Advanced: The mainstream in mobile broadband evolution
Husso et al. Interference mitigation by practical transmit beamforming methods in closed femtocells
Garcia et al. Capacity outage probability for multi-cell processing under Rayleigh fading
US10374763B2 (en) Parameter transmission method and device for interference coordination, and interference coordination method and device
Liu et al. Dense networks of small cells.
US9100985B2 (en) Coordinated multi-point communications system and methods for controlling coordinated multi-point transmission and reception
Shimodaira et al. Investigation on millimeter-wave spectrum for 5G
Huq et al. Investigation on energy efficiency in HetNet CoMP architecture
Li et al. Power allocation of dynamic point blanking for downlink CoMP in LTE-advanced
Li et al. An effective scheduling scheme for CoMP in heterogeneous scenario
EP3035755A1 (en) Method for reporting channel feedback in a radio communication system, method for determining a set of mobile stations to be scheduled in a radio communication system, computer program, mobile station and scheduler apparatus thereof
KR101188996B1 (en) Method for cooperative transmitting in wireless communication systems
Xiao et al. Interference migration using concurrent transmission for energy-efficient HetNets
Jie et al. A CoMP-Based outage compensation solution for heterogeneous femtocell networks
Wang et al. An effective interference mitigation scheme for downlink NOMA heterogeneous networks
Liao et al. CoMP set formulation for downlink transmission in dense small cell networks
Wu et al. Radio resource management strategies for distributed antenna systems
Chen et al. Single and multi-cell scheduling in coordinated multi-point distributed antenna systems
Baracca et al. Improving eICIC with coordinated beamforming and scheduling in co-channel HetNets
Kelechi et al. Inter-Cell Interference Mitigation Techniques in a Heterogeneous LTE-Advanced Access Network
Arbi Spectral and Energy Efficiency in Cellular Mobile Radio Access Networks

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 5