KR101582259B1 - Escherichia coli strain fmis2 for producing isoprene and use thereof - Google Patents

Escherichia coli strain fmis2 for producing isoprene and use thereof Download PDF

Info

Publication number
KR101582259B1
KR101582259B1 KR1020140083934A KR20140083934A KR101582259B1 KR 101582259 B1 KR101582259 B1 KR 101582259B1 KR 1020140083934 A KR1020140083934 A KR 1020140083934A KR 20140083934 A KR20140083934 A KR 20140083934A KR 101582259 B1 KR101582259 B1 KR 101582259B1
Authority
KR
South Korea
Prior art keywords
isps
gene
fmis2
dxs
pacyc
Prior art date
Application number
KR1020140083934A
Other languages
Korean (ko)
Inventor
정욱진
류 훠메이
발데후에사 크리스
라모스 크리스틴
이원근
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020140083934A priority Critical patent/KR101582259B1/en
Application granted granted Critical
Publication of KR101582259B1 publication Critical patent/KR101582259B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to an Escherichia coli strain FMIS2 (E. coli BW25113 (DE3) Δpgi/pACYCDue1-dxs-ispG-idi-ispS) which produces isoprene, and a use thereof and, more specifically, to an Escherichia coli strain FMIS2 which easily produces isoprene in large quantity, and a use of the Escherichia coli strain FMIS2. The present invention provides the Escherichia coli strain FMIS2 (E. coli BW25113 (DE3) Δpgi/pACYCDue1-dxs-ispG-idi-ispS) which easily produces isoprene in large quantity. In addition, provided are a method for producing the Escherichia coli FMIS2, and a use thereof.

Description

이소프렌을 생산하는 대장균 균주 FMIS2 및 이의 용도{ESCHERICHIA COLI STRAIN FMIS2 FOR PRODUCING ISOPRENE AND USE THEREOF} E. coli strain FMIS2 producing isoprene and its use {ESCHERICHIA COLI STRAIN FMIS2 FOR PRODUCING ISOPRENE AND USE THEREOF}

본 발명은 이소프렌를 생산하는 대장균 균주 FMIS2 [E. coli BW25113 (DE3) Δpgi/pACYCDue1-dxs-ispG-idi-ispS] 및 이의 용도에 관한 것으로, 더욱 상세하게는 이소프렌를 용이하게 대량으로 생산할 수 있는 대장균 균주 FMIS2와 대장균 균주 FMIS2의 용도에 관한 것이다.
The present invention relates to an Escherichia coli strain FMIS2 [ E. coli BW25113 (DE3) Δ pgi / pACYCDue1- dxs-ispG-idi-ispS ] producing isoprene and a use thereof, and more particularly to Escherichia coli strain FMIS2 The use of the strain FMIS2 and the coliform strain FMIS2.

이소프레노이드(Isoprenoid)는 의약품, 기능 식품, 향신료, 향료 및 고무 제품에서 유용한 것으로 여겨지는 이소프렌 중합체이다. 그러나, 천연의 이소프레노이드 공급은 생태계에 대한 염려로 제한되고 있다. 이러한 이유로, 불순물이 적고 더 균일성이 큰 이소프레노이드 조성물을 제공하기 위해서, 종종 고무 등의 이소프레노이드를 합성으로 생산한다.
Isoprenoid is an isoprene polymer considered useful in pharmaceuticals, functional foods, spices, fragrances and rubber products. However, natural isoprenoid feeds are limited to concerns about the ecosystem. For this reason, in order to provide an isoprenoid composition with fewer impurities and greater uniformity, often produces isoprenoids such as rubber synthetically.

이소프렌의 생합성에 의한 생성은 두 가지 별개의 대사 경로에 의해 발생한다 (Julsing 등., Appl Microbiol Biotechnol, 75:1377-1384, 2007). 진핵생물 및 원시생물에서, 이소프렌은 메발로네이트 (MVA) 경로를 통해 형성되는 한편 일부의 유박테리아 및 더 고등한 식물에서는 메틸에리트리톨 포스페이트 (MEP) 경로를 통해 이소프렌을 생성한다. 식물에서의 이소프렌 배출은 빛과 온도에 의존적이어서, 잎 발생과 연계되어 증가한다. 그러나 자연 발생적 유기체로부터의 이소프렌의 수율은 상업적으로 불충분한 문제가 있다.
Production of isoprene by biosynthesis is caused by two distinct metabolic pathways (Julsing et al., Appl Microbiol Biotechnol, 75: 1377-1384, 2007). In eukaryotes and primordial creatures, isoprene is formed through the mevalonate (MVA) pathway, while some of the bacteria and higher plants produce isoprene through the methylerythritol phosphate (MEP) pathway. Isoprene emissions from plants are dependent on light and temperature and increase in association with leaf development. However, the yield of isoprene from naturally occurring organisms is commercially inadequate.

대한민국 공개특허 10-2011-0020234Korean Patent Publication No. 10-2011-0020234

본 발명은 이소프렌을 용이하게 대량으로 생산할 수 있는 대장균 균주 FMIS2 [E. coli BW25113 (DE3) Δpgi/pACYCDue1-dxs-ispG-idi-ispS]를 제공한다. 또한 상기 대장균 FMIS2를 제조하는 방법과 이의 용도를 제공한다.
The present invention provides an E. coli strain FMIS2 [E. coli BW25113 (DE3) Δ pgi / pACYCDue1- dxs-ispG-idi-ispS] that can easily produce a large amount of the isoprene. Also provided are methods of producing the E. coli FMIS2 and uses thereof.

본 발명은 수탁번호 KCTC 12539BP로 기탁된, 이소프렌 생산능이 있는 대장균 균주 FMIS2 [E. coli BW25113 (DE3) Δpgi/pACYCDue1-dxs-ispG-idi-ispS]를 제공한다.The present invention provides Escherichia coli strain FMIS2 ( E. coli BW25113 (DE3) Δ pgi / pACYCDue1- dxs-ispG-idi-ispS ), which is deposited with accession number KCTC 12539BP.

상기 대장균 균주 FMIS2는 포스포-6-글루코즈-이성화효소(phospho-6-glucose isomerase, pgi) 유전자가 녹아웃된 것일 수 있다.The E. coli strain FMIS2 may be one in which a phospho-6-glucose isomerase ( pgi ) gene is knocked out.

상기 pgi 유전자는 서열번호 5의 염기서열로 구성될 수 있다.The pgi gene may be composed of the nucleotide sequence of SEQ ID NO: 5.

다만 상기 유전자는 상기 염기서열에 한정되지 않으며, 상기 서열에서 하나 또는 소수의 염기가 첨가, 결실 또는 치환된 서열로서 동일한 기능을 나타내는 염기서열을 가질 수 있다.However, the gene is not limited to the above-mentioned nucleotide sequence, and one or a few bases in the nucleotide sequence may be added, deleted or substituted to have a nucleotide sequence exhibiting the same function.

상기 대장균 균주 FMIS2는 이소프렌 신타아제 유전자(ispS)를 포함할 수 있다.The E. coli strain FMIS2 may contain an isoprene synthase gene ( ispS ).

상기 이소프렌 신타아제 유전자는 서열번호 1의 염기서열로 구성될 수 있다.The isoprene synthase gene may be composed of the nucleotide sequence of SEQ ID NO: 1.

다만 상기 유전자는 상기 염기서열에 한정되지 않으며, 상기 서열에서 하나 또는 소수의 염기가 첨가, 결실 또는 치환된 서열로서 동일한 기능을 나타내는 염기서열을 가질 수 있다.However, the gene is not limited to the above-mentioned nucleotide sequence, and one or a few bases in the nucleotide sequence may be added, deleted or substituted to have a nucleotide sequence exhibiting the same function.

상기 대장균 균주 FMIS2는 DXP(1-deoxy-D-xylulose 5-phosphate) 신타아제 유전자(dxs)를 포함할 수 있다.The E. coli strain FMIS2 may contain DXP (1-deoxy-D-xylulose 5-phosphate) synthase gene ( dxs ).

상기 DXP(1-deoxy-D-xylulose 5-phosphate) 신타아제 유전자는 서열번호 2의 염기서열로 구성될 수 있다.The DXP (1-deoxy-D-xylulose 5-phosphate) synthase gene may be composed of the nucleotide sequence of SEQ ID NO: 2.

다만 상기 유전자는 상기 염기서열에 한정되지 않으며, 상기 서열에서 하나 또는 소수의 염기가 첨가, 결실 또는 치환된 서열로서 동일한 기능을 나타내는 염기서열을 가질 수 있다.However, the gene is not limited to the above-mentioned nucleotide sequence, and one or a few bases in the nucleotide sequence may be added, deleted or substituted to have a nucleotide sequence exhibiting the same function.

상기 대장균 균주 FMIS2는 IPP(isopentenyl pyrophosphate) 이소머라아제 유전자(idi)를 포함할 수 있다.The Escherichia coli strain FMIS2 may comprise an IPP (isopentenyl pyrophosphate) isomerase gene ( idi ).

상기 IPP(isopentenyl pyrophosphate) 이소머라아제 유전자는 서열번호 3의 염기서열로 구성될 수 있다.The IPP (isopentenyl pyrophosphate) isomerase gene may be composed of the nucleotide sequence of SEQ ID NO: 3.

다만 상기 유전자는 상기 염기서열에 한정되지 않으며, 상기 서열에서 하나 또는 소수의 염기가 첨가, 결실 또는 치환된 서열로서 동일한 기능을 나타내는 염기서열을 가질 수 있다.However, the gene is not limited to the above-mentioned nucleotide sequence, and one or a few bases in the nucleotide sequence may be added, deleted or substituted to have a nucleotide sequence exhibiting the same function.

상기 대장균 균주 FMIS2는 HMBPP(1-hydroxy-2-methyl-2-(E)-butenyl 4-pyrophosphate) 신타아제 유전자(ispG)를 포함할 수 있다.The E. coli strain FMIS2 may contain a 1-hydroxy-2-methyl-2- (E) -butenyl 4-pyrophosphate synthase gene ( ispG ).

상기 HMBPP(1-hydroxy-2-methyl-2-(E)-butenyl 4-pyrophosphate) 신타아제 유전자는 서열번호 4의 염기서열로 구성될 수 있다.The HMBPP (1-hydroxy-2-methyl-2- (E) -butenyl 4-pyrophosphate) synthase gene can be composed of the nucleotide sequence of SEQ ID NO:

다만 상기 유전자는 상기 염기서열에 한정되지 않으며, 상기 서열에서 하나 또는 소수의 염기가 첨가, 결실 또는 치환된 서열로서 동일한 기능을 나타내는 염기서열을 가질 수 있다.
However, the gene is not limited to the above-mentioned nucleotide sequence, and one or a few bases in the nucleotide sequence may be added, deleted or substituted to have a nucleotide sequence exhibiting the same function.

또한 본 발명은, 대장균에서 포스포-6-글루코즈-이성화효소(phospho-6-glucose isomerase, pgi) 유전자를 녹아웃시키는 단계(단계 1); 이소프렌 신타아제 유전자(ispS)와 벡터 pACYCDuet-1를 제한효소 처리하고 리가아제로 결합하여 pACYC-ispS를 제조하는 단계(단계 2); 상기 pACYC-ispS와 DXP 신타아제 유전자(dxs)를 제한효소 처리하고 리가아제로 결합하여 pACYC-dxs-ispS를 제조하는 단계(단계 3); 상기 pACYC-dxs-ispS와 IPP 이소머라아제 유전자(IPP isomerase gene, idi)를 제한효소 처리하고 리가아제로 결합하여 pACYC-dxs-idi-ispS를 제조하는 단계(단계 4); 상기 pACYC-dxs-idi-ispS와 HMBPP 신타아제 유전자(ispG)를 제한효소 처리하고 리가아제로 결합하여 pACYC-dxs-ispG-idi-ispS를 제조하는 단계(단계 5); 및 상기 pACYC-dxs-ispG-idi-ispS를 단계 1을 거친 대장균에 형질도입하는 단계(단계 6)를 포함하는 대장균 균주 FMIS2 제조방법을 제공한다.
The present invention also relates to a method for producing a gene encoding a phospho-6-glucose isomerase ( pgi ) gene, which comprises knocking out a phospho-6-glucose isomerase ( pgi ) gene in E. coli (step 1); A step of restriction enzyme treatment of the vector pACYCDuet-1 with isoprene synthase gene ( ispS ) and ligating with ligase to prepare pACYC-ispS (step 2); Step (step 3) of treating pACYC-ispS and DXP synthase gene ( dxs ) with restriction enzyme and ligating with ligase to prepare pACYC-dxs-ispS ; (Step 4) of producing pACYC-dxs-idi-ispS by restriction enzyme treatment of the pACYC-dxs-ispS and IPP isomerase gene ( idi ) and ligating with the ligase; (Step 5) of producing pACYC-dxs-ispG-idi-ispS by digesting pACYC-dxs-idi-ispS and HMBPP synthase gene ( ispG ) with restriction enzymes and ligating them with ligase; And introducing the pACYC-dxs-ispG-idi-ispS into Escherichia coli obtained in step 1 (step 6).

상기 단계 2의 제한효소는 NdeI 및 BglII일 수 있다.The restriction enzymes of step 2 may be Nde I and Bgl II.

상기 단계 3의 제한효소는 BamHI 및 EcoRI일 수 있다.The restriction enzymes of step 3 above may be Bam HI and Eco RI.

상기 단계 4의 제한효소는 BglII 및 XhoII일 수 있다.The restriction enzymes of step 4 above may be Bgl II and Xho II.

상기 단계 5의 제한효소는 SacI일 수 있다.
The restriction enzyme in step 5 may be SacI .

상기 단계 1의 녹아웃은 유전자 파괴 카세트(gene disruption cassette)를 이용하여 유전자를 파괴시키는 방법으로 수행하는 것이 바람직하나, 이에 한정되지 않으며, 당업계에서 사용되고 있는 유전자 녹아웃 방법은 모두 사용가능하다.
The knock-out in step 1 is preferably performed by a method of destroying a gene using a gene disruption cassette. However, the knock-out method is not limited thereto, and any gene knockout method used in the art can be used.

또한 본 발명은 대장균 균주 FMIS2 [E. coli BW25113 (DE3) Δpgi/pACYCDue1-dxs-ispG-idi-ispS]를 배양하여 배양액을 제조하는 단계: 및 상기 배양액으로부터 생성된 이소프렌을 회수하는 단계를 포함하는 이소프렌 생산방법을 제공한다.The present invention also includes a step of culturing an Escherichia coli strain FMIS2 [ E. coli BW25113 (DE3) Δ pgi / pACYCDue1- dxs-ispG-idi-ispS ] to prepare a culture solution, and recovering isoprene produced from the culture solution To provide an isoprene production process.

상기 배양은 30 ~ 40 ℃에서 36 ~ 72시간 수행하는 것이 바람직하나 이에 한정되는 것은 아니다.The culture is preferably performed at 30 to 40 ° C for 36 to 72 hours, but is not limited thereto.

상기 배양은 탄소원을 포함하는 배지에서 수행될 수 있다.
The culture may be performed in a medium containing a carbon source.

본 발명에 따르면, 이소프렌 생산능이 우수한 재조합 대장균 균주 FMIS2 [E. coli BW25113 (DE3) Δpgi/pACYCDue1-dxs-ispG-idi-ispS] 및 이를 용이하게 합성하는 방법을 제공할 수 있다.
According to the present invention, a recombinant E. coli strain FMIS2 ( E. coli BW25113 (DE3) Δ pgi / pACYCDue1- dxs-ispG-idi-ispS ] excellent in the production of isoprene can be provided and a method for easily synthesizing the same.

도 1은 피딩 모듈(Feeding module) 및 MEP(2-C-methyl-D-erythritol 4-phosphate pathway) 모듈로 구성된 MEP-의존성 이소프렌 생합성 경로(MEP-dependent isoprene biosynthesis pathway)를 나타내는 것이다.
도 2은 도 1에 도시된 각각의 피딩 모듈(feeding module)에 따른 이소프렌의 역가 및 수율을 분석한 그래프이다.
Figure 1 shows a MEP-dependent isoprene biosynthesis pathway consisting of a feeding module and a 2-C-methyl-D-erythritol 4-phosphate pathway module.
FIG. 2 is a graph illustrating the activity and yield of isoprene according to each feeding module shown in FIG. 1; FIG.

이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적은, 특징, 장점은 이하의 실시예를 통하여 쉽게 이해될 수 있다. 여기서 소개되는 실시예는 본 발명이 속하는 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위하여 제공되는 것이다. 따라서 이하의 실시예에 의하여 본 발명의 권리범위가 제한되어서는 안 된다.
Hereinafter, the present invention will be described in more detail with reference to examples. The objects, features and advantages of the present invention can be easily understood through the following embodiments. It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. Therefore, the scope of the present invention should not be limited by the following examples.

실시예: Example:

FMIS2 [FMIS2 [ E. coli E. coli BW25113 (DE3) ΔBW25113 (DE3) DELTA pgipgi /pACYCDue1-/ pACYCDue1- dxs-ispG-idi-ispSdxs-ispG-idi-ispS ] 합성] synthesis

균주 및 플라스미드 합성Strain and plasmid synthesis

유전자 결실 실험은 원-스텝 불활성 방법(inactivation method)으로 수행하였다(Datsenko and Wanner, Proc Natl Acad Sci USA 2000 97:6640-6645). E. coli BW25113 (DE3) 균주로부터 포스포-6-글루코즈-이성화효소(phospho-6-glucose isomerase, pgi) 유전자를 파괴하였다. pgi 파괴 카세트(disruption cassette)는, 주형으로 pKD3과 다음의 프라이머를 이용하여 증폭시켰다: 포워드 프라이머(CTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATCATATGAATATCCTCCTTAGT, 서열번호 6) 및 리버스 프라이머(TACCGTTACGGTCAACATACTTACCGTTGGACTCCATATTGTGTAGGCTGGAGCTGCTTCG, 서열번호 7). 제조된 PCR 생성물은 측면에 FRT사이트와 pgi의 5 및 3번째 끝단 영역과 상응하는 40개 염기쌍 등을 갖는 클로르암페니콜 저항성 유전자를 포함하고 있다.
Gene deletion experiments were performed by the one-step inactivation method (Datsenko and Wanner, Proc Natl Acad Sci USA 2000 97: 6640-6645). The phospho-6-glucose isomerase ( pgi ) gene was disrupted from E. coli strain BW25113 (DE3). destroying pgi cassette (disruption cassette) is used as a template was amplified using the following primers and pKD3: forward primer (CTTCTCAGAAGCGATTATTTCCGGTGAGTGGAAAGGTTATCATATGAATATCCTCCTTAGT, SEQ ID NO: 6) and reverse primer (TACCGTTACGGTCAACATACTTACCGTTGGACTCCATATTGTGTAGGCTGGAGCTGCTTCG, SEQ ID NO: 7). The PCR product thus prepared contains a chloramphenicol resistance gene having a FRT site on the side and 40 base pairs corresponding to the 5 th and 3 rd end regions of pgi and the like.

KD46 플라스미드가 Red 재조합 발현 벡터로 사용되었고, E. coli BW25113 (DE3) 내로 도입되었다. 그리고 나서 pgi 파괴 카세트(disruption cassette)는 상동 재조합을 완성하기 위하여 E. coli BW25113 (DE3)/pKD46 내로 도입되었다. 제조된 균주는 다음의 유전자형을 갖는다: E.coli BW25113 (DE3) Δpgi. pgi의 파괴(Disruption)는 다음의 프라이머를 이용하는 PCR에 의해 확인되었다: 포워드 프라이머(TACTCCAAAAACCGCATCAC, 서열번호 16) 및 리버스 프라이머(CGAAGAAGTTAGACAGCAGT, 서열번호 17).
KD46 plasmid was used as a red recombinant expression vector and introduced into E. coli BW25113 (DE3). The pgi disruption cassette was then introduced into E. coli BW25113 (DE3) / pKD46 to complete homologous recombination. The strains produced have the following genotypes: E. coli BW25113 (DE3) Δ pgi . Disruption of pgi was confirmed by PCR using the following primers: forward primer (TACTCCAAAAACCGCATCAC, SEQ ID NO: 16) and reverse primer (CGAAGAAGTTAGACAGCAGT, SEQ ID NO: 17).

포풀루스 알바(Populus alba)의 코돈-최적화된 이소프렌 신타아제 유전자(isoprene synthase gene, ispS, 서열번호 1) Bioneer(South Korea)로부터 구입하였고, 이를 NdeI 및 BglII를 이용하여 pACYCDuet-1과 연결함으로써 pACYC-ispS를 형성하였다. BamHI 및 EcoRI를 이용하여 pACYC-ispS에 DXP 신타아제 유전자(DXP synthase gene, dxs)를 연결하였다. 그 다음 BglII 및 XhoI를 이용하여 IPP 이소머라아제 유전자(IPP isomerase gene, idi)를 추가로 연결하였다. 이 플라스미드는 pACYC-dxs-idi-ispS로 나타낸다. pACYC-dxs-ispG-idi-ispS를 제조하기 위하여, SacI를 이용하여 HMBPP 신타아제 유전자 (ispG)를 pACYC-dxs-idi-ispS에 연결하였다. ispS 유전자를 제외하고, 모든 DNA 인서트(insert)는 E. coli 염색체로부터 증폭시켰다. 플라스미드 합성에 이용된 모든 프라이머는 표 1에 열거하였다.
The codon-optimized isoprene synthase gene ( ispS, SEQ ID NO: 1) of Populus alba was purchased from Bioneer (South Korea) and was amplified with pAcYCDuet-1 using Nde I and Bgl II Lt; RTI ID = 0.0 & gt ; pACYC-ispS . ≪ / RTI & gt ; Bam HI and Eco RI were used to link the DXP synthase gene ( dxs ) to pACYC-ispS . Then, an IPP isomerase gene ( idi ) was further ligated using Bgl II and Xho I. This plasmid is designated pACYC-dxs-idi-ispS . for the production of pACYC-dxs-ispG-idi- ispS, using the Sac I was ligated to HMBPP synthase gene (ispG) to pACYC-dxs-idi-ispS. Except for the ispS gene, all DNA inserts were amplified from the E. coli chromosome. All primers used for plasmid synthesis are listed in Table 1.

플라스미드 합성에 이용된 모든 프라이머들a All primers used in plasmid synthesis a 프라이머primer 서열(5'-3')The sequence (5'-3 ') 기능function IspS-FIspS-F CGATCCATGGATGAGATGTAGCGTGT (서열번호 8 )CGAT CCATGG ATGAGATGTAGCGTGT (SEQ ID NO: 8) ispS의 PCR 증폭용
for PCR amplification of ispS
IspS-RIspS-R CGTAGATCT TTAGCGAACAAACGGC (서열번호 9 )CGT AGATCT TTAGCGAACAAACGGC (SEQ ID NO: 9) Dxs-FDxs-F CGTCGGATCCATGAGTTTTGATATTGCCA (서열번호 10)CGTC GGATCC ATGAGTTTTGATATTGCCA (SEQ ID NO: 10) dxs의 PCR 증폭용 For PCR amplification of dxs Dxs-RDxs-R CGGGAATTCTTATGCCAGCCAGGCCTTG (서열번호 11)CGG GAATTC TTATGCCAGCCAGGCCTTG (SEQ ID NO: 11) Idi-FIdi-F CGTAGATCT AAGGAGATATAATGCAAACGGAACA (서열번호 12)CGT AGATCT AAGGAGATATAATGCAAACGGAACA (SEQ ID NO: 12) idi의 PCR 증폭용 idi for PCR amplification Idi-RIdi-R CGGCTCGAGTTATTTAAGCTGGGT (서열번호: 13)CGG CTCGAG TTATTTAAGCTGGGT (SEQ ID NO: 13) IspG-FIspG-F CACGAGCTCAGGAGATATACCATGCATAACCAGGCTCCAAT (서열번호:14 )CAC GAGCTC AGGAGATATACCATGCATAACCAGGCTCCAAT (SEQ ID NO: 14) spG의 PCR 증폭용 For PCR amplification of spG IspG-RIspG-R CGTGAGCTCTTATTTTTCAACCTGCTGAACGT (서열번호:15)CGT GAGCTC TTATTTTTCAACCTGCTGAACGT (SEQ ID NO: 15)

a 밑줄은 제한효소 자리, 음영은 리보솜 결합 자리이다.
a underline is the restriction enzyme site, and the shadow is the ribosome binding site.

실험예 : 이소프렌 수율 분석Experimental Example: Isoprene yield analysis

이소프렌 생성을 위한 균주 배양을 위하여, M9 염, 5g L-1 이스트 추출물, 10 g L-1 필수 탄소원 및 1mM 티아민 피로포스페이트(TPP)로 구성되는 40 mL 반한정 배지(semi-defined medium)를 포함하는 160 mL 세럼 보틀(serum bottle)을 이용하였다. 플라스미드를 포함하는 균주를 위하여, 적절한 항생제로 50 μg mL-1 카나마이신 및/또는 35 μg mL-1 클로람페니콜(chloramphenicol)을 배지에 첨가하였다. 세럼 보틀(serum bottle)에 하룻밤 배양한 배양물을 1mL을 접종하고, 37℃에서 교반속도 150 rpm으로 배양하였다. 배양물의 옵티컬 농도 (optical density, OD600) 0.3 AU에 도달했을 때, IPTG(Isopropyl β-D-1-thiogalactopyranoside) 0.5 mM을 첨가하였다. 이소프렌 축적(isoprene accumulation)을 위하여, IPTG 첨가 후 세럼 보틀을 실리콘 플러그로 실링한 후, 30℃ 쉐이킹 인큐베이터(shaking incubator, 150 rpm)로 이송하고 48시간 동안 배양하였다.For culture of strains for isoprene production, a 40 mL semi-defined medium consisting of M9 salt, 5 g L -1 yeast extract, 10 g L -1 essential carbon source and 1 mM thiamine pyrophosphate (TPP) A 160 mL serum bottle was used. For strains containing plasmids, 50 μg mL -1 kanamycin and / or 35 μg mL -1 chloramphenicol were added to the medium as appropriate antibiotics. One mL of the culture obtained by culturing in a serum bottle overnight was inoculated and cultured at 37 DEG C at a stirring speed of 150 rpm. When the optical density (OD 600 ) of the culture reached 0.3 AU, 0.5 mM IPTG (Isopropyl beta -D-1-thiogalactopyranoside) was added. For isoprene accumulation, after adding IPTG, the serum bottle was sealed with a silicon plug, transferred to a shaking incubator (shaking incubator, 150 rpm) at 30 ° C, and cultured for 48 hours.

세포 성장은 OD600 조건으로 측정되었다. 바이오매스 생산(biomass production)의 계산을 위한, 세포건조무게(dry cell weight)의 표준곡선은 OD600과 연관된다. 2 mL 원심분리 튜브(pre-weighed pre-dried centrifuge tubes)에 샘플을 수집하고, 펠렛화하였다(at 8,000 g for 10 minutes). 상층액(supernatant)을 버린 후, 펠릿은 증류수로 두 번 세척하고 105 ℃에서 건조하였다. 하나의 OD600 유닛은 0.29 g L-1 (dry cell weight)이었다. Cell growth was measured at OD 600 conditions. For the calculation of biomass production, the standard curve of dry cell weight is associated with OD 600 . Samples were collected and pelletized (at 8,000 g for 10 minutes) in 2-mL pre-weighed pre-dried centrifuge tubes. After discarding the supernatant, the pellet was washed twice with distilled water and dried at 105 ° C. One OD 600 unit was 0.29 g L -1 (dry cell weight).

이소프렌 분석에 앞서, 배양이 끝난 봉인된 세럼 보틀을 60℃에서 20분간 배양시켰다. 세럼 보틀의 헤드스페이스(headspace)에서 이소프렌의 농도를 FID(flame ionization detector)가 장착된 GC HP6890를 이용하여 분석하였다. 컬럼으로는 HPFFAP column (50m x 20 μm x 34 μm)이 사용되었다. 캐리어 가스로 질소를 이용하였다(선속도 1 mL min-1). 컬럼 온도는 50℃로 유지시켰다. 생성물의 아이덴티티(identity)는 커머셜 스탠다드(commercial standard, Sigma-Aldrich, USA)로 확인하였다.
Prior to isoprene analysis, the incubated sealed bottle was incubated at 60 ° C for 20 minutes. The concentration of isoprene in the headspace of the serum bottle was analyzed by GC HP6890 equipped with a flame ionization detector (FID). An HPFFAP column (50m x 20m x 34m) was used as the column. Nitrogen was used as the carrier gas (linear velocity 1 mL min -1 ). The column temperature was maintained at 50 < 0 > C. The identity of the product was confirmed by commercial standard (Sigma-Aldrich, USA).

탄소원 분석에서, 배양 샘플을 원심분리로 펠릿화하고, 수집된 수성 상층액(aqueous supernatant)을 Bio-Rad Aminex HPX-87H Column (300x7.8 mm)이 장착된 Waters HPLC를 이용하여 분석하였다. 용리액은 (5 mM H2SO4) 흐름 속도 0.4 mL min-1로 펌핑되도록 하였다. 컬럼 온도는 55℃로 유지시켰고 피크는 Waters 2414 리프렉티브 인덱스 디텍터(refractive index detector)로 검출하였다.
In the carbon source assay, the culture samples were pelleted by centrifugation and the collected aqueous supernatant was analyzed using a Waters HPLC equipped with Bio-Rad Aminex HPX-87H column (300 x 7.8 mm). The eluent was pumped (5 mM H 2 SO 4) at a flow rate of 0.4 mL min -1 . The column temperature was maintained at 55 占 폚 and the peaks were detected with a Waters 2414 refractive index detector.

도 1에 도시된 5 가지의 각각 다른 이소프렌 생성 모듈에 따르는 균주를 준비하고(하기 표 2 참조), 각각의 모듈에 따른 이소프렌의 수율을 분석한 결과를 도 2에 나타내었다. 도 2에서 역가(titer)는 최종 이소프렌 농도를 의미한다. 즉, 높을수록 수율이 좋음을 나타낸다. A strain according to each of the five different isoprene formation modules shown in FIG. 1 was prepared (see Table 2 below), and the yield of isoprene according to each module was analyzed. The result is shown in FIG. In Figure 2, the titer refers to the final isoprene concentration. That is, the higher the yield, the better the yield.

도 2에서 모듈 1은 균주 FMIS 1의 EMP; 모듈 2는 균주 FMIS 2의 EDP+PPP; 모듈 3은 균주 FMIS 3의 EDP, 모듈 4는 균주 FMIS 4의 PPP, 모듈 5는 균주 FMIS 5의 Dahms pathway에 의한 결과이다. 모듈 1 ~ 3은 탄소원으로 글루코오스(glucose)를 사용하였고 모듈 4, 5는 D-자일로즈(D-xylose)를 사용하였다. In Figure 2, module 1 is the EMP of strain FMIS 1; Module 2 is the EDP + PPP of strain FMIS 2; Module 3 is the EDP of the strain FMIS 3, module 4 is the PPP of the strain FMIS 4, and module 5 is the result of the Dahms pathway of the strain FMIS 5. Modules 1 and 3 used glucose as a carbon source, and modules 4 and 5 used D-xylose.

실험에 사용된 균주들The strains used in the experiment 균주
(Strain)
Strain
(Strain)
특징(유전형) Features (Genotype) 자원 resource
FMIS 1FMIS 1 E. coli BW25113 (DE3)/pACYC-dxs-ispG-idi-ispS E. coli BW25113 (DE3) / pACYC-dxs-ispG-idi-ispS 직접 제조Direct manufacturing FMIS 2FMIS 2 E. coli BW25113 (DE3)Δpgi/pACYC-dxs-ispG-idi-ispS E. coli BW25113 (DE3)? Pgi / pACYC-dxs-ispG-idi-ispS 직접 제조Direct manufacturing FMIS 3FMIS 3 E. coli BW25113 (DE3)ΔpgiΔgnd/pACYC-dxs-idi-ispG-ispS E. coli BW25113 (DE3) Δpgi Δ gnd / pACYC-dxs-idi-ispG-ispS 직접 제조Direct manufacturing FMIS 4FMIS 4 E. coli W3110 (DE3)/pACYC-dxs-ispG-idi-ispS E. coli W3110 (DE3) / pACYC-dxs-ispG-idi-ispS 직접 제조Direct manufacturing FMIS 5FMIS 5 E. coli W3110(DE3) ΔxylA/pET28a-xdh; pACYC-dxs-ispG-idi-ispS E. coli W3110 (DE3) ΔxylA / pET28a-xdh; pACYC-dxs-ispG-idi-ispS 직접 제조Direct manufacturing

상기 표 2에서 Δ는 유전자가 파괴되었다는 것을 나타낸다. 즉 Δpgi, Δgnd, ΔxylA는 각각 pgi(phospho-6-glucose isomerase), gnd(6-phosphogluconate dehydrogenase), xylA(β-Xylosidase) 유전자가 파괴되었다는 것을 나타낸다.In Table 2 ,? Indicates that the gene has been destroyed. That is Δpgi, Δgnd, ΔxylA indicates that each of pgi (phospho-6-glucose isomerase ), gnd (6-phosphogluconate dehydrogenase), xylA (β-Xylosidase) that the gene is destroyed.

도 1의 이소프렌 생성 모듈에 기재된 유전자 및 효소는 모든 유전자는 특별히 명시한 것을 제외하고는 E. colil로부터 유래되었다. 도 1의 이소프렌 생성 모듈에 기재된 용어는 다음을 참고한다.The genes and enzymes described in the isoprene generation module of Figure 1 are derived from E. coli except that all genes are specifically indicated. The terms used in the isoprene generation module of Fig. 1 refer to the following.

유전자 기호 및 효소:Genetic symbols and enzymes:

dxs, DXP 신타아제 (DXP synthase); dxs, DXP synthase;

ispC, DXP 리덕션이소머라아제 (DXP reductionisomerase); ispC, DXP reduction isomerase (DXP reductionisomerase);

ispD, DXP-ME 신타아제 (DXP-ME synthase0; ispD, DXP-ME synthase (DXP-ME synthase;

ispE, CDP-ME 키나아제 (CDP-ME kinase); ispE, CDP-ME kinase (CDP-ME kinase);

ispF, MECPP 신타아제(MECPP synthase); ispF, MECPP synthase;

ispG, HMBPP 신타아제(HMBPP synthase); ispG, HMBPP synthase;

ispH, HMBPP 리덕타아제 (HMBPP reductase); ispH, HMBPP reductase;

idi, IPP 이소머라아제 (IPP isomerase); idi, IPP isomerase;

ispS, isoprene synthase (P.alba). ispS, isoprene synthase (P.alba).

Pathway intermediates(경로 매개자): Pathway intermediates:

G3P,글리세르알데하이드-3-포스페이트(glyceraldehyde-3-phosphate); G3P, glyceraldehyde-3-phosphate;

DXP, 1-데옥시-D-자일루로스-5-포스페이트 (1-deoxy-D-xylulose 5-phosphate); DXP, 1-deoxy-D-xylulose 5-phosphate;

MEP, 2-C-메틸-D-에리스티톨 4-포스페이트 (2-C-methyl-D-erythritol 4-phosphate); MEP, 2-C-methyl-D-erythritol 4-phosphate;

CDP-ME, 4-다이포스포사이티딜-2-C-메틸-D-에리스티톨 (4-diphosphocytidyl-2-C-methyl-D-erythritol); CDP-ME, 4-diphosphocytidyl-2-C-methyl-D-erythritol;

CDP-MEP, 4-다이포스포사이티딜-2-C-메틸-D-에리스티톨 2-포스페이트(4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate); CDP-MEP, 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate;

MECPP, 2-C-메틸-D-에리스티톨 2,4-사이클로피로포스페이트 ( 2-C-methyl-D-erythritol 2,4-cyclopyrophosphate); MECPP, 2-C-methyl-D-erythritol 2,4-cyclopyrophosphate (2-C-methyl-D-erythritol 2,4-cyclopyrophosphate);

HMBPP, 1-하이드록시-2-메틸-2-(E)-부테닐 4-피로포스페이트 (1-hydroxy-2-methyl-2-(E)-butenyl 4-pyrophosphate); HMBPP, 1 -hydroxy-2-methyl-2- (E) -butenyl 4-pyrophosphate;

IPP, 이소펜테닐 피로포스페이트 (isopentenyl pyrophosphate); IPP, isopentenyl pyrophosphate;

DMAPP, 다이메틸알릴 피로포스페이트 (dimethylallyl pyrophosphate); DMAPP, dimethylallyl pyrophosphate;

DHAP, 다이하이도록시아세톤 3-포스페이트 (dihydroxyacetone 3-phosphate).
DHAP, dihydroxyacetone 3-phosphate.

도 2에서 나타내는 바와 같이, 피딩 모듈(feeding module)로서 EDP(Entner-Doudoroff Pathway, 엔트너도우도로프 경로)와 PPP(Pentose Phosphate Pathway, 5탄당 인산 경로)가 조합된 경로를 사용하는 FMIS2 균주를 이용하는 경우에서 이소프렌 수율이 상당히 증가된다는 것이 확인되었다. 이는 같은 몰의 G3P와 피루베이트가 공급될 때, 더 높은 이소프렌 수율을 나타낼 수 있다는 것을 보여준다. 한편 상기 모듈 3의 경우는, 모듈 2 보다 기질(글루코즈) 소비량이 적어 기질(글루코즈)을 이소프렌으로 전환하는 능력이 제한적일 수 있고, pgi gnd 유전자가 모두 파괴된 형태의 균주이기 때문에 "포스트-글리콜리시스"패스웨이("post-glycolysis" pathway)를 통하여 EDP에 의한 피루베이트 및 G3P 생산에 있어서 균형이 깨지는 문제가 발생할 수 있다. 따라서 결과적으로 FMIS2 균주를 이용하는 모듈 2에 따라 이소프렌을 생성하는 것이 바람직하다.
As shown in FIG. 2, the FMIS2 strain using a pathway combining EDP (Entner-Doudoroff Pathway) and PPP (Pentose Phosphate Pathway) is used as a feeding module It was confirmed that the yield of isoprene was considerably increased. This shows that when the same mole of G3P and pyruvate are fed, they can exhibit higher isoprene yields. On the other hand, in the case of the module 3, since the substrate (glucose) consumption is smaller than that of the module 2 and the ability to convert the substrate (glucose) into isoprene can be limited and the pgi and gnd genes are all broken down, "post- A problem may arise in that the balance in the production of pyruvate and G3P by EDP is broken through a " post-glycolysis "pathway. Consequently, it is preferable to produce isoprene according to Module 2 using the FMIS2 strain.

한국생명공학연구원Korea Biotechnology Research Institute KCTC12539BPKCTC12539BP 2014010820140108

<110> MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION <120> ESCHERICHIA COLI STRAIN FMIS2 FOR PRODUCING ISOPRENE AND USE THEREOF <130> P14-0167/MJU <160> 17 <170> KopatentIn 2.0 <210> 1 <211> 1683 <212> DNA <213> Populus alba <400> 1 atgagatgta gcgtgtccac cgaaaatgtg tctttcaccg aaactgaaac cgaagctcgt 60 cgttctgcga actacgaacc taacagctgg gactatgatt acctgctgtc ctccgacacg 120 gacgagtcca tcgaagtata caaagacaaa gcgaaaaagc tggaagccga agttcgtcgc 180 gagattaata acgaaaaagc agaatttctg accctgctgg aactgattga caacgtccag 240 cgcctgggcc tgggttaccg tttcgagtct gatatccgtg gtgcgctgga tcgcttcgtt 300 tcctccggcg gcttcgatgc ggtaaccaag acttccctgc acggtacggc actgtctttc 360 cgtctgctgc gtcaacacgg ttttgaggtt tctcaggaag cgttcagcgg cttcaaagac 420 caaaacggca acttcctgga gaacctgaag gaagatatca aagctatcct gagcctgtac 480 gaggccagct tcctggctct ggaaggcgaa aacatcctgg acgaggcgaa ggttttcgca 540 atctctcatc tgaaagaact gtctgaagaa aagatcggta aagagctggc agaacaggtg 600 aaccatgcac tggaactgcc actgcatcgc cgtactcagc gtctggaagc agtatggtct 660 atcgaggcct accgtaaaaa ggaggacgcg aatcaggttc tgctggagct ggcaattctg 720 gattacaaca tgatccagtc tgtataccag cgtgatctgc gtgaaacgtc ccgttggtgg 780 cgtcgtgtgg gtctggcgac caaactgcac tttgctcgtg accgcctgat tgagagcttc 840 tactgggccg tgggtgtagc attcgaaccg caatactccg actgccgtaa ctccgtcgca 900 aaaatgtttt ctttcgtaac cattatcgac gatatctacg atgtatacgg caccctggac 960 gaactggagc tgtttactga tgcagttgag cgttgggacg taaacgccat caacgacctg 1020 ccggattaca tgaaactgtg ctttctggct ctgtataaca ctattaacga aatcgcctac 1080 gacaacctga aagataaagg tgagaacatc ctgccgtatc tgaccaaagc ctgggctgac 1140 ctgtgcaacg ctttcctgca agaagccaag tggctgtaca acaaatctac tccgaccttt 1200 gacgactact tcggcaacgc atggaaatcc tcttctggcc cgctgcaact ggtgttcgct 1260 tacttcgctg tcgtgcagaa cattaaaaag gaagagatcg aaaacctgca aaaataccat 1320 gacaccatct ctcgtccttc ccatatcttc cgtctgtgca atgacctggc tagcgcgtct 1380 gcggaaattg cgcgtggtga aaccgcaaat agcgtttctt gttacatgcg cactaaaggt 1440 atctccgaag aactggctac cgaaagcgtg atgaatctga tcgatgaaac ctggaaaaag 1500 atgaacaagg aaaaactggg tggtagcctg ttcgcgaaac cgttcgtgga aaccgcgatc 1560 aacctggcac gtcaatctca ctgcacttat cataacggcg acgcgcatac ctctccggat 1620 gagctgaccc gcaaacgcgt tctgtctgta atcactgaac cgattctgcc gtttgaacgc 1680 taa 1683 <210> 2 <211> 1863 <212> DNA <213> Escherichia coli <400> 2 atgagttttg atattgccaa atacccgacc ctggcactgg tcgactccac ccaggagtta 60 cgactgttgc cgaaagagag tttaccgaaa ctctgcgacg aactgcgccg ctatttactc 120 gacagcgtga gccgttccag cgggcacttc gcctccgggc tgggcacggt cgaactgacc 180 gtggcgctgc actatgtcta caacaccccg tttgaccaat tgatttggga tgtggggcat 240 caggcttatc cgcataaaat tttgaccgga cgccgcgaca aaatcggcac catccgtcag 300 aaaggcggtc tgcacccgtt cccgtggcgc ggcgaaagcg aatatgacgt attaagcgtc 360 gggcattcat caacctccat cagtgccgga attggtattg cggttgctgc cgaaaaagaa 420 ggcaaaaatc gccgcaccgt ctgtgtcatt ggcgatggcg cgattaccgc aggcatggcg 480 tttgaagcga tgaatcacgc gggcgatatc cgtcctgata tgctggtgat tctcaacgac 540 aatgaaatgt cgatttccga aaatgtcggc gcgctcaaca accatctggc acagctgctt 600 tccggtaagc tttactcttc actgcgcgaa ggcgggaaaa aagttttctc tggcgtgccg 660 ccaattaaag agctgctcaa acgcaccgaa gaacatatta aaggcatggt agtgcctggc 720 acgttgtttg aagagctggg ctttaactac atcggcccgg tggacggtca cgatgtgctg 780 gggcttatca ccacgctaaa gaacatgcgc gacctgaaag gcccgcagtt cctgcatatc 840 atgaccaaaa aaggtcgtgg ttatgaaccg gcagaaaaag acccgatcac tttccacgcc 900 gtgcctaaat ttgatccctc cagcggttgt ttgccgaaaa gtagcggcgg tttgccgagc 960 tattcaaaaa tctttggcga ctggttgtgc gaaacggcag cgaaagacaa caagctgatg 1020 gcgattactc cggcgatgcg tgaaggttcc ggcatggtcg agttttcacg taaattcccg 1080 gatcgctact tcgacgtggc aattgccgag caacacgcgg tgacctttgc tgcgggtctg 1140 gcgattggtg ggtacaaacc cattgtcgcg atttactcca ctttcctgca acgcgcctat 1200 gatcaggtgc tgcatgacgt ggcgattcaa aagcttccgg tcctgttcgc catcgaccgc 1260 gcgggcattg ttggtgctga cggtcaaacc catcagggtg cttttgatct ctcttacctg 1320 cgctgcatac cggaaatggt cattatgacc ccgagcgatg aaaacgaatg tcgccagatg 1380 ctctataccg gctatcacta taacgatggc ccgtcagcgg tgcgctaccc gcgtggcaac 1440 gcggtcggcg tggaactgac gccgctggaa aaactaccaa ttggcaaagg cattgtgaag 1500 cgtcgtggcg agaaactggc gatccttaac tttggtacgc tgatgccaga agcggcgaaa 1560 gtcgccgaat cgctgaacgc cacgctggtc gatatgcgtt ttgtgaaacc gcttgatgaa 1620 gcgttaattc tggaaatggc cgccagccat gaagcgctgg tcaccgtaga agaaaacgcc 1680 attatgggcg gcgcaggcag cggcgtgaac gaagtgctga tggcccatcg taaaccagta 1740 cccgtgctga acattggcct gccggacttc tttattccgc aaggaactca ggaagaaatg 1800 cgcgccgaac tcggcctcga tgccgctggt atggaagcca aaatcaaggc ctggctggca 1860 taa 1863 <210> 3 <211> 549 <212> DNA <213> Escherichia coli <400> 3 atgcaaacgg aacacgtcat tttattgaat gcacagggag ttcccacggg tacgctggaa 60 aagtatgccg cacacacggc agacacccgc ttacatctcg cgttctccag ttggctgttt 120 aatgccaaag gacaattatt agttacccgc cgcgcactga gcaaaaaagc atggcctggc 180 gtgtggacta actcggtttg tgggcaccca caactgggag aaagcaacga agacgcagtg 240 atccgccgtt gccgttatga gcttggcgtg gaaattacgc ctcctgaatc tatctatcct 300 gactttcgct accgcgccac cgatccgagt ggcattgtgg aaaatgaagt gtgtccggta 360 tttgccgcac gcaccactag tgcgttacag atcaatgatg atgaagtgat ggattatcaa 420 tggtgtgatt tagcagatgt attacacggt attgatgcca cgccgtgggc gttcagtccg 480 tggatggtga tgcaggcgac aaatcgcgaa gccagaaaac gattatctgc atttacccag 540 cttaaataa 549 <210> 4 <211> 1119 <212> DNA <213> Escherichia coli <400> 4 atgcataacc aggctccaat tcaacgtaga aaatcaacac gtatttacgt tgggaatgtg 60 ccgattggcg atggtgctcc catcgccgta cagtccatga ccaatacgcg tacgacagac 120 gtcgaagcaa cggtcaatca aatcaaggcg ctggaacgcg ttggcgctga tatcgtccgt 180 gtatccgtac cgacgatgga cgcggcagaa gcgttcaaac tcatcaaaca gcaggttaac 240 gtgccgctgg tggctgacat ccacttcgac tatcgcattg cgctgaaagt agcggaatac 300 ggcgtcgatt gtctgcgtat taaccctggc aatatcggta atgaagagcg tattcgcatg 360 gtggttgact gtgcgcgcga taaaaacatt ccgatccgta ttggcgttaa cgccggatcg 420 ctggaaaaag atctgcaaga aaagtatggc gaaccgacgc cgcaggcgtt gctggaatct 480 gccatgcgtc atgttgatca tctcgatcgc ctgaacttcg atcagttcaa agtcagcgtg 540 aaagcgtctg acgtcttcct cgctgttgag tcttatcgtt tgctggcaaa acagatcgat 600 cagccgttgc atctggggat caccgaagcc ggtggtgcgc gcagcggggc agtaaaatcc 660 gccattggtt taggtctgct gctgtctgaa ggcatcggcg acacgctgcg cgtatcgctg 720 gcggccgatc cggtcgaaga gatcaaagtc ggtttcgata ttttgaaatc gctgcgtatc 780 cgttcgcgag ggatcaactt catcgcctgc ccgacctgtt cgcgtcagga atttgatgtt 840 atcggtacgg ttaacgcgct ggagcaacgc ctggaagata tcatcactcc gatggacgtt 900 tcgattatcg gctgcgtggt gaatggccca ggtgaggcgc tggtttctac actcggcgtc 960 accggcggca acaagaaaag cggcctctat gaagatggcg tgcgcaaaga ccgtctggac 1020 aacaacgata tgatcgacca gctggaagca cgcattcgtg cgaaagccag tcagctggac 1080 gaagcgcgtc gaattgacgt tcagcaggtt gaaaaataa 1119 <210> 5 <211> 1650 <212> DNA <213> Escherichia coli <400> 5 atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat 60 gaaatgaaag acgttacgat cgccgatctt tttgctaaag acggcgatcg tttttctaag 120 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa 180 gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg 300 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc 360 aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa 420 ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc 480 ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc 600 acgctgttct tggtagcatc taaaaccttc accactcagg aaactatgac caacgcccat 660 agcgcgcgtg actggttcct gaaagcggca ggtgatgaaa aacacgttgc aaaacacttt 720 gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg 780 ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 840 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg 900 gacaagcatt tctccaccac gcctgccgag aaaaacctgc ctgtactgct ggcgctgatt 960 ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1020 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat 1080 gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1140 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg 1200 tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1320 gagcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc 1380 aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg 1500 aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt 1560 ctgccagagc tgaaagatga taaagaaatc agcagccacg atagctcgac caatggtctg 1620 attaaccgct ataaagcgtg gcgcggttaa 1650 <210> 6 <211> 61 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for kpgi <400> 6 cttctcagaa gcgattattt ccggtgagtg gaaaggttat catatgaata tcctccttag 60 t 61 <210> 7 <211> 61 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for kpgi <400> 7 taccgttacg gtcaacatac ttaccgttgg actccatatt gtgtaggctg gagctgcttc 60 g 61 <210> 8 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for ispS <400> 8 cgatccatgg atgagatgta gcgtgt 26 <210> 9 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for ispS <400> 9 cgtagatctt tagcgaacaa acggc 25 <210> 10 <211> 29 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for dxs <400> 10 cgtcggatcc atgagttttg atattgcca 29 <210> 11 <211> 28 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for dxs <400> 11 cgggaattct tatgccagcc aggccttg 28 <210> 12 <211> 34 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for idi <400> 12 cgtagatcta aggagatata atgcaaacgg aaca 34 <210> 13 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for idi <400> 13 cggctcgagt tatttaagct gggt 24 <210> 14 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for ispG <400> 14 cacgagctca ggagatatac catgcataac caggctccaa t 41 <210> 15 <211> 32 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for ispG <400> 15 cgtgagctct tatttttcaa cctgctgaac gt 32 <210> 16 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for pgi <400> 16 tactccaaaa accgcatcac 20 <210> 17 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for pgi <400> 17 cgaagaagtt agacagcagt 20 <110> MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION <120> ESCHERICHIA COLI STRAIN FMIS2 FOR PRODUCING ISOPRENE AND USE          THEREOF <130> P14-0167 / MJU <160> 17 <170> Kopatentin 2.0 <210> 1 <211> 1683 <212> DNA <213> Populus alba <400> 1 atgagatgta gcgtgtccac cgaaaatgtg tctttcaccg aaactgaaac cgaagctcgt 60 cgttctgcga actacgaacc taacagctgg gactatgatt acctgctgtc ctccgacacg 120 gacgagtcca tcgaagtata caaagacaaa gcgaaaaagc tggaagccga agttcgtcgc 180 gagattaata acgaaaaagc agaatttctg accctgctgg aactgattga caacgtccag 240 cgcctgggcc tgggttaccg tttcgagtct gatatccgtg gtgcgctgga tcgcttcgtt 300 tcctccggcg gcttcgatgc ggtaaccaag acttccctgc acggtacggc actgtctttc 360 cgtctgctgc gtcaacacgg ttttgaggtt tctcaggaag cgttcagcgg cttcaaagac 420 caaaacggca acttcctgga gaacctgaag gaagatatca aagctatcct gagcctgtac 480 gaggccagct tcctggctct ggaaggcgaa aacatcctgg acgaggcgaa ggttttcgca 540 atctctcatc tgaaagaact gtctgaagaa aagatcggta aagagctggc agaacaggtg 600 aaccatgcac tggaactgcc actgcatcgc cgtactcagc gtctggaagc agtatggtct 660 atcgaggcct accgtaaaaa ggaggacgcg aatcaggttc tgctggagct ggcaattctg 720 gattacaaca tgatccagtc tgtataccag cgtgatctgc gtgaaacgtc ccgttggtgg 780 cgtcgtgtgg gtctggcgac caaactgcac tttgctcgtg accgcctgat tgagagcttc 840 tactgggccg tgggtgtagc attcgaaccg caatactccg actgccgtaa ctccgtcgca 900 aaaatgtttt ctttcgtaac cattatcgac gatatctacg atgtatacgg caccctggac 960 gaactggagc tgtttactga tgcagttgag cgttgggacg taaacgccat caacgacctg 1020 ccggattaca tgaaactgtg ctttctggct ctgtataaca ctattaacga aatcgcctac 1080 gacaacctga aagataaagg tgagaacatc ctgccgtatc tgaccaaagc ctgggctgac 1140 ctgtgcaacg ctttcctgca agaagccaag tggctgtaca acaaatctac tccgaccttt 1200 gacgactact tcggcaacgc atggaaatcc tcttctggcc cgctgcaact ggtgttcgct 1260 tacttcgctg tcgtgcagaa cattaaaaag gaagagatcg aaaacctgca aaaataccat 1320 gacaccatct ctcgtccttc ccatatcttc cgtctgtgca atgacctggc tagcgcgtct 1380 gcggaaattg cgcgtggtga aaccgcaaat agcgtttctt gttacatgcg cactaaaggt 1440 atctccgaag aactggctac cgaaagcgtg atgaatctga tcgatgaaac ctggaaaaag 1500 atgaacaagg aaaaactggg tggtagcctg ttcgcgaaac cgttcgtgga aaccgcgatc 1560 aacctggcac gtcaatctca ctgcacttat cataacggcg acgcgcatac ctctccggat 1620 gagctgaccc gcaaacgcgt tctgtctgta atcactgaac cgattctgcc gtttgaacgc 1680 taa 1683 <210> 2 <211> 1863 <212> DNA <213> Escherichia coli <400> 2 atggttttg atattgccaa atacccgacc ctggcactgg tcgactccac ccaggagtta 60 cgactgttgc cgaaagagag tttaccgaaa ctctgcgacg aactgcgccg ctatttactc 120 gacagcgtga gccgttccag cgggcacttc gcctccgggc tgggcacggt cgaactgacc 180 gtggcgctgc actatgtcta caacaccccg tttgaccaat tgatttggga tgtggggcat 240 caggcttatc cgcataaaat tttgaccgga cgccgcgaca aaatcggcac catccgtcag 300 aaaggcggtc tgcacccgtt cccgtggcgc ggcgaaagcg aatatgacgt attaagcgtc 360 gggcattcat caacctccat cagtgccgga attggtattg cggttgctgc cgaaaaagaa 420 ggcaaaaatc gccgcaccgt ctgtgtcatt ggcgatggcg cgattaccgc aggcatggcg 480 tttgaagcga tgaatcacgc gggcgatatc cgtcctgata tgctggtgat tctcaacgac 540 aatgaaatgt cgatttccga aaatgtcggc gcgctcaaca accatctggc acagctgctt 600 tccggtaagc tttactcttc actgcgcgaa ggcgggaaaa aagttttctc tggcgtgccg 660 ccaattaaag agctgctcaa acgcaccgaa gaacatatta aaggcatggt agtgcctggc 720 acgttgtttg aagagctggg ctttaactac atcggcccgg tggacggtca cgatgtgctg 780 gggcttatca ccacgctaaa gaacatgcgc gacctgaaag gcccgcagtt cctgcatatc 840 atgaccaaaa aaggtcgtgg ttatgaaccg gcagaaaaag acccgatcac tttccacgcc 900 gtgcctaaat ttgatccctc cagcggttgt ttgccgaaaa gtagcggcgg tttgccgagc 960 tattcaaaaa tctttggcga ctggttgtgc gaaacggcag cgaaagacaa caagctgatg 1020 gcgattactc cggcgatgcg tgaaggttcc ggcatggtcg agttttcacg taaattcccg 1080 gatcgctact tcgacgtggc aattgccgag caacacgcgg tgacctttgc tgcgggtctg 1140 gcgattggtg ggtacaaacc cattgtcgcg atttactcca ctttcctgca acgcgcctat 1200 gatcaggtgc tgcatgacgt ggcgattcaa aagcttccgg tcctgttcgc catcgaccgc 1260 gcgggcattg ttggtgctga cggtcaaacc catcagggtg cttttgatct ctcttacctg 1320 cgctgcatac cggaaatggt cattatgacc ccgagcgatg aaaacgaatg tcgccagatg 1380 ctctataccg gctatcacta taacgatggc ccgtcagcgg tgcgctaccc gcgtggcaac 1440 gcggtcggcg tggaactgac gccgctggaa aaactaccaa ttggcaaagg cattgtgaag 1500 cgtcgtggcg agaaactggc gatccttaac tttggtacgc tgatgccaga agcggcgaaa 1560 gtcgccgaat cgctgaacgc cacgctggtc gatatgcgtt ttgtgaaacc gcttgatgaa 1620 gcgttaattc tggaaatggc cgccagccat gaagcgctgg tcaccgtaga agaaaacgcc 1680 attatgggcg gcgcaggcag cggcgtgaac gaagtgctga tggcccatcg taaaccagta 1740 cccgtgctga acattggcct gccggacttc tttattccgc aaggaactca ggaagaaatg 1800 cgcgccgaac tcggcctcga tgccgctggt atggaagcca aaatcaaggc ctggctggca 1860 taa 1863 <210> 3 <211> 549 <212> DNA <213> Escherichia coli <400> 3 atgcaaacgg aacacgtcat tttattgaat gcacagggag ttcccacggg tacgctggaa 60 aagtatgccg cacacacggc agacacccgc ttacatctcg cgttctccag ttggctgttt 120 aatgccaaag gacaattatt agttacccgc cgcgcactga gcaaaaaagc atggcctggc 180 gtgtggacta actcggtttg tgggcaccca caactgggag aaagcaacga agacgcagtg 240 atccgccgtt gccgttatga gcttggcgtg gaaattacgc ctcctgaatc tatctatcct 300 gactttcgct accgcgccac cgatccgagt ggcattgtgg aaaatgaagt gtgtccggta 360 tttgccgcac gcaccactag tgcgttacag atcaatgatg atgaagtgat ggattatcaa 420 tggtgtgatt tagcagatgt attacacggt attgatgcca cgccgtgggc gttcagtccg 480 tggatggtga tgcaggcgac aaatcgcgaa gccagaaaac gattatctgc atttacccag 540 cttaaataa 549 <210> 4 <211> 1119 <212> DNA <213> Escherichia coli <400> 4 atgcataacc aggctccaat tcaacgtaga aaatcaacac gtatttacgt tgggaatgtg 60 ccgattggcg atggtgctcc catcgccgta cagtccatga ccaatacgcg tacgacagac 120 gtcgaagcaa cggtcaatca aatcaaggcg ctggaacgcg ttggcgctga tatcgtccgt 180 gtatccgtac cgacgatgga cgcggcagaa gcgttcaaac tcatcaaaca gcaggttaac 240 gtgccgctgg tggctgacat ccacttcgac tatcgcattg cgctgaaagt agcggaatac 300 ggcgtcgatt gtctgcgtat taaccctggc aatatcggta atgaagagcg tattcgcatg 360 gtggttgact gtgcgcgcga taaaaacatt ccgatccgta ttggcgttaa cgccggatcg 420 ctggaaaaag atctgcaaga aaagtatggc gaaccgacgc cgcaggcgtt gctggaatct 480 gccatgcgtc atgttgatca tctcgatcgc ctgaacttcg atcagttcaa agtcagcgtg 540 aaagcgtctg acgtcttcct cgctgttgag tcttatcgtt tgctggcaaa acagatcgat 600 cagccgttgc atctggggat caccgaagcc ggtggtgcgc gcagcggggc agtaaaatcc 660 gccattggtt taggtctgct gctgtctgaa ggcatcggcg acacgctgcg cgtatcgctg 720 gcggccgatc cggtcgaaga gatcaaagtc ggtttcgata ttttgaaatc gctgcgtatc 780 cgttcgcgag ggatcaactt catcgcctgc ccgacctgtt cgcgtcagga atttgatgtt 840 atcggtacgg ttaacgcgct ggagcaacgc ctggaagata tcatcactcc gatggacgtt 900 tcgattatcg gctgcgtggt gaatggccca ggtgaggcgc tggtttctac actcggcgtc 960 accggcggca acaagaaaag cggcctctat gaagatggcg tgcgcaaaga ccgtctggac 1020 aacaacgata tgatcgacca gctggaagca cgcattcgtg cgaaagccag tcagctggac 1080 gaagcgcgtc gaattgacgt tcagcaggtt gaaaaataa 1119 <210> 5 <211> 1650 <212> DNA <213> Escherichia coli <400> 5 atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat 60 gaaatgaaag acgttacgat cgccgatctt tttgctaaag acggcgatcg tttttctaag 120 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa 180 gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg 300 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc 360 aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa 420 ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc 480 ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc 600 acgctgttct tggtagcatc taaaaccttc accactcagg aaactatgac caacgcccat 660 agcgcgcgtg actggttcct gaaagcggca ggtgatgaaa aacacgttgc aaaacacttt 720 gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg 780 ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 840 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg 900 gacaagcatt tctccaccac gcctgccgag aaaaacctgc ctgtactgct ggcgctgatt 960 ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1020 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat 1080 gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1140 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg 1200 tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1320 ggcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc 1380 aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg 1500 aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt 1560 ctgccagagc tgaaagatga taaagaaatc agcagccacg atagctcgac caatggtctg 1620 attaaccgct ataaagcgtg gcgcggttaa 1650 <210> 6 <211> 61 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for kpgi <400> 6 cttctcagaa gcgattattt ccggtgagtg gaaaggttat catatgaata tcctccttag 60 t 61 <210> 7 <211> 61 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for kpgi <400> 7 taccgttacg gtcaacatac ttaccgttgg actccatatt gtgtaggctg gagctgcttc 60 g 61 <210> 8 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for ispS <400> 8 cgatccatgg atgagatgta gcgtgt 26 <210> 9 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for ispS <400> 9 cgtagatctt tagcgaacaa acggc 25 <210> 10 <211> 29 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for dxs <400> 10 cgtcggatcc atgagttttg atattgcca 29 <210> 11 <211> 28 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for dxs <400> 11 cgggaattct tatgccagcc aggccttg 28 <210> 12 <211> 34 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for idi <400> 12 cgtagatcta aggagatata atgcaaacgg aaca 34 <210> 13 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for idi <400> 13 cggctcgagt tatttaagct gggt 24 <210> 14 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for ispG <400> 14 cacgagctca ggagatatac catgcataac caggctccaa t 41 <210> 15 <211> 32 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for ispG <400> 15 cgtgagctct tatttttcaa cctgctgaac gt 32 <210> 16 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> Forward primer for pgi <400> 16 tactccaaaa accgcatcac 20 <210> 17 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> Reverse primer for pgi <400> 17 cgaagaagtt agacagcagt 20

Claims (20)

수탁번호 KCTC 12539BP로 기탁된, 이소프렌 생산능이 있는 대장균 균주 FMIS2.
Escherichia coli strain FMIS2 deposited with Accession No. KCTC 12539BP, isoprene-producing.
청구항 1에 있어서,
상기 대장균 균주 FMIS2는 포스포-6-글루코즈-이성화효소(pgi) 유전자가 녹아웃된 것을 특징으로 하는 대장균 균주 FMIS2.
The method according to claim 1,
Wherein the E. coli strain FMIS2 is knocked out of a phospho-6-glucose-isomerase ( pgi ) gene.
청구항 2에 있어서,
상기 pgi 유전자는 서열번호 5의 염기서열로 구성되는 것을 특징으로 하는 대장균 균주 FMIS2.
The method of claim 2,
Wherein the pgi gene comprises the nucleotide sequence of SEQ ID NO: 5.
청구항 1에 있어서,
상기 대장균 균주 FMIS2는 이소프렌 신타아제 유전자를 포함하는 것을 특징으로 하는 대장균 균주 FMIS2.
The method according to claim 1,
The Escherichia coli strain FMIS2 comprises an isoprene synthase gene.
청구항 4에 있어서,
상기 이소프렌 신타아제 유전자는 서열번호 1의 염기서열로 구성되는 것을 특징으로 하는 대장균 균주 FMIS2.
The method of claim 4,
Wherein said isoprene synthase gene comprises the nucleotide sequence of SEQ ID NO: 1.
청구항 1에 있어서,
상기 대장균 균주 FMIS2는 DXP(1-deoxy-D-xylulose 5-phosphate) 신타아제 유전자를 포함하는 것을 특징으로 하는 대장균 균주 FMIS2.
The method according to claim 1,
Wherein said Escherichia coli strain FMIS2 comprises a DXP (1-deoxy-D-xylulose 5-phosphate) synthase gene.
청구항 6에 있어서,
상기 DXP 신타아제 유전자는 서열번호 2의 염기서열로 구성되는 것을 특징으로 하는 대장균 균주 FMIS2.
The method of claim 6,
Wherein the DXP synthase gene comprises the nucleotide sequence of SEQ ID NO: 2.
청구항 1에 있어서,
상기 대장균 균주 FMIS2는 IPP(isopentenyl pyrophosphate) 이소머라아제 유전자를 포함하는 것을 특징으로 하는 대장균 균주 FMIS2.
The method according to claim 1,
The Escherichia coli strain FMIS2 comprises an IPP (isopentenyl pyrophosphate) isomerase gene.
청구항 8에 있어서,
상기 IPP 이소머라아제 유전자는 서열번호 3의 염기서열로 구성되는 것을 특징으로 하는 대장균 균주 FMIS2.
The method of claim 8,
Wherein the IPP isomerase gene comprises the nucleotide sequence of SEQ ID NO: 3.
청구항 1에 있어서,
상기 대장균 균주 FMIS2는 HMBPP(1-hydroxy-2-methyl-2-(E)-butenyl 4-pyrophosphate) 신타아제 유전자를 포함하는 것을 특징으로 하는 대장균 균주 FMIS2.
The method according to claim 1,
Wherein the Escherichia coli strain FMIS2 comprises an HMBPP (1-hydroxy-2-methyl-2- (E) -butenyl 4-pyrophosphate) synthase gene.
청구항 10에 있어서,
상기 HMBPP 신타아제 유전자는 서열번호 4의 염기서열로 구성되는 것을 특징으로 하는 대장균 균주 FMIS2.
The method of claim 10,
Wherein the HMBPP synthase gene comprises the nucleotide sequence of SEQ ID NO: 4.
대장균에서 포스포-6-글루코즈-이성화효소(phospho-6-glucose isomerase, pgi) 유전자를 녹아웃시키는 단계(단계 1);
이소프렌 신타아제 유전자(ispS)와 벡터 pACYCDuet-1를 제한효소 처리하고 리가아제로 결합하여 pACYC-ispS를 제조하는 단계(단계 2);
상기 pACYC-ispS와 DXP 신타아제 유전자(dxs)를 제한효소 처리하고 리가아제로 결합하여 pACYC-dxs-ispS를 제조하는 단계(단계 3);
상기 pACYC-dxs-ispS와 IPP 이소머라아제 유전자(IPP isomerase gene, idi)를 제한효소 처리하고 리가아제로 결합하여 pACYC-dxs-idi-ispS를 제조하는 단계(단계 4);
상기 pACYC-dxs-idi-ispS와 HMBPP 신타아제 유전자(ispG)를 제한효소 처리하고 리가아제로 결합하여 pACYC-dxs-ispG-idi-ispS를 제조하는 단계(단계 5); 및
상기 pACYC-dxs-ispG-idi-ispS를 단계 1을 거친 대장균에 형질도입하는 단계(단계 6)를 포함하는 대장균 균주 FMIS2 제조방법.
Knocking out the phospho-6-glucose isomerase ( pgi ) gene in E. coli (step 1);
A step of restriction enzyme treatment of the vector pACYCDuet-1 with isoprene synthase gene ( ispS ) and ligating with ligase to prepare pACYC-ispS (step 2);
Step (step 3) of treating pACYC-ispS and DXP synthase gene ( dxs ) with restriction enzyme and ligating with ligase to prepare pACYC-dxs-ispS ;
(Step 4) of producing pACYC-dxs-idi-ispS by restriction enzyme treatment of the pACYC-dxs-ispS and IPP isomerase gene ( idi ) and ligating with the ligase;
(Step 5) of producing pACYC-dxs-ispG-idi-ispS by digesting pACYC-dxs-idi-ispS and HMBPP synthase gene ( ispG ) with restriction enzymes and ligating them with ligase; And
(Step 6) of introducing pACYC-dxs-ispG-idi-ispS into Escherichia coli obtained in step 1.
청구항 12에서,
상기 단계 2의 제한효소는 NdeI 및 BglII인 것을 특징으로 하는 대장균 균주 FMIS2 제조방법.
In claim 12,
Wherein the restriction enzymes of step 2 are Nde I and Bgl II.
청구항 12에서,
상기 단계 3의 제한효소는 BamHI 및 EcoRI인 것을 특징으로 하는 대장균 균주 FMIS2 제조방법.
In claim 12,
Wherein the restriction enzymes of step 3 are Bam HI and Eco RI.
청구항 12에서,
상기 단계 4의 제한효소는 BglII 및 XhoII인 것을 특징으로 하는 대장균 균주 FMIS2 제조방법.
In claim 12,
Wherein the restriction enzymes of step 4 are Bgl II and Xho II.
청구항 12에서,
상기 단계 5의 제한효소는 SacI인 것을 특징으로 하는 대장균 균주 FMIS2 제조방법.
In claim 12,
Wherein the restriction enzyme of step 5 is Sac I.
청구항 12에서,
상기 단계 1의 녹아웃은 유전자 파괴 카세트를 이용하여 수행되는 것을 특징으로 하는 대장균 균주 FMIS2 제조방법.
In claim 12,
Wherein the knockout of step 1 is carried out using a gene disruption cassette.
청구항 1의 균주를 배양하여 배양액을 제조하는 단계: 및
상기 배양액으로부터 생성된 이소프렌을 회수하는 단계를 포함하는 이소프렌 생산방법.
Culturing the strain of claim 1 to produce a culture medium; and
And recovering the isoprene produced from the culture liquid.
청구항 18에 있어서,
상기 배양은 30 ~ 40 ℃에서 36 ~ 72시간 수행되는 것을 특징으로 하는 이소프렌 생산방법.
19. The method of claim 18,
Wherein the culturing is performed at 30 to 40 DEG C for 36 to 72 hours.
청구항 18에 있어서,
상기 배양은 탄소원을 포함하는 배지에서 수행되는 것을 특징으로 하는 이소프렌 생산방법.
19. The method of claim 18,
Wherein the culture is carried out in a medium containing a carbon source.
KR1020140083934A 2014-07-04 2014-07-04 Escherichia coli strain fmis2 for producing isoprene and use thereof KR101582259B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140083934A KR101582259B1 (en) 2014-07-04 2014-07-04 Escherichia coli strain fmis2 for producing isoprene and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140083934A KR101582259B1 (en) 2014-07-04 2014-07-04 Escherichia coli strain fmis2 for producing isoprene and use thereof

Publications (1)

Publication Number Publication Date
KR101582259B1 true KR101582259B1 (en) 2016-01-04

Family

ID=55164414

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140083934A KR101582259B1 (en) 2014-07-04 2014-07-04 Escherichia coli strain fmis2 for producing isoprene and use thereof

Country Status (1)

Country Link
KR (1) KR101582259B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505930A (en) * 2017-02-03 2020-02-27 マナス バイオ インコーポレイテッド Metabolic engineering for microbial production of terpenoid products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525816A (en) * 2007-05-01 2010-07-29 アシドフィル,エルエルシー Direct conversion of carbon dioxide to hydrocarbons using metabolically modified photosynthetic microorganisms
KR20110020234A (en) 2008-04-23 2011-03-02 다니스코 유에스 인크. Isoprene synthase variants for improved microbial production of isoprene
KR20140035097A (en) * 2012-09-13 2014-03-21 건국대학교 산학협력단 Engineered esherichia coli expressing uridine-diphosphate(udp)-dependent glycosyltransferase and synthesis of quercetin 3-o-glucoside-7-o-rhamnoside using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525816A (en) * 2007-05-01 2010-07-29 アシドフィル,エルエルシー Direct conversion of carbon dioxide to hydrocarbons using metabolically modified photosynthetic microorganisms
KR20110020234A (en) 2008-04-23 2011-03-02 다니스코 유에스 인크. Isoprene synthase variants for improved microbial production of isoprene
KR20140035097A (en) * 2012-09-13 2014-03-21 건국대학교 산학협력단 Engineered esherichia coli expressing uridine-diphosphate(udp)-dependent glycosyltransferase and synthesis of quercetin 3-o-glucoside-7-o-rhamnoside using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 1. BIORESOURCE TECHNOLOGY *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505930A (en) * 2017-02-03 2020-02-27 マナス バイオ インコーポレイテッド Metabolic engineering for microbial production of terpenoid products
JP7433048B2 (en) 2017-02-03 2024-02-19 マナス バイオ インコーポレイテッド Metabolic engineering for microbial production of terpenoid products

Similar Documents

Publication Publication Date Title
CN110229772B (en) Recombinant bacillus subtilis for increasing yield of hepta-menadione and application thereof
TWI427149B (en) Improved isoprene production using the dxp and mva pathway
JP6254728B2 (en) Isoprene synthase, polynucleotide encoding the same, and method for producing isoprene monomer
KR101827230B1 (en) Method for the preparation of diols
CN102559769B (en) Reconstituted cell for isoprene and preparation method of reconstituted cell
EA010179B1 (en) Biochemical synthesis of 1.4-butanediamine
EP2540835B1 (en) PROCESS FOR PRODUCTION OF POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYHEXANOATE) USING A GENETICALLY MODIFIED CUPRIAVIDUS NECATOR HAVING AN ENOYL-CoA HYDRATASE GENE INTRODUCED THEREIN
BRPI0713105A2 (en) method to produce an isoprenoid, and, host cell
CN110157654B (en) Bacillus natto recombinant strain and construction method and application thereof
WO2018107880A1 (en) New approach for synthesizing acetyl coenzyme a and derivative product thereof using glycolaldehyde
KR20130041166A (en) Method for the preparation of 1,3-propanediol from sucrose
US11254709B2 (en) Method for promoting Bacillus subtilis to synthesize surfactin based on multi-gene synergy
JP2023156360A (en) Xylitol-producing metschnikowia species
JP2023504769A (en) Recombinant Corynebacterium glutamicum for efficient synthesis of high-purity hyaluronic acid and its oligosaccharides
CN117701486B (en) Recombinant bacterium for producing PHA and construction method and application thereof
Zhang et al. SWAN
CN102533870B (en) Method, enzyme system and recombinant cell for synthesizing isoprene by biological method, and application thereof
WO2014045781A1 (en) Method for producing butanediol
KR101582259B1 (en) Escherichia coli strain fmis2 for producing isoprene and use thereof
JPWO2016084963A1 (en) Method for producing isoprenoid compound
WO2023124062A1 (en) METHOD FOR PREPARING γ-PGA COUPLED WITH ATP REGENERATION ENZYME AND POLY(GLUTAMIC ACID) SYNTHETASE
KR20160045001A (en) Engineered escherichia coli producing isoprene from d-galctose, method for manufacturing the same and method for isoprene production using the same
Kikuchi et al. One-pot conversion of levan prepared from Serratia levanicum NN to difructose anhydride IV by Arthrobacter nicotinovorans levan fructotransferase
KR102286815B1 (en) Transformed methanotrophs for producing a-humulene production from methane and uses thereof
WO2015080273A1 (en) Method for producing isoprene monomer

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 4