KR101578651B1 - Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same - Google Patents

Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same Download PDF

Info

Publication number
KR101578651B1
KR101578651B1 KR1020150077075A KR20150077075A KR101578651B1 KR 101578651 B1 KR101578651 B1 KR 101578651B1 KR 1020150077075 A KR1020150077075 A KR 1020150077075A KR 20150077075 A KR20150077075 A KR 20150077075A KR 101578651 B1 KR101578651 B1 KR 101578651B1
Authority
KR
South Korea
Prior art keywords
gene
resveratrol
recombinant
sbromt3syn
seq
Prior art date
Application number
KR1020150077075A
Other languages
Korean (ko)
Other versions
KR20150065652A (en
Inventor
김차영
정유정
정형재
김중수
안철한
우수경
윤병대
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020150077075A priority Critical patent/KR101578651B1/en
Publication of KR20150065652A publication Critical patent/KR20150065652A/en
Application granted granted Critical
Publication of KR101578651B1 publication Critical patent/KR101578651B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components

Abstract

본 발명은 스틸벤 화합물을 생산하는 재조합 미생물 및 이를 이용한 스틸벤 화합물의 생산 방법에 관한 것으로, 코돈 최적화된 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자로 형질전환된 재조합 미생물 및 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자, SbROMT3syn 또는 VrROMTsyn (synthetic Vitis riparia resveratrol O-methyltransferase) 유전자 및 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자가 동시에 형질전환된 재조합 미생물을 이용하면, 빛과 산소에 노출되는 환경에서 향상된 안정성을 가지며, 우수한 항암, 항바이러스, 항염증, 항노화 및 항산화 효과를 나타내는 메틸화된 레스베라트롤 유도체인 피노스틸벤 및 프테로스틸벤을 대량 생산할 수 있을 것으로 기대된다.The present invention relates to a recombinant microorganism producing a stilbene compound and a method for producing a stilbene compound using the recombinant microorganism, wherein a codon-optimized SbROMT3syn (synthetic Sorghum bicolor Recombinant microorganisms transformed with the resveratrol O- methyltransferase 3) gene and ScCCL ( Streptomyces coelicolor carboxyl CoA ligase) Using recombinant microorganisms transformed with the gene, SbROMT3syn or VrROMTsyn (synthetic Vitis riparia resveratrol O- methyltransferase ) gene and RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) gene, It is expected to be able to mass-produce methylated resveratrol derivatives, pinostilbene and phthalostilbene, which exhibit anticancer, antiviral, anti-inflammatory, anti-aging and antioxidant effects.

Description

스틸벤 화합물을 생산하는 재조합 미생물 및 이를 이용한 스틸벤 화합물의 생산 방법 {Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same}Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same}

본 발명은 스틸벤 화합물을 생산하는 재조합 미생물 및 이를 이용한 스틸벤 화합물의 생산 방법에 관한 것으로, 더욱 상세하게는 수수 유래의 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자를 포함하는 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물; ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자, VrROMTsyn (synthetic Vitis riparia resveratrol O-methyltransferase) 유전자 또는 SbROMT3syn 유전자 및 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물; 상기 미생물을 배양하여 스틸벤 화합물을 생산하는 방법; 및 ScCCL 유전자를 포함하는 재조합 벡터 및 SbROMT3syn 유전자와 RpSTSsyn 유전자를 포함하는 재조합 벡터를 유효성분으로 함유하는 미생물의 스틸벤 생산용 조성물에 관한 것이다.The present invention relates to a recombinant microorganism producing a stilbene compound and a method for producing a stilbene compound using the same, and more specifically, a recombinant vector containing a sorghum-derived SbROMT3syn (synthetic Sorghum bicolor resveratrol O -methyltransferase 3) gene. A recombinant microorganism having the ability to produce a stilbene compound by being converted; ScCCL ( Streptomyces coelicolor carboxyl CoA ligase) Gene, VrROMTsyn (synthetic Vitis riparia resveratrol O- methyltransferase ) gene or SbROMT3syn gene and RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) a recombinant microorganism transformed with a recombinant vector containing the gene to produce a stilbene compound; A method for producing a stilbene compound by culturing the microorganism; And ScCCL It relates to a composition for producing stilbene of a microorganism containing a recombinant vector including a gene and a recombinant vector including the SbROMT3syn gene and the RpSTSsyn gene as an active ingredient.

주로 레스베라트롤 화합물로 표현되는 스틸벤은 페닐알라닌으로 시작하는 일반적인 페닐프로파노이드 경로로부터 유래된 식물 2차 대사산물의 작은 클래스이다. 레스베라트롤 (resveratrol; 3,4',5-trans-trihydroxystilbene)은 UV 조사나 곰팡이 감염과 같은 환경 스트레스에 대한 반응으로 포도, 땅콩 및 베리류 등의 일부 식물에서 생산되는 자연적으로 발생하는 파이토알렉신 (phytoalexin)이다. 레스베라트롤 및 이의 유도체는 식물 방어 반응에서 피토알렉신 및 항산화 물질로서 중요한 역할뿐만 아니라, 항염증 효과, 항종양 활성 및 항노화 효과를 포함하는 다양한 유익한 특성을 나타낸다. 그러나, 트랜스-레스베라트롤 (trans-resveratrol)의 잠재적인 사용은 빛과 산소에 노출되거나 강한 pH 조건을 갖는 환경에서 그것의 불안정성 때문에 제한된다. 이러한 조건은 화합물의 생물이용성 (bioavailability) 및 생물활성 (bioactivity)의 감소를 야기하는 시스-이성화 (cis-isomerization) 또는 산화를 일으킬 수 있다. 이러한 이유 때문에, 향상된 안정성을 갖는 레스베라트롤 유도체를 개발하는 것이 중요하다. 레스베라트롤 안정화를 위한 효과적인 방법은 메틸화된 레스베라트롤 유도체를 형성하기 위한 레스베라트롤 하이드록실 그룹의 메틸화에 의해 수행될 수 있다. Stilbenes, mainly expressed as resveratrol compounds, are a small class of plant secondary metabolites derived from the common phenylpropanoid pathway starting with phenylalanine. Resveratrol (3,4',5- trans- trihydroxystilbene) is a naturally occurring phytoalexin produced by some plants such as grapes, peanuts and berries in response to environmental stresses such as UV irradiation or fungal infections. )to be. Resveratrol and its derivatives exhibit a variety of beneficial properties, including anti-inflammatory, anti-tumor and anti-aging effects, as well as an important role as phytoalexin and antioxidant in plant defense responses. However, the potential use of trans -resveratrol is limited due to its instability in environments exposed to light and oxygen or with strong pH conditions. These conditions are cis to cause biological availability (bioavailability) and the biological reduction of the activity (bioactivity) of the compound can cause the isomerization (cis -isomerization) or oxidation. For this reason, it is important to develop resveratrol derivatives with improved stability. An effective method for stabilizing resveratrol can be carried out by methylation of resveratrol hydroxyl groups to form methylated resveratrol derivatives.

프테로스틸벤 (pterostilbene; 3,5-dimethoxy-4'-hydroxy-trans-stilbene), 3,4',5-트리메톡시스틸벤 (3,4',5-trimethoxystilbene), 피노스틸벤 (pinostilbene; 3,4'-dihydroxy-5-methoxy-trans-stilbene) 및 데스옥시르하포티제닌 (desoxyrhapotigenin; 3,5-dihydroxy-4'-methoxy-trans-stilbene)을 포함하는 자연적으로 발생하는 몇 가지 메틸화된 레스베라트롤의 유도체가 있지만, 이들의 생물학적 활성은 크게 알려져있지 않다. 특정한 메틸화된 레스베라트롤 유도체는 그들의 항암 (chemoprotective) 및 항-종양 활성에 대하여 레스베라트롤과 동등하거나 더 효과적이라는 것이 증명되었다 (Chao et al., J Nutr Biochem 21:482-489, 2010). 예를 들어, 3중메틸화된 (trimethylated) 레스베라트롤 또는 피노스틸벤은 암세포주에서 레스베라톨보다 100배 이상의 세포독성을 나타내는 것으로 보고되었으며, 이러한 세포독성 효과는 세포 내 폴리아민 풀 (pool)의 고갈 및 미세소관 중합의 변경에 의해 매개된다. 또한, 피노스틸벤은 SH-SY5Y 세포에서 6-하이드록시도파민-유도성 신경독성 (6-hydroxydopamine-induced neurotoxicity)에 대해 레스베라트롤보다 더 강한 신경보호 (neuroprotective) 효과를 발휘한다는 것이 보고되었다 (Chao et al., J Nutr Biochem 21:482-489, 2010). 또한, 더 소수성인 피노스틸벤은 레스베라트롤보다 더 쉽게 세포막에 침투할 수 있기 때문에, 더 효과적인 세포 내 용량 (dosage) 및 향상된 생물이용성을 나타낸다. 이러한 데이터는 레스베라트롤의 하이드록실 그룹의 메틸화가 그것의 소수성을 증가시키고, 그 유도체의 세포 흡수를 향상시킨다는 것을 제시한다. 이러한 이유에서, 레스베라트롤 유도체의 구조-활성 관계 연구는 더 안정적이고 강력한 항암제 (chemoprotective agent)의 개발을 위한 매우 흥미로운 분야이며, 재조합 대장균에서 메틸화된 레스베라트롤 유도체 생산에 대한 동기를 부여한다.Pterostilbene (3,5-dimethoxy-4'-hydroxy- trans- stilbene), 3,4',5-trimethoxystilbene (3,4',5-trimethoxystilbene), pinostilbene ( pinostilbene; 3,4'-dihydroxy-5-methoxy- trans- stilbene) and desoxyrhapotigenin (3,5-dihydroxy-4'- methoxy-trans- stilbene). There are derivatives of methylated resveratrol, but their biological activity is largely unknown. Certain methylated resveratrol derivatives have been demonstrated to be equivalent or more effective than resveratrol for their chemoprotective and anti-tumor activity (Chao et al ., J Nutr Biochem 21:482-489, 2010). For example, trimethylated resveratrol or pinostilben has been reported to exhibit more than 100-fold cytotoxicity than resveratol in cancer cell lines, and this cytotoxic effect can be attributed to depletion of intracellular polyamine pools and Mediated by alteration of microtubule polymerization. In addition, it has been reported that pinostilben exerts a stronger neuroprotective effect than resveratrol on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells (Chao et al. al ., J Nutr Biochem 21:482-489, 2010). In addition, pinostilbene, which is more hydrophobic, can penetrate cell membranes more easily than resveratrol, thus exhibiting a more effective intracellular dose and improved bioavailability. These data suggest that methylation of the hydroxyl group of resveratrol increases its hydrophobicity and enhances cellular uptake of its derivatives. For this reason, the study of the structure-activity relationship of resveratrol derivatives is a very interesting field for the development of more stable and potent chemoprotective agents, and motivates the production of methylated resveratrol derivatives in recombinant E. coli.

레스베라트롤은 그것의 다양한 건강 증진 활성 때문에, 대사 공학에서 매력적인 표적이 되고 있고, 현재까지 재조합 미생물에서 레스베라트롤을 생산하기 위한 여러 가지 시도가 보고되고 있다 (Beekwilder et al., Appl Environ Microbiol 5670-567, 2006). 그러나, 미생물에서 메틸화된 레스베라트롤 유도체 생산에 대해서는 알려진 것이 거의 없다. 게다가, 레스베라트롤의 생합성 경로 및 필수 효소는 잘 규명되어 있지만, 메틸화된 레스베라트롤 유도체의 형성에 관련된 효소는 연구가 더 필요한 실정이다.Resveratrol has become an attractive target in metabolic engineering because of its diverse health-promoting activity, and several attempts to produce resveratrol in recombinant microorganisms have been reported to date (Beekwilder et al. al ., Appl Environ Microbiol 5670-567, 2006). However, little is known about the production of methylated resveratrol derivatives in microorganisms. In addition, the biosynthetic pathway and essential enzymes of resveratrol are well elucidated, but the enzymes involved in the formation of methylated resveratrol derivatives are still in need of further research.

한편, 한국공개특허 제2003-0067689호에는 '형질전환 식물에서의 스틸벤의 생산 및 그것의 생산 방법'이 개시되어 있고, 한국등록특허 제1053025호에는 '방선균에서의 페닐프로파노이드 화합물의 생산 방법'이 개시되어 있다. 그러나 본 발명에서와 같이 스틸벤 화합물을 생산하는 재조합 미생물 및 이를 이용한 스틸벤 화합물의 생산 방법에 대해서는 개시된 바가 없다.On the other hand, Korean Patent Application Publication No. 2003-0067689 discloses'production of stilbene in transgenic plants and its production method', and Korean Patent No. 1053025 discloses'production of phenylpropanoid compounds in actinomycetes. The method' is disclosed. However, as in the present invention, a recombinant microorganism for producing a stilbene compound and a method for producing a stilbene compound using the same have not been disclosed.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자는 코돈 최적화된(codon-optimized) SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자로 형질전환된 대장균 및 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자, SbROMT3syn 또는 VrROMTsyn (synthetic Vitis riparia resveratrol O-methyltransferase) 유전자 및 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자가 동시에 형질전환된 대장균에서 메틸화된 레스베라트롤 유도체인 피노스틸벤 및 프테로스틸벤이 생산되는 것을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above requirements, and the inventors of the present invention are codon-optimized SbROMT3syn (synthetic Sorghum bicolor E. coli and ScCCL transformed with resveratrol O -methyltransferase 3) gene ( Streptomyces coelicolor carboxyl CoA ligase) Gene, SbROMT3syn or VrROMTsyn (synthetic Vitis riparia resveratrol O- methyltransferase) gene and RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) gene were confirmed to be produced in E. coli, methylated resveratrol derivatives, pinostilben and pterostilbene. By doing this, the present invention has been completed.

상기 과제를 해결하기 위해, 본 발명은 수수 유래의 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자를 포함하는 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물을 제공한다.In order to solve the above problems, the present invention provides a recombinant microorganism having the ability to produce a stilbene compound by transforming with a recombinant vector containing the SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) gene derived from sorghum.

또한, 본 발명은 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자, VrROMTsyn (synthetic Vitis riparia resveratrol O-methyltransferase) 유전자 및 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물을 제공한다.In addition, the present invention is ScCCL ( Streptomyces coelicolor carboxyl CoA ligase) Gene, VrROMTsyn (synthetic Vitis riparia resveratrol O- methyltransferase ) gene and RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) is transformed with a recombinant vector containing a gene to provide a recombinant microorganism having the ability to produce a stilbene compound.

또한, 본 발명은 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자, SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자 및 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물을 제공한다.In addition, the present invention is ScCCL ( Streptomyces coelicolor carboxyl CoA ligase) Gene, SbROMT3syn (synthetic Sorghum bicolor resveratrol O- methyltransferase 3) gene and RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) is transformed with a recombinant vector containing a gene to provide a recombinant microorganism having the ability to produce a stilbene compound.

또한, 본 발명은 상기 미생물을 기질이 포함된 배지에서 배양하는 단계를 포함하는 스틸벤 화합물의 생산 방법을 제공한다.In addition, the present invention provides a method for producing a stilbene compound comprising culturing the microorganism in a medium containing a substrate.

또한, 본 발명은 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자를 포함하는 재조합 벡터 및 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자와 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터를 유효성분으로 함유하는 미생물의 스틸벤 생산용 조성물을 제공한다.In addition, the present invention is ScCCL ( Streptomyces coelicolor carboxyl CoA ligase) It provides a composition for producing stilbene of microorganisms containing a recombinant vector containing a gene and a recombinant vector containing a SbROMT3syn (synthetic Sorghum bicolor resveratrol O- methyltransferase 3) gene and a RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) gene as an active ingredient. .

본 발명의 코돈 최적화된 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자로 형질전환된 재조합 미생물 및 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자, SbROMT3syn 또는 VrROMTsyn (synthetic Vitis riparia resveratrol O-methyltransferase) 유전자 및 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자가 동시에 형질전환된 재조합 미생물을 이용하면, 빛과 산소에 노출되는 환경에서 향상된 안정성을 가지며, 우수한 항암, 항바이러스, 항염증, 항노화 및 항산화 효과를 나타내는 메틸화된 레스베라트롤 유도체인 피노스틸벤 및 프테로스틸벤을 대량으로 생산할 수 있다.Recombinant microorganism transformed with the codon-optimized SbROMT3syn (synthetic Sorghum bicolor resveratrol O- methyltransferase 3) gene of the present invention and ScCCL ( Streptomyces coelicolor carboxyl CoA ligase) When a recombinant microorganism in which the gene, SbROMT3syn or VrROMTsyn (synthetic Vitis riparia resveratrol O- methyltransferase ) gene and RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) gene are simultaneously transformed is used, it has improved stability in an environment exposed to light and oxygen, and has excellent stability. The methylated resveratrol derivatives pinostilben and pterostilbene, which exhibit anticancer, antiviral, anti-inflammatory, anti-aging and antioxidant effects, can be produced in large quantities.

도 1은 스틸벤 화합물의 생합성 경로 및 ROMT 유전자를 포함하는 구축물의 모식도를 나타낸다. (A) 페닐알라닌으로부터 스틸벤 화합물 생성의 생합성 경로. (B) 합성된 식물 ROMT 유전자를 가진 재조합 플라스미드 구축물. PAL, C4H, 4CL, STS 및 ROMT의 순차적인 작용은 페닐알라닌의 스틸벤 화합물, 레스베라트롤 및 이의 메틸화된 유도체로의 전환을 야기한다. PAL, 페닐알라닌 암모니아-리아제 (phenylalanine ammonia-lyase); C4H, 신나메이트-4-하이드록실라아제 (cinnamate-4-hydroxylase; 4CL, 4-쿠마레이트:코엔자임 A 리가아제 (4-coumarate:coenzyme A ligase); STS, 스틸벤 신타아제 (stilbene synthase); ROMT, 레스베라트롤 O-메틸트랜스퍼라아제 (resveratrol O-methyltransferase); T7 Pro, T7 RNA 폴리머라아제 프로모터; H, 히스-태그 (His-tag).
도 2는 대장균 BL21-Codon Plus (DE3)-RIPL 세포에서 히스-태그가 결합된 VrROMTsyn 및 SbROMT3syn 재조합 단백질의 발현을 나타낸다. pETDuet-VrROMTsyn 또는 pETDuet-SbROMT3syn 구축물을 포함하는 대장균 세포는 2% 글리세롤을 함유하는 수정된 M9 배지에서 25℃의 온도로 2시간 동안 키웠고, 0.2 mM IPTG를 첨가하여 4시간 동안 단백질 발현을 유도했다. 단백질은 13% SDS-PAGE로 분리했고, CBB (Coomassie brilliant blue)로 염색했다. 히스-태그 융합 단백질의 발현은 항-히스-태그 항체를 사용한 웨스턴 블럿 분석으로 확인하였다. (A) VrROMTsyn 단백질의 SDS-PAGE 및 웨스턴 블럿 결과. (B) SbROMT3syn 단백질의 SDS-PAGE 및 웨스턴 블럿 결과. M, 단백질 분자 마커 (kDa); S, 가용성 분획; P, 불용성 펠렛 분획.
도 3은 재조합 대장균 BL21-Codon Plus에서의 피노스틸벤 및 프테로스틸벤의 시간별 생산을 나타낸다. pETDuet-VrROMTsyn 또는 pETDuet-SbROMT3syn 플라스미드를 포함하는 대장균 세포는 2% 글리세롤을 함유하는 수정된 M9 배지에서 배양하였고, 단백질 발현이 전유도된 (pre-induced) 세포에 1 mM 레스베라트롤을 첨가한 후 표시된 시점에 수확하였다. 공벡터 (empty vector)로 pETDuet-1를 포함하는 대장균 세포는 대조구로 이용되었다. 샘플은 에틸아세테이트로 추출하였고, HPLC로 분석하였다. 대장균 세포는 재조합 단백질을 발현시키기 위해 0.2 mM IPTG를 첨가하여 전유도되었다. 피노스틸벤 및 프테로스틸벤의 함량은 알려진 농도의 피노스틸벤 및 프테로스틸벤으로부터 생성된 표준곡선과 비교하여 측정되었다. (A) 피노스틸벤의 함량. (B) 프테로스틸벤의 함량.
도 4는 재조합 대장균 BL21-Codon Plus에서 생산된 피노스틸벤 및 프테로스틸벤의 HPLC 분석을 나타낸다. pETDuet-VrROMTsyn 또는 pETDuet-SbROMT3syn 플라스미드를 포함하는 대장균 세포는 추출 전에 60시간 동안 배양되었다. HPLC 분석은 이성분 용매 시스템의 선형 구배 (linear gradient)를 가진 C18 역상 (reverse phase) 컬럼을 사용한 애질런트 1200 시스템 (Agilent 1200 system)에서 수행되었다. 크로마토그램 STD는 각각 9.423, 19.327 및 32.009분의 보존 시간 (retention time)을 갖는 레스베라트롤, 피노스틸벤 및 프테로스틸벤의 정확한 표준 (authentic standard)을 나타낸다. 크로마토그램 대조구, VrROMT 및 SbROMT3는 샘플이 재조합 대장균에 의해 레스베라트롤로부터 생산된다는 것을 나타낸다. 삽입도는 프테로스틸벤에 해당하는 확대된 크로마토그램을 보여준다.
도 5는 재조합 대장균 BL21-Codon plus에 의해 생산된 피노스틸벤 및 프테로스틸벤의 LC-MS 분석을 나타낸다. 피노스틸벤 및 프테로스틸벤의 분자량은 표준 대기압 화학적 이온화의 양성 모드 (positive mode)에서 선형 이온 트랩 4중극자 (linear ion trap quadrupole) LC-MS로 분석했다. 샘플은 레스베라트롤의 첨가 후에 60시간 동안 배양한 세포로부터 얻었고, 추출된 화합물은 LC-MS로 분석했으며, 주입 부피는 10 ㎕이었다. 크로마토그램 (A) 및 (B)는 피노스틸벤 및 프테로스틸벤에 대해 각각 m/z 243.2 및 257.2에서 피크를 보여주는 LC-MS 스펙트럼을 나타낸다.
도 6은 스틸벤 생합성에 관련된 ScCCL, RpSTSsyn, VrROMTsynSbROMT3syn 유전자를 가진 재조합 플라스미드를 나타낸다. CCL, 카르복실 CoA 리가아제 (carboxyl CoA ligase); STS, 스틸벤 신타아제 (stilbene synthase); ROMT, 레스베라트롤 O-메틸트랜스퍼라아제 (resveratrol O-methyltransferase); T7 Pro, T7 RNA 폴리머라아제 프로모터; H, 히스-태그 (His-tag); S, S-태그 (S-tag). ScCCL은 pCOLADuet-1에 클로닝되었고, RpSTSsyn, VrROMTsynSbROMT3syn은 pETDuet-1에 클로닝되었다.
도 7은 대장균 BL21-Codon Plus (DE3)-RIPL 세포에서 히스-태그가 결합된 CCL, VrROMTsyn 및 SbROMT3syn과 S-태그가 결합된 STS 재조합 단백질의 발현을 나타낸다. pCOLADuet-H::CCL과 pETDuet-STS::S, pCOLADuet-H::CCL과 pETDuet-H::VrROMT-STS::S 또는 pCOLADuet-H::CCL과 pETDuet-H::SbROMT3-STS::S 구축물을 포함하는 대장균 세포는 2% 글리세롤을 함유하는 수정된 M9 배지에서 25℃의 온도로 2시간 동안 키웠고, 0.2 mM IPTG를 첨가하여 4시간 동안 단백질 발현을 유도했다. 단백질은 13% SDS-PAGE로 분리했고, CBB (Coomassie brilliant blue)로 염색했다. 히스-태그 또는 S-태그 융합 단백질의 발현은 항-히스-태그 항체 또는 항-S-태그 항체를 사용한 웨스턴 블럿 분석으로 확인하였다. (A) pCOLADuet-CCL 및 pETDuet-STS 벡터가 형질전환된 미생물, (B) pCOLADuet-CCL 및 pETDuet-STS-VrROMT 벡터가 형질전환된 미생물 및 (C) pCOLADuet-CCL 및 pETDuet-STS-SbROMT3 벡터가 형질전환된 미생물 유래 산물의 SDS-PAGE, S-태그 및 히스-태그에 대한 웨스턴 블럿. M, 단백질 분자 마커 (kDa); S, 가용성 분획; P, 불용성 펠렛 분획. pCOLADuet-1 및 pETDuet-1를 포함하는 대장균 세포는 대조구 (Con)로 사용되었다. 항-S-태그 항체 및 항-히스-태그 항체에 의해 인식되는 S-태그 결합 STS, 히스-태그 결합 CCL 및 ROMT 재조합 단백질은 각각 별표, 화살표 (arrow) 및 화살촉 (arrowhead) 모양으로 나타내었다.
도 8은 재조합 대장균 BL21-Codon Plus에서 레스베라트롤 및 피노스틸벤의 시간별 생산을 나타낸다. pCOLADuet-H::CCL과 pETDuet-STS::S (CCL+STS), pCOLADuet-H::CCL과 pETDuet-H::VrROMT-STS::S (CCL+STS-VrROMT) 또는 pCOLADuet-H::CCL과 pETDuet-H::SbROMT3-STS::S (CCL+STS-SbROMT3) 구축물을 포함하는 대장균 세포는 2% 글리세롤을 함유하는 수정된 M9 배지에서 배양하였고, 전유도된 세포에 1 mM p-쿠마르산을 첨가한 후 표시된 시점에 수확하였다. pColADuet-1 및 pETDuet-1를 포함하는 대장균 세포가 대조구로 이용되었다. 샘플은 에틸아세테이트로 추출하였고, HPLC로 분석하였다. 대장균 세포는 재조합 단백질을 발현시키기 위해 0.2 mM IPTG를 첨가하여 전유도되었다. 표시된 시점의 레스베라트롤 및 피노스틸벤의 함량 (mg/L)은 알려진 농도의 레스베라트롤 및 피노스틸벤으로부터 생성된 표준곡선과 비교하여 측정되었다. (A) 레스베라트롤의 함량. (B) 피노스틸벤의 함량.
도 9는 재조합 대장균 BL21-Codon Plus에 의해 생산된 레스베라트롤 및 피노스틸벤의 HPLC 분석 결과를 나타낸다. pCOLADuet-H::CCL과 pETDuet-STS::S (CCL+STS), pCOLADuet-H::CCL과 pETDuet-H::VrROMT-STS::S (CCL+STS-VrROMT) 또는 pCOLADuet-H::CCL과 pETDuet-H::SbROMT3-STS::S (CCL+STS-SbROMT3) 구축물을 포함하는 대장균 세포는 추출 전에 48시간 동안 배양되었다. HPLC 분석은 이성분 용매 시스템의 선형 구배를 가진 C18 역상 컬럼을 사용한 애질런트 1200 시스템에서 수행되었다. 크로마토그램 STD는 각각 9.423, 19.327 및 32.009분의 보존 시간 (retention time)을 갖는 레스베라트롤 (Res), 피노스틸벤 (Pino) 및 프테로스틸벤 (Ptero)의 정확한 표준 (authentic standard)을 나타낸다. 크로마토그램 대조구, CCL+STS, CCL+STS-VrROMT 및 CCL+STS-SbROMT3는 샘플이 재조합 대장균에 의해 p-쿠마르산으로부터 생산된다는 것을 나타낸다. 삽입도는 소량의 프테로스틸벤 생산을 보여주기 위해 확대된 크로마토그램을 나타낸다. 화살표는 프테로스틸벤에 해당하는 피크를 나타낸다.
1 shows a schematic diagram of a construct including a biosynthetic pathway of a stilbene compound and a ROMT gene. (A) Biosynthetic pathway of production of stilbene compounds from phenylalanine. (B) Recombinant plasmid construct with synthesized plant ROMT gene. The sequential action of PAL, C4H, 4CL, STS and ROMT results in the conversion of phenylalanine to the stilbene compound, resveratrol and methylated derivatives thereof. PAL, phenylalanine ammonia-lyase; C4H, cinnamate-4-hydroxylase; 4CL, 4-coumarate:coenzyme A ligase; STS, stilbene synthase; ROMT, resveratrol O-methyl transferase dehydratase (O -methyltransferase resveratrol); Pro T7, T7 RNA polymerase promoter; H, Heath-tag (His-tag).
Figure 2 shows the expression of hist-tagged VrROMTsyn and SbROMT3syn recombinant proteins in E. coli BL21-Codon Plus (DE3)-RIPL cells. E. coli cells containing the pETDuet-VrROMTsyn or pETDuet-SbROMT3syn construct were grown for 2 hours at a temperature of 25° C. in a modified M9 medium containing 2% glycerol, and 0.2 mM IPTG was added to induce protein expression for 4 hours. Proteins were separated by 13% SDS-PAGE and stained with CBB (Coomassie brilliant blue). Expression of the hist-tag fusion protein was confirmed by Western blot analysis using an anti-His-tag antibody. (A) SDS-PAGE and Western blot results of VrROMTsyn protein. (B) SDS-PAGE and Western blot results of SbROMT3syn protein. M, protein molecular marker (kDa); S, soluble fraction; P, insoluble pellet fraction.
Figure 3 shows the hourly production of pinostilben and pterostilbene in recombinant E. coli BL21-Codon Plus. E. coli cells containing pETDuet-VrROMTsyn or pETDuet-SbROMT3syn plasmid were cultured in a modified M9 medium containing 2% glycerol, and indicated time points after adding 1 mM resveratrol to pre-induced protein expression cells. Were harvested. E. coli cells containing pETDuet-1 as an empty vector were used as a control. Samples were extracted with ethyl acetate and analyzed by HPLC. E. coli cells were induced by adding 0.2 mM IPTG to express the recombinant protein. The content of pinostilbene and pterostilbene was determined by comparison with a standard curve produced from pinostilbene and pterostilbene at known concentrations. (A) Content of pinostilbene. (B) Content of pterostilbene.
Figure 4 shows the HPLC analysis of pinostilbene and pterostilbene produced in recombinant E. coli BL21-Codon Plus. E. coli cells containing pETDuet-VrROMTsyn or pETDuet-SbROMT3syn plasmid were cultured for 60 hours before extraction. HPLC analysis was performed on an Agilent 1200 system using a C18 reverse phase column with a linear gradient of a binary solvent system. The chromatogram STD represents the authentic standard of resveratrol, pinostilben and pterostilbene with retention times of 9.423, 19.327 and 32.009 minutes, respectively. The chromatogram controls, VrROMT and SbROMT3, indicate that the sample is produced from resveratrol by recombinant E. coli. The inset shows an enlarged chromatogram corresponding to pterostilbene.
Figure 5 shows the LC-MS analysis of pinostilben and pterostilbene produced by recombinant E. coli BL21-Codon plus. The molecular weights of pinostilbene and pterostilbene were analyzed by linear ion trap quadrupole LC-MS in the positive mode of standard atmospheric pressure chemical ionization. Samples were obtained from cells cultured for 60 hours after addition of resveratrol, and the extracted compounds were analyzed by LC-MS, and the injection volume was 10 μl. Chromatograms (A) and (B) show LC-MS spectra showing peaks at m/z 243.2 and 257.2 for pinostilbene and pterostilbene, respectively.
6 shows a recombinant plasmid having ScCCL, RpSTSsyn, VrROMTsyn and SbROMT3syn genes involved in stilbene biosynthesis. CCL, carboxyl CoA ligase; STS, stilbene synthase; ROMT, resveratrol O - methyl transferase dehydratase (resveratrol O -methyltransferase); T7 Pro, T7 RNA polymerase promoter; H, His-tag; S, S-tag. ScCCL was cloned into pCOLADuet-1, and RpSTSsyn , VrROMTsyn and SbROMT3syn were cloned into pETDuet-1.
7 shows the expression of hist-tagged CCL, VrROMTsyn and SbROMT3syn and S-tagged STS recombinant protein in E. coli BL21-Codon Plus (DE3)-RIPL cells. pCOLADuet-H::CCL and pETDuet-STS::S, pCOLADuet-H::CCL and pETDuet-H::VrROMT-STS::S or pCOLADuet-H::CCL and pETDuet-H::SbROMT3-STS:: E. coli cells containing the S construct were grown for 2 hours at a temperature of 25° C. in a modified M9 medium containing 2% glycerol, and 0.2 mM IPTG was added to induce protein expression for 4 hours. Proteins were separated by 13% SDS-PAGE and stained with CBB (Coomassie brilliant blue). Expression of the hist-tag or S-tag fusion protein was confirmed by Western blot analysis using an anti-his-tag antibody or an anti-S-tag antibody. (A) a microorganism transformed with pCOLADuet-CCL and pETDuet-STS vectors, (B) a microorganism transformed with pCOLADuet-CCL and pETDuet-STS-VrROMT vector, and (C) pCOLADuet-CCL and pETDuet-STS-SbROMT3 vectors Western blot for SDS-PAGE, S-tag and hist-tag of transformed microorganism-derived products. M, protein molecular marker (kDa); S, soluble fraction; P, insoluble pellet fraction. E. coli cells containing pCOLADuet-1 and pETDuet-1 were used as controls (Con). The S-tag binding STS, hist-tag binding CCL and ROMT recombinant proteins recognized by the anti-S-tag antibody and the anti-His-tag antibody are indicated by an asterisk, an arrow, and an arrowhead, respectively.
Figure 8 shows the hourly production of resveratrol and pinostilben in recombinant E. coli BL21-Codon Plus. pCOLADuet-H::CCL and pETDuet-STS::S (CCL+STS), pCOLADuet-H::CCL and pETDuet-H::VrROMT-STS::S (CCL+STS-VrROMT) or pCOLADuet-H:: E. coli cells containing CCL and pETDuet-H::SbROMT3-STS::S (CCL+STS-SbROMT3) constructs were cultured in modified M9 medium containing 2% glycerol, and 1 mM p − Harvest at the indicated time points after addition of comaric acid. E. coli cells containing pColADuet-1 and pETDuet-1 were used as controls. Samples were extracted with ethyl acetate and analyzed by HPLC. E. coli cells were induced by adding 0.2 mM IPTG to express the recombinant protein. The contents of resveratrol and pinostilbene at the indicated time points (mg/L) were determined by comparison with a standard curve produced from known concentrations of resveratrol and pinostilbene. (A) Content of resveratrol. (B) Content of pinostilbene.
9 shows the results of HPLC analysis of resveratrol and pinostilben produced by recombinant E. coli BL21-Codon Plus. pCOLADuet-H::CCL and pETDuet-STS::S (CCL+STS), pCOLADuet-H::CCL and pETDuet-H::VrROMT-STS::S (CCL+STS-VrROMT) or pCOLADuet-H:: E. coli cells containing the CCL and pETDuet-H::SbROMT3-STS::S (CCL+STS-SbROMT3) constructs were cultured for 48 hours prior to extraction. HPLC analysis was performed on an Agilent 1200 system using a C18 reverse phase column with a linear gradient of a binary solvent system. The chromatogram STD represents the authentic standard of resveratrol (Res), pinostilbene (Pino) and pterostilbene (Ptero) with retention times of 9.423, 19.327 and 32.009 minutes, respectively. The chromatogram controls, CCL+STS, CCL+STS-VrROMT and CCL+STS-SbROMT3 indicate that the samples are produced from p -coumaric acid by recombinant E. coli. The inset shows an enlarged chromatogram to show the small amount of pterostilbene production. Arrows indicate peaks corresponding to pterostilbene.

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 4의 염기서열로 이루어진 수수 유래의 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자를 포함하는 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물을 제공한다.In order to achieve the object of the present invention, the present invention is SbROMT3syn (synthetic Sorghum) derived from sorghum consisting of the nucleotide sequence of SEQ ID NO: 4 bicolor Resveratrol O -methyltransferase 3) It is transformed with a recombinant vector containing a gene to provide a recombinant microorganism having the ability to produce stilbene compounds.

상기 SbROMT3syn 유전자는 바람직하게는 서열번호 4로 표시되는 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다. 상기 서열번호 4의 염기서열로 이루어진 SbROMT3syn 유전자는, 바람직하게는 서열번호 3의 염기서열로 이루어진 수수 유래의 ROMT3 (resveratrol O-methyltransferase 3) 유전자의 염기서열을 미생물 이종숙주 코돈 적합성을 고려하여 재설계하고, 대장균에 대해 코돈 최적화한 후 합성한 인공 유전자이다. 또한, 상기 염기서열의 상동체가 본 발명의 범위 내에 포함된다. 상동체는 염기서열은 변화되지만, 서열번호 4의 염기서열과 유사한 기능적 특성을 갖는 염기서열이다. 구체적으로, 상기 SbROMT3syn 유전자는 서열번호 4의 염기서열과 각각 70% 이상, 더 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열 (추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제 (즉, 갭)를 포함할 수 있다.The SbROMT3syn gene may preferably consist of a nucleotide sequence represented by SEQ ID NO: 4, but is not limited thereto. The SbROMT3syn gene consisting of the nucleotide sequence of SEQ ID NO: 4 is preferably redesigned in consideration of the compatibility of the microbial heterologous host codon with the nucleotide sequence of the sorghum-derived ROMT3 (resveratrol O- methyltransferase 3) gene consisting of the nucleotide sequence of SEQ ID NO: 3 It is an artificial gene synthesized after codon optimization for E. coli. In addition, homologs of the nucleotide sequence are included within the scope of the present invention. The homolog is a nucleotide sequence that has a nucleotide sequence change, but has functional characteristics similar to the nucleotide sequence of SEQ ID NO: 4. Specifically, the SbROMT3syn gene has a nucleotide sequence of 70% or more, more preferably 80% or more, more preferably 90% or more, most preferably 95% or more of the nucleotide sequence of SEQ ID NO: 4, respectively. Can include. The "% of sequence homology" for a polynucleotide is identified by comparing two optimally aligned sequences with a comparison region, and a portion of the polynucleotide sequence in the comparison region is a reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include additions or deletions (ie, gaps) compared to (not including).

또한, 본 발명은 서열번호 5의 염기서열로 이루어진 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자, 서열번호 2의 염기서열로 이루어진 VrROMTsyn (synthetic Vitis riparia resveratrol O-methyltransferase) 유전자 및 서열번호 7의 염기서열로 이루어진 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물을 제공하며, 바람직하게는 서열번호 5의 염기서열로 이루어진 ScCCL 유전자를 포함하는 재조합 벡터 및 서열번호 2의 염기서열로 이루어진 VrROMTsyn 유전자와 서열번호 7의 염기서열로 이루어진 RpSTSsyn 유전자를 포함하는 재조합 벡터가 동시에 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물을 제공한다. In addition, the present invention is ScCCL consisting of the nucleotide sequence of SEQ ID NO: 5 ( Streptomyces coelicolor carboxyl CoA ligase) VrROMTsyn (synthetic Vitis) consisting of the gene and the nucleotide sequence of SEQ ID NO: 2 riparia RpSTSsyn (synthetic Rheum) consisting of the resveratrol O -methyltransferase) gene and the nucleotide sequence of SEQ ID NO: 7 Palmatum stilbene synthase) is transformed with a recombinant vector containing a gene to provide a recombinant microorganism having the ability to produce a stilbene compound, preferably ScCCL consisting of the nucleotide sequence of SEQ ID NO: 5 A recombinant vector including a gene and a recombinant vector including a VrROMTsyn gene consisting of a nucleotide sequence of SEQ ID NO: 2 and a RpSTSsyn gene consisting of a nucleotide sequence of SEQ ID NO: 7 are simultaneously transformed to provide a recombinant microorganism having the ability to produce a stilbene compound.

또한, 본 발명은 서열번호 5의 염기서열로 이루어진 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자, 서열번호 4의 염기서열로 이루어진 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자 및 서열번호 7의 염기서열로 이루어진 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물을 제공하며, 바람직하게는 서열번호 5의 염기서열로 이루어진 ScCCL 유전자를 포함하는 재조합 벡터 및 서열번호 4의 염기서열로 이루어진 SbROMT3syn 유전자와 서열번호 7의 염기서열로 이루어진 RpSTSsyn 유전자를 포함하는 재조합 벡터가 동시에 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물을 제공한다. In addition, the present invention is ScCCL consisting of the nucleotide sequence of SEQ ID NO: 5 ( Streptomyces coelicolor carboxyl CoA ligase) Gene, SbROMT3syn (synthetic Sorghum) consisting of the nucleotide sequence of SEQ ID NO: 4 bicolor resveratrol O -methyltransferase 3) RpSTSsyn (synthetic Rheum) consisting of the gene and the nucleotide sequence of SEQ ID NO: 7 Palmatum stilbene synthase) is transformed with a recombinant vector containing a gene to provide a recombinant microorganism having the ability to produce a stilbene compound, preferably ScCCL consisting of the nucleotide sequence of SEQ ID NO: 5 A recombinant vector containing a gene and a recombinant vector including the SbROMT3syn gene consisting of the nucleotide sequence of SEQ ID NO: 4 and the RpSTSsyn gene consisting of the nucleotide sequence of SEQ ID NO: 7 are simultaneously transformed to provide a recombinant microorganism having the ability to produce a stilbene compound.

상기 ScCCL 유전자는 바람직하게는 서열번호 5로 표시되는 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다. 또한, 상기 VrROMTsyn 유전자는 바람직하게는 서열번호 2로 표시되는 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다. 상기 서열번호 2의 염기서열로 이루어진 VrROMTsyn 유전자는, 바람직하게는 서열번호 1의 염기서열로 이루어진 포도 (Vitis riparia) 유래의 ROMT (resveratrol O-methyltransferase) 유전자의 염기서열을 미생물 이종숙주 코돈 적합성을 고려하여 재설계하고, 대장균에 대해 코돈 최적화한 후 합성한 인공 유전자이다. 또한, 상기 SbROMT3syn 유전자는 바람직하게는 서열번호 4로 표시되는 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다. 상기 서열번호 4의 염기서열로 이루어진 SbROMT3syn 유전자는, 바람직하게는 서열번호 3의 염기서열로 이루어진 수수 유래의 ROMT3 유전자의 염기서열을 미생물 이종숙주 코돈 적합성을 고려하여 재설계하고, 대장균에 대해 코돈 최적화한 후 합성한 인공 유전자이다. 또한, 상기 RpSTSsyn 유전자는 바람직하게는 서열번호 7로 표시되는 염기서열로 이루어질 수 있으나, 이제 제한되지 않는다. 상기 서열번호 7의 염기서열로 이루어진 RPSTSsyn 유전자는, 바람직하게는 서열번호 6의 염기서열로 이루어진 장엽대황 (Rheum Palmatum) 유래의 STS (stilbene synthase) 유전자의 염기서열을 미생물 이종숙주 코돈 적합성을 고려하여 설계하고, 대장균에 대해 코돈 최적화한 후 합성한 인공 유전자이다. 상기 염기서열 각각의 상동체가 본 발명의 범위 내에 포함된다. 상동체는 염기서열은 변화되지만, 해당 염기서열과 유사한 기능적 특성을 갖는 염기서열이다.The ScCCL gene may preferably consist of a nucleotide sequence represented by SEQ ID NO: 5, but is not limited thereto. In addition, the VrROMTsyn gene may preferably consist of a nucleotide sequence represented by SEQ ID NO: 2, but is not limited thereto. The VrROMTsyn gene consisting of the nucleotide sequence of SEQ ID NO: 2, preferably, the nucleotide sequence of the resveratrol O- methyltransferase (ROMT) gene derived from grape (Vitis riparia ) consisting of the nucleotide sequence of SEQ ID NO: 1, considering the suitability of the codon for the heterogeneous host of microorganisms. It is an artificial gene synthesized after redesigning and optimizing codons for E. coli. In addition, the SbROMT3syn gene may preferably consist of a nucleotide sequence represented by SEQ ID NO: 4, but is not limited thereto. The SbROMT3syn gene consisting of the nucleotide sequence of SEQ ID NO: 4 , preferably, the nucleotide sequence of the sorghum-derived ROMT3 gene consisting of the nucleotide sequence of SEQ ID NO: 3 is redesigned in consideration of the suitability of the codon for the heterogeneous host of microorganisms, and codon optimization for E. coli It is an artificial gene synthesized after doing so. In addition, the RpSTSsyn gene may preferably consist of a nucleotide sequence represented by SEQ ID NO: 7, but is not limited thereto. The RPSTSsyn gene consisting of the nucleotide sequence of SEQ ID NO: 7 is preferably the nucleotide sequence of the STS (stilbene synthase) gene derived from Rheum Palmatum consisting of the nucleotide sequence of SEQ ID NO: 6 in consideration of the suitability of the codon for the heterogeneous host of microorganisms. It is an artificial gene designed and synthesized after codon optimization for E. coli. Homologs of each of the above nucleotide sequences are included within the scope of the present invention. The homolog is a nucleotide sequence that has a functional property similar to that of the corresponding nucleotide sequence, although the nucleotide sequence is changed.

상기 스틸벤 화합물 생성능을 갖는 재조합 미생물은, 예를 들어 ScCCL 유전자, SbROMT3syn 유전자 및 RpSTSsyn 유전자로 형질전환된 미생물의 경우, 하나의 벡터에 ScCCL 유전자, SbROMT3syn 유전자 및 RpSTSsyn 유전자 중 1개, 2개 또는 3개의 유전자를 포함하는 재조합 벡터로 형질전환해도 ScCCL 유전자, SbROMT3syn 유전자 및 RpSTSsyn 유전자가 정상적으로 발현되어 스틸벤 화합물이 생성된다면, 벡터의 구축 형태나 형질전환 순서에 있어서, 선택 가능성을 제한하지 않는다.Recombinant microorganism having the above-mentioned stilbene compound producing ability is, for example, in the case of the transformed microorganisms in ScCCL gene, SbROMT3syn gene and RpSTSsyn gene, one of ScCCL gene on one vector, SbROMT3syn gene and RpSTSsyn gene, 2 or 3 If the ScCCL gene, the SbROMT3syn gene, and the RpSTSsyn gene are normally expressed even when transformed with a recombinant vector containing two genes to produce a stilbene compound, the possibility of selection is not limited in terms of the construction form or transformation sequence of the vector.

용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term “recombinant” refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by a heterologous nucleic acid. Recombinant cells may express genes or gene segments that are not found in the natural form of the cell in either a sense or antisense form. In addition, recombinant cells can express genes found in cells in their natural state, but the genes are modified and reintroduced into cells by artificial means.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소 (translation control element)를 가지는 것이다. 원핵세포 또는 진핵세포에서 이용가능한 번역 조절 요소인 인핸서 (enhancer), 리보솜 결합 부위, 종결신호, 폴리아데닐레이션 신호 및 프로모터는 당업계에 공지되어 있다. 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업계에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관 내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보솜 결합 부의 및 전사 터미네이터를 포함할 수 있다.The term "vector" is used to refer to a DNA fragment(s), a nucleic acid molecule, which is delivered into a cell. Vectors replicate DNA and can be reproduced independently in host cells. The term “carrier” is often used interchangeably with “vector”. The term "expression vector" refers to a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence essential for expressing the coding sequence operably linked in a particular host organism. In general, any plasmid and vector can be used as long as they can replicate and stabilize in the host. An important characteristic of the expression vector is that it has an origin of replication, a promoter, a marker gene and a translation control element. Translational regulatory elements that can be used in prokaryotic or eukaryotic cells, enhancers, ribosome binding sites, termination signals, polyadenylation signals, and promoters are known in the art. Expression vectors containing appropriate transcription/translational control signals can be constructed by methods well known in the art. The method includes in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombinant technology. The DNA sequence can be effectively linked to an appropriate promoter in the expression vector to guide mRNA synthesis. In addition, the expression vector may include a ribosome binding portion and a transcription terminator as a translation initiation site.

본 발명의 재조합 벡터에서, 원핵세포를 숙주로 하는 발현 벡터의 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pLλ프로모터, trp 프로모터, lac 프로모터, T7 프로모터, tac 프로모터 등), 해독의 개시를 위한 리보좀 결합 부위 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 대장균 (E. coli)이 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위, 그리고 파아지 λ의 좌향 프로모터 (pLλ프로모터)가 조절 부위로서 이용될 수 있다. 본 발명에 이용될 수 있는 벡터는 당업계에서 사용되는 플라스미드 (예: pETDuet, pCOLADuet, pSC101, ColE1, pBR322, pUC8/9, pHC79, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지 (예: λgt4·λB, λ-Charon, λΔz1 및 M13 등), 바이러스 (예: SV40 등) 또는 포스미드(fosmid)를 조작하여 제작될 수 있으며, 바람직하게는 pETDuet 또는 pCOLADuet 벡터를 이용할 수 있으나, 이에 제한되지 않는다.In the recombinant vector of the present invention, in the case of an expression vector using prokaryotic cells as a host, a strong promoter capable of proceeding transcription (eg, pLλ promoter, trp promoter, lac promoter, T7 promoter, tac promoter, etc.), initiation of translation It is common to include a ribosome binding site for and a transcription/translation termination sequence. When E. coli is used as a host cell, a promoter and operator site of the E. coli tryptophan biosynthetic pathway, and a left-handed promoter of phage λ (pLλ promoter) may be used as a regulatory site. Vectors that can be used in the present invention include plasmids used in the art (e.g., pETDuet, pCOLADuet, pSC101, ColE1, pBR322, pUC8/9, pHC79, pGEX series, pET series and pUC19, etc.), phage (e.g., λgt4. λB, λ-Charon, λΔz1 and M13, etc.), viruses (e.g., SV40, etc.) or fosmid may be manipulated, and preferably pETDuet or pCOLADuet vector may be used, but is not limited thereto.

본 발명의 재조합 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 본 발명의 재조합 벡터는 선택성 마커로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자인 앰피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린 내성 유전자를 포함할 수 있으나, 이에 제한되지 않는다.The recombinant vector of the present invention may preferably contain one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by a chemical method, and all genes capable of distinguishing a transformed cell from a non-transgenic cell correspond to this. The recombinant vector of the present invention as a selectable marker, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin and tetracycline resistance genes, which are antibiotic resistance genes commonly used in the art. It may include, but is not limited thereto.

본 발명의 벡터를 원핵세포에 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주세포는 당업계에 공지된 어떠한 숙주세포도 이용할 수 있으며, 예컨대, E. coli BL21, E. coli JM109, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스, 바실러스 튜린겐시스와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움, 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.Host cells capable of continuously cloning and expressing the vector of the present invention while being stable in prokaryotic cells may be any host cell known in the art. For example, E. coli BL21, E. coli JM109, E. coli RR1 , E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, Bacillus thuringensis, and other strains of the genus Bacillus, and Salmonella typhimurium, Serratia marsessons, and various Pseudomonas Intestinal bacteria and strains such as species are included.

본 발명의 일 구현예에 있어서, 본 발명의 재조합 벡터로 형질전환되어 스틸벤 화합물 생성능을 갖는 재조합 미생물은 바람직하게는 대장균 (E. coli)일 수 있으며, 더욱 바람직하게는 E. coli BL21일 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the recombinant microorganism transformed with the recombinant vector of the present invention and having the ability to produce a stilbene compound may preferably be E. coli , more preferably E. coli BL21. However, it is not limited thereto.

본 발명의 재조합 벡터는 숙주 세포가 원핵 세포인 경우, CaCl2 방법, 하나한 방법 (Hanahan, D., J. Mol. Biol., 166: 557-580(1983)) 및 전기천공 방법 등에 의해 숙주세포 내로 운반될 수 있다.When the host cell of the present invention is a prokaryotic cell, the recombinant vector of the present invention is a host cell by the CaCl 2 method, one method (Hanahan, D., J. Mol. Biol., 166: 557-580 (1983)), and the electroporation method. It can be transported into cells.

본 발명의 일 구현예에 있어서, 상기 스틸벤 화합물은 메틸화된 레스베라트롤 화합물일 수 있으며, 바람직하게는 피노스틸벤 (pinostilbene) 또는 프테로스틸벤 (pterostilbene)일 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the stilbene compound may be a methylated resveratrol compound, preferably pinostilbene or pterostilbene, but is not limited thereto.

또한, 본 발명은 SbROMT3syn 유전자를 포함하는 재조합 벡터로 형질전환된 재조합 미생물을 기질인 레스베라트롤이 포함된 배지에서 배양하는 단계를 포함하는 스틸벤 화합물의 생산 방법을 제공한다.In addition, the present invention provides a method for producing a stilbene compound comprising culturing a recombinant microorganism transformed with a recombinant vector containing the SbROMT3syn gene in a medium containing resveratrol as a substrate.

본 발명의 일 구현예에 있어서, 상기 스틸벤 화합물은 메틸화된 레스베라트롤 화합물일 수 있으며, 바람직하게는 피노스틸벤 또는 프테로스틸벤일 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the stilbene compound may be a methylated resveratrol compound, preferably pinostilbene or pterostilbene, but is not limited thereto.

또한, 본 발명은 ScCCL 유전자를 포함하는 재조합 벡터 및 VrROMTsyn 유전자와 RpSTSsyn 유전자를 포함하는 재조합 벡터가 동시에 형질전환된 재조합 미생물 또는 ScCCL 유전자를 포함하는 재조합 벡터 및 SbROMT3syn 유전자와 RpSTSsyn 유전자를 포함하는 재조합 벡터가 동시에 형질전환된 재조합 미생물을 기질인 p-쿠마르산이 포함된 배지에서 배양하는 단계를 포함하는 스틸벤 화합물의 생산 방법을 제공한다.The present invention is a recombinant vector comprising a recombinant vector and SbROMT3syn gene and RpSTSsyn gene is a recombinant vector comprising a recombinant vector and VrROMTsyn gene and RpSTSsyn genes including ScCCL gene containing the transformed recombinant microorganism or ScCCL genes At the same time, it provides a method for producing a stilbene compound comprising culturing the transformed recombinant microorganism in a medium containing p-coumaric acid as a substrate.

본 발명의 일 구현예에 있어서, 상기 스틸벤 화합물은 레스베라트롤, 피노스틸벤 또는 프테로스틸벤일 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the stilbene compound may be resveratrol, pinostilben, or pterostilbene, but is not limited thereto.

본 발명의 재조합 미생물 배양은 미생물 숙주의 배양에 사용되는 통상의 조건을 사용하여 수행할 수 있다. 배양 방법은, 배치 (batch)식, 유동 배치식, 연속배양, 리액터 형식 등, 통상의 미생물의 배양에 사용하는 어떠한 방법도 사용할 수 있다. 대장균 등의 세균을 숙주로 해서 얻게 된 형질전환체를 배양하는 배지는 완전 배지 또는 합성 배지 (LB배지, NB배지, M9 배지 등)를 이용할 수 있으나, 이에 제한되지 않는다. 미생물의 증식을 위해 배지에 제공하는 탄소원은 예를 들면 글루코스, 프럭토스, 슈크로스, 말토스, 갈락토스, 전분 등의 당류; 에탄올, 프로판올, 부탄올 등의 저급알콜류; 글리세롤 등의 다가알콜류; 아세트산, 시트르산, 숙신산, 타르타르산, 락트산, 글루콘산 등의 유기산; 프로피온산, 부탄산, 펜탄산, 헥산산, 헵탄산, 옥탄산, 노난산, 데칸산, 운데칸산, 도데칸산 등의 지방산 등을 이용할 수 있으며, 질소원은 예를 들면 암모니아, 염화암모늄, 황산암모늄, 인산암모늄등의 암모늄염 외에, 펩톤, 고기즙, 효모 엑기스, 맥아 엑기스, 카제인분해물, 옥수수 침지액 등의 천연물 유래의 것을 사용할 수 있다. 또한, 무기물은 예를 들면 인산제1칼륨, 인산제2칼륨, 인산마그네슘, 황산마그네슘, 염화나트륨 등을 이용할 수 있다. 또한, 재조합 미생물의 항생제 내성에 따라 적절한 항생제, 예를 들어 앰피실린, 클로람페니콜, 카나마이신 및 스트렙토마이신 등을 첨가하여 배양할 수 있으며, 유도성 프로모터를 포함하는 발현 벡터로 형질전환된 미생물을 배양하는 경우에는 프로모터의 종류에 적합한 유도물질을 배지에 첨가하여 배양할 수 있다. 유도물질은 예를 들면 IPTG (isopropyl-D-1-thiogalactopyranoside), 테트라사이클린 (tetracycline), IAA (indoleacetic acid) 등을 사용할 수 있다.The cultivation of the recombinant microorganism of the present invention can be carried out using conventional conditions used for culturing a microbial host. As the cultivation method, any method used for cultivation of ordinary microorganisms, such as a batch type, a flow batch type, a continuous culture, and a reactor type, can be used. The medium for culturing the transformant obtained using bacteria such as E. coli as a host may be a complete medium or a synthetic medium (LB medium, NB medium, M9 medium, etc.), but is not limited thereto. Carbon sources provided to the medium for the growth of microorganisms include, for example, sugars such as glucose, fructose, sucrose, maltose, galactose, and starch; Lower alcohols such as ethanol, propanol, and butanol; Polyhydric alcohols such as glycerol; Organic acids such as acetic acid, citric acid, succinic acid, tartaric acid, lactic acid, and gluconic acid; Fatty acids such as propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid can be used, and the nitrogen source is, for example, ammonia, ammonium chloride, ammonium sulfate, In addition to ammonium salts such as ammonium phosphate, those derived from natural products such as peptone, meat juice, yeast extract, malt extract, casein decomposition products, and corn steep liquor can be used. In addition, as the inorganic material, for example, first potassium phosphate, second potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, or the like can be used. In addition, according to the antibiotic resistance of the recombinant microorganism, appropriate antibiotics such as ampicillin, chloramphenicol, kanamycin, and streptomycin can be added and cultured. When culturing a microorganism transformed with an expression vector containing an inducible promoter In this case, an inducer suitable for the type of promoter can be added to the medium and cultured. The inducer may be, for example, isopropyl-D-1-thiogalactopyranoside (IPTG), tetracycline, or IAA (indoleacetic acid).

또한, 본 발명은 서열번호 5의 염기서열로 이루어진 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자를 포함하는 재조합 벡터 및 서열번호 4의 염기서열로 이루어진 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자와 서열번호 7의 염기서열로 이루어진 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터를 유효성분으로 함유하는 미생물의 스틸벤 생산용 조성물을 제공한다. 상기 조성물은 유효성분으로 서열번호 4의 염기서열로 이루어진 ScCCL 유전자를 포함하는 재조합 벡터 및 서열번호 4의 염기서열로 이루어진 SbROMT3syn 유전자 및 서열번호 7의 염기서열로 이루어진 RpSTSsyn 유전자를 포함하는 재조합 벡터를 포함하며, 상기 유전자들을 미생물에 형질전환함으로써 미생물에서 스틸벤 화합물을 생산할 수 있는 것이다.
In addition, the present invention is ScCCL ( Streptomyces coelicolor carboxyl CoA ligase) consisting of the nucleotide sequence of SEQ ID NO: 5 A recombinant vector containing a gene and a recombinant vector including a SbROMT3syn (synthetic Sorghum bicolor resveratrol O -methyltransferase 3) gene consisting of a nucleotide sequence of SEQ ID NO: 4 and a RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) gene consisting of a nucleotide sequence of SEQ ID NO: 7 It provides a composition for producing stilbene of microorganisms containing as an active ingredient. The composition comprises a recombinant vector comprising a RpSTSsyn gene consisting of the nucleotide of the consisting of the recombinant vector and the nucleotide sequence of SEQ ID NO: 4 comprising a ScCCL gene consisting of the nucleotide sequence of SEQ ID NO: 4 as an active ingredient SbROMT3syn gene and SEQ ID NO: 7, SEQ ID NO: And, by transforming the genes into a microorganism, it is possible to produce a stilbene compound in the microorganism.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples.

실시예 1. 레스베라트롤 (resveratrol)과 프테로스틸벤 (pterostilbene)의 생합성 경로Example 1. Biosynthetic pathway of resveratrol and pterostilbene

본 발명의 스틸벤류 생성 과정은 도 1에 나타낸 스틸벤 (stilbene) 생합성 경로를 따른다. 티로신, 페닐알라닌과 같은 아미노산으로부터 p-쿠마르산 (p-coumaric acid)이 생성되고, 4CL (4-coumarate:CoA ligase)에 의해 p-쿠마로일-CoA (p-coumaroyl-CoA)가 생성된다. 이렇게 생성된 p-쿠마로일-CoA는 스틸벤 합성효소 (stilbene synthase; STS)에 의해 레스베라트롤로 변환되고, 레스베라트롤은 다시 메틸화 효소인 ROMT (resveratrol O-methyltransferase)에 의해 메틸화되어 피노스틸벤 (pinostilbene)을 생성하며, 이는 다시 메틸화되서 프테로스틸벤으로 전환된다. 본 발명자는 p-쿠마로일-CoA를 생성하는데 있어, 4CL과 같은 효소 활성을 가진다고 알려져 있는 방선균의 CCL (carboxyl CoA ligase) 단백질을 이용하였다.
The stilbene production process of the present invention follows the stilbene biosynthetic pathway shown in FIG. 1. Is created Kumar acid (p -coumaric acid), 4CL-tyrosine, from amino acids such as phenylalanine, p (4-coumarate: CoA ligase ) p - by the one -CoA (p -coumaroyl-CoA) into Kumano is generated. The p -coumaroyl-CoA produced in this way is converted to resveratrol by stilbene synthase (STS), and resveratrol is again methylated by the methylating enzyme ROMT (resveratrol O -methyltransferase) and pinostilbene. ), which is again methylated and converted to pterostilbene. The present inventors used a CCL (carboxyl CoA ligase) protein of actinomycetes, which is known to have the same enzymatic activity as 4CL, in producing p-coumaroyl-CoA.

실시예 2. 프테로스틸벤 합성 전사인자 Example 2. Pterostilbene synthetic transcription factor VrROMTVrROMT And SbROMT3SbROMT3 유전자의 클로닝 Gene cloning

프테로스틸벤 생산 시스템을 개발하기 위해, 포도 (Vitis riparis)와 수수 (Sorghum bicolor)로부터 프테로스틸벤 생합성 관련 전사인자 유전자 VrROMT (1074 bp, 서열번호 1)와 SbROMT3 (1125 bp, 서열번호 3)를 각각 분리하여 이용하였다. 상기 유전자는 VrROMT (GenBank 등록번호: FM178870) 및 SbOMT3 (GenBank 등록번호: EF189708) 유전자로부터 확보한 PCR 프라이머를 사용한 상동성-기반 PCR (homology-based PCR)로 증폭하여 분리하였다. PCR에 사용한 프라이머는 하기와 같다: VrROMT-F: 5'-ATGGATTTGGCAAACGGTGTGA-3' (서열번호 8), VrROMT-R: 5'-TCAAGGATAAACCTCAATGAGGGA-3' (서열번호 9), SbROMT3-F: 5'-ATGGTACTCATCAGCGAGGACAGT-3' (서열번호 10), SbROMT-R: 5'-TCATGGATATAGCTCAATGATCGATC-3' (서열번호 11). 포도 시료는 충청북도농업기술원 포도연구소 (www.ares.chungbuk.kr)에서 확보하였으며, 수수 시료는 농촌진흥청 국립농업과학원 농업유전자원 정보센터 (http://www.genebank.go.kr/)에서 확보하였다. In order to develop a pterostilbene production system, the transcription factor genes VrROMT (1074 bp, SEQ ID NO: 1) and SbROMT3 (1125 bp, SEQ ID NO: 3) related to pterostilbene biosynthesis from grapes (Vitis riparis ) and sorghum ( Sorghum bicolor) ) Was used separately. The gene was isolated by amplification by homology-based PCR using PCR primers obtained from VrROMT (GenBank registration number: FM178870) and SbOMT3 (GenBank registration number: EF189708) genes. The primers used for PCR are as follows: VrROMT-F: 5'-ATGGATTTGGCAAACGGTGTGA-3' (SEQ ID NO: 8), VrROMT-R: 5'-TCAAGGATAAACCTCAATGAGGGA-3' (SEQ ID NO: 9), SbROMT3-F: 5'- ATGGTACTCATCAGCGAGGACAGT-3' (SEQ ID NO: 10), SbROMT-R: 5'-TCATGGATATAGCTCAATGATCGATC-3' (SEQ ID NO: 11). Grape samples were obtained from the Chungcheongbuk-do Institute of Agricultural Technology Grape Research Institute (www.ares.chungbuk.kr), and sorghum samples were obtained from the Agricultural Genetic Institute Information Center (http://www.genebank.go.kr/) of the National Institute of Agricultural Science, Rural Development Administration. I did.

이렇게 확보한 포도 또는 수수 식물체 유래 유전자는 미생물 이종숙주의 코돈 적합성을 고려하여 염기서열을 재설계하고, 대장균에 대해 코돈 최적화한 후 인공 유전자 VrROMTsyn (서열번호 2) 및 SbROMT3syn (서열번호 4) 합성에 이용하였다. 합성한 인공 유전자는 단백질 및 기능성 물질의 생산성 향상을 유도하기 위해 사용하였다.
The obtained grape or sorghum plant-derived genes are used for the synthesis of artificial genes VrROMTsyn (SEQ ID NO: 2) and SbROMT3syn (SEQ ID NO: 4) after redesigning the base sequence in consideration of the codon compatibility of the heterogeneous host of microorganisms, optimizing the codon for E. coli. I did. The synthesized artificial gene was used to induce productivity improvement of proteins and functional substances.

실시예 3. 레스베라트롤 메틸화 유전자 (Example 3. Resveratrol methylation gene ( ROMTROMT )의 미생물 과발현용 벡터 제작) Microbial overexpression vector production

상기 실시예 2에서 클로닝된 VrROMTsynSbROMT3syn 유전자를 미생물에서 과발현 시켰을 때 레스베라트롤과 프테로스틸벤의 합성을 증대시킬 수 있는지 알아보기 위하여, 앰피실린 (ampicilin) 저항성 유전자를 가진 미생물 발현 벡터 pETDuet의 T7 프로모터와 T7 터미네이터 사이에 VrROMTsyn 유전자 또는 SbROMT3syn 유전자를 삽입하여 벡터를 제작하였다. 상기 제작된 과발현 벡터는 pETDuet-His::VrROMTsyn (pETDuet-VrROMTsyn) 및 pETDuet-His::SbROMT3syn (pETDuet-SbROMT3syn)로 각각 명명하였다 (도 1B). 상기 벡터 제작에는 대장균 DH5α 균주를 이용하였다.
In order to find out whether the synthesis of resveratrol and pterostilbene can be increased when the VrROMTsyn and SbROMT3syn genes cloned in Example 2 are overexpressed in a microorganism, the T7 promoter of the microbial expression vector pETDuet having an ampicillin resistance gene A vector was constructed by inserting the VrROMTsyn gene or the SbROMT3syn gene between the and T7 terminators. The constructed overexpression vectors were named pETDuet-His::VrROMTsyn (pETDuet-VrROMTsyn) and pETDuet-His::SbROMT3syn (pETDuet-SbROMT3syn), respectively (Fig. 1B). E. coli DH5α strain was used to construct the vector.

실시예 4. 스틸벤류 생산 재조합 미생물 제작Example 4. Production of recombinant microorganisms producing stillbens

상기 실시예 3에서 제작된 pETDuet-His::VrROMTsyn (pETDuet-VrROMTsyn) 및 pETDuet-His::SbROMT3syn (pETDuet-SbROMT3syn) 미생물 발현 벡터는 클로람페니콜 (chloramphenicol) 내성을 가진 단백질 발현 대장균 (BL21 Codon Plus RIPL(DE3))에 열 충격 (heat shock) 방법으로 형질전환하였다. 제작된 피노스틸벤 또는 프테로스틸벤 생산 재조합 미생물은 앰피실린 및 클로람페니콜이 각각 50 ㎍/㎖ 및 30 ㎍/㎖ 씩 첨가된 LB 평판배지에서 선별하였다.
The pETDuet-His::VrROMTsyn (pETDuet-VrROMTsyn) and pETDuet-His::SbROMT3syn (pETDuet-SbROMT3syn) microbial expression vectors prepared in Example 3 are chloramphenicol (chloramphenicol)-resistant protein-expressing Escherichia coli (BL21 Plus RI PL21). DE3)) was transformed by a heat shock method. The prepared recombinant microorganisms producing pinostilben or pterostilbene were selected in LB plate medium to which ampicillin and chloramphenicol were added at 50 µg/ml and 30 µg/ml, respectively.

실시예 5. 재조합 미생물의 스틸벤류 단백질 발현 분석Example 5. Analysis of expression of stilbene protein in recombinant microorganisms

상기 실시예 4에서 선발된 각각의 재조합 미생물에서 VrROMTsyn 유전자와 SbROMT3syn 유전자가 안정적으로 발현 및 번역되는지 확인하기 위하여 웨스턴 블럿 분석을 수행하였다. 재조합 미생물은 클로람페니콜과 앰피실린이 포함된 LB 액체 배지에서 전배양한 후 50 ㎖의 액체 배지에 계대하여 600 nm에서 흡광도가 0.6 내지 0.7이 되도록 37℃에서 배양하였다. 그 후 0.5 mM IPTG (Isopropyl-D-1-thiogalactopyranoside)를 첨가하여 단백질의 발현을 유도하고, 시간 경과에 따라 10~20 ㎖의 시료를 채취하여 단백질을 분리하였다. 항 히스-태그 (anti His-tag) 항체를 이용한 웨스턴 블럿 분석 결과, VrROMT와 SbROMT3 단백질의 이론적 분자량 (각각 41.7 및 42.5 kDa)에 해당하는 위치에서 단백질을 확인할 수 있었다 (도 2). 즉, 레스베라트롤에 메틸기를 붙여 피노스틸벤과 프테로스틸벤을 합성하는 VrROMT SbROMT3 유전자가 안정적으로 발현되어 번역되는 것이 확인되었다.Western blot analysis was performed to confirm whether the VrROMTsyn gene and the SbROMT3syn gene were stably expressed and translated in each of the recombinant microorganisms selected in Example 4 above. Recombinant microorganisms were pre-cultured in LB liquid medium containing chloramphenicol and ampicillin, passed to 50 ml of liquid medium, and cultured at 37° C. so that the absorbance at 600 nm was 0.6 to 0.7. Then, 0.5 mM IPTG (Isopropyl-D-1-thiogalactopyranoside) was added to induce protein expression, and 10-20 ml of samples were collected over time to isolate the protein. As a result of Western blot analysis using an anti-His-tag antibody, the proteins were identified at positions corresponding to the theoretical molecular weights (41.7 and 42.5 kDa, respectively) of VrROMT and SbROMT3 proteins (FIG. 2). That is, it was confirmed that the VrROMT and SbROMT3 genes, which synthesize pinostilben and pterostilbene by attaching a methyl group to resveratrol, were stably expressed and translated.

실시예 6. 재조합 미생물 배양액 내의 스틸벤 화합물 함량 분석Example 6. Analysis of Stilbene Compound Content in Recombinant Microbial Culture Solution

상기 실시예 5에서 단밸질의 발현이 확인된 각각의 재조합 미생물은 메틸화된 레스베라트롤 유도체의 생산을 촉매할 수 있는지 확인하기 위해, LB 배지에서 전배양한 후 16.5 ㎍/㎖ 클로람페니콜 및 50 ㎍/㎖ 앰피실린이 포함된 200 ㎖의 LB 배지에 1% 접종하여 흡광도가 0.6 내지 0.7이 되도록 37℃에서 배양하였다. 그 후 단백질 생산을 유도하기 위해 0.1 mM IPTG를 첨가하여 25℃에서 3시간 더 배양하였다. 배양액을 원심분리하여 재조합 단백질 발현 균주만을 수집한 후 피노스틸벤과 프테로스틸벤을 생성하는데 적합하게 수정된 M9 (M9 브로쓰, 0.5% 글리세롤, 1 mM MgSO4, 0.125% 효모 추출물) 액체 배지에 재현탁하였다. 배지에 앰피실린, 클로람페니콜 및 0.5 mM IPTG를 추가하고, 기질로 사용될 1 mM 레스베라트롤을 첨가하여 25℃에서 60시간 동안 배양하였다. 배양이 수행되는 동안 시간별 (0, 6, 12, 24, 48 및 60시간)로 20 ㎖ 씩 배양액 샘플을 채취하였으며, 채취된 시료는 5 N 수산화나트륨을 이용하여 pH 9.0으로 조정하고 동량의 에틸아세테이트로 원하는 물질을 추출하였다. 에틸아세테이트를 증발시켜 제거한 후, 추출된 시료는 1 ㎖ HPLC용 메탄올에 녹였고, 0.2 ㎛ PTFE 필터 (hydrophilic, ADVANTEC, 일본)로 여과하여 HPLC (High-performance liquid chromatography) 및 LC-MS (liquid chromatograph-mass spectrometer) 분석에 이용하였다. HPLC는 애질런트 테크놀로지 1200 시리즈 (agilent technology 1200 series)를 사용하여 분석하였으며, 4중 용매 펌프 (quaternary pump) 시스템 및 Zorbax Eclipse XBD-C18 (5 mm, 4.6×150 mm; agilent) 컬럼을 이용하였다. 이동상은 물 (A, 0.05% 트리플루오로아세트산 (trifluoroacetic acid))과 아세토니트릴 (B, 0.05% 트리플루오로아세트산)을 사용하였고, 구배 용리 (gradient elution)를 이용하여 추출물을 분리하였다.In order to confirm that each recombinant microorganism whose expression of protein was confirmed in Example 5 could catalyze the production of methylated resveratrol derivatives, 16.5 μg/ml chloramphenicol and 50 μg/ml ampicillin were pre-cultured in LB medium. 1% was inoculated into 200 ml of the LB medium and cultured at 37° C. so that the absorbance was 0.6 to 0.7. After that, in order to induce protein production, 0.1 mM IPTG was added and incubated for 3 hours at 25°C. After collecting only the recombinant protein-expressing strain by centrifuging the culture medium, the modified M9 (M9 broth, 0.5% glycerol, 1 mM MgSO 4 , 0.125% yeast extract) liquid medium suitable for producing pinostilben and pterostilbene Resuspended in. Ampicillin, chloramphenicol and 0.5 mM IPTG were added to the medium, and 1 mM resveratrol to be used as a substrate was added, followed by incubation at 25° C. for 60 hours. During the cultivation, 20 ml of culture solution samples were collected every hour (0, 6, 12, 24, 48 and 60 hours), and the collected sample was adjusted to pH 9.0 with 5 N sodium hydroxide and the same amount of ethyl acetate The desired material was extracted with. After the ethyl acetate was removed by evaporation, the extracted sample was dissolved in 1 ml of HPLC methanol, filtered through a 0.2 µm PTFE filter (hydrophilic, ADVANTEC, Japan), and filtered through HPLC (High-performance liquid chromatography) and LC-MS (liquid chromatograph). -mass spectrometer) was used for analysis. HPLC was analyzed using an Agilent technology 1200 series, and a quaternary pump system and a Zorbax Eclipse XBD-C18 (5 mm, 4.6×150 mm; agilent) column were used. Water (A, 0.05% trifluoroacetic acid) and acetonitrile (B, 0.05% trifluoroacetic acid) were used as the mobile phase, and the extract was separated using gradient elution.

각 재조합 미생물에서 생산된 추출물을 분석한 결과 재조합 미생물 배양액에서 피노스틸벤과 미량의 프테로스틸벤이 검출되는 것을 확인할 수 있었고 (도 4), 추출물 검출 결과를 시간별로 정리하여 그래프화하였다 (도 3). SbROMT3syn 클론에서, 피노스틸벤 수준은 레스베라트롤 첨가 후 6시간부터 증가하기 시작하여 60시간까지 계속 축적되었다. pETDuet-SbROMT3syn 플라스미드를 포함하는 배양 세포는 60시간 배양에서 주요 산물로 34 mg/L 농도의 피노스틸벤 및 0.16 mg/L 농도의 소량의 프테로스틸벤을 갖는 높은 수준의 메틸화된 유도체를 생산했다 (도 3). 반면에, pETDuet-VrROMTsyn 플라스미드를 포함하는 배양 세포에서는 매우 소량의 피노스틸벤 (약 0.16 mg/L) 및 프테로스틸벤 (0.04 mg/L)이 48시가 배양에서 검출되었다 (도 3). 공벡터인 pETDuet-1을 발현하는 세포에서는 피노스틸벤 및 프테로스틸벤이 생산되지 않았다. 또한 60시간 배양 시료를 이용하여 LC-MS 분석을 수행한 결과 새롭게 생성된 피크가 피노스틸벤과 프테로스틸벤라는 것을 다시 확인할 수 있었다 (도 5). 따라서 본 발명자는 레스베라트롤 기질로부터 프테로스틸벤이 생성되는 것을 확인하였고, 이와 같은 결과를 바탕으로 도 1에 나타낸 것과 같이 p-쿠마르산으로부터 프테로스틸벤 생산을 시도하였다.
As a result of analyzing the extracts produced by each recombinant microorganism, it was confirmed that pinostilbene and trace amounts of pterostilbene were detected in the culture medium of the recombinant microorganism (FIG. 4), and the extract detection results were summarized by time and graphed (Fig. 3). In the SbROMT3syn clone, pinostilbene levels began to increase from 6 hours after resveratrol addition and continued to accumulate up to 60 hours. Cultured cells containing the pETDuet-SbROMT3syn plasmid produced high levels of methylated derivatives with pinostilbene at a concentration of 34 mg/L and a small amount of pterostilbene at a concentration of 0.16 mg/L as the main products in a 60-hour culture. (Fig. 3). On the other hand, in the cultured cells containing the pETDuet-VrROMTsyn plasmid, very small amounts of pinostilben (about 0.16 mg/L) and pterostilbene (0.04 mg/L) were detected in 48-shiga culture (FIG. 3 ). In cells expressing the empty vector pETDuet-1, pinostilbene and pterostilbene were not produced. In addition, as a result of performing an LC-MS analysis using a sample cultured for 60 hours, it was confirmed again that the newly generated peaks were pinostilbene and pterostilbene (FIG. 5). Therefore, the present inventors confirmed that pterostilbene is produced from the resveratrol substrate, and based on this result, as shown in FIG. 1, p -coumaric acid attempted to produce pterostilbene.

실시예 7. Example 7. pp -쿠마로일-CoA 합성 전사인자 -Coumaroyl-CoA synthetic transcription factor ScCCLScCCL 유전자의 클로닝 Gene cloning

p-쿠마로일-CoA 생산 시스템을 개발하기 위해, 방선균 (Streptomyces coelicolor)으로부터 p-쿠마로일-CoA 생합성 관련 전사인자 유전자 ScCCL (1569 bp)를 분리하여 이용하였다. 유전자 정보는 Kaneko 등의 논문 (J. Bacterial. 185: 20-27, 2003)을 참고하였으며, 미생물 생산 시스템에서 발현되는 단백질의 생산성을 높이기 위해 도 1에 나타낸 식물 유래 4CL 유전자가 아닌 미생물 유래의 CCL 유전자를 이용하였다. 유전자 시료는 한국생명공학연구소 화학생물연구센터 (www.kribb.re.kr)에서 확보하였으며, ScCCL 유전자 (서열번호 5)는 NdeI 및 HindIII를 이용하여 pET28-ScCCL 벡터로부터 분리하여 얻었다.
In order to develop a production system for p -coumaroyl- CoA, a transcription factor gene ScCCL (1569 bp) related to p-coumaroyl-CoA biosynthesis was isolated from actinomycetes (Streptomyces coelicolor) and used. For genetic information, reference was made to a paper by Kaneko et al. (J. Bacterial. 185: 20-27, 2003), and in order to increase the productivity of the protein expressed in the microbial production system, the CCL derived from the microorganism rather than the plant-derived 4CL gene shown in FIG. 1 The gene was used. Gene samples were obtained from the Korea Research Institute of Bioscience and Biotechnology Chemical Biology Research Center (www.kribb.re.kr), and the ScCCL gene (SEQ ID NO: 5) was obtained by separating from the pET28-ScCCL vector using Nde I and Hind III.

실시예 8. 레스베라트롤 합성 전사인자 Example 8. Resveratrol synthetic transcription factor RpSTSRpSTS 유전자의 클로닝 Gene cloning

레스베라트롤 생산 시스템을 개발하기 위해, 장엽대황 (Rheum palmatum)으로부터 레스베라트롤 생합성 관련 전사인자 유전자 RpSTS (1176 bp, 서열번호 6)를 분리하여 이용하였다. 상기 유전자는 RpSTS (GenBank 등록번호: JX673939) 유전자로부터 확보한 PCR 프라이머를 사용한 상동성-기반 PCR로 증폭하여 분리하였다. 사용한 프라이머는 하기와 같다: RpSTS-F: 5'-CATATGGCACCGGAGGAGT-3' (서열번호 12), RpSTS-R: 5'-ACTAGTTCAGGTAATTAGCGGC-3' (서열번호 13). 장엽대황 시료는 농촌진흥청 강원도 농업기술원 북부농업시험장 (www.ares.gangwon.kr)에서 확보 하였다. 장엽대황 식물체 유래 유전자는 미생물 이종숙주의 코돈 적합성을 고려하여 염기서열을 재설계하고, 대장균에 대해 코돈 최적화한 후 인공 유전자 RpSTSsyn (서열번호 7) 합성에 이용하였다. 합성한 인공 유전자는 단백질 및 기능성 물질의 생산성 향상을 유도하기 위해 사용하였다.
To develop a resveratrol production system, the transcription factor gene RpSTS related to resveratrol biosynthesis from Rheum palmatum (1176 bp, SEQ ID NO: 6) was isolated and used. The gene was isolated by amplification by homology-based PCR using PCR primers obtained from the RpSTS (GenBank registration number: JX673939) gene. The primers used were as follows: RpSTS-F: 5'-CATATGGCACCGGAGGAGT-3' (SEQ ID NO: 12), RpSTS-R: 5'-ACTAGTTCAGGTAATTAGCGGC-3' (SEQ ID NO: 13). Jangyeop rhubarb samples were obtained from the Northern Agricultural Experiment Station (www.ares.gangwon.kr), Gangwon-do Agricultural Technology Institute, Rural Development Administration. The gene derived from the Jangyeop rhubarb plant was used for the synthesis of the artificial gene RpSTSsyn (SEQ ID NO: 7) after redesigning the base sequence in consideration of the codon compatibility of the heterogeneous host of the microorganism, and optimizing the codon for E. The synthesized artificial gene was used to induce productivity improvement of proteins and functional substances.

실시예 9. 스틸벤류 생합성 유전자의 미생물 과발현용 벡터 제작Example 9. Construction of a vector for microbial overexpression of stilbene biosynthetic gene

상기 클로닝한 VrROMTsyn, SbROMT3syn, ScCCL RpSTSsyn 유전자를 미생물에서 과발현 시켰을 때 레스베라트롤과 프테로스틸벤의 합성을 증대시킬 수 있는지 확인하기 위해, 카나마이신 저항성 유전자를 가진 미생물 발현 벡터 pCOLADuet의 T7 프로모터와 T7 터미네이터 사이에 ScCCL이 삽입된 벡터를 제작하였다. 또한 앰피실린 저항성을 지니는 미생물 발현 벡터 pETDuet의 T7 프로모터와 T7 터미네이터 사이에 RpSTS 유전자가 삽입된 벡터, RpSTS 유전자와 VrROMT 유전자가 동시에 삽입된 벡터 및 RpSTS 유전자와 SbROMT3 유전자가 동시에 삽인된 벡터를 각각 제작하였다. 제작된 과발현 벡터는 pCOLADuet-His::ScCCL (pCOLADuet-CCL), pETDuet-RpSTS::S (pETDuet-STS), pETDuet-His::VrROMT-RpSTS::S (pETDuet-STS-VrROMT) 및 pETDuet-His::SbROMT3-RpSTS::S (pETDuet-STS-SbROMT3)로 각각 명명하였다 (도 6). 상기 벡터 제작에는 대장균 DH5α 균주를 이용하였다.
The cloned VrROMTsyn , SbROMT3syn , ScCCL and RpSTSsyn In order to confirm whether the synthesis of resveratrol and pterostilbene can be increased when the gene is overexpressed in a microorganism, a vector in which ScCCL is inserted between the T7 promoter and the T7 terminator of the microbial expression vector pCOLADuet having a kanamycin resistance gene was constructed. Also it was produced Amphitheater of between cylinder resistant to having microbial expression vector pETDuet of the T7 promoter and T7 terminator RpSTS gene insertion vector, RpSTS gene and the VrROMT gene is inserted at the same time vector and RpSTS gene and SbROMT3 vector the genes are simultaneously sapin each . The constructed overexpression vectors are pCOLADuet-His::ScCCL (pCOLADuet-CCL), pETDuet-RpSTS::S (pETDuet-STS), pETDuet-His::VrROMT-RpSTS::S (pETDuet-STS-VrROMT) and Named His::SbROMT3-RpSTS::S (pETDuet-STS-SbROMT3), respectively (Fig. 6). E. coli DH5α strain was used to construct the vector.

실시예 10. 스틸벤류 생산 재조합 미생물 제작Example 10. Production of recombinant microorganisms producing stillbens

상기 실시예 9에서 제작된 pCOLADuet-His::ScCCL (pCOLADuet-CCL), pETDuet-RpSTS::S (pETDuet-STS), pETDuet-His::VrROMT-RpSTS::S (pETDuet-STS-VrROMT) 및 pETDuet-His::SbROMT3-RpSTS::S (pETDuet-STS-SbROMT3) 미생물 발현 벡터는 클로람페니콜 내성을 가진 단백질 발현 대장균 (BL21 Codon Plus RIPL(DE3))에 열 충격 (heat shock) 방법으로 형질전환하였다. 먼저 레스베라트롤 생산을 확인하기 위해 pCOLADuet-His::ScCCL (pCOLADuet-CCL) 및 pETDuet-RpSTS::S (pETDuet-STS) 벡터를 동시에 형질전환하였고, 피노스틸벤과 프테로스틸벤의 생산을 위해 pCOLADuet-His::ScCCL (pCOLADuet-CCL) 및 pETDuet-His::VrROMT-RpSTS::S (pETDuet-STS-VrROMT) 또는 pCOLADuet-His::ScCCL (pCOLADuet-CCL) 및 pETDuet-His::SbROMT3-RpSTS::S (pETDuet-STS-SbROMT3) 벡터 각각을 동시에 형질전환하였다. 제작된 스틸벤류 생산 미생물들은 앰피실린, 카나마이신 및 클로람페니콜이 각각 50 ㎍/㎖, 25 ㎍/㎖ 및 30 ㎍/㎖ 첨가된 LB 평판 배지에서 선별하였다.
PCOLADuet-His::ScCCL (pCOLADuet-CCL), pETDuet-RpSTS::S (pETDuet-STS) prepared in Example 9, pETDuet-His::VrROMT-RpSTS::S (pETDuet-STS-VrROMT) and pETDuet-His::SbROMT3-RpSTS::S (pETDuet-STS-SbROMT3) microbial expression vector was transformed into E. coli (BL21 Codon Plus RIPL(DE3)) expressing a chloramphenicol resistant protein by a heat shock method. . First, pCOLADuet-His::ScCCL (pCOLADuet-CCL) and pETDuet-RpSTS::S (pETDuet-STS) vectors were simultaneously transformed to confirm the production of resveratrol, and pCOLADuet for the production of pinostilben and pterostilbene. -His::ScCCL (pCOLADuet-CCL) and pETDuet-His::VrROMT-RpSTS::S (pETDuet-STS-VrROMT) or pCOLADuet-His::ScCCL (pCOLADuet-CCL) and pETDuet-His: ::S (pETDuet-STS-SbROMT3) vector was transformed at the same time. The prepared stilbene-producing microorganisms were selected on an LB plate medium to which ampicillin, kanamycin, and chloramphenicol were added, respectively, at 50 µg/ml, 25 µg/ml, and 30 µg/ml.

실시예 11. 재조합 미생물의 레스베라트롤 합성 단백질 발현 분석Example 11. Analysis of Resveratrol Synthetic Protein Expression of Recombinant Microorganisms

상기 선별된 각각의 재조합 미생물에서 ScCCL, RpSTS, VrROMTSbROMT3 유전자가 안정적으로 발현 및 번역되는지 확인하기 위해, 웨스턴 블럿 분석을 수행하였다. 클로람페니콜, 앰피실린 및 카나마이신이 포함된 LB 액체 배지에 0.5 mM IPTG (Isopropyl -D-1-thiogalactopyranoside)를 첨가하여 단백질의 발현을 유도한 후 재조합 미생물을 대상으로 분석한 결과, 레스베라트롤과 프테로스틸벤의 전사인자인 ScCCL, RpSTS, VrROMT 및 SbROMT3로 추정되는 분자량의 단백질을 확인할 수 있었다 (도 7).
To confirm whether the ScCCL , RpSTS , VrROMT and SbROMT3 genes are stably expressed and translated in each of the selected recombinant microorganisms, Western blot analysis was performed. After inducing protein expression by adding 0.5 mM IPTG (Isopropyl-D-1-thiogalactopyranoside) to LB liquid medium containing chloramphenicol, ampicillin, and kanamycin, the results of analysis on recombinant microorganisms showed resveratrol and pterostilbene. Proteins of molecular weight estimated to be the transcription factors of ScCCL, RpSTS, VrROMT and SbROMT3 were confirmed (FIG. 7).

실시예Example 12. 재조합 미생물 배양액 내의 12. In the culture of recombinant microorganisms 스틸벤Stillben 화합물 함량 분석 Compound content analysis

상기에서 안정적인 단백질 발현이 확인된 각각의 재조합 미생물은 실시예 6에 기재된 것과 같은 방법으로 배양한 후 추출했으며, 기질은 레스베라트롤 대신 p-쿠마르산을 사용하였다. 추출한 시료는 1 ㎖의 HPLC용 메탄올에 녹이고, 0.2 ㎛ PTFE 필터 (hydrophilic, ADVANTEC, 일본)로 여과하여 HPLC (High-performance liquid chromatography) 분석에 이용하였다. HPLC는 애질런트 테크놀로지 1200 시리즈 (agilent technology 1200 series)를 사용하여 분석하였으며, 4중 용매 펌프 (quaternary pump) 시스템 및 Zorbax Eclipse XBD-C18 (5 mm, 4.6×150 mm; agilent) 컬럼을 이용하였다. 이동상은 물 (A, 0.05% 트리플루오로아세트산)과 아세토니트릴 (B, 0.05% 트리플루오로아세트산)을 사용하였고, 구배 용리 (gradient elution)를 이용하여 추출물을 분리하였다. 검출 결과를 시간별로 정리하여 그래프화하였으며 (도 8), 추출물의 분석 결과 재조합 미생물 배양액에서 p-쿠마르산 기질로부터 새롭게 생산된 레스베라트롤, 피노스틸벤 및 프테로스틸벤을 확인할 수 있었다 (도 9). p-쿠마르산을 기질로 사용하여 ScCCLsyn 및 RpSTSsyn 단백질을 동시 발현시킨 결과 48시간 배양액에서 0.51mg/L, ScCCLsyn과 RpSTSsyn 및 VrROMTsyn 단백질을 동시 발현시킨 재조합 미생물 배양에서 0.50mg/L의 레스베라트롤이 생성되었으며, ScCCLsyn과 RpSTSsyn 및 SbROMT3syn 단백질이 동시 발현되는 재조합미생물 배양 결과 0.41mg/L의 레스베라트롤과 0.71mg/L의 피노스틸벤이 생성되었다. 이 결과로 ScCCLsyn과 RpSTSsyn에 의해 생성된 레스베라트롤은 SbROMT3syn 단백질에 의해 메틸화되어 피노스틸벤이 됨을 확인하였다.Each recombinant microorganism in which stable protein expression was confirmed above was extracted after culturing in the same manner as described in Example 6, and p -coumaric acid was used as a substrate instead of resveratrol. The extracted sample was dissolved in 1 ml of HPLC methanol, filtered through a 0.2 µm PTFE filter (hydrophilic, ADVANTEC, Japan), and used for high-performance liquid chromatography (HPLC) analysis. HPLC was analyzed using an Agilent technology 1200 series, and a quaternary pump system and a Zorbax Eclipse XBD-C18 (5 mm, 4.6×150 mm; agilent) column were used. Water (A, 0.05% trifluoroacetic acid) and acetonitrile (B, 0.05% trifluoroacetic acid) were used as the mobile phase, and the extract was separated using gradient elution. The detection results were summarized by time and graphed (FIG. 8), and as a result of analysis of the extract, resveratrol, pinostilbene and pterostilbene newly produced from p-coumaric acid substrate in the recombinant microorganism culture were confirmed (FIG. 9). . As a result of simultaneous expression of ScCCLsyn and RpSTSsyn proteins using p-coumaric acid as a substrate, 0.51 mg/L of resveratrol was produced in a 48-hour culture medium and 0.50 mg/L of resveratrol in a recombinant microorganism culture that simultaneously expressed ScCCLsyn and RpSTSsyn and VrROMTsyn proteins. , ScCCLsyn and RpSTSsyn and SbROMT3syn proteins were simultaneously expressed in recombinant microorganism culture, resulting in 0.41 mg/L of resveratrol and 0.71 mg/L of pinostilben. As a result, it was confirmed that resveratrol produced by ScCCLsyn and RpSTSsyn was methylated by SbROMT3syn protein to become pinostilbene.

<110> Korea Research Institute of Bioscience and Biotechnology <120> Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same <130> PN15158 <160> 13 <170> KopatentIn 2.0 <210> 1 <211> 1074 <212> DNA <213> Vitis riparia <400> 1 atggatttgg caaacggtgt gatatcagct gagctgcttc atgctcaagc tcatgtctgg 60 aaccatatat tcaacttcat caagtctatg tcactaaaat gtgctactca actaggcatc 120 ccagacatca tccacaacca tggcaagccc atgactcttc ctgagctggt cgctaagctc 180 ccagtccacc ctaaaaggag tcagtgcgtg taccgtctca tgcgcattct tgttcattct 240 ggcttccttg ctgcgcaaag agttcaacaa ggtgaggaag aagaggggta tgtgcttaca 300 gatgcctcta ggctccttct aatggatgac tccttgagca taaggccctt ggtgcttgcc 360 atgctcgacc caattttaac taaaccatgg cattatctga gtgcttggtt tcaaaatgat 420 gatcccactc cgttccacac tgcttatgag cggccatttt gggattatgc cggccatgaa 480 cctcagctca acaattcctt caatgaagcc atggctagcg atgctcgctt actcaccagc 540 gtgctgatta aggagggcaa gggcgtattt gcggggttga actcattagt tgatgtaggg 600 ggtggcaccg gaaaagtggc caaggccatt gctaacgctt tcccacattt gaactgcacc 660 gtgttagatc tcccccacgt ggttgctggc ttgcaaggga gcaagaactt gaactacttt 720 gcaggtgata tgtttgaggc aattcctcct gcagatgcaa ttttactcaa gtggatactg 780 cacgactgga gcgatgaaga atgcgtgaag atactaaagc gatgcaggga agcaattccg 840 agcaaggaaa acggaggaaa ggtgattatc atagacatga tcatgatgaa gaatcaagga 900 gactacaagt ccatagaaac acagctgttc tttgatatga cgatgacgat tttcgccccg 960 ggtagagaga gggacgagaa cgaatgggag aagctattct tggatgctgg tttcagtcac 1020 tacaagataa ctcccatttt gggtttgagg tccctcattg aggtttatcc ttga 1074 <210> 2 <211> 1074 <212> DNA <213> Artificial Sequence <220> <223> VrROMTsyn <400> 2 atggatctgg cgaacggtgt gatcagcgcc gaactgctgc atgcacaggc tcacgtttgg 60 aaccatatct tcaacttcat caaaagcatg tctctgaaat gcgcgaccca actgggtatt 120 ccggatatta tccataatca cggcaaaccg atgacgctgc cggaactggt tgccaaactg 180 ccggtccacc cgaaacgttc ccagtgtgtg tatcgtctga tgcgcatcct ggttcattca 240 ggctttctgg cggcccaacg cgttcagcaa ggtgaagaag aagaaggcta cgtcctgacc 300 gatgcgtctc gtctgctgct gatggatgac agtctgtcca tccgtccgct ggtgctggca 360 atgctggacc cgattctgac gaaaccgtgg cattatctga gtgcttggtt tcagaacgat 420 gacccgaccc cgttccacac ggcgtatgaa cgtccgtttt gggattacgc cggtcatgaa 480 ccgcagctga acaattcatt caacgaagcg atggcctcgg acgcacgtct gctgaccagc 540 gtcctgatca aagaaggtaa aggtgttttt gccggtctga attccctggt cgatgtgggc 600 ggtggcaccg gtaaagtcgc aaaagctatt gcgaacgcct tcccgcacct gaattgcacg 660 gttctggatc tgccgcatgt ggttgcaggt ctgcaaggct ctaaaaacct gaattatttt 720 gcaggcgata tgttcgaagc tattccgccg gcagacgcta tcctgctgaa atggattctg 780 cacgattggt cggacgaaga atgcgtgaaa atcctgaaac gttgtcgcga agccattccg 840 agcaaagaaa acggtggcaa agttatcatc atcgatatga tcatgatgaa aaatcagggt 900 gactacaaaa gtattgaaac ccaactgttt ttcgatatga ccatgacgat ctttgcaccg 960 ggccgtgaac gcgatgaaaa tgaatgggaa aaactgtttc tggacgctgg tttctctcat 1020 tataaaatca ccccgattct gggcctgcgt agtctgattg aagtgtaccc gtaa 1074 <210> 3 <211> 1122 <212> DNA <213> Sorghum bicolor <400> 3 atggtactca tcagcgagga cagtagggag ttgctccaag cccacgtcga gctatggaac 60 cagacctaca gctttatgaa gtcggtggcg ctcgccgttg ctttagacct ccgcatcgct 120 gatgccatcc accgctgcgg tggcgccgcc accctctccc agatactcgg agagattggt 180 gtccgcccat gtaagcttcc cgccctccac cgcctaatgc gtgttctgac cgtctcagga 240 accttcacca tcgtccagcc atcagcggca accatgtcat tggtgtcgga cgggaatgag 300 cttgtctata agctgacaac agcgtcccgc ctcctcgtca gcagcgaaag ctcggcgacg 360 gcgagcttgt ctcctatgct gaaccacgtg cttagcccct tccgtgactc gcccctcagc 420 atggggctca ctgcgtggtt ccggcacgat gaagatgaac aggcgcctgg cccatgcccg 480 ttcaccctga tgtacggcac aaccttgtgg gaggtgtgca gtcgtgacga cgcaatcaac 540 gcgttgttca acaacgccat ggccgcagac agcaacttcc tgatgcagat tgtgttgagg 600 gagttcggca aggtcttcca cgggatagac tcgctggtcg acgtcggcgg tggggttggg 660 ggagccacca tggccattgc cacggcgttc ccgtctttga agtgtaccgt actagacctc 720 cctcacgttg tcgccaaggc tccgtccagt tctattggca acgtgcagtt tgttgggggt 780 gacatgtttg agagcattcc accagcgaat gttgtcttcc tcaagtggat tttgcatgac 840 tggagcaatg acgagtgtat caagatatta aagaactgca agcaagctat cccttctaga 900 gatgcaggag gaaagataat aatcattgat gttgtggttg ggtctgagtc atcagacacc 960 aagcttctgg agacacaagt aatgtatgat ctccatctca tgaaaattgg tggggttgaa 1020 cgagatgagc aagagtggaa gaaaatattc ctcgaagctg gatttaagga ctacaatatt 1080 ataccagttt taggcctccg atcgatcatt gagctatatc ca 1122 <210> 4 <211> 1149 <212> DNA <213> Artificial Sequence <220> <223> SbROMT3syn <400> 4 atggtgctga ttagcgaaga tagccgtgaa ctgctgcaag cgcatgtgga actgtggaac 60 cagacctact catttatgaa aagcgtcgct ctggcggttg ccctggatct gcatattgca 120 gacgctattc atcgtcgcgg cggtgcggca accctgtctc agattctggg cgaaatcggt 180 gttcgtccgt gcaaactgcc gggcctgcat cgtattatgc gcgtgctgac cgttagtggt 240 acctttacga tcgtccaacc gtcggcggaa acgatgagct ctgaaagcga tggccgcgaa 300 ccggtttata aactgaccac ggccagttcc ctgctggtct catcggaaag ctctgcgacc 360 gcctctctga gtccgatgct gaaccatgtt ctgagcccgt ttcgtgattc cccgctgtca 420 atgggtctga ccgcatggtt ccgccacgat gaagacgaac aggctccggg catgtgcccg 480 tttacgctga tgtacggtac cacgctgtgg gaagtgtgtc gtcgcgatga cgcgattaac 540 gccctgttta acaatgcaat ggcagctgat agcaatttcc tgatgcagat tctgctgaaa 600 gaattttctg aagtcttcct gggcatcgat agtctggttg acgttgccgg cggtgtgggc 660 ggtgcaacca tggctattgc ggccgcattc ccgtgcctga aatgtacggt gctggatctg 720 ccgcatgtgg ttgcaaaagc tccgagttcc tcaatcggta acgtccagtt tgtgggcggt 780 gatatgttcg aatcgattcc gccggcgaat gtcgtgctgc tgaaatggat tctgcacgat 840 tggtcaaacg acgaatgcat caaaatcctg aaaaactgta aacaagcgat tccgtcccgt 900 gatgccggcg gtaaaattat cattatcgac gttgtcgtgg gctcagattc gagcgacacc 960 aaactgctgg aaacgcaagt gatttatgat ctgcacctga tgaaaatcgg cggtgttgaa 1020 cgcgacgaac aagaatggaa gaaaattttt ctggaagcgg gtttcaaaga ttacaaaatt 1080 atgccgattc tgggtctgcg ctccattatt gaactgtatc cgtgactcga caagcttgcg 1140 gccgcataa 1149 <210> 5 <211> 1569 <212> DNA <213> Streptomyces coelicolor <400> 5 atgttccgca gcgagtacgc agacgtcccg cccgtcgacc tgcccatcca cgacgccgtg 60 ctcggcgggg ccgccgcctt cgggagcacc ccggcgctga tcgacggcac cgacggcacc 120 accctcacct acgagcaggt ggaccggttc caccggcgcg tcgccgccgc cctcgccgag 180 accggcgtgc gcaagggcga cgtcctcgcc ctgcacagcc ccaacaccgt cgccttcccc 240 ctggccttct acgccgccac ccgcgcgggc gcctccgtca ccacggtgca tccgctcgcg 300 acggcggagg agttcgccaa gcagctgaag gacagcgcgg cccgctggat cgtcaccgtc 360 tcaccgctcc tgtccaccgc ccgccgggcc gccgaactcg cgggcggcgt ccaggagatc 420 ctggtctgcg acagcgcgcc cggtcaccgc tccctcgtcg acatgctggc ctcgaccgcg 480 cccgaaccgt ccgtcgccat cgacccggcc gaggacgtcg ccgccctgcc gtactcctcg 540 ggcaccaccg gcacccccaa gggcgtcatg ctcacacacc ggcagatcgc caccaacctc 600 gcccagctcg aaccgtcgat gccgtccgcg cccggcgacc gcgtcctcgc cgtgctgccg 660 ttcttccaca tctacggcct gaccgccctg atgaacgccc cgctccggct cggcgccacc 720 gtcgtggtcc tgccccgctt cgacctggag cagttcctcg ccgccatcca gaaccaccgc 780 atcaccagcc tgtacgtcgc cccgccgatc gtcctggccc tcgccaaaca ccccctggtc 840 gccgactacg acctctcctc gctgaggtac atcgtcagcg ccgccgcccc gctcgacgcg 900 cgtctcgccg ccgcctgctc gcagcggctc ggcctgccgc ccgtcggcca ggcctacggc 960 atgaccgaac tgtccccggg cacccacgtc gtccccctgg acgcgatggc cgacgcgccg 1020 cccggcaccg tcggcaggct catcgcgggc accgagatgc gcatcgtctc cctcaccgac 1080 ccgggcacgg acctccccgc cggagagtcc ggggagatcc tcatccgcgg cccccagatc 1140 atgaagggct acctgggccg ccccgacgcc accgccgcca tgatcgacga ggagggctgg 1200 ctgcacaccg gggacgtcgg acacgtcgac gccgacggct ggctgttcgt cgtcgaccgc 1260 gtcaaggaac tgatcaagta caagggcttc caggtggccc ccgccgaact ggaggcccac 1320 ctgctcaccc accccggcgt cgccgacgcg gccgtcgtcg gcgcctacga cgacgacggc 1380 aacgaggtac cgcacgcctt cgtcgtccgc cagccggccg cacccggcct cgcggagagc 1440 gagatcatga tgtacgtcgc cgaacgcgtc gccccctaca aacgcgtccg ccgggtcacc 1500 ttcgtcgacg ccgtcccccg cgccgcctcc ggcaagatcc tccgccgaca gctcagggag 1560 ccgcgatga 1569 <210> 6 <211> 1176 <212> DNA <213> Rheum Palmatum <400> 6 atggcaccgg aggagtcgaa gcatgctgaa actgctaaca gagccactgc caccgtcctg 60 gccatcggca ctgccaaccc tccaaactgc tactaccagg ccgactttcc cgacttctac 120 ttccgtgtca ccaacagcga ccacctcacg cacctcaaga ataaattcaa gagcatttgt 180 gagaggtcga agattgagaa acgttacctc cacttgacgg aagaaattct caaggagaat 240 ccgaatattg cttcctacga ggcgccatca ttagatgtaa gacaaaacat tcaagtgaaa 300 gaagtggtga agctcgggaa agaggcagct ttgaaggcca tcaatgagtg gggccaaccc 360 aagtcaaaga tcacgcacct cattgtgtgt tgtattgcag gcgttgacat gcccggcgca 420 gactatcaac ttactaaagt tcttggctta caactctctg ttaagcggtt tatgttttac 480 cacctaggat gctatgccgg tggcaccgtc ctttgccttg caaaggacat agcagagaac 540 aacaagggag ctcgtgttct catcgtttgc tctgagatga cgccaatctg tttccgtggg 600 ccatccgaaa cccacataga ctccatggta gggcaagcaa tatttggtga cggtgctgcg 660 gctgtcatag ttggtgcaca tccggaccta tccatcgaaa ggccgatttt cgagttgatt 720 tcaacatccc aaactatcat acctgaatcc gacggtgcga ttgagggaca tttgcttgaa 780 gttggactca gtttccatct ccaccagacc gttccctcat taatctctaa ttctatccaa 840 acttgtcttt caaaggcttt cacacctctt aacattagtg attggaactc gctattctgg 900 attgcacacc ctggtggccg tgctatcctt gacgatattg aggctactgt aggtctcaag 960 aaggagaaac ttatggcaac aagacaagtt ttgaacgatt atgggaacat gtcaagtgct 1020 tgcgtatttt tcatcatgga tgagatgagg aagaagtcga ttgcaaacgg tcaagtaacc 1080 actggagaag gactcaagtg gggtgttctt tttgggttcg gcccaggtgt tactgtggaa 1140 actgtggttc tacacagtgt gccgctaatt acctga 1176 <210> 7 <211> 1188 <212> DNA <213> Artificial Sequence <220> <223> RpSTSsyn <400> 7 atggcagatc ccatggcgcc ggaagaaagt aaacatgctg aaaccgcaaa ccgtgcaacc 60 gcaacggtgc tggccattgg tacggcaaac ccgccgaatt gctattacca ggccgatttt 120 ccggactttt atttccgcgt taccaacagc gatcatctga cgcacctgaa aaacaaattc 180 aaaagtatct gtgaacgttc caaaatcgaa aaacgctatc tgcacctgac cgaagaaatt 240 ctgaaagaaa acccgaatat cgcttcatac gaagcgccgt cgctggatgt tcgtcagaac 300 attcaagtca aagaagtggt taaactgggt aaagaagcgg ccctgaaagc catcaatgaa 360 tggggccagc cgaaaagcaa aattacccat ctgatcgtgt gctgtattgc cggtgttgat 420 atgccgggcg cagactacca gctgacgaaa gtcctgggtc tgcaactgtc tgtgaaacgc 480 tttatgttct atcacctggg ttgctacgcc ggcggtaccg tgctgtgtct ggccaaagat 540 attgcagaaa acaataaagg cgcacgtgtc ctgattgtgt gcagcgaaat gaccccgatt 600 tgctttcgcg gtccgagcga aacgcatatt gattctatgg ttggccaggc catcttcggc 660 gacggtgcag ctgcggttat tgtcggtgca cacccggatc tgtcaatcga acgtccgatt 720 tttgaactga tcagtacctc ccaaacgatt atcccggaat cggacggtgc aatcgaaggc 780 catctgctgg aagttggcct gagttttcat ctgcaccaga ccgtcccgtc cctgatttca 840 aactcgatcc aaacctgcct gtctaaagcg tttacgccgc tgaacattag cgattggaat 900 tctctgttct ggatcgctca cccgggcggt cgtgcgattc tggatgacat cgaagctacc 960 gtgggtctga aaaaagaaaa actgatggcg acgcgccagg tcctgaacga ttatggcaat 1020 atgagctctg cttgtgtgtt tttcatcatg gacgaaatgc gtaaaaaatc tatcgcgaat 1080 ggtcaagtga ccacgggcga aggtctgaaa tggggcgttc tgtttggctt cggtccgggc 1140 gtgaccgttg aaacggtcgt gctgcattcc gtgccgctga ttaccctc 1188 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 8 atggatttgg caaacggtgt ga 22 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 9 tcaaggataa acctcaatga ggga 24 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 10 atggtactca tcagcgagga cagt 24 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 11 tcatggatat agctcaatga tcgatc 26 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 12 catatggcac cggaggagt 19 <210> 13 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 13 actagttcag gtaattagcg gc 22 <110> Korea Research Institute of Bioscience and Biotechnology <120> Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same <130> PN15158 <160> 13 <170> KopatentIn 2.0 <210> 1 <211> 1074 <212> DNA <213> Vitis riparia <400> 1 atggatttgg caaacggtgt gatatcagct gagctgcttc atgctcaagc tcatgtctgg 60 aaccatatat tcaacttcat caagtctatg tcactaaaat gtgctactca actaggcatc 120 ccagacatca tccacaacca tggcaagccc atgactcttc ctgagctggt cgctaagctc 180 ccagtccacc ctaaaaggag tcagtgcgtg taccgtctca tgcgcattct tgttcattct 240 ggcttccttg ctgcgcaaag agttcaacaa ggtgaggaag aagaggggta tgtgcttaca 300 gatgcctcta ggctccttct aatggatgac tccttgagca taaggccctt ggtgcttgcc 360 atgctcgacc caattttaac taaaccatgg cattatctga gtgcttggtt tcaaaatgat 420 gatcccactc cgttccacac tgcttatgag cggccatttt gggattatgc cggccatgaa 480 cctcagctca acaattcctt caatgaagcc atggctagcg atgctcgctt actcaccagc 540 gtgctgatta aggagggcaa gggcgtattt gcggggttga actcattagt tgatgtaggg 600 ggtggcaccg gaaaagtggc caaggccatt gctaacgctt tcccacattt gaactgcacc 660 gtgttagatc tcccccacgt ggttgctggc ttgcaaggga gcaagaactt gaactacttt 720 gcaggtgata tgtttgaggc aattcctcct gcagatgcaa ttttactcaa gtggatactg 780 cacgactgga gcgatgaaga atgcgtgaag atactaaagc gatgcaggga agcaattccg 840 agcaaggaaa acggaggaaa ggtgattatc atagacatga tcatgatgaa gaatcaagga 900 gactacaagt ccatagaaac acagctgttc tttgatatga cgatgacgat tttcgccccg 960 ggtagagaga gggacgagaa cgaatgggag aagctattct tggatgctgg tttcagtcac 1020 tacaagataa ctcccatttt gggtttgagg tccctcattg aggtttatcc ttga 1074 <210> 2 <211> 1074 <212> DNA <213> Artificial Sequence <220> <223> VrROMTsyn <400> 2 atggatctgg cgaacggtgt gatcagcgcc gaactgctgc atgcacaggc tcacgtttgg 60 aaccatatct tcaacttcat caaaagcatg tctctgaaat gcgcgaccca actgggtatt 120 ccggatatta tccataatca cggcaaaccg atgacgctgc cggaactggt tgccaaactg 180 ccggtccacc cgaaacgttc ccagtgtgtg tatcgtctga tgcgcatcct ggttcattca 240 ggctttctgg cggcccaacg cgttcagcaa ggtgaagaag aagaaggcta cgtcctgacc 300 gatgcgtctc gtctgctgct gatggatgac agtctgtcca tccgtccgct ggtgctggca 360 atgctggacc cgattctgac gaaaccgtgg cattatctga gtgcttggtt tcagaacgat 420 gacccgaccc cgttccacac ggcgtatgaa cgtccgtttt gggattacgc cggtcatgaa 480 ccgcagctga acaattcatt caacgaagcg atggcctcgg acgcacgtct gctgaccagc 540 gtcctgatca aagaaggtaa aggtgttttt gccggtctga attccctggt cgatgtgggc 600 ggtggcaccg gtaaagtcgc aaaagctatt gcgaacgcct tcccgcacct gaattgcacg 660 gttctggatc tgccgcatgt ggttgcaggt ctgcaaggct ctaaaaacct gaattatttt 720 gcaggcgata tgttcgaagc tattccgccg gcagacgcta tcctgctgaa atggattctg 780 cacgattggt cggacgaaga atgcgtgaaa atcctgaaac gttgtcgcga agccattccg 840 agcaaagaaa acggtggcaa agttatcatc atcgatatga tcatgatgaa aaatcagggt 900 gactacaaaa gtattgaaac ccaactgttt ttcgatatga ccatgacgat ctttgcaccg 960 ggccgtgaac gcgatgaaaa tgaatgggaa aaactgtttc tggacgctgg tttctctcat 1020 tataaaatca ccccgattct gggcctgcgt agtctgattg aagtgtaccc gtaa 1074 <210> 3 <211> 1122 <212> DNA <213> Sorghum bicolor <400> 3 atggtactca tcagcgagga cagtagggag ttgctccaag cccacgtcga gctatggaac 60 cagacctaca gctttatgaa gtcggtggcg ctcgccgttg ctttagacct ccgcatcgct 120 gatgccatcc accgctgcgg tggcgccgcc accctctccc agatactcgg agagattggt 180 gtccgcccat gtaagcttcc cgccctccac cgcctaatgc gtgttctgac cgtctcagga 240 accttcacca tcgtccagcc atcagcggca accatgtcat tggtgtcgga cgggaatgag 300 cttgtctata agctgacaac agcgtcccgc ctcctcgtca gcagcgaaag ctcggcgacg 360 gcgagcttgt ctcctatgct gaaccacgtg cttagcccct tccgtgactc gcccctcagc 420 atggggctca ctgcgtggtt ccggcacgat gaagatgaac aggcgcctgg cccatgcccg 480 ttcaccctga tgtacggcac aaccttgtgg gaggtgtgca gtcgtgacga cgcaatcaac 540 gcgttgttca acaacgccat ggccgcagac agcaacttcc tgatgcagat tgtgttgagg 600 gagttcggca aggtcttcca cgggatagac tcgctggtcg acgtcggcgg tggggttggg 660 ggagccacca tggccattgc cacggcgttc ccgtctttga agtgtaccgt actagacctc 720 cctcacgttg tcgccaaggc tccgtccagt tctattggca acgtgcagtt tgttgggggt 780 gacatgtttg agagcattcc accagcgaat gttgtcttcc tcaagtggat tttgcatgac 840 tggagcaatg acgagtgtat caagatatta aagaactgca agcaagctat cccttctaga 900 gatgcaggag gaaagataat aatcattgat gttgtggttg ggtctgagtc atcagacacc 960 aagcttctgg agacacaagt aatgtatgat ctccatctca tgaaaattgg tggggttgaa 1020 cgagatgagc aagagtggaa gaaaatattc ctcgaagctg gatttaagga ctacaatatt 1080 ataccagttt taggcctccg atcgatcatt gagctatatc ca 1122 <210> 4 <211> 1149 <212> DNA <213> Artificial Sequence <220> <223> SbROMT3syn <400> 4 atggtgctga ttagcgaaga tagccgtgaa ctgctgcaag cgcatgtgga actgtggaac 60 cagacctact catttatgaa aagcgtcgct ctggcggttg ccctggatct gcatattgca 120 gacgctattc atcgtcgcgg cggtgcggca accctgtctc agattctggg cgaaatcggt 180 gttcgtccgt gcaaactgcc gggcctgcat cgtattatgc gcgtgctgac cgttagtggt 240 acctttacga tcgtccaacc gtcggcggaa acgatgagct ctgaaagcga tggccgcgaa 300 ccggtttata aactgaccac ggccagttcc ctgctggtct catcggaaag ctctgcgacc 360 gcctctctga gtccgatgct gaaccatgtt ctgagcccgt ttcgtgattc cccgctgtca 420 atgggtctga ccgcatggtt ccgccacgat gaagacgaac aggctccggg catgtgcccg 480 tttacgctga tgtacggtac cacgctgtgg gaagtgtgtc gtcgcgatga cgcgattaac 540 gccctgttta acaatgcaat ggcagctgat agcaatttcc tgatgcagat tctgctgaaa 600 gaattttctg aagtcttcct gggcatcgat agtctggttg acgttgccgg cggtgtgggc 660 ggtgcaacca tggctattgc ggccgcattc ccgtgcctga aatgtacggt gctggatctg 720 ccgcatgtgg ttgcaaaagc tccgagttcc tcaatcggta acgtccagtt tgtgggcggt 780 gatatgttcg aatcgattcc gccggcgaat gtcgtgctgc tgaaatggat tctgcacgat 840 tggtcaaacg acgaatgcat caaaatcctg aaaaactgta aacaagcgat tccgtcccgt 900 gatgccggcg gtaaaattat cattatcgac gttgtcgtgg gctcagattc gagcgacacc 960 aaactgctgg aaacgcaagt gatttatgat ctgcacctga tgaaaatcgg cggtgttgaa 1020 cgcgacgaac aagaatggaa gaaaattttt ctggaagcgg gtttcaaaga ttacaaaatt 1080 atgccgattc tgggtctgcg ctccattatt gaactgtatc cgtgactcga caagcttgcg 1140 gccgcataa 1149 <210> 5 <211> 1569 <212> DNA <213> Streptomyces coelicolor <400> 5 atgttccgca gcgagtacgc agacgtcccg cccgtcgacc tgcccatcca cgacgccgtg 60 ctcggcgggg ccgccgcctt cgggagcacc ccggcgctga tcgacggcac cgacggcacc 120 accctcacct acgagcaggt ggaccggttc caccggcgcg tcgccgccgc cctcgccgag 180 accggcgtgc gcaagggcga cgtcctcgcc ctgcacagcc ccaacaccgt cgccttcccc 240 ctggccttct acgccgccac ccgcgcgggc gcctccgtca ccacggtgca tccgctcgcg 300 acggcggagg agttcgccaa gcagctgaag gacagcgcgg cccgctggat cgtcaccgtc 360 tcaccgctcc tgtccaccgc ccgccgggcc gccgaactcg cgggcggcgt ccaggagatc 420 ctggtctgcg acagcgcgcc cggtcaccgc tccctcgtcg acatgctggc ctcgaccgcg 480 cccgaaccgt ccgtcgccat cgacccggcc gaggacgtcg ccgccctgcc gtactcctcg 540 ggcaccaccg gcacccccaa gggcgtcatg ctcacacacc ggcagatcgc caccaacctc 600 gcccagctcg aaccgtcgat gccgtccgcg cccggcgacc gcgtcctcgc cgtgctgccg 660 ttcttccaca tctacggcct gaccgccctg atgaacgccc cgctccggct cggcgccacc 720 gtcgtggtcc tgccccgctt cgacctggag cagttcctcg ccgccatcca gaaccaccgc 780 atcaccagcc tgtacgtcgc cccgccgatc gtcctggccc tcgccaaaca ccccctggtc 840 gccgactacg acctctcctc gctgaggtac atcgtcagcg ccgccgcccc gctcgacgcg 900 cgtctcgccg ccgcctgctc gcagcggctc ggcctgccgc ccgtcggcca ggcctacggc 960 atgaccgaac tgtccccggg cacccacgtc gtccccctgg acgcgatggc cgacgcgccg 1020 cccggcaccg tcggcaggct catcgcgggc accgagatgc gcatcgtctc cctcaccgac 1080 ccgggcacgg acctccccgc cggagagtcc ggggagatcc tcatccgcgg cccccagatc 1140 atgaagggct acctgggccg ccccgacgcc accgccgcca tgatcgacga ggagggctgg 1200 ctgcacaccg gggacgtcgg acacgtcgac gccgacggct ggctgttcgt cgtcgaccgc 1260 gtcaaggaac tgatcaagta caagggcttc caggtggccc ccgccgaact ggaggcccac 1320 ctgctcaccc accccggcgt cgccgacgcg gccgtcgtcg gcgcctacga cgacgacggc 1380 aacgaggtac cgcacgcctt cgtcgtccgc cagccggccg cacccggcct cgcggagagc 1440 gagatcatga tgtacgtcgc cgaacgcgtc gccccctaca aacgcgtccg ccgggtcacc 1500 ttcgtcgacg ccgtcccccg cgccgcctcc ggcaagatcc tccgccgaca gctcagggag 1560 ccgcgatga 1569 <210> 6 <211> 1176 <212> DNA <213> Rheum Palmatum <400> 6 atggcaccgg aggagtcgaa gcatgctgaa actgctaaca gagccactgc caccgtcctg 60 gccatcggca ctgccaaccc tccaaactgc tactaccagg ccgactttcc cgacttctac 120 ttccgtgtca ccaacagcga ccacctcacg cacctcaaga ataaattcaa gagcatttgt 180 gagaggtcga agattgagaa acgttacctc cacttgacgg aagaaattct caaggagaat 240 ccgaatattg cttcctacga ggcgccatca ttagatgtaa gacaaaacat tcaagtgaaa 300 gaagtggtga agctcgggaa agaggcagct ttgaaggcca tcaatgagtg gggccaaccc 360 aagtcaaaga tcacgcacct cattgtgtgt tgtattgcag gcgttgacat gcccggcgca 420 gactatcaac ttactaaagt tcttggctta caactctctg ttaagcggtt tatgttttac 480 cacctaggat gctatgccgg tggcaccgtc ctttgccttg caaaggacat agcagagaac 540 aacaagggag ctcgtgttct catcgtttgc tctgagatga cgccaatctg tttccgtggg 600 ccatccgaaa cccacataga ctccatggta gggcaagcaa tatttggtga cggtgctgcg 660 gctgtcatag ttggtgcaca tccggaccta tccatcgaaa ggccgatttt cgagttgatt 720 tcaacatccc aaactatcat acctgaatcc gacggtgcga ttgagggaca tttgcttgaa 780 gttggactca gtttccatct ccaccagacc gttccctcat taatctctaa ttctatccaa 840 acttgtcttt caaaggcttt cacacctctt aacattagtg attggaactc gctattctgg 900 attgcacacc ctggtggccg tgctatcctt gacgatattg aggctactgt aggtctcaag 960 aaggagaaac ttatggcaac aagacaagtt ttgaacgatt atgggaacat gtcaagtgct 1020 tgcgtatttt tcatcatgga tgagatgagg aagaagtcga ttgcaaacgg tcaagtaacc 1080 actggagaag gactcaagtg gggtgttctt tttgggttcg gcccaggtgt tactgtggaa 1140 actgtggttc tacacagtgt gccgctaatt acctga 1176 <210> 7 <211> 1188 <212> DNA <213> Artificial Sequence <220> <223> RpSTSsyn <400> 7 atggcagatc ccatggcgcc ggaagaaagt aaacatgctg aaaccgcaaa ccgtgcaacc 60 gcaacggtgc tggccattgg tacggcaaac ccgccgaatt gctattacca ggccgatttt 120 ccggactttt atttccgcgt taccaacagc gatcatctga cgcacctgaa aaacaaattc 180 aaaagtatct gtgaacgttc caaaatcgaa aaacgctatc tgcacctgac cgaagaaatt 240 ctgaaagaaa acccgaatat cgcttcatac gaagcgccgt cgctggatgt tcgtcagaac 300 attcaagtca aagaagtggt taaactgggt aaagaagcgg ccctgaaagc catcaatgaa 360 tggggccagc cgaaaagcaa aattacccat ctgatcgtgt gctgtattgc cggtgttgat 420 atgccgggcg cagactacca gctgacgaaa gtcctgggtc tgcaactgtc tgtgaaacgc 480 tttatgttct atcacctggg ttgctacgcc ggcggtaccg tgctgtgtct ggccaaagat 540 attgcagaaa acaataaagg cgcacgtgtc ctgattgtgt gcagcgaaat gaccccgatt 600 tgctttcgcg gtccgagcga aacgcatatt gattctatgg ttggccaggc catcttcggc 660 gacggtgcag ctgcggttat tgtcggtgca cacccggatc tgtcaatcga acgtccgatt 720 tttgaactga tcagtacctc ccaaacgatt atcccggaat cggacggtgc aatcgaaggc 780 catctgctgg aagttggcct gagttttcat ctgcaccaga ccgtcccgtc cctgatttca 840 aactcgatcc aaacctgcct gtctaaagcg tttacgccgc tgaacattag cgattggaat 900 tctctgttct ggatcgctca cccgggcggt cgtgcgattc tggatgacat cgaagctacc 960 gtgggtctga aaaaagaaaa actgatggcg acgcgccagg tcctgaacga ttatggcaat 1020 atgagctctg cttgtgtgtt tttcatcatg gacgaaatgc gtaaaaaatc tatcgcgaat 1080 ggtcaagtga ccacgggcga aggtctgaaa tggggcgttc tgtttggctt cggtccgggc 1140 gtgaccgttg aaacggtcgt gctgcattcc gtgccgctga ttaccctc 1188 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 8 atggatttgg caaacggtgt ga 22 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 9 tcaaggataa acctcaatga ggga 24 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 10 atggtactca tcagcgagga cagt 24 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 11 tcatggatat agctcaatga tcgatc 26 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 12 catatggcac cggaggagt 19 <210> 13 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 13 actagttcag gtaattagcg gc 22

Claims (7)

서열번호 5의 염기서열로 이루어진 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자를 포함하는 재조합 벡터 및 서열번호 4의 염기서열로 이루어진 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자와 서열번호 7의 염기서열로 이루어진 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터가 동시에 형질전환되어 피노스틸벤 (pinostilbene) 생성능을 갖는 재조합 대장균.A recombinant vector comprising a ScCCL (Streptomyces coelicolor carboxyl CoA ligase) gene comprising the nucleotide sequence of SEQ ID NO: 5 and a SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) gene comprising the nucleotide sequence of SEQ ID NO: And a recombinant vector comprising RpSTSsyn gene (synthetic rheumatum palmatum stilbene synthase) gene is simultaneously transformed to produce pinostilbene. 삭제delete 삭제delete 삭제delete 제1항의 재조합 대장균을 기질인 p-쿠마르산이 포함된 배지에서 배양하는 단계를 포함하는 피노스틸벤 (pinostilbene)의 생산 방법.A method for producing pinostilbene comprising culturing the recombinant E. coli of claim 1 in a medium containing p-coumaric acid as a substrate. 삭제delete 서열번호 5의 염기서열로 이루어진 ScCCL (Streptomyces coelicolor carboxyl CoA ligase) 유전자를 포함하는 재조합 벡터 및 서열번호 4의 염기서열로 이루어진 SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) 유전자와 서열번호 7의 염기서열로 이루어진 RpSTSsyn (synthetic Rheum Palmatum stilbene synthase) 유전자를 포함하는 재조합 벡터를 유효성분으로 함유하는 대장균의 피노스틸벤 (pinostilbene) 생산용 조성물.A recombinant vector comprising a ScCCL (Streptomyces coelicolor carboxyl CoA ligase) gene comprising the nucleotide sequence of SEQ ID NO: 5 and a SbROMT3syn (synthetic Sorghum bicolor resveratrol O-methyltransferase 3) gene comprising the nucleotide sequence of SEQ ID NO: Wherein the recombinant vector comprises RpSTSsyn (synthetic rheumatum palmatum stilbene synthase) gene as an active ingredient.
KR1020150077075A 2015-06-01 2015-06-01 Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same KR101578651B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150077075A KR101578651B1 (en) 2015-06-01 2015-06-01 Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150077075A KR101578651B1 (en) 2015-06-01 2015-06-01 Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130108279A Division KR101578652B1 (en) 2013-09-10 2013-09-10 Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same

Publications (2)

Publication Number Publication Date
KR20150065652A KR20150065652A (en) 2015-06-15
KR101578651B1 true KR101578651B1 (en) 2015-12-18

Family

ID=53504490

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150077075A KR101578651B1 (en) 2015-06-01 2015-06-01 Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same

Country Status (1)

Country Link
KR (1) KR101578651B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Plant Biotechnology Journal, vol.10, pp.269-283(2012)*

Also Published As

Publication number Publication date
KR20150065652A (en) 2015-06-15

Similar Documents

Publication Publication Date Title
US9068211B2 (en) Cells, nucleic acids, enzymes and use thereof, and methods for the production of sophorolipids
Park et al. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae
US11299717B2 (en) Production of citronellal and citronellol in recombinant hosts
US20140248668A1 (en) Methods and Materials for Recombinant Production of Saffron Compounds
KR20190125330A (en) Biosynthesis Preparation of Steviol Glycoside Rebaudioside D4 from Rebaudioside E
US20170044552A1 (en) Methods for Recombinant Production of Saffron Compounds
EP3158069B1 (en) Improved selectivity of the production of vanilloids in a recombinant unicellular host
KR101533352B1 (en) Recombinant microorganism with kaurene production ability and method for preparing kaurene using the same
CA3181733A1 (en) Enzymes and regulatory proteins in tryptamine metabolism
CN111943996B (en) Trachelospermi analogue, genetic engineering bacterium for producing same and application thereof
KR101578652B1 (en) Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same
KR101578651B1 (en) Recombinant microorganism producing stilbene compound and method for producing stilbene compound using the same
KR101669041B1 (en) Recombinant microoganisms for producing stevioside and method for stevioside using the same
KR20160011170A (en) Method for producing Phenylacetyl homoserine lactone derivatives
WO2022241298A2 (en) Engineered cells, enzymes, and methods for producing cannabinoids
WO2022167692A1 (en) Microbial production of tyrosol and salidroside
KR101592299B1 (en) Construct for biosynthesis of resveratrol glucoside derivatives and method for producing it using thereof
US20240132921A1 (en) Microbial production of tyrosol and salidroside
KR101617126B1 (en) Novel pstS promoter and process for prepring phenylprophanoid using the same
KR20130143507A (en) Method of production of 4-coumaric acid, caffeic acid and ferulic acid by artificial metabolism pathway in strain producing high tyrosine
KR101581185B1 (en) Method for mass production of quercetin-3-O-galactoside using PeF3GalGT gene in Escherichia coli
KR101859137B1 (en) Recombination vectors for producing Pinostilbene or Pterostilbene
CN116656641A (en) Caffeic acid O-methyltransferase mutant and application thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20191105

Year of fee payment: 5