KR101578192B1 - CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same - Google Patents

CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same Download PDF

Info

Publication number
KR101578192B1
KR101578192B1 KR1020130010728A KR20130010728A KR101578192B1 KR 101578192 B1 KR101578192 B1 KR 101578192B1 KR 1020130010728 A KR1020130010728 A KR 1020130010728A KR 20130010728 A KR20130010728 A KR 20130010728A KR 101578192 B1 KR101578192 B1 KR 101578192B1
Authority
KR
South Korea
Prior art keywords
catalyst
fischer
cobalt
tropsch synthesis
coo
Prior art date
Application number
KR1020130010728A
Other languages
Korean (ko)
Other versions
KR20140098326A (en
Inventor
이윤조
박조용
전기원
하경수
곽근재
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020130010728A priority Critical patent/KR101578192B1/en
Priority to PCT/KR2014/000647 priority patent/WO2014119870A1/en
Publication of KR20140098326A publication Critical patent/KR20140098326A/en
Application granted granted Critical
Publication of KR101578192B1 publication Critical patent/KR101578192B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 CoO 상(phase) 입자를 포함하는 분리된 피셔-트롭시 합성용 촉매, 이의 제조방법 및 이를 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법에 관한 것이다. 본 발명에 따라 제조된 CoO상(phase) 입자를 포함하는 분리된 피셔-트롭시 합성용 촉매는, 높은 분산도를 가지며 쉽게 환원이 되기 때문에 낮은 환원온도에서도 높은 활성을 나타낸다. 상기 촉매를 피셔 트롭시 합성 반응에 적용하는 경우, 일산화탄소의 높은 전환율 및 액체탄화수소의 안정적인 선택성을 보이며, 촉매의 비활성화를 억제할 수 있어서 경쟁력 있는 GTL 공정의 개발이 가능하다. The present invention relates to a separate Fischer-Tropsch synthesis catalyst comprising CoO phase particles, a process for their preparation and a process for the production of liquid hydrocarbons from natural gas using them. The separated Fischer-Tropsch synthesis catalyst containing CoO phase particles prepared according to the present invention exhibits high activity even at a low reduction temperature since it has a high degree of dispersion and easily reduces. When the catalyst is applied to a Fischer-Tropsch synthesis reaction, it exhibits high conversion of carbon monoxide and stable selectivity of liquid hydrocarbons, inhibiting deactivation of the catalyst, and enabling development of a competitive GTL process.

Description

CoO상 입자를 포함하는 피셔 트롭시 합성용 촉매 및 이를 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법{CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same}(CoO particle-containing catalyst for fischer-tropsch synthesis and GTL method using the same), and a method for producing liquid hydrocarbons from natural gas using the same.

본 발명은 CoO 상(phase) 입자를 포함하는 분리된 피셔-트롭시 합성용 촉매, 이의 제조방법 및 이를 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법에 관한 것이다.
The present invention relates to a separate Fischer-Tropsch synthesis catalyst comprising CoO phase particles, a process for their preparation and a process for the production of liquid hydrocarbons from natural gas using them.

최근의 급변하는 유가 상승 문제에 대처하기 위한 대안책으로서 각광받고 있는 GTL 기술의 개발에 있어서 F-T 합성용 촉매의 개선은 GTL 기술의 경쟁력 향상과 직결되고 있다. 특히, F-T 반응용 촉매의 개선에 따라서 GTL 공정의 열효율 및 카본 활용 효율을 향상할 수 있으며 F-T 반응 공정을 최적화하여 설계할 수도 있게 된다. 이와 같은 F-T 반응을 위해서는 철 및 코발트 계열 등의 촉매가 주로 사용되는데, 코발트 계열 촉매의 특징은 고가인 단점이 있으나, 높은 활성과 긴 수명 그리고 CO2 생성이 낮으면서 액체 파라핀계 탄화수소의 생성 수율이 높은 장점을 지니고 있다. 또한, 고온에서는 CH4을 다량 생산하는 문제가 있어 저온 촉매로만 사용이 가능하며, 고가의 코발트를 사용하기 때문에 알루미나, 실리카, 티타니아 등의 고표면적의 안정적인 지지체 위에 잘 분산시켜야 하며 소량의 Pt, Ru, Re 등의 귀금속 조촉매가 추가로 첨가된 형태로 사용되고 있는 실정이다.In the development of GTL technology, which is being watched as an alternative to cope with recent rapid changes in oil prices, the improvement of FT synthesis catalysts is directly related to the enhancement of GTL technology's competitiveness. In particular, according to the improvement of the catalyst for FT reaction, thermal efficiency and carbon utilization efficiency of the GTL process can be improved and the FT reaction process can be optimized and designed. In order for such FT reaction there is a catalyst, such as iron and cobalt-based mainly used, the characteristics of the cobalt-based catalyst but are expensive disadvantage, flew low, high activity and long life and CO 2 generated the yield of liquid paraffinic hydrocarbon It has a high advantage. In addition, since it can be used only as a low-temperature catalyst because of the problem of producing a large amount of CH 4 at a high temperature, it must be dispersed well on a stable support having a high surface area such as alumina, silica and titania because expensive cobalt is used. , Re, and the like are additionally added.

GTL 공정은 천연가스의 개질(reforming) 반응, 합성가스의 F-T 합성반응 및 생성물의 개질 반응과 같이 3단계의 주요 공정으로 구성되어 있으며, 이 중에서 철 및 코발트를 촉매로 사용하여 200℃ 내지 350℃의 반응 온도와 10기압 내지 30기압의 압력에서 수행되는 F-T 반응은 다음과 같이 4개의 주요 반응으로 설명될 수 있다.The GTL process consists of three main processes, such as reforming of natural gas, FT synthesis of syngas, and reforming of product. Among these processes, iron and cobalt are used as catalysts at 200 to 350 ° C And the FT reaction performed at a pressure of 10 atm to 30 atm can be explained by four main reactions as follows.

(a) 사슬성장 F-T 합성(Chain growth in F-T synthesis)(a) Chain growth in F-T synthesis

CO + 2H2 → -CH2- + H2O △H(227 ℃) = -165 kJ/molCO + 2H 2 ? -CH 2 - + H 2 O? H (227 ° C) = -165 kJ / mol

(b) 메탄화(Methanation)(b) Methanation.

CO + 3H2 → CH4 + H2O △H(227 ℃) = -215 kJ/molCO + 3H 2 ? CH 4 + H 2 O? H (227 ° C) = -215 kJ / mol

(c) 수성가스 전환반응(Water gas shift reaction)(c) Water gas shift reaction

CO + H2O → CO2 + H2 △H(227 ℃) = -40 kJ/molCO + H 2 O? CO 2 + H 2 ? H (227 ° C) = -40 kJ / mol

(d) 부다 반응(Boudouard reaction)(d) Boudouard reaction.

2CO → C + CO2 △H(227 ℃) = -134 kJ/mol
2CO → C + CO 2 ΔH (227 ° C.) = -134 kJ / mol

일반적으로 FT 합성용 촉매는 산화물 촉매이다. 따라서, FT 합성용 촉매의 환원 특성은 촉매 반응을 결정하는 매우 중요한 요소 중 하나이다.Generally, the catalyst for FT synthesis is an oxide catalyst. Therefore, the reducing property of the catalyst for FT synthesis is one of the most important factors for determining the catalytic reaction.

일반적으로 제조된 코발트 촉매는 Co3O4상을 가지고 있으며, FT 반응을 수행하기 앞서 수소를 이용하여 300 - 500℃의 온도에서 산화코발트를 환원시키는 단계를 거치게 된다. 산화코발트의 환원 과정은 다음 2 단계로 나타낼 수 있다. Generally, the cobalt catalyst has a Co 3 O 4 phase. Before the FT reaction, cobalt oxide is reduced at 300-500 ° C. using hydrogen. The reduction process of cobalt oxide can be represented by the following two steps.

1단계: Co3O4 + 4H2 → 3CoO + 4H20Step 1: Co 3 O 4 + 4H 2 ? 3CoO + 4H 2 O

2단계: CoO + H2 → Co + H2O
Step 2: CoO + H 2 → Co + H 2 O

기존 코발트계 FT 합성용 촉매의 제조방법으로는 함침법 또는 공침법이 있으며, 상기 방법으로 제조된 촉매의 경우는 소성과정을 통해 촉매 산화물이 형성된다. 즉, Co3O4상을 가지게 되며 상기 촉매는 지지체와의 강한 상호작용을 하기 때문에 산화 코발트의 환원온도가 높다. Conventional cobalt-based FT synthesis catalysts are prepared by impregnation or coprecipitation. In the case of the catalyst prepared by the above-mentioned method, a catalyst oxide is formed through calcination. That is, the catalyst has a Co 3 O 4 phase, and the catalyst has a strong interaction with the support, so that the reduction temperature of the cobalt oxide is high.

한국 등록특허 제10-1015492호는 기존 촉매 제조방법과 상이한 촉매 제조방법을 제시하였다. 이는 지지체와 활성 물질과의 상호작용을 적게 하는 동시에 활성 성분 입자의 크기를 조절함으로써, 일산화탄소의 선택도를 조절할 수 있다고 기재되어 있다. 그러나 상기 특허에서 제시된 방법으로 제조된 촉매 역시 Co3O4상으로 이루어져, FT 반응에 사용되기 전 두 단계 환원 반응을 거쳐야 하는 한계가 있었다. Korean Patent No. 10-1015492 discloses a catalyst preparation method different from the conventional catalyst preparation method. It is described that it is possible to control the selectivity of carbon monoxide by decreasing the interaction between the support and the active material while controlling the size of the active ingredient particles. However, the catalyst prepared by the method disclosed in the patent also has a Co 3 O 4 phase, which has a limitation in that it needs to undergo a two-stage reduction reaction before being used in the FT reaction.

FT 촉매의 활성을 결정하는 중요한 요인은 분산도와 환원율이다. 입자의 크기가 작아서 분산도가 높은 경우에는, FT 촉매의 안정성이 낮아지며 촉매활성이 낮고 메탄 생성이 많아지는 문제점이 있다. 또한 입자의 크기가 너무 커서 환원율이 높은 경우에는 분산도가 낮아 촉매의 활성이 저해된다. 따라서, 적절한 입자크기를 가지며 분산도와 환원율이 높은 촉매가 우수한 촉매라고 할 수 있다.
An important factor determining the activity of the FT catalyst is the dispersion and reduction rate. When the particle size is small and the degree of dispersion is high, the stability of the FT catalyst is lowered, the catalyst activity is low, and the generation of methane is increased. In addition, when the particle size is too large and the reduction ratio is high, the activity of the catalyst is inhibited because of low dispersity. Therefore, a catalyst having an appropriate particle size and a high degree of dispersion and reduction can be regarded as an excellent catalyst.

이에, 본 발명자들은 활성 및 액체탄화수소의 선택도가 최적화된 코발트계 촉매에 대해 연구하던 중, CoO상이 포함된 코발트 나노입자를 미리 제조한 후 이를 촉매 지지체에 담지하여 피셔-트롭시 합성용 촉매를 제조하는 경우, 낮은 온도에서 높은 환원 특성과 우수한 분산도를 나타내어, 기존 제조방법에 비해 뛰어난 촉매 활성을 보이는 것을 확인하고 본 발명을 완성하였다. 본 발명은 이에 기초한 것이다.
The inventors of the present invention have been studying cobalt-based catalysts optimized for activity and liquid hydrocarbon selectivity, and have previously prepared cobalt nanoparticles containing CoO phase and supported them on a catalyst support to prepare a catalyst for Fischer-Tropsch synthesis The present invention has been accomplished on the basis of the fact that it exhibits high reducing properties and excellent dispersibility at low temperatures and exhibits excellent catalytic activity as compared with conventional methods. The present invention is based on this.

본 발명의 제1양태는 CoO상(phase) 입자를 포함하는, 분리된 피셔-트롭시 합성용 촉매를 제공한다. A first aspect of the present invention provides a catalyst for separate Fischer-Tropsch synthesis, comprising CoO phase particles.

본 발명의 제2양태는 CoO 상(phase) 입자들을 일부 또는 전부 포함하는 코발트 입자들을 제조하는 단계; 상기 제조된 코발트 입자를 지지체에 담지하는 단계;를 포함하는, 피셔-트롭시 합성용 촉매의 제조방법를 제공한다. A second aspect of the present invention is a method of manufacturing a cobalt particle including the steps of: preparing cobalt particles including a part or all of CoO phase particles; And supporting the prepared cobalt particles on a support. The present invention also provides a method for producing a catalyst for Fischer-Tropsch synthesis.

본 발명의 제3양태는 본 발명에 따른 피셔-트롭시 합성용 촉매의 제조방법에 있어서, 코발트 공급 전구체 수용액과 염기성 화합물 수용액을 반응시켜 침전물을 형성하는 제1 단계; 상기 침전물을 캡핑(capping) 분자 및 비극성 유기 용매와 혼합하여 가열하는 제2 단계; 및 상기 혼합물 중 유기 용매층을 회수하고 230℃ 내지 350℃에서 가열하여 CoO상 입자들을 형성하는 제3 단계; 를 포함하는 것이 특징인 제조방법을 제공한다.In a third aspect of the present invention, there is provided a method for preparing a catalyst for Fischer-Tropsch synthesis according to the present invention, comprising: a first step of reacting an aqueous solution of a cobalt precursor with a basic compound aqueous solution to form a precipitate; A second step of mixing the precipitate with capping molecules and a nonpolar organic solvent and heating the mixture; And a third step of recovering the organic solvent layer in the mixture and heating CoO phase particles at 230 to 350 ° C. The method comprising the steps of:

본 발명의 제4양태는 피셔-트롭시 합성반응을 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법에 있어서, 본 발명에 따른 피셔-트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 a) 단계; CoO 상(phase) 입자를 포함하는 분리된 피셔-트롭시 합성용 촉매를 환원시켜 피셔-트롭시 합성용 촉매로 활성화시키는 b) 단계; 및 상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 c) 단계를 포함하는 것이 특징인 제조방법을 제공한다.
In a fourth aspect of the present invention, there is provided a method of producing liquid hydrocarbons from natural gas using a Fischer-Tropsch synthesis reaction, comprising the steps of: a) introducing a catalyst for Fischer-Tropsch synthesis according to the present invention into a Fischer- ) step; B) activating the separated Fischer-Tropsch synthesis catalyst comprising CoO phase particles with a catalyst for Fischer-Tropsch synthesis; And c) performing a Fischer-Tropsch synthesis reaction by the activated Fischer-Tropsch synthesis catalyst.

이하 본 발명을 자세히 설명한다. Hereinafter, the present invention will be described in detail.

일반적으로 기존 코발트 촉매는 Co3O4 상으로 제조되기 때문에, FT 반응기에 적용된 후, FT 반응을 수행하기 전, 300 - 500℃의 고온의 수소분위기 하 환원에 의해 코발트 금속(Co)으로 활성화되어야 한다.
Since conventional cobalt catalysts are produced in Co 3 O 4 phase, they must be activated to cobalt metal (Co) by reduction under a hydrogen atmosphere at high temperature of 300 - 500 ° C before FT reaction after application to FT reactor do.

본 발명은 FT 반응기에 적용되기 전 피셔-트롭시 합성용 촉매 및/또는 지지체에 담지하는 촉매 유효성분이, CoO 상(phase) 입자들을 일부 또는 전부 포함하는 코발트 입자들인 것이 특징이다. 본 발명에 따른 촉매는 별도의 소성과정 없이 수소로 환원되어 활성화될 수 있다. 상기 환원은 촉매를 고정층, 유동층 또는 슬러리 반응기에 적용시킨 후 100℃ 내지 500℃의 온도 범위의 수소 분위기하에서 이루어질 수 있다. 또한, 본 발명에 따른 피셔-트롭시 합성용 촉매는 낮은 환원 온도에서도 높은 활성을 나타내고, 일산화탄소의 높은 전환율과 액체탄화수소로의 안정적인 선택성 및 촉매의 비활성화를 억제할 수 있다.
The present invention is characterized in that the catalyst for Fischer-Tropsch synthesis before the application to the FT reactor and / or the catalyst active component carried on the support are cobalt particles containing some or all of the CoO phase particles. The catalyst according to the present invention can be reduced to hydrogen and activated without any firing process. The reduction may be performed in a hydrogen atmosphere at a temperature ranging from 100 ° C to 500 ° C after the catalyst is applied to a fixed bed, a fluidized bed, or a slurry reactor. In addition, the catalyst for Fischer-Tropsch synthesis according to the present invention exhibits high activity even at a low reduction temperature, and can inhibit high conversion of carbon monoxide, stable selectivity to liquid hydrocarbons, and inactivation of the catalyst.

본 발명에서, "분리된 피셔-트롭시 합성용 촉매"는 피셔-트롭시 합성용 반응기에 적용 전 직접 합성하여 운반 및/또는 유통될 수 있는 촉매 상태를 의미하는 것으로, 본 발명에 따른 피셔-트롭시 합성용 촉매는 피셔-트롭시 합성용 반응기에 적용 전 CoO 상(phase) 으로 합성되고 나서, 피셔-트롭시 합성용 반응기에 적용된 후 환원반응에 의해 CoO 상의 전구체가 Co 상의 피셔-트롭시 합성용 촉매가 된다. In the present invention, the term "separated Fischer-Tropsch synthesis catalyst" means a catalyst state that can be directly synthesized and transported and / or circulated before being applied to a reactor for Fischer-Tropsch synthesis. The catalyst for the synthesis of Tropsch synthesized in the CoO phase before application to the reactor for Fischer-Tropsch synthesis, then applied to the reactor for the synthesis of Fischer-Tropsch, And becomes a synthesis catalyst.

또한, 본 발명은 FT 반응기에 적용되기 전 미리 코발트계 촉매 성분을 최적의 크기로 제조하고 CoO 상을 포함하는 나노입자로 제조하여 이를 촉매 지지체에 담지할 수 있으므로, 분산도가 높고 낮은 온도에서 환원이 쉽게 일어나게 할 수 있다.
In addition, since the present invention can prepare a cobalt-based catalyst component in an optimal size before being applied to an FT reactor, and can be made into a nanoparticle containing a CoO phase and supported on a catalyst support, This can easily happen.

본 발명에서 CoO 상 입자들의 평균직경은 5 내지 50 nm일 수 있으며, 보다 바람직하게는 10 내지 20 nm 범위일 수 있다. 10 nm 미만이면 촉매 지지체와 상호작용에 의해 피셔-트롭시 반응 활성점인 금속으로의 환원이 어려워진다. 따라서, 촉매로서 활성이 낮아지며, 액체탄화수소로의 선택도가 감소하는 반면 부산물인 메탄의 생성이 많아진다. 반면, 20 nm를 초과하는 경우 촉매 표면적에 비해 벌크 부피가 커지므로, 촉매 작용점인 표면적이 상대적으로 작아지고, 촉매의 활성이 줄어드는 문제점이 있다.
In the present invention, the average diameter of the CoO phase particles may be in the range of 5 to 50 nm, and more preferably in the range of 10 to 20 nm. If it is less than 10 nm, it is difficult to reduce to a metal, which is the active site of Fischer-Tropsch reaction, by interaction with the catalyst support. Thus, the activity as a catalyst is lowered, the selectivity to liquid hydrocarbons is reduced, while the production of methane, a by-product, increases. On the other hand, when it exceeds 20 nm, the bulk volume becomes larger than the catalyst surface area, so that the surface area of the catalytic action point becomes relatively small and the activity of the catalyst is reduced.

본 발명에서, CoO상 입자들의 함량은 촉매 100중량부를 기준으로 10중량부 내지 100중량부일 수 있다.
In the present invention, the content of the CoO phase particles may be 10 parts by weight to 100 parts by weight based on 100 parts by weight of the catalyst.

본 발명에 따른 피셔-트롭시 합성용 촉매는 CoO 상(phase) 입자들을 일부 또는 전부 포함하는 코발트 입자들을 제조하는 단계; 및 상기 제조된 코발트 입자를 지지체에 담지하는 단계를 포함하여 제조될 수 있다.The catalyst for Fischer-Tropsch synthesis according to the present invention comprises: preparing cobalt particles containing part or all of CoO phase particles; And supporting the prepared cobalt particles on a support.

상기 지지체에 담지된 CoO상 입자들의 함량은 바람직하게는 지지체 100중량부를 기준으로 3중량부 내지 40중량부, 보다 바람직하게는 5중량부 내지 35 중량부일 수 있다. 3 중량부 미만이면 피셔 트롭시 반응성을 나타내기에 충분한 활성 성분이 존재하지 않아 반응성이 감소하는 문제가 있다. 반면 40 중량부를 초과하는 경우, 촉매 제조비용이 증가하여 경제성이 떨어지며, 촉매의 입자크기가 증가하고 촉매의 비표면적이 감소함으로써 피셔 트롭시 활성이 떨어지는 문제점이 있다.The content of the CoO phase particles supported on the support is preferably 3 to 40 parts by weight, more preferably 5 to 35 parts by weight based on 100 parts by weight of the support. When the amount is less than 3 parts by weight, there is a problem that reactivity is reduced because there is not enough active ingredient to exhibit reactivity upon Fischer Tropsch. On the other hand, if it exceeds 40 parts by weight, there is a problem in that the cost of the catalyst is increased, the economical efficiency is lowered, the particle size of the catalyst is increased, and the specific surface area of the catalyst is decreased.

상기 지지체는 감마-알루미나, 실리카, 티타니아, 개질된 감마-알루미나, 개질된 실리카, 개질된 티타니아, 또는 이의 혼합물일 수 있다.
The support may be gamma-alumina, silica, titania, modified gamma-alumina, modified silica, modified titania, or mixtures thereof.

본 발명에서, 상기 촉매는 백금, 루테늄, 레늄 또는 이의 혼합물로 이루어진 군에서 선택되는 귀금속을 추가로 더 포함할 수 있다. 상기 귀금속은 조촉매로서 작용하여 촉매의 활성을 개선한다. 상기 귀금속의 함량은 촉매 100중량부를 기준으로 0.01중량부 내지 1중량부인 것이 바람직하다.
In the present invention, the catalyst may further include a noble metal selected from the group consisting of platinum, ruthenium, rhenium, or a mixture thereof. The noble metal acts as a cocatalyst to improve the activity of the catalyst. The content of the noble metal is preferably 0.01 part by weight to 1 part by weight based on 100 parts by weight of the catalyst.

본 발명에 따른 피셔-트롭시 합성용 촉매의 제조방법은 코발트 공급 전구체 수용액과 염기성 화합물 수용액을 반응시켜 침전물을 형성하는 제1 단계; 상기 침전물을 캡핑(capping) 분자 및 비극성 유기 용매와 혼합하여 가열하는 제2 단계; 및 상기 혼합물 중 유기 용매층을 회수하고 230℃ 내지 350℃에서 가열하여 CoO상 입자들을 형성하는 제3 단계를 포함한다. The method for preparing a catalyst for Fischer-Tropsch synthesis according to the present invention comprises the steps of: a) forming a precipitate by reacting an aqueous solution of a cobalt precursor with an aqueous solution of a basic compound; A second step of mixing the precipitate with capping molecules and a nonpolar organic solvent and heating the mixture; And a third step of recovering the organic solvent layer in the mixture and heating at 230 to 350 ° C to form CoO phase particles.

구체적으로는, 코발트 공급 전구체 수용액과 염기성 화합물 수용액을 반응시키면 코발트 함유 침전물이 형성되고, 이를 탈이온수로 세척하여 얻은 코발트 함유 침전물 슬러리를 캡핑 분자 및 비극성 유기 용매와 혼합하여 가열하면, 무기물 촉매성분이 유기 용매로 녹아들어 수용액층과 분리된다. 이어서, 유기 용매층을 회수하고 230℃ 내지 350℃에서 가열하면 CoO상이 포함된 입자들을 형성할 수 있으며, 이때 원하는 크기로 입자크기를 조절할 수 있다.
Specifically, when a cobalt-containing precipitate is formed by reacting a cobalt-containing precursor aqueous solution with a basic compound aqueous solution, the cobalt-containing precipitate slurry obtained by washing with a deionized water is mixed with a capping molecule and a nonpolar organic solvent and heated, It is dissolved with an organic solvent and separated from the aqueous solution layer. Subsequently, the organic solvent layer is recovered and heated at 230 ° C to 350 ° C to form particles containing the CoO phase, wherein the particle size can be adjusted to a desired size.

제1 단계에서 코발트 공급 전구체의 비제한적인 예는 질산코발트(Co(NO3)2·H2O), 염화코발트(CoCl2·H2O), 황산코발트(CoSO4), 초산코발트(Co(AC)2) 및 이의 혼합물일 수 있다.Non-limiting examples of cobalt feed precursor in the first step is cobalt nitrate (Co (NO 3) 2 · H 2 O), cobalt chloride (CoCl 2 · H 2 O) , cobalt sulfate (CoSO 4), acetate, cobalt (Co (AC) 2 ) and mixtures thereof.

제1 단계에서 염기성 화합물의 비제한적인 예는 암모니아, 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화칼슘, 수산화암모늄, 탄산암모늄, 탄산수소암모늄, 탄산나트륨, 탄산수소나트륨, 탄산칼륨, 탄산수소칼륨 및 이의 혼합물일 수 있다. Non-limiting examples of basic compounds in the first step include ammonia, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, ammonium hydroxide, ammonium carbonate, ammonium bicarbonate, sodium carbonate, sodium bicarbonate, potassium carbonate, Lt; / RTI >

제2 단계에서 캡핑 분자의 비제한적인 예는 포화 또는 불포화 C6 -C30 유기산 또는 지방산일 수 있다. 보다 구체적으로는 2-에틸헥사노익산(2-ethylhexanoic acid), 스테아린산(stearic acid), 라우린산(lauric acid), 리놀레산(linoleic acid), 팔미틴산(palmitic acid), 올레산(oleic acid), 다중산(polyacid), 이들의 유도체 등을 단독 또는 2종 이상을 혼합하여 사용할 수 있다. Non-limiting examples of capping molecules in the second step may be saturated or unsaturated C 6 -C 30 organic acids or fatty acids. More specifically, it includes 2-ethylhexanoic acid, stearic acid, lauric acid, linoleic acid, palmitic acid, oleic acid, Polyacids, derivatives thereof, and the like, or a mixture of two or more of them may be used.

제2 단계에서 캡핑 분자는 코발트 공급 전구체 1몰에 대하여 0.1 내지 2.5의 몰비로 사용되는 것이 바람직하다. 0.1 몰비 미만이면 완전한 캡핑이 이루어지지 않아 분산성이 떨어지고, 수용액 중의 촉매 성분이 남아 손실이 발생할 수 있다. 반면, 2.5 몰비를 초과하는 경우에는 캡핑된 촉매성분의 콜로이드 용액의 유동성이 떨어질 수 있다.In the second step, the capping molecules are preferably used in a molar ratio of 0.1 to 2.5 to 1 mole of the cobalt feed precursor. If the molar ratio is less than 0.1, the complete capping is not achieved and the dispersibility becomes poor, and the loss of the catalyst component in the aqueous solution may occur. On the other hand, if the molar ratio exceeds 2.5, the fluidity of the colloidal solution of the capped catalyst component may be deteriorated.

제2 단계에서 비극성 유기 용매는 녹는점이 30℃ 미만, 끓는점이 70℃ 인 것이 바람직하다. 이는 표면처리에 적합한 반응온도를 유지하기 위해서이다. 비극성 유기 용매의 비제한적인 예는 톨루엔, 자일렌, 파라핀, 1-헥사데칸 및 등유, 경유 또는 중유와 같은 일반적인 석유계 용제 등일 수 있다. In the second step, the nonpolar organic solvent preferably has a melting point of less than 30 캜 and a boiling point of 70 캜. This is to maintain the reaction temperature suitable for the surface treatment. Non-limiting examples of nonpolar organic solvents may be toluene, xylene, paraffin, 1-hexadecane and common petroleum solvents such as kerosene, light oil or heavy oil.

제3 단계에서 바람직한 가열 온도 범위는 230℃ 내지 350℃이며, 보다 바람직하게는 230℃ 내지 300℃이다. 230℃ 미만이면 CoO가 형성되지 않고 결정화 반응이 약해 생성되는 결정의 크기가 너무 작아지는 문제점이 있다. 또한 350℃를 초과하는 경우 결정의 크기가 너무 커져 나노촉매로 적합하지 않을 수 있다.
The preferred heating temperature range in the third step is 230 to 350 占 폚, more preferably 230 to 300 占 폚. If the temperature is less than 230 ° C, CoO is not formed and the crystallization reaction is weak, resulting in a problem that the crystal size is too small. Also, when the temperature exceeds 350 ° C, the size of the crystal becomes too large to be suitable as a nano catalyst.

추가로, 형성된 CoO상 입자들이 포함된 용액은, 극성 유기용매와 혼합시켜 캡핑된 입자를 침전시켜 추출한 후, 이를 재분산하여 유기용매에 분산된 코발트 산화물(CoO) 입자를 수득할 수 있다. 상기 추출 용매로 사용되는 극성 유기 용매의 비제한적인 예는, 메탄올, 에탄올, 아세톤, 아세토나이트릴 또는 이의 혼합물일 수 있다.
Further, the solution containing the formed CoO phase particles may be mixed with a polar organic solvent to precipitate and extract the capped particles, and then re-dispersing the capped particles to obtain cobalt oxide (CoO) particles dispersed in the organic solvent. Non-limiting examples of the polar organic solvent used as the extraction solvent may be methanol, ethanol, acetone, acetonitrile or a mixture thereof.

CoO 상(phase) 입자들을 일부 또는 전부 포함하는 코발트 입자들을 지지체에 담지하기 위해, 상기 코발트 입자들을 비극성 용매에 재분산한 후, 지지체에 함침시킬 수 있다. 이때 비극성 용매는 끓는점이 낮은 용매를 사용하는 것이 바람직하다. 상기 비극성 용매를 상온 내지 70℃의 온도에서 제거하고, 담지된 촉매를 80 내지 200℃의 온도에서 건조하여 최종적으로 지지체에 담지된 피셔-트롭시 합성용 촉매를 제조할 수 있다.
The cobalt particles can be redispersed in a nonpolar solvent and then impregnated into a support to support the cobalt particles containing some or all of the CoO phase particles on the support. At this time, it is preferable to use a solvent having a low boiling point as the non-polar solvent. The nonpolar solvent is removed at a temperature of from room temperature to 70 ° C and the supported catalyst is dried at a temperature of from 80 to 200 ° C to finally produce a catalyst for synthesis of Fischer-Tropsch supported on a support.

본 발명은 피셔-트롭시 합성반응을 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법에 있어서, 본 발명에 따른 피셔-트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 a) 단계; CoO 상(phase) 입자를 포함하는 분리된 피셔-트롭시 합성용 촉매를 환원시켜 피셔-트롭시 합성용 촉매로 활성화시키는 b) 단계; 및 상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 c) 단계를 포함하는 것이 특징인 제조방법을 제공한다.
The present invention provides a method for producing liquid hydrocarbons from natural gas using a Fischer-Tropsch synthesis reaction, comprising the steps of: a) applying a Fischer-Tropsch synthesis catalyst according to the present invention to a Fischer-Tropsch synthesis reactor; B) activating the separated Fischer-Tropsch synthesis catalyst comprising CoO phase particles with a catalyst for Fischer-Tropsch synthesis; And c) performing a Fischer-Tropsch synthesis reaction by the activated Fischer-Tropsch synthesis catalyst.

본 발명에 따른 액체 탄화수소 제조방법은 적어도 c) 단계 이전에, 천연가스를 개질하여 합성가스(CO/H2)를 준비할 수 있다.The method for producing liquid hydrocarbons according to the present invention may prepare a synthesis gas (CO / H 2 ) by reforming natural gas at least before step c).

한편, 피셔-트롭시 합성반응기는 고정층, 유동층 또는 슬러리 반응기일 수 있다.On the other hand, the Fischer-Tropsch synthesis reactor may be a fixed bed, fluidized bed or slurry reactor.

본 발명에 따라 CoO 상(phase) 입자들을 일부 또는 전부 포함하는 피셔-트롭시 합성용 촉매를 사용하면 b) 단계는 별도의 소성과정 없이 수소 분위기 하에서 피셔-트롭시 합성용 촉매를 환원시켜 활성화시킬 수 있다.According to the present invention, when a catalyst for Fischer-Tropsch synthesis containing part or all of CoO phase particles is used, the step b) is performed by reducing the catalyst for Fischer-Tropsch synthesis under a hydrogen atmosphere without any firing step .

b) 단계는 100℃ 내지 500℃의 수소분위기에서 수행되는 것이 바람직하다.The step b) is preferably carried out in a hydrogen atmosphere at 100 ° C to 500 ° C.

한편, 피셔 트롭시 합성 반응에 해당하는 c) 단계는 200℃ 내지 350℃, 반응 압력 5 내지 30 kg/cm2, 공간속도 1000 - 10000 h-1에서 수행될 수 있으나, 이에 한정되는 것은 아니다.On the other hand, the step (c) corresponding to the Fischer-Tropsch synthesis reaction can be performed at a temperature of 200 ° C to 350 ° C, a reaction pressure of 5 to 30 kg / cm 2 , and a space velocity of 1000 to 10000 h -1 , but is not limited thereto.

피셔 트롭시 합성 반응은 수소/일산화탄소 반응비는 1 내지 25 몰비를 유지하면서 수행하는 것이 바람직하다.The Fischer-Tropsch synthesis reaction is preferably carried out while maintaining the hydrogen / carbon monoxide reaction ratio at 1 to 25 molar ratio.

또한, 본 발명에 따른 액체 탄화수소 제조방법은 c) 단계 이후 피셔 트롭시 합성 반응 생성물의 개질 반응 단계를 추가로 포함할 수 있다.
In addition, the method for producing a liquid hydrocarbon according to the present invention may further comprise a step of reforming the Fischer-Tropsch synthesis reaction product after step c).

본 발명에 따른 피셔-트롭시 합성용 촉매를 이용하고, 본 발명에 따라 낮은 환원 온도에서도 높은 활성을 나타내고, 일산화탄소의 높은 전환율과 액체탄화수소로의 안정적인 선택성 및 촉매의 비활성화를 억제할 수 있다.According to the present invention, by using the catalyst for Fischer-Tropsch synthesis according to the present invention, high activity is exhibited even at a low reduction temperature, and high conversion of carbon monoxide, stable selectivity to liquid hydrocarbons, and inactivation of the catalyst can be suppressed.

본 발명에 따른 촉매를 환원시킨 후 피셔-트롭시 합성반응을 통해 액체 탄화수소를 제조한 결과, 피셔 트롭시 합성 반응의 코발트 산화물 환원도 및 CO 선택도가 개선되며, C5+ 카본 선택도가 증가하였다.
As a result of the Fischer-Tropsch synthesis reaction after the reduction of the catalyst according to the present invention, the liquid hydrocarbon was improved in the degree of cobalt oxide reduction and CO selectivity and the C5 + carbon selectivity in the Fischer-Tropsch synthesis reaction.

본 발명에 따라 제조된 CoO상(phase) 입자를 포함하는 분리된 피셔-트롭시 합성용 촉매는, 높은 분산도를 가지며 쉽게 환원이 되기 때문에 낮은 환원온도에서도 높은 활성을 나타낸다. 상기 촉매를 피셔 트롭시 합성 반응에 적용하는 경우, 일산화탄소의 높은 전환율 및 액체탄화수소의 안정적인 선택성을 보이며, 촉매의 비활성화를 억제할 수 있어서 경쟁력 있는 GTL 공정의 개발이 가능하다.
The separated Fischer-Tropsch synthesis catalyst containing CoO phase particles prepared according to the present invention exhibits high activity even at a low reduction temperature since it has a high degree of dispersion and easily reduces. When the catalyst is applied to a Fischer-Tropsch synthesis reaction, it exhibits high conversion of carbon monoxide and stable selectivity of liquid hydrocarbons, inhibiting deactivation of the catalyst, and enabling development of a competitive GTL process.

도 1은 각 실시예 및 비교예에서 제조된 산화코발트 나노입자의 투과전자현미경(TEM) 사진이다(a: 실시예 1, b: 실시예 2, c: 실시예 3, d: 비교예 1).
도 2는 각 실시예 및 비교예에서 제조된 나노입자의 X선 회절패턴(XRD)을 나타낸 것이다(a: 실시예 1, b: 실시예 2, c: 실시예 3, d: 비교예 1).
도 3은 각 실시예 및 비교예에서 제조된 산화코발트 나노입자가 감마-알루미나 지지체에 담지된 촉매의 투과전자현미경 사진이다(a: 실시예 1, b: 실시예 2, c: 실시예 3, d: 비교예 1).
도 4는 각 실시예 및 비교예에서 제조된 산화코발트 나노입자가 감마-알루미나 지지체에 담지된 촉매의 X선 회절패턴(XRD)을 나타낸 것이다(a: 실시예 1, b: 실시예 2, c: 실시예 3, d: 비교예 1).
FIG. 1 is a transmission electron microscope (TEM) photograph of the cobalt oxide nanoparticles prepared in Examples and Comparative Examples (a: Example 1, b: Example 2, c: Example 3, .
2 shows X-ray diffraction patterns (XRD) of the nanoparticles prepared in each of the examples and comparative examples (a: Example 1, b: Example 2, c: Example 3, .
FIG. 3 is a transmission electron micrograph of a catalyst in which cobalt oxide nanoparticles prepared in Examples and Comparative Examples were supported on a gamma-alumina support (a: Example 1, b: Example 2, d: Comparative Example 1).
Fig. 4 shows X-ray diffraction patterns (XRD) of the catalysts in which the cobalt oxide nanoparticles prepared in Examples and Comparative Examples were supported on a gamma-alumina support (a: Example 1, b: Example 2, c : Example 3, d: Comparative Example 1).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are for further illustrating the present invention, and the scope of the present invention is not limited by these examples.

실시예Example 1:  One: CoOCoO 상 100%로 이루어진 코발트 촉매의 제조 (5% ≪ / RTI > 100% < RTI ID = 0.0 > (5% CoCo // AlAl 22 OO 33 -  - CoOCoO 100%) 100%)

1-1. 산화코발트 나노입자의 제조1-1. Preparation of cobalt oxide nanoparticles

100 mL의 증류수에 28%의 수산화암모늄(NH4OH) 15.3 g이 녹아있는 용액에, 200 mL의 증류수에 30 g의 질화코발트(Co(NO3)H2O)가 녹아있는 용액을 교반하면서 침전반응을 통해 슬러리 침전물을 수득하였다. 생성된 침전물을 필터로 거르고, 1500 mL의 증류수로 3차례 나누어 세척하였다. 세척한 침전물을 다시 증류수에 분산하여 수산화코발트 슬러리(수산화 코발트 함량 10%) 용액을 제조하였다. A solution of 30 g of cobalt nitride (Co (NO 3 ) 2 .H 2 O) in 200 mL of distilled water was added to a solution of 15.3 g of ammonium hydroxide (NH 4 OH) in 28 mL of distilled water. A slurry precipitate was obtained through precipitation reaction with stirring. The resulting precipitate was filtered and washed three times with 1500 mL of distilled water. The washed precipitate was dispersed again in distilled water to prepare a cobalt hydroxide slurry (cobalt hydroxide content: 10%) solution.

상기 제조된 수산화코발트 슬러리 수용액에 1-헥사데칸(1-hexadecane) 19.0 g과 올레인산 7.1 g을 혼합하고 100 ℃에서 30분 동안 교반하였다. 상기 교반 중 수산화코발트는 올레산과 반응하여 표면이 올레산으로 캡핑되고, 이는 비극성 용매인 1-헥사데칸에 녹아들어 수용층과 오일층으로 분리되었다. 상층의 수용액층을 단순히 분리하여 제거하고, 캡핑된 코발트가 함유된 오일층을 회수하였다. 상기 회수된 용액을 300 ℃에서 3 시간 가열하여 CoO상의 산화코발트 나노결정을 제조하였다. 19.0 g of 1-hexadecane and 7.1 g of oleic acid were mixed in the prepared aqueous solution of cobalt hydroxide slurry and stirred at 100 DEG C for 30 minutes. During stirring, cobalt hydroxide reacted with oleic acid to cap the surface of oleic acid, which was dissolved in 1-hexadecane, a non-polar solvent, and separated into a water-receiving layer and an oil layer. The aqueous layer of the upper layer was simply separated and removed, and the oil layer containing the capped cobalt was recovered. The recovered solution was heated at 300 캜 for 3 hours to prepare cobalt oxide nanocrystals of CoO phase.

상기 제조된 산화코발트의 나노입자의 투과전자현미경(TEM)사진을 도 1(a)에 나타내었다. 도 1(a)의 TEM 사진을 통해, 제조된 산화코발트 입자의 평균 크기가 13.7 nm임을 확인할 수 있었다. 또한, 디바이-셰러(Debye-Scherrer)식을 사용하여 산화코발트의 평균크기를 계산하였고 이는 15.4 ㎚로, TEM 결과와 유사함을 확인할 수 있었다. A transmission electron microscope (TEM) photograph of the nanoparticles of the prepared cobalt oxide is shown in FIG. 1 (a). The TEM image of FIG. 1 (a) shows that the average size of the prepared cobalt oxide particles was 13.7 nm. Also, the average size of cobalt oxide was calculated using the Debye-Scherrer equation, which was 15.4 ㎚, similar to the TEM results.

또한, 상기 제조된 산화코발트 나노입자의 X선 회절분석(XRD)을 도 2(a)에 나타내었다. 그 결과 CoO상에 해당하는 피크만 관찰됨으로써 본 실시예 1의 코발트 나노입자가 모두 CoO 상으로만 이루어졌음을 확인할 수 있었다.
The X-ray diffraction analysis (XRD) of the prepared cobalt oxide nanoparticles is shown in Fig. 2 (a). As a result, only the peak corresponding to the CoO phase was observed, confirming that the cobalt nanoparticles of Example 1 were all composed of the CoO phase.

1-2. 제조된 산화코발트 나노입자의 지지체 담지1-2. Supporting the prepared cobalt oxide nanoparticles

상기 제조된 산화코발트 나노입자 용액에 메탄올 100 mL를 혼합하여 산화코발트 나노입자를 응집-침전시킨 후, 이를 1-헥사데칸 용매로부터 분리하였다. 분리된 나노입자에 헥산을 혼합하여, 코발트 나노입자의 농도가 5 중량%인 콜로이드 용액을 제조하였다.The prepared cobalt oxide nanoparticle solution was mixed with 100 mL of methanol to coagulate-precipitate the cobalt oxide nanoparticles, which was then separated from the 1-hexadecane solvent. The separated nanoparticles were mixed with hexane to prepare a colloid solution having a concentration of cobalt nanoparticles of 5 wt%.

상기 제조된 5 중량% 산화코발트 나노입자 용액 10 g을 취하여 촉매지지체인 감마-알루미나(Al2O3, 비표면적: 320m2/g) 10 g에 함침시켰다. 50℃에서 헥산 용매를 증발시키고, 100℃ 오븐에서 건조하여 촉매를 제조하였다. 이때 제조된 촉매의 조성은 5%Co/Al2O3이다.10 g of the 5 wt% cobalt oxide nanoparticle solution thus prepared was impregnated with 10 g of gamma-alumina (Al 2 O 3 , specific surface area: 320 m 2 / g) as catalyst support. The hexane solvent was evaporated at 50 占 폚 and dried in an oven at 100 占 폚 to prepare a catalyst. The composition of the prepared catalyst is 5% Co / Al 2 O 3 .

상기 지지체에 담지된 촉매의 TEM 이미지를 도 3(a)에, XRD 패턴을 도 4(a)에 나타내었다. 도 3(a)를 통해 상기 산화코발트 나노입자가 지지체에 고르게 담지되어 있음을 확인할 수 있었다.
The TEM image of the catalyst supported on the support is shown in Fig. 3 (a), and the XRD pattern is shown in Fig. 4 (a). 3 (a), it was confirmed that the cobalt oxide nanoparticles were uniformly supported on the support.

실시예Example 2:  2: CoOCoO 상 70%와 With 70% CoCo 33 OO 44 상 30%로 이루어진 코발트 촉매의 제조 (5% Co/AlPreparation of cobalt catalyst consisting of 30% phase (5% Co / Al 22 OO 3 - 3 - CoOCoO 70%) 70%)

상기 실시예 1의 캡핑된 코발트가 함유된 오일층을 270℃로 3시간 가열하는 것을 제외하고는, 실시예 1과 동일하게 코발트 나노입자를 제조하였다. Cobalt nanoparticles were prepared in the same manner as in Example 1, except that the oil layer containing the capped cobalt of Example 1 was heated at 270 ° C. for 3 hours.

상기 제조된 산화코발트의 나노입자의 투과전자현미경(TEM)사진을 도 1(b)에 나타내었다. 도 1(b)의 TEM 사진을 통해, 제조된 산화코발트 입자의 평균 크기가 14.2 nm임을 확인할 수 있었다. 또한, 디바이-셰러(Debye-Scherrer)식을 사용하여 산화코발트의 평균크기를 계산하였고 이는 15.2 ㎚로, TEM 결과와 유사함을 확인할 수 있었다.A transmission electron microscope (TEM) photograph of the nanoparticles of the prepared cobalt oxide is shown in FIG. 1 (b). From the TEM photograph of FIG. 1 (b), it was confirmed that the average size of the prepared cobalt oxide particles was 14.2 nm. In addition, the average size of cobalt oxide was calculated using the Debye-Scherrer equation, which was found to be 15.2 ㎚, similar to the TEM result.

또한, 상기 제조된 산화코발트 나노입자의 X선 회절분석(XRD)을 도 2(b)에 나타내었다. 그 결과 CoO상에 해당하는 피크와 Co3O4상에 해당하는 피크가 모두 나타났고,상기 피크의 분포를 통해 CoO상의 함량이 70%임을 확인할 수 있었다.
The X-ray diffraction (XRD) of the prepared cobalt oxide nanoparticles is shown in FIG. 2 (b). As a result, the peak corresponding to the CoO phase and the peak corresponding to the Co 3 O 4 phase all appeared, and it was confirmed that the content of the CoO phase was 70% through the distribution of the peak.

상기 제조된 코발트 나노입자의 지지체의 담지 역시, 실시예 1과 동일하게 수행하였다. 담지된 코발트 나노입자의 TEM 사진과 X선 회절분석 이미지를 각각 도 3(b)와 도 4(b)에 나타내었다.
The support of the prepared cobalt nanoparticles was also carried out in the same manner as in Example 1. TEM images and X-ray diffraction analysis images of the supported cobalt nanoparticles are shown in FIGS. 3 (b) and 4 (b), respectively.

실시예Example 3:  3: CoOCoO 상 30%와 With 30% CoCo 33 OO 44 상 70%로 이루어진 코발트 촉매의 제조 (5% Co/AlGt; Co / Al < / RTI > 22 OO 3 - 3 - CoOCoO 30%) 30%)

상기 실시예 1의 캡핑된 코발트가 함유된 오일층을 230℃로 3시간 가열하는 것을 제외하고는, 실시예 1과 동일하게 코발트 나노입자를 제조하였다.Cobalt nanoparticles were prepared in the same manner as in Example 1, except that the oil layer containing the capped cobalt of Example 1 was heated at 230 캜 for 3 hours.

상기 제조된 산화코발트의 나노입자의 투과전자현미경(TEM)사진을 도 1(c)에 나타내었다. 도 1(c)의 TEM 사진을 통해, 제조된 산화코발트 입자의 평균 크기가 14.5 nm임을 확인할 수 있었다. 또한, 디바이-셰러(Debye-Scherrer)식을 사용하여 산화코발트의 평균크기를 계산하였고 이는 15.2 ㎚로, TEM 결과와 유사함을 확인할 수 있었다.A transmission electron microscope (TEM) photograph of the nanoparticles of the prepared cobalt oxide is shown in FIG. 1 (c). From the TEM photograph of FIG. 1 (c), it was confirmed that the average size of the prepared cobalt oxide particles was 14.5 nm. In addition, the average size of cobalt oxide was calculated using the Debye-Scherrer equation, which was found to be 15.2 ㎚, similar to the TEM result.

또한, 상기 제조된 산화코발트 나노입자의 X선 회절분석(XRD)을 도 2(c)에 나타내었다. 그 결과 CoO상에 해당하는 피크와 Co3O4상에 해당하는 피크가 모두 나타났고, 상기 피크의 분포를 통해 CoO상의 함량이 30%임을 확인할 수 있었다.
The X-ray diffraction (XRD) of the prepared cobalt oxide nanoparticles is shown in Fig. 2 (c). As a result, the peak corresponding to the CoO phase and the peak corresponding to the Co 3 O 4 phase all appeared, and it was confirmed that the content of the CoO phase was 30% through the distribution of the peak.

상기 제조된 코발트 나노입자의 지지체의 담지 역시, 실시예 1과 동일하게 수행하였다. 담지된 코발트 나노입자의 TEM 사진과 X선 회절분석 이미지를 각각 도 3(c)와 도 4(c)에 나타내었다.
The support of the prepared cobalt nanoparticles was also carried out in the same manner as in Example 1. TEM images and X-ray diffraction analysis images of the supported cobalt nanoparticles are shown in FIGS. 3 (c) and 4 (c), respectively.

비교예Comparative Example 1:  One: CoCo 33 OO 44 (100%)(100%) 상만으로 이루어진 코발트계 촉매 제조Preparation of cobalt-based catalysts

상기 실시예 1의 캡핑된 코발트가 함유된 오일층을 200℃로 3시간 가열하는 것을 제외하고는, 실시예 1과 동일하게 코발트 나노입자를 제조하였다.Cobalt nanoparticles were prepared in the same manner as in Example 1, except that the oil layer containing the capped cobalt of Example 1 was heated at 200 占 폚 for 3 hours.

상기 제조된 산화코발트의 나노입자의 투과전자현미경(TEM)사진을 도 1(d)에 나타내었다. 도 1(d)의 TEM 사진을 통해, 제조된 산화코발트 입자의 평균 크기가 14.8 nm임을 확인할 수 있었다. 또한, 디바이-셰러(Debye-Scherrer)식을 사용하여 산화코발트의 평균크기를 계산하였고 이는 15.7 ㎚로, TEM 결과와 유사함을 확인할 수 있었다.A transmission electron microscope (TEM) photograph of the nanoparticles of the prepared cobalt oxide is shown in FIG. 1 (d). 1 (d), it was confirmed that the average size of the prepared cobalt oxide particles was 14.8 nm. Also, the average size of cobalt oxide was calculated using the Debye-Scherrer equation, which was confirmed to be 15.7 ㎚, similar to the TEM result.

또한, 상기 제조된 산화코발트 나노입자의 X선 회절분석(XRD)을 도 2(d)에 나타내었다. 그 결과 Co3O4상에 해당하는 피크만 관찰됨으로써 본 비교예 1의 코발트 나노입자가 모두 Co3O4 상으로만 이루어졌음을 확인할 수 있었다.
2 (d) shows the X-ray diffraction analysis (XRD) of the above-prepared cobalt oxide nanoparticles. As a result, only the peak corresponding to the Co 3 O 4 phase was observed, confirming that all of the cobalt nanoparticles of Comparative Example 1 were composed of only Co 3 O 4 phase.

비교예Comparative Example 2: 종래의  2: Conventional 함침법에On impregnation 의한 피셔- Fisher- 트롭시Tropsch 합성용 촉매의 제조 Preparation of synthesis catalyst

20 mL의 3차 증류수와 질산코발트(Co(NO3)2·6H2O) 14g이 섞인 용액에 감마-알루미나 26.9g을 첨가하였다. 상기 슬러리를 100℃에서 12시간 이상 건조한 후, 500℃의 공기 분위기에서 5시간 동안 소성 처리하여 10% 코발트/알루미나 촉매를 제조하였다.
26.9 g of gamma-alumina was added to a solution of 20 mL of tertiary distilled water and 14 g of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O). The slurry was dried at 100 ° C. for 12 hours or more and then calcined at 500 ° C. in an air atmosphere for 5 hours to prepare a 10% cobalt / alumina catalyst.

비교예Comparative Example 3: 종래의  3: Conventional 공침법에In coping 의한 피셔- Fisher- 트롭시Tropsch 합성용 촉매의 제조 Preparation of synthesis catalyst

20 mL의 3차 증류수와 28%의 수산화암모늄(NH4OH) 2.9 g이 섞인 용액을 준비하였다. 50 mL의 3차 증류수에 질산코발트(Co(NO3)2·6H2O) 7g 및 감마-알루미나 26.9g 이 섞인 슬러리에, 상기 용액을 격렬한 교반하에서 첨가하였다. 상기 첨가로 인해 침전된 수산화코발트-알루미나 슬러리를 회수한 후, 이를 필터하고 증류수 500 mL로 여러 번 나누어 세척하였다. 상기 슬러리를 100 ℃에서 12 시간 이상 건조한 후, 500 ℃의 공기 분위기에서 5 시간 동안 소성 처리하여 5% 코발트/알루미나 촉매를 제조하였다.
Ammonium hydroxide (NH 4 OH) in deionized water of 20 mL and 28% were prepared mixture of 2.9 g solution. To the slurry in which 50 mL of tertiary distilled water was mixed with 7 g of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) and 26.9 g of gamma-alumina, the solution was added under vigorous stirring. The precipitated cobalt hydroxide-alumina slurry resulting from the addition was collected, filtered, and washed several times with 500 mL of distilled water. The slurry was dried at 100 ° C. for 12 hours or more and then calcined in an air atmosphere at 500 ° C. for 5 hours to prepare a 5% cobalt / alumina catalyst.

실험예Experimental Example 1:  One: CoOCoO 함량에 따른 촉매의 활성 조사 Investigation of Catalyst Activity by Content

상기 실시예 1 내지 3, 비교예 1 내지 3에서 제조된 촉매를 이용하여 피셔-트롭시 반응을 수행하고, 각 촉매의 활성을 비교분석 하였다.
The Fischer-Tropsch reaction was performed using the catalysts prepared in Examples 1 to 3 and Comparative Examples 1 to 3, and the activity of each catalyst was compared and analyzed.

실험을 위해, 1/2인치 스테인리스 고정층 반응기에 0.5g의 각 촉매를 장입하고, 350 ℃의 수소(5부피% H2/He) 분위기 하에서 5시간 환원 처리하였다. 반응온도 240 ℃, 반응압력 10 kg/cm2, 공간속도 3600 L/kgcat/hr의 조건에서 반응물인 일산화탄소 : 수소 : 아르곤(내부 표준물질)의 몰비를 31.5: 63.0: 5.5의 비율로 고정하여 반응기로 주입하였다. 피셔 트롭시 반응을 수행하고, 반응시간 40시간 후 촉매의 활성을 측정한 결과를 하기 표 1에 나타내었다.
For the experiment, 0.5 g of each catalyst was charged into a 1/2-inch stainless steel fixed bed reactor and reduced for 5 hours under hydrogen (5 vol% H 2 / He) atmosphere at 350 ° C. Reaction temperature 240 ℃, a reaction pressure of 10 kg / cm 2, The molar ratio of carbon monoxide: hydrogen: argon (internal standard) was fixed at a rate of 31.5: 63.0: 5.5 at a space velocity of 3600 L / kg cat / hr and injected into the reactor. The Fischer-Tropsch reaction was carried out and the activity of the catalyst was measured after 40 hours of reaction. The results are shown in Table 1 below.

구분
division
촉매catalyst 코밭트 산화물의 상(phase)The phase of noxious oxide Co dispersion
(%)
Co dispersion
(%)
수소흡착량
(μmol/g)
*
Amount of hydrogen adsorption
(μmol / g)
*
코발트 산화물 환원도
**
Cobalt oxide reduction degree
**
CoOX
나노입자 크기(nm)
***
CoO X
Nanoparticle size (nm)
***
CO 전환율(carbon mol%)CO conversion (carbon mol%) 카본 선택도
(carbon mol%)
Carbon selectivity
(carbon mol%)
C1 C 1 C2-C4 C 2 -C 4 C5 + C 5 + 실시예 1Example 1 5%Co/γ-Al2O3 5% Co /? - Al 2 O 3 CoO 100%CoO 100% 4.04.0 15.915.9 73.173.1 14.814.8 64.464.4 18.418.4 11.811.8 69.869.8 실시예 2Example 2 5%Co/γ-Al2O3 5% Co /? - Al 2 O 3 CoO 70%
Co3O4 30%
CoO 70%
Co 3 O 4 30%
3.83.8 15.315.3 62.162.1 14.514.5 53.653.6 17.617.6 10.710.7 71.771.7
실시예 3Example 3 5%Co/γ-Al2O3 5% Co /? - Al 2 O 3 CoO 30%
Co3O4 70%
CoO 30%
Co 3 O 4 70%
3.53.5 14.114.1 48.748.7 14.214.2 36.636.6 16.816.8 8.98.9 74.374.3
비교예 1Comparative Example 1 5%Co/γ-Al2O3 5% Co /? - Al 2 O 3 Co3O4 100%Co 3 O 4 100% 3.33.3 13.213.2 43.243.2 13.713.7 29.429.4 16.016.0 8.78.7 75.375.3 비교예 2Comparative Example 2 5%Co/γ-Al2O3 5% Co /? - Al 2 O 3 Co3O4 100%Co 3 O 4 100% -- 8.58.5 32.532.5 7.57.5 8.58.5 23.123.1 17.817.8 59.159.1 비교예 3Comparative Example 3 10%Co/γ-Al2O3 10% Co /? - Al 2 O 3 Co3O4 100%Co 3 O 4 100% -- 7.17.1 45.645.6 <5<5 9.29.2 19.719.7 15.815.8 64.564.5

* 350℃에서 환원된 촉매의 100℃에서 화학흡착된 수소량* The amount of the chemically adsorbed hydrogen at 100 ° C of the catalyst reduced at 350 ° C

** 350℃에서 환원된 촉매를 350℃에서 화학흡착된 산소량으로부터 계산된 코발트 산화물의 환원도** The degree of reduction of cobalt oxide calculated from the amount of oxygen chemically adsorbed at 350 ° C at 350 ° C

*** 제조한 촉매의 TEM에 의해 측정된 산화코발트의 크기
*** The size of the cobalt oxide measured by TEM of the prepared catalyst

실시예 1 내지 3에서 제조한 촉매는, 담지된 촉매의 양이 5%로 작음에도 불구하고 촉매의 활성이 우수하였고, CoO상이 많을수록 촉매활성이 높게 나타났다.(실시예 1 > 실시예 2 > 실시예 3). The catalyst prepared in Examples 1 to 3 exhibited excellent catalytic activity despite the small amount of the supported catalyst of 5%, and the catalyst activity was higher as the CoO phase was larger. (Example 1> Example 2> Example 3).

상기 표를 통해 알 수 있듯이, CoO상을 함유하는 실시예 1 내지 3은 Co3O4 상만으로 이루어진 비교예 1 내지 3에 비하여 C5+ 카본 선택도가 유사하면서도, 수소흡착량 및 CO 전환율이 훨씬 뛰어난 결과를 보여주었다. As can be seen from the above table, Examples 1 to 3 containing the CoO phase exhibited Co 3 O 4 The hydrogen adsorption amount and the CO conversion were much better than those of Comparative Examples 1 to 3, which had only C5 + carbon selectivity.

또한, 본 발명 실시예 1 내지 3의 Co 분산(3.5~4.0)이 비교예 1의 분산(3.3)보다 우수함을 확인할 수 있었다. It was also confirmed that the Co dispersion (3.5 to 4.0) of Examples 1 to 3 of the present invention is superior to the dispersion (3.3) of Comparative Example 1.

따라서, 본 발명에 따른 CoO 상을 함유하는 피셔-트롭시 촉매가 기존 촉매에 비하여 수소흡착량 및 CO 전환율이 현저함을 확인할 수 있었다.
Therefore, it was confirmed that the Fischer-Tropsch catalyst containing the CoO phase according to the present invention had a higher hydrogen adsorption amount and CO conversion than the conventional catalyst.

실시예Example 4:  4: CoOCoO 상 100%의 코발트 나노입자가 감마-100% of cobalt nanoparticles are gamma- 알루미자Alumina 지지체에 10%  To the support was added 10% 담지된Supported 촉매의 제조 (10%  Preparation of the catalyst (10% CoCo // AlAl 22 OO 33 -  - CoOCoO 100%) 100%)

실시예 1과 동일하게 코발트 나노입자를 제조하였다. 제조된 촉매 지지체로의 담지는 나노 산화코발트 용액 20g을 취하여 감마-알루미나 10g에 함침하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.
Cobalt nanoparticles were prepared in the same manner as in Example 1. The supported catalyst support was prepared in the same manner as in Example 1, except that 20 g of the nano-oxidized cobalt solution was taken and impregnated into 10 g of gamma-alumina.

실시예Example 5:  5: CoOCoO 상 100%의 코발트 나노입자가 감마-100% of cobalt nanoparticles are gamma- 알루미자Alumina 지지체에 20%  20% 담지된Supported 촉매의 제조 (20%  Preparation of catalyst (20% CoCo // AlAl 22 OO 33 -  - CoOCoO 100%) 100%)

실시예 1과 동일하게 코발트 나노입자를 제조하였다. 제조된 촉매 지지체로의 담지는 나노 산화코발트 용액 40g을 취하여 감마-알루미나 10g에 함침하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.
Cobalt nanoparticles were prepared in the same manner as in Example 1. The supported catalyst support was prepared in the same manner as in Example 1, except that 40 g of the nano-oxidized cobalt solution was taken and impregnated with 10 g of gamma-alumina.

실시예Example 6:  6: CoOCoO 상 100%의 코발트 나노입자가 감마-100% of cobalt nanoparticles are gamma- 알루미자Alumina 지지체에 30%  30% 담지된Supported 촉매의 제조 (30%  Preparation of catalyst (30% CoCo // AlAl 22 OO 33 -  - CoOCoO 100%) 100%)

실시예 1과 동일하게 코발트 나노입자를 제조하였다. 제조된 촉매 지지체로의 담지는 나노 산화코발트 용액 60g을 취하여 감마-알루미나 10g에 함침하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.
Cobalt nanoparticles were prepared in the same manner as in Example 1. The supported catalyst support was prepared in the same manner as in Example 1, except that 60 g of the nano-oxidized cobalt solution was taken and impregnated into 10 g of gamma-alumina.

비교예Comparative Example 4:  4: CoOCoO 상 100%의 코발트 나노입자가 감마-100% of cobalt nanoparticles are gamma- 알루미자Alumina 지지체에 2%  To the support was added 2% 담지된Supported 촉매의 제조 (2%  Preparation of the catalyst (2% CoCo // AlAl 22 OO 33 -  - CoOCoO 100%) 100%)

실시예 1과 동일하게 코발트 나노입자를 제조하였다. 제조된 촉매 지지체로의 담지는 나노 산화코발트 용액 4g과 헥산 10g을 혼합한 용액을 취하여 감마-알루미나 10g에 함침하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.
Cobalt nanoparticles were prepared in the same manner as in Example 1. The supported catalyst support was prepared in the same manner as in Example 1, except that a solution prepared by mixing 4 g of the nano-oxidized cobalt oxide solution and 10 g of hexane was taken and impregnated into 10 g of gamma-alumina.

비교예Comparative Example 5:  5: CoOCoO 상 100%의 코발트 나노입자가 감마-100% of cobalt nanoparticles are gamma- 알루미자Alumina 지지체에 50%  50% 담지된Supported 촉매의 제조 (50%  Preparation of catalyst (50% CoCo // AlAl 22 OO 33 -  - CoOCoO 100%) 100%)

실시예 1과 동일하게 코발트 나노입자를 제조하였다. 제조된 촉매 지지체로의 담지는 나노 산화코발트 용액 100g을 취하여 감마-알루미나 10g에 함침하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.
Cobalt nanoparticles were prepared in the same manner as in Example 1. The supported catalyst support was prepared in the same manner as in Example 1, except that 100 g of the nano-oxidized cobalt solution was taken and impregnated with 10 g of gamma-alumina.

실험예Experimental Example 2: 코발트 나노입자  2: Cobalt nanoparticles 담지량에On the loading 따른 촉매의 활성 조사 Investigation of catalytic activity

상기 실시예 4 내지 6, 비교예 4 내지 5에서 제조된 촉매를 사용하는 것을 제외하고는, 실험예 1과 동일하게 피셔-트롭시 반응을 수행하였다. 상기 결과를 표 2에 나타내었다. The Fischer-Tropsch reaction was carried out in the same manner as in Experimental Example 1, except that the catalysts prepared in Examples 4 to 6 and Comparative Examples 4 to 5 were used. The results are shown in Table 2.

구분
division
촉매
catalyst
코밭트 산화물의 상(phase)The phase of noxious oxide 수소흡착량
(μmol/g)
*
Amount of hydrogen adsorption
(μmol / g)
*
코발트 산화물 환원도
**
Cobalt oxide reduction degree
**
CoOX
나노입자 크기(nm)
***
CoO X
Nanoparticle size (nm)
***
CO 전환율(carbon mol%)CO conversion (carbon mol%) 카본 선택도
(carbon mol%)
Carbon selectivity
(carbon mol%)
C1 C 1 C2-C4 C 2 -C 4 C5 + C 5 + 실시예 4Example 4 10%Co/γ-Al2O3 10% Co /? - Al 2 O 3 CoO 100%CoO 100% 30.230.2 76.276.2 14.914.9 72.772.7 13.313.3 9.39.3 77.477.4 실시예 5Example 5 20%Co/γ-Al2O3 20% Co /? - Al 2 O 3 CoO 100%CoO 100% 57.457.4 78.678.6 15.015.0 83.783.7 12.112.1 8.88.8 79.179.1 실시예 6Example 6 30%Co/γ-Al2O3 30% Co /? - Al 2 O 3 CoO 100%CoO 100% 81.681.6 79.479.4 15.315.3 89.689.6 10.910.9 8.48.4 80.780.7 비교예 4Comparative Example 4 2%Co/γ-Al2O3 2% Co /? - Al 2 O 3 CoO 100%CoO 100% 5.15.1 69.269.2 14.714.7 25.125.1 21.221.2 15.715.7 63.163.1 비교예 5Comparative Example 5 50%Co/γ-Al2O3 50% Co /? - Al 2 O 3 CoO 100%CoO 100% 69.3069.30 80.580.5 15.515.5 69.369.3 8.98.9 6.66.6 84.584.5

* 350℃에서 환원된 촉매의 100℃에서 화학흡착된 수소량* The amount of the chemically adsorbed hydrogen at 100 ° C of the catalyst reduced at 350 ° C

** 350℃에서 환원된 촉매를 350℃에서 화학흡착된 산소량으로부터 계산된 코발트 산화물의 환원도** The degree of reduction of cobalt oxide calculated from the amount of oxygen chemically adsorbed at 350 ° C at 350 ° C

*** 제조한 촉매의 TEM에 의해 측정된 산화코발트의 크기
*** The size of the cobalt oxide measured by TEM of the prepared catalyst

즉, 상기 표를 통해 알 수 있듯이 코발트 나노입자의 담지량이 10% 내지 30% 사이일 때 코발트 산화물 환원도 및 CO 전환율이 우수하였다. 실시예 4 내지 6에서, CoO의 담지량이 증가할수록 촉매 활성과 C5+ 선택성이 증가하였다. 반면, 코발트 나노입자의 담지량이 너무 작은 경우(2%, 비교예 4)에는 촉매활성과 선택도가 감소하였으며, 코발트 나노입자의 담지량이 큰 경우(50%, 비교예 5)에도 실시예 4 내지 6에 비하여 CO 전환율이 낮음을 확인할 수 있었다. 즉, 바람직한 코발트 나노입자의 담지량이 10% 내지 30%임을 확인할 수 있었다.
That is, as can be seen from the above table, when the loading amount of the cobalt nanoparticles was between 10% and 30%, the cobalt oxide reduction degree and CO conversion were excellent. In Examples 4 to 6, as the loading amount of CoO was increased, the catalyst activity and C5 + selectivity were increased. On the other hand, the catalyst activity and selectivity were decreased when the amount of cobalt nanoparticles loaded was too small (2%, Comparative Example 4), and when the loading amount of cobalt nanoparticles was large (50%, Comparative Example 5) CO conversion was lower than that of CO. That is, it was confirmed that the loading amount of the preferable cobalt nanoparticles was 10% to 30%.

실시예Example 7:  7: CoOCoO 상 100%의 코발트 나노입자가 실리카 지지체에 10% 100% of the cobalt nanoparticles were added to the silica support in an amount of 10% 담지된Supported 촉매의 제조 (10% Preparation of the catalyst (10% CoCo // SiOSiO 22 -  - CoOCoO 100%) 100%)

촉매 지지체로 실리카(SiO2 , 비표면적 260m2/g, 평균 세공 직경 10 nm)를 이용한 것을 제외하고는 실시예 4와 동일한 방법으로 촉매를 제조하였다.
A catalyst was prepared in the same manner as in Example 4, except that silica (SiO 2 , specific surface area 260 m 2 / g, average pore diameter 10 nm) was used as the catalyst support.

실시예Example 8:  8: CoOCoO 상 100%의 코발트 나노입자가 100% of the cobalt nanoparticles 티타니아Titania 지지체에 10%  To the support was added 10% 담지된Supported 촉매의 제조 (10% Preparation of the catalyst (10% CoCo // SiOSiO 22 -  - CoOCoO 100%) 100%)

촉매 지지체로 티타니아(TiO2 , 비표면적 120m2/g, 평균 세공 직경 12 nm)를 이용한 것을 제외하고는 실시예 4와 동일한 방법으로 촉매를 제조하였다.
A catalyst was prepared in the same manner as in Example 4, except that titania (TiO 2 , specific surface area 120 m 2 / g, average pore diameter 12 nm) was used as the catalyst support.

실시예Example 9:  9: CoOCoO 상 100%의 코발트 나노입자가 100% of the cobalt nanoparticles SiO2SiO2 in 개질된Reformed 감마-알루미나 지지체에 10%  To the gamma-alumina support was added 10% 담지된Supported 촉매의 제조 (10% Preparation of the catalyst (10% CoCo /3%/ 3% SiOSiO 22 // AlAl 22 OO 33 -  - CoOCoO 100%) 100%)

에탄올 4g, 증류수 0.36g과 테트라에틸 오소실리케이트(tetraethyl orthosilicate, TEOS) 1.06g을 혼합하였다. 이를 감마-알루미나 10g에 담지시킨 후 80도로 가열하였다. 상기 가열로 TEOS가 가수분해되고, 표면이 SiO2로 개질된 감마-알루미나 촉매 지지체인 3%SiO2/Al2O3를 제조하였다. 4 g of ethanol, 0.36 g of distilled water and 1.06 g of tetraethyl orthosilicate (TEOS) were mixed. This was impregnated with 10 g of gamma-alumina and then heated to 80 ° C. The TEOS is hydrolyzed by the heat, the surface is modified by SiO 2 gamma-alumina catalyst was prepared in the support chain 3% SiO 2 / Al 2 O 3.

촉매 지지체로 상기 3%SiO2/Al2O3를 이용한 것을 제외하고는 실시예 4와 동일한 방법으로 촉매를 제조하였다.
A catalyst was prepared in the same manner as in Example 4, except that 3% SiO 2 / Al 2 O 3 was used as the catalyst support.

실험예Experimental Example 3: 촉매 지지체의 종류에 따른 촉매의 활성조사 3: Investigation of catalyst activity according to the type of catalyst support

상기 실시예 7 내지 실시예 9에서 제조된 촉매를 사용하는 것을 제외하고는, 실험예 1과 동일하게 피셔-트롭시 반응을 수행하였다. 상기 결과를 하기 표 3에 나타내었다. The Fischer-Tropsch reaction was carried out in the same manner as in Experimental Example 1, except that the catalysts prepared in Examples 7 to 9 were used. The results are shown in Table 3 below.

구분
division
촉매
catalyst
코밭트 산화물의 상(phase)The phase of noxious oxide 수소흡착량
(μmol/g)
*
Amount of hydrogen adsorption
(μmol / g)
*
코발트 산화물 환원도
**
Cobalt oxide reduction degree
**
CoOX
나노입자 크기(nm)
***
CoO X
Nanoparticle size (nm)
***
CO 전환율(carbon mol%)CO conversion (carbon mol%) 카본 선택도
(carbon mol%)
Carbon selectivity
(carbon mol%)
C1 C 1 C2-C4 C 2 -C 4 C5 + C 5 + 실시예 7Example 7 10%Co/SiO2 10% Co / SiO 2 CoO 100%CoO 100% 31.731.7 78.778.7 15.215.2 68.268.2 10.210.2 7.37.3 82.582.5 실시예 8Example 8 10%Co/TiO2 10% Co / TiO 2 CoO 100%CoO 100% 27.227.2 73.173.1 14.614.6 61.261.2 12.712.7 9.59.5 77.877.8 실시예 9Example 9 10%Co/3%SiO2/γ-Al2O3 10% Co / 3% SiO 2 / γ-Al 2 O 3 CoO 100%CoO 100% 30.830.8 78.678.6 14.914.9 75.375.3 14.514.5 10.410.4 75.175.1

* 350℃에서 환원된 촉매의 100℃에서 화학흡착된 수소량* The amount of the chemically adsorbed hydrogen at 100 ° C of the catalyst reduced at 350 ° C

** 350℃에서 환원된 촉매를 350℃에서 화학흡착된 산소량으로부터 계산된 코발트 산화물의 환원도** The degree of reduction of cobalt oxide calculated from the amount of oxygen chemically adsorbed at 350 ° C at 350 ° C

*** 제조한 촉매의 TEM에 의해 측정된 산화코발트의 크기
*** The size of the cobalt oxide measured by TEM of the prepared catalyst

그 결과, 촉매 지지체로 다양한 물질(실리카, 티타니아, 표면이 개질된 지지체)을 사용하여도 본 발명 촉매의 수소흡착량 및 CO 전환율, 카본 선택도등의 성질이 우수하게 유지됨을 확인할 수 있었다.
As a result, it was confirmed that even when various materials (silica, titania, surface-modified support) were used as the catalyst support, the properties such as the hydrogen adsorption amount, the CO conversion, and the carbon selectivity of the catalyst of the present invention were excellent.

실시예Example 10: 백금  10: Platinum 조촉매Co-catalyst 첨가 adding

실시예 4에서 제조된 촉매에 증류수 6g에 백금 전구체인 테트라아민플래티늄 나이트레이트(tetraamineplatinum(II) nitrate) 0.02g을 용해시켜 추가로 담지하여 촉매를 제조하였다(실시예 10). 0.02 g of tetraamine platinum (II) nitrate, a platinum precursor, was dissolved in 6 g of distilled water to prepare a catalyst. (Example 10)

상기 실시예 10에서 제조된 백금 조촉매가 포함된 촉매를 사용하는 것을 제외하고는, 실험예 1과 동일하게 피셔-트롭시 반응을 수행하였다. 상기 결과를 하기 표 4에 나타내었다. The Fischer-Tropsch reaction was carried out in the same manner as in Experimental Example 1, except that the catalyst containing the platinum co-catalyst prepared in Example 10 was used. The results are shown in Table 4 below.

구분
division
촉매
catalyst
코밭트 산화물의 상(phase)The phase of noxious oxide 수소흡착량
(μmol/g)
*
Amount of hydrogen adsorption
(μmol / g)
*
코발트 산화물 환원도
**
Cobalt oxide reduction degree
**
CoOX
나노입자 크기(nm)
***
CoO X
Nanoparticle size (nm)
***
CO 전환율(carbon mol%)CO conversion (carbon mol%) 카본 선택도
(carbon mol%)
Carbon selectivity
(carbon mol%)
C1 C 1 C2-C4 C 2 -C 4 C5 + C 5 + 실시예 10Example 10 0.1%Pt- 10%Co/γ-Al2O0.1% Pt-10% Co / γ-Al 2 O CoO 100%CoO 100% 33.933.9 82.582.5 14.614.6 90.390.3 15.215.2 11.211.2 73.673.6

* 350℃에서 환원된 촉매의 100℃에서 화학흡착된 수소량* The amount of the chemically adsorbed hydrogen at 100 ° C of the catalyst reduced at 350 ° C

** 350℃에서 환원된 촉매를 350℃에서 화학흡착된 산소량으로부터 계산된 코발트 산화물의 환원도** The degree of reduction of cobalt oxide calculated from the amount of oxygen chemically adsorbed at 350 ° C at 350 ° C

*** 제조한 촉매의 TEM에 의해 측정된 산화코발트의 크기
*** The size of the cobalt oxide measured by TEM of the prepared catalyst

그 결과 백금 조촉매를 첨가하는 경우, 백금 조촉매가 첨가되지 않은 촉매에 비하여 코발트 산화물 환원도 및 CO 전환율에 있어서 우수한 활성을 보임을 확인할 수 있었다.
As a result, it was confirmed that the addition of the platinum catalyst improves the cobalt oxide reduction and CO conversion as compared with the catalyst without the platinum catalyst.

실험예Experimental Example 4:  4: 소성하여By firing 환원시킨 경우 촉매의 활성 비교 Comparison of catalytic activity when reduced

실시예 1 내지 4의 촉매를, 온도 400℃에서 5시간 동안 소성시켜 각각 비교예 6 내지 9의 촉매를 제조하였다.(비교예 6: 실시예 1의 촉매 소성, 비교예 7: 실시예 2의 촉매 소성, 비교예 8: 실시예 3의 촉매 소성, 비교예 9: 실시예 4의 촉매 소성)The catalysts of Examples 1 to 4 were fired at a temperature of 400 ° C. for 5 hours to prepare catalysts of Comparative Examples 6 to 9, respectively. (Comparative Example 6: Catalyst Sintering of Example 1, Comparative Example 7: Catalyst calcination, Comparative Example 8: Catalyst calcination of Example 3, Comparative Example 9: Catalyst calcination of Example 4)

상기 비교예 6 내지 9에서 제조된 촉매를 사용하는 것을 제외하고는, 실험예 1과 동일하게 피셔-트롭시 반응을 수행하였다. 상기 결과를 표 5에 나타내었다. The Fischer-Tropsch reaction was carried out in the same manner as in Experimental Example 1, except that the catalysts prepared in Comparative Examples 6 to 9 were used. The results are shown in Table 5.

구분
division
촉매catalyst 코밭트 산화물의 상(phase)The phase of noxious oxide Co dispersion
(%)
Co dispersion
(%)
수소흡착량
(μmol/g)
*
Amount of hydrogen adsorption
(μmol / g)
*
코발트 산화물 환원도
**
Cobalt oxide reduction degree
**
CoOX
나노입자 크기(nm)
***
CoO X
Nanoparticle size (nm)
***
CO 전환율(carbon mol%)CO conversion (carbon mol%) 카본 선택도
(carbon mol%)
Carbon selectivity
(carbon mol%)
C1 C 1 C2-C4 C 2 -C 4 C5 + C 5 + 비교예 6Comparative Example 6 5%Co/γ-Al2O3 5% Co /? - Al 2 O 3 Co3O4 100%Co 3 O 4 100% 0.90.9 3.53.5 78.278.2 23.723.7 10.310.3 13.013.0 14.914.9 72.172.1 비교예 7Comparative Example 7 5%Co/γ-Al2O3 5% Co /? - Al 2 O 3 Co3O4 100%Co 3 O 4 100% 1.51.5 6.16.1 63.163.1 21.721.7 18.518.5 13.213.2 15.815.8 71.071.0 비교예 8Comparative Example 8 5%Co/γ-Al2O3 5% Co /? - Al 2 O 3 Co3O4 100%Co 3 O 4 100% 2.52.5 9.89.8 50.450.4 19.319.3 27.027.0 14.814.8 15.815.8 69.469.4 비교예 9Comparative Example 9 10%Co/γ-Al2O3 10% Co /? - Al 2 O 3 Co3O4 100%Co 3 O 4 100% -- 12.212.2 44.844.8 35.435.4 35.435.4 15.215.2 16.016.0 68.868.8

상기 표를 통해 알 수 있듯이, 실시예 1 내지 4에서 제조된 촉매를 소성하자 모두 Co3O4상이 100% 인 촉매로 되었다. 상기 Co3O4 상으로만 이루어진 촉매는 입자의 크기가 소성 전에 비하여 커졌으며, CO 전환율이 소성 전에 비하여 절반 이하로 감소하는 것을 확인할 수 있었다. 즉, 소성을 한 촉매는 소성을 하지 않은 촉매보다 촉매활성이 낮음을 확인할 수 있었다. As can be seen from the above table, when the catalysts prepared in Examples 1 to 4 were fired, all of the Co 3 O 4 phases were 100%. The catalyst composed of the Co 3 O 4 phase had a larger particle size than that before calcination, and the CO conversion was reduced to less than half of that before calcination. That is, it was confirmed that the calcined catalyst had lower catalytic activity than the calcined catalyst.

또한, 소성을 한 경우 Co 분산도가 2.5 미만으로 현저하게 감소함을 확인할 수 있었다. 소성을 하지 않은 실시예 1 내지 3의 분산도가 3.5 이상이었던 것에 비해 이는 현저하게 작은 수치로서, 소성을 통해 입자들의 응집이 일어났기 때문으로 판단된다. 즉, 기존 Co3O4 촉매는 고온 소성을 거쳐야 하므로 분산도가 떨어지게 되지만, 본원발명의 CoO 상을 포함하는 촉매는 소성과정 없이 환원되어 사용되므로 높은 분산도를 유지할 수 있음을 확인하였다. Also, it was confirmed that when the calcination was performed, the Co dispersion degree was remarkably decreased to less than 2.5. The dispersions of Examples 1 to 3 which were not fired were 3.5 or more, which is a remarkably small value, and it is judged that aggregation of the particles occurred through firing. That is, since the existing Co 3 O 4 catalyst must be sintered at a high temperature, the dispersion degree is lowered. However, it has been confirmed that the catalyst including the CoO phase of the present invention can be maintained in a high degree of dispersion because it is used without reduction.

Claims (18)

코발트 산화물을 포함하는 피셔-트롭시 합성용 촉매에 있어서,
CoO 상(phase)이 포함된 코발트 산화물 입자가 지지체에 담지되기 전의 분리된 입자이거나, CoO 상(phase)이 포함된 코발트 산화물 입자들을 지지체에 담지시켜 제조된 것인 피셔-트롭시 합성용 촉매.
In a Fischer-Tropsch synthesis catalyst comprising cobalt oxide,
A catalyst for Fischer-Tropsch synthesis, which is prepared by supporting cobalt oxide particles containing a CoO phase on a support before separation of the cobalt oxide particles is carried out on a support or cobalt oxide particles containing a CoO phase.
제1항에 있어서, CoO 상(phase)이 포함된 코발트 산화물 입자는 X선 회절분석(XRD) 결과 (CoO상의 함량)/(Co3O4상의 함량)이 30/70를 초과하는 것이 특징인 피셔-트롭시 합성용 촉매.
The cobalt oxide particle according to claim 1, wherein the cobalt oxide particle containing the CoO phase has an XRD (XRD) content (content of CoO phase) / (Co 3 O 4 phase content) of more than 30/70 Fischer-Tropsch synthesis catalyst.
제1항에 있어서, CoO 상이 포함된 코발트 산화물 입자들의 평균 직경은 5 내지 50 nm인 것이 특징인 피셔-트롭시 합성용 촉매.
The catalyst for synthesis of Fischer-Tropsch according to claim 1, wherein the average diameter of the CoO phase-containing cobalt oxide particles is 5 to 50 nm.
제1항에 있어서, 촉매 성분인 코발트 산화물 100중량부를 기준으로 CoO상 함량이 30중량부 초과 내지 100중량부인 것이 특징인 피셔-트롭시 합성용 촉매.
The catalyst for synthesis of Fischer-Tropsch according to claim 1, wherein the CoO phase content is from 30 parts by weight to 100 parts by weight based on 100 parts by weight of cobalt oxide as a catalyst component.
제2항에 있어서, 상기 지지체 100중량부를 기준으로 CoO 상이 포함된 코발트 산화물 입자를 포함하는 촉매성분 함량이 3중량부 내지 40중량부인 것이 특징인 피셔-트롭시 합성용 촉매.
[Claim 3] The Fischer-Tropsch catalyst according to claim 2, wherein the content of the catalyst component including the cobalt oxide particles including the CoO phase is 3 parts by weight to 40 parts by weight based on 100 parts by weight of the support.
제2항에 있어서, 상기 지지체는 감마-알루미나, 실리카, 티타니아, 개질된 감마-알루미나, 개질된 실리카, 개질된 티타니아 및 이의 혼합물로 이루어진 군에서 선택된 것이 특징인 피셔-트롭시 합성용 촉매.
3. The Fischer-Tropsch synthesis catalyst according to claim 2, wherein the support is selected from the group consisting of gamma-alumina, silica, titania, modified gamma-alumina, modified silica, modified titania and mixtures thereof.
제1항에 있어서, 상기 촉매는 백금, 루테늄, 레늄 또는 이의 혼합물로 이루어진 군에서 선택되는 귀금속을 추가로 더 포함하는 것이 특징인 피셔-트롭시 합성용 촉매.
The catalyst for synthesis of Fischer-Tropsch according to claim 1, wherein the catalyst further comprises a noble metal selected from the group consisting of platinum, ruthenium, rhenium or a mixture thereof.
제7항에 있어서, 촉매 100중량부를 기준으로 상기 귀금속의 함량이 0.01중량부 내지 1중량부인 것이 특징인 피셔-트롭시 합성용 촉매.
The catalyst for synthesis of Fischer-Tropsch according to claim 7, wherein the content of the noble metal is 0.01 part by weight to 1 part by weight based on 100 parts by weight of the catalyst.
CoO 상(phase)이 일부 또는 전부 포함된 코발트 산화물 입자들을 제조하는 단계;
상기 제조된 코발트 산화물 입자를 지지체에 담지하는 단계; 및
별도의 소성과정 없이 건조시키는 단계
를 포함하는, 피셔-트롭시 합성용 촉매의 제조방법.
Preparing cobalt oxide particles including some or all of the CoO phase;
Supporting the prepared cobalt oxide particles on a support; And
Drying without additional firing step
And a catalyst for Fischer-Tropsch synthesis.
제1항에 기재된 피셔-트롭시 합성용 촉매의 제조방법에 있어서,
코발트 공급 전구체 수용액과 염기성 화합물 수용액을 반응시켜 침전물을 형성하는 제1 단계;
상기 침전물을 캡핑(capping) 분자 및 비극성 유기 용매와 혼합하여 가열하는 제2 단계; 및
상기 혼합물 중 유기 용매층을 회수하고 230℃ 초과 내지 350℃ 이하에서 가열하여 CoO상을 일부 또는 전부 함유하는 입자들을 형성하는 제3 단계;
를 포함하는 것이 특징인 제조방법.
The method for producing a catalyst for Fischer-Tropsch synthesis according to claim 1,
A first step of reacting an aqueous solution of a cobalt-supplying precursor with an aqueous solution of a basic compound to form a precipitate;
A second step of mixing the precipitate with capping molecules and a nonpolar organic solvent and heating the mixture; And
Recovering the organic solvent layer in the mixture and heating at a temperature higher than 230 ° C. to 350 ° C. to form particles containing a CoO phase partially or wholly;
&Lt; / RTI &gt;
제10항에 있어서, 제1 단계에서 코발트 공급 전구체는 질산코발트(Co(NO3)2·H2O), 염화코발트(CoCl2·H2O), 황산코발트(CoSO4), 초산코발트(Co(AC)2) 및 이의 혼합물로 이루어진 군에서 선택된 것이 특징인 제조방법.
11. The method of claim 10, wherein the cobalt feed precursor is cobalt nitrate in step 1 (NO (Co 3) 2 · H 2 O), cobalt chloride (CoCl 2 · H 2 O) , cobalt sulfate (CoSO 4), acetic acid cobalt ( Co (AC) 2 ) and mixtures thereof.
제10항에 있어서, 제1 단계에서 염기성 화합물은 암모니아, 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화칼슘, 수산화암모늄, 탄산암모늄, 탄산수소암모늄, 탄산나트륨, 탄산수소나트륨, 탄산칼륨, 탄산수소칼륨 및 이의 혼합물로 이루어진 군에서 선택된 것이 특징인 제조방법.
11. The method of claim 10 wherein in the first step the basic compound is selected from the group consisting of ammonia, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, ammonium hydroxide, ammonium carbonate, ammonium bicarbonate, sodium carbonate, sodium bicarbonate, potassium carbonate, And mixtures thereof.
제10항에 있어서, 제2 단계에서 캡핑 분자는 포화 또는 불포화 C6 -C30 유기산 또는 지방산인 것이 특징인 제조방법.
11. The process of claim 10, wherein the capping molecule in the second step is a saturated or unsaturated C 6 -C 30 organic acid or fatty acid.
제10항에 있어서, 제2 단계에서 캡핑 분자는 코발트 공급 전구체 1몰에 대하여 0.1 내지 2.5의 몰비로 사용되는 것이 특징인 제조방법.
11. The method of claim 10, wherein the capping molecules in the second step are used in a molar ratio of 0.1 to 2.5 based on 1 mole of cobalt feed precursor.
피셔-트롭시 합성반응을 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법에 있어서,
제1항 내지 제8항 중 어느 한 항에 기재된 피셔-트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 a) 단계;
피셔-트롭시 합성반응기에서 피셔-트롭시 합성용 촉매를 별도의 소성과정 없이 수소 분위기 하에서 환원시켜 피셔-트롭시 합성용 촉매로 활성화시키는 b) 단계; 및
상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 c) 단계를 포함하는 것이 특징인 제조방법.
A method for producing liquid hydrocarbons from natural gas using a Fischer-Tropsch synthesis reaction,
A process for the Fischer-Tropsch synthesis catalyst according to any one of claims 1 to 8, which is applied to a Fischer-Tropsch synthesis reactor;
B) reducing the catalyst for Fischer-Tropsch synthesis in a Fischer-Tropsch synthesis reactor under a hydrogen atmosphere without further calcination to activate it as a catalyst for Fischer-Tropsch synthesis; And
And performing the Fischer-Tropsch synthesis reaction by the activated Fischer-Tropsch synthesis catalyst.
삭제delete 제15항에 있어서, b) 단계는 100℃ 내지 500℃의 수소분위기에서 수행되는 것이 특징인 제조방법.
16. The process according to claim 15, wherein step b) is carried out in a hydrogen atmosphere at a temperature of from 100 DEG C to 500 DEG C.
제15항에 있어서, c) 단계는 200℃ 내지 350℃, 반응 압력 5 내지 30 kg/cm2, 공간속도 1000 - 10000 h-1에서 수행되는 것이 특징인 제조방법.
16. The method of claim 15, c) steps 200 ℃ to 350 ℃, a reaction pressure of 5 to 30 kg / cm 2, a space velocity of 1000 - The method is characterized in that is carried out at 10000 h -1.
KR1020130010728A 2013-01-30 2013-01-30 CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same KR101578192B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130010728A KR101578192B1 (en) 2013-01-30 2013-01-30 CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same
PCT/KR2014/000647 WO2014119870A1 (en) 2013-01-30 2014-01-23 Fischer-tropsch synthesis catalyst comprising coo phase particles and method for preparing liquid hydrocarbon from natural gas using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130010728A KR101578192B1 (en) 2013-01-30 2013-01-30 CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same

Publications (2)

Publication Number Publication Date
KR20140098326A KR20140098326A (en) 2014-08-08
KR101578192B1 true KR101578192B1 (en) 2015-12-17

Family

ID=51262545

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130010728A KR101578192B1 (en) 2013-01-30 2013-01-30 CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same

Country Status (2)

Country Link
KR (1) KR101578192B1 (en)
WO (1) WO2014119870A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289231B (en) * 2014-10-09 2017-02-08 武汉凯迪工程技术研究总院有限公司 High-dispersity cobalt-based Fischer-Tropsch synthesis catalyst as well as preparation method and application thereof
KR102115299B1 (en) 2016-06-07 2020-05-26 주식회사 엘지화학 Catalyst for oxidative dehydrogenation and method for preparing the catalyst
CN109364881A (en) * 2018-12-13 2019-02-22 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of feeble-acid-ammonium salt modified activated carbon and products thereof and application
CN114804221B (en) * 2022-04-28 2023-11-03 荆门市格林美新材料有限公司 Cobalt oxide and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015492B1 (en) * 2008-05-06 2011-02-22 한국화학연구원 Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096017A2 (en) * 2000-06-12 2001-12-20 Sasol Technology (Proprietary) Limited Cobalt catalysts
KR100867281B1 (en) * 2001-10-12 2008-11-06 재단법인서울대학교산학협력재단 Synthesis of Monodisperse and Highly-Crystalline Nanoparticles of Metals, Alloys, Metal Oxides, and Multi-metallic Oxides without a Size-selection Process
AU2005308788B2 (en) * 2004-11-29 2009-04-30 Shell Internationale Research Maatschappij B.V. Catalytic process for the conversion of Co (II)hydroxide in Co (III)oxidehydroxide
KR100991012B1 (en) * 2008-07-14 2010-10-29 한국화학연구원 Catalyst for synthesizing filamentous carbons at low temperature and preparation methods thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015492B1 (en) * 2008-05-06 2011-02-22 한국화학연구원 Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same

Also Published As

Publication number Publication date
WO2014119870A1 (en) 2014-08-07
KR20140098326A (en) 2014-08-08

Similar Documents

Publication Publication Date Title
KR100962181B1 (en) Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
JP5174890B2 (en) Cobalt / phosphorus-alumina catalyst for Fischer-Tropsch synthesis and method for producing the same
KR101015492B1 (en) Cobalt-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
US7341976B2 (en) Stabilized boehmite-derived catalyst supports, catalysts, methods of making and using
KR101026536B1 (en) Fe-based catalyst for the reaction of Fischer-Tropsch synthesis and preparation method thereof
US7012104B2 (en) Fischer-Tropsch processes and catalysts made from a material comprising boehmite
US7011809B2 (en) Attrition resistant gamma-alumina catalyst support
JP5090367B2 (en) Metal nitrate conversion process
US8530528B2 (en) Water-forming hydrogenation reactions utilizing enhanced catalyst supports and methods of use
KR100885311B1 (en) A co/phosphorus-alumina catalyst for fischer-tropsch synthesis and preparing method thereof
JP5837620B2 (en) catalyst
WO2010109216A1 (en) Method for producing a supported metal nitrate
US8263522B2 (en) Metal nitrate conversion method
KR101578192B1 (en) CoO particle-containing catalyst isolated for fischer-tropsch synthesis and GTL method using the same
KR101847549B1 (en) Methods of manufacturing iron-base catalysts and methods of manufacturing hydrocarbons using iron-base catalysts made by the method
KR20140104636A (en) Cobalt catalyst for fischer tropsh synthesis, preparation method of the same, and method of liqiud hydrocarbon using the same
KR100830719B1 (en) Synthetic methods for liquid hydrocarbons from syngas over alumina-silica based catalysts and preparation methods thereof
KR20190089330A (en) Cobalt-Iron Hybrid Catalyst Having Ordered Mesoporous Channels As a Main Framework for Fischer-Tropsch Synthesis, a Method for Preparing the Same, and a Method for Preparing Hydrocarbons Using the Same
KR101792630B1 (en) Preparation method of cobalt-based Fischer-Tropsch catalysts and regeneration method of catalysts by feeding of liquid hydrocarbons formed during FTS reaction
KR100991012B1 (en) Catalyst for synthesizing filamentous carbons at low temperature and preparation methods thereof
US10046309B2 (en) Supported nanocatalyst for catalytic reforming reactions
WO2011027918A1 (en) Iron-based catalyst for fischer-tropsch synthesis and a production method therefor
KR20200028751A (en) Catalyst for fischer-tropsch synthesis reation, method for preparing the same and, method for fischer-tropsch synthesis using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 4