KR101563346B1 - Method for preparing reduced graphene oxide-titanium dioxide photocatalyst composite and method for producing hydrogen peroxide as a solar fuel using the same - Google Patents

Method for preparing reduced graphene oxide-titanium dioxide photocatalyst composite and method for producing hydrogen peroxide as a solar fuel using the same Download PDF

Info

Publication number
KR101563346B1
KR101563346B1 KR1020140120305A KR20140120305A KR101563346B1 KR 101563346 B1 KR101563346 B1 KR 101563346B1 KR 1020140120305 A KR1020140120305 A KR 1020140120305A KR 20140120305 A KR20140120305 A KR 20140120305A KR 101563346 B1 KR101563346 B1 KR 101563346B1
Authority
KR
South Korea
Prior art keywords
tio
titanium dioxide
rgo
graphene oxide
hydrogen peroxide
Prior art date
Application number
KR1020140120305A
Other languages
Korean (ko)
Inventor
최원용
문건희
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020140120305A priority Critical patent/KR101563346B1/en
Application granted granted Critical
Publication of KR101563346B1 publication Critical patent/KR101563346B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/027Preparation from water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Provided are a photocatalyst composite containing titanium dioxide (TiO_2) and reduced graphene oxide (rGO); or a photocatalyst composite additionally containing phosphate or cobalt phosphate (CoPi) with the photocatalyst; and a method for producing hydrogen peroxide as solar fuel using the same. The photocatalyst composite in accordance with the present invention: has excellent production efficiency of the hydrogen peroxide by the titanium dioxide carrying the reduced graphene oxide which is replaced for precious metals; increases the production efficiency of the hydrogen peroxide since a phosphate group inhibits degradation of the hydrogen peroxide generated as a protective substance on the surface of the titanium dioxide; and produces the hydrogen peroxide without an organic electron donor due to in-situ formation by the cobalt phosphate, thereby providing an economical method for producing hydrogen peroxide at low process cost.

Description

환원그래핀옥사이드-이산화티타늄 광촉매 복합체의 제조방법 및 그 방법을 이용한 태양연료로서의 과산화수소의 제조방법 {METHOD FOR PREPARING REDUCED GRAPHENE OXIDE-TITANIUM DIOXIDE PHOTOCATALYST COMPOSITE AND METHOD FOR PRODUCING HYDROGEN PEROXIDE AS A SOLAR FUEL USING THE SAME}FIELD OF THE INVENTION [0001] The present invention relates to a method for producing a reduced graphene oxide-titanium dioxide photocatalytic composite, and a method for producing hydrogen peroxide as a solar fuel using the method. BACKGROUND ART [0002]

본 발명은 환원그래핀옥사이드-이산화티타늄 광촉매 복합체 및 그를 이용한 과산화수소의 제조방법에 관한 것으로서, 보다 상세하게는 광촉매인 이산화티타늄에 전자 전달 매개체이자 조촉매 특성을 갖는 환원그래핀옥사이드를 담지한 광촉매 복합체 및 그 광촉매 복합체를 촉매로 이용하고 빛의 조사하에서 과산화수소를 제조하는 방법에 관한 것이다.The present invention relates to a reduced graphene oxide-titanium dioxide photocatalyst composite and a process for preparing hydrogen peroxide using the same, and more particularly, to a photocatalytic composite having reduced graphene oxide And a method for producing hydrogen peroxide by irradiating light using the photocatalytic composite as a catalyst.

과산화수소(H2O2)는 물과 산소로 생산하는 반응생성물로서, 친환경적인 산화제이고 유기합성, 환경정화, 살균, 액체추진제 등에 광범위하게 활용되고 있다.Hydrogen peroxide (H 2 O 2 ) is a reaction product produced by water and oxygen. It is an environmentally friendly oxidizer and widely used for organic synthesis, environmental purification, sterilization, and liquid propellant.

과산화수소는 일반적으로 2-ethly-9,10-dihydroxyanthracene의 산화 및 2-ethylanthraquinone의 수소화의 순차적 반응을 포함하는 방법에 의해 제조된다. 그러나, 이 제조공정은 수소가스, 유기용매 및 높은 에너지가 필요하므로, 비경제적일 뿐만 아니라, 친환경적인 방법이라 할 수 없다. 또한, 금속계 촉매(Pd or Pd/Au alloy)를 이용한 수소와 산소 사이의 직접적인 반응으로부터 과산화수소의 생산이 대안으로 제시됐지만, 폭발위험은 여전히 산재한다. 광촉매 반응을 이용한 과산화수소의 생산은 물, 산소 및 빛만을 필요하기 때문에 친환경적이며 미래지향적인 방법이라 할 수 있다.Hydrogen peroxide is generally prepared by a process involving the sequential reaction of oxidation of 2-ethly-9,10-dihydroxyanthracene and hydrogenation of 2-ethylanthraquinone. However, since this manufacturing process requires hydrogen gas, organic solvent and high energy, it is not only economical, but also an environmentally friendly method. In addition, although the production of hydrogen peroxide has been suggested as an alternative from the direct reaction between hydrogen and oxygen using a metal-based catalyst (Pd or Pd / Au alloy), the risk of explosion is still sporadic. Production of hydrogen peroxide using photocatalytic reaction is an environmentally friendly and future-oriented method because it requires only water, oxygen and light.

과산화수소는 이산화티타늄 광촉매 산화 시스템에 있어서 보조산화제로서 빈번히 사용되었지만, 주로 율속단계에 해당하는 산소환원반응에 의해 생성되는 과산화수소는 생성속도가 느릴 뿐 아니라, 생성과 동시에 분해가 일어나기 때문에 광촉매의 표면 개질 없이 상대적으로 많은 양을 얻을 수 없다. Although hydrogen peroxide is frequently used as a co-oxidant in the titanium dioxide photocatalyst oxidation system, the hydrogen peroxide produced by the oxygen reduction reaction corresponding mainly to the rate-limiting step is not only slow in production but also decomposes at the same time as it is produced. You can not get a relatively large amount.

종래의 이산화티탄계 광촉매시스템에서 과산화수소의 생산은 (i) 플로오르화에 의해 표면 보호, (ii) 조촉매로서 금나노입자(Au or Au/Ag alloy)의 담지, (iii) 전하 전달 매개체(Cu2 +)의 첨가, 또는 (iv) 전자 공여체로서 벤질 알코올의 사용 등을 통해 이루어졌다. 그러나, 플루오르화물은 강한 독성을 갖고 있고, 귀금속의 사용은 경제성이 떨어지기 때문에 이를 대체할 새로운 기술이 필요하다.In the conventional titanium dioxide photocatalytic system, the production of hydrogen peroxide is carried out by (i) surface protection by fluorination, (ii) the support of gold nanoparticles (Au or Au / Ag alloy) as a promoter, (iii) 2 + ), or (iv) use of benzyl alcohol as an electron donor. However, fluoride has strong toxicity, and the use of noble metals is not economical, so new technologies are needed to replace them.

따라서 본 발명은 전술한 종래의 문제점들을 해결하기 위해 창안된 발명으로서 본 발명의 첫 번째 과제는 이산화티탄 기반 광촉매 시스템에서 값 비싼 귀금속 조촉매를 환원그래핀옥사이드로 대체하여 우수한 과산화수소 생산 효율을 갖는 환원그래핀옥사이드-이산화티타늄 광촉매 복합체를 제공하는 것이다.SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a titanium dioxide-based photocatalyst system capable of replacing expensive noble metal cocatalyst with reduced graphene oxide, Titanium dioxide photocatalyst composite.

본 발명은 두 번째 과제는 광반응에 의해 생성된 과산화수소의 분해를 효율적으로 막기 위해 환원그래핀옥사이드-이산화티타늄 광촉매 복합체에 인산염을 첨가하여 이산화티탄의 표면을 인산염으로 선택적으로 개질시켜 과산화수소 생성률을 극대화시키는 광촉매 복합체를 제공하는 것이다.The second task of the present invention is to maximize the production rate of hydrogen peroxide by selectively modifying the surface of titanium dioxide with a phosphate by adding phosphate to the reduced graphene oxide-titanium dioxide photocatalytic composite to effectively prevent the decomposition of hydrogen peroxide generated by the photoreaction To provide a photocatalytic composite.

또한 본 발명의 세 번째 과제는 환원그래핀옥사이드-광촉매 복합체에 코발트포스페이트를 도입하여 유기 전자 공여체 없이 과산화수소 생산 효율이 우수한 환원그래핀옥사이드-이산화티타늄 광촉매 복합체를 제공하는 것이다.A third object of the present invention is to provide a reduced graphene oxide-titanium dioxide photocatalytic composite which is superior in efficiency of hydrogen peroxide production by introducing cobalt phosphate into a reduced graphene oxide-photocatalytic complex without an organic electron donor.

상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 하나의 측면에 따르면 이산화티타늄(TiO2); 및 환원그래핀옥사이드(reduced Graphene Oxide, rGO);를 포함하는 광촉매 복합체가 제공된다.According to one aspect of the present invention, as technical means for achieving the above-mentioned technical object, titanium dioxide (TiO 2 ); And a reduced Graphene Oxide (rGO).

상기 광촉매 복합체가 포스페이트기(phosphate group)를 추가로 포함할 수 있다.The photocatalytic composite may further include a phosphate group.

상기 광촉매 복합체가 코발트포스페이트(Cobalt phosphate, CoPi);를 추가로 포함할 수 있다.The photocatalytic composite may further include cobalt phosphate (CoPi).

상기 광촉매 복합체는 상기 환원그래핀옥사이드가 상기 이산화티타늄의 표면에 담지된 것일 수 있다.In the photocatalytic composite, the reduced graphene oxide may be supported on the surface of the titanium dioxide.

상기 광촉매 복합체는 상기 포스페이트기가 상기 이산화티타늄의 표면에 담지된 것일 수 있다.In the photocatalytic composite, the phosphate group may be supported on the surface of the titanium dioxide.

상기 광촉매 복합체는 상기 코발트포스페이트가 상기 이산화티타늄의 표면에 담지된 것일 수 있다.In the photocatalytic composite, the cobalt phosphate may be supported on the surface of the titanium dioxide.

본 발명의 다른 하나의 측면에 따르면 본 발명은 환원그래핀옥사이드를 이산화티타늄과 접촉시켜 환원그래핀옥사이드를 표면에 담지한 이산화티타늄을 포함하는 광촉매복합체를 제조하는 단계(단계 a);를 포함하는 광촉매 복합체의 제조방법을 제공한다.According to another aspect of the present invention, there is provided a process for producing a photocatalyst composite comprising the steps of: (a) preparing a photocatalytic composite comprising titanium dioxide coated with reduced graphene oxide by contacting reduced graphene oxide with titanium dioxide; A method for producing a photocatalytic composite is provided.

상기 광촉매 복합체의 제조방법이 포스페이트(phosphate, 인산염)로 상기 환원그래핀옥사이드를 표면에 담지한 이산화티타늄의 표면을 개질하여 환원그래핀옥사이드와 포스페이트기(인산기)를 표면에 담지한 이산화티타늄을 제조하는 단계(단계 b);를 추가로 포함할 수 있다.Wherein the surface of the titanium dioxide carrying reduced graphene oxide is modified with phosphate (phosphate) to produce titanium dioxide carrying reduced graphene oxide and a phosphate group (phosphoric acid group) on the surface thereof (Step < RTI ID = 0.0 > b). ≪ / RTI >

상기 광촉매 복합체의 제조방법이 코발트 전구체를 상기 환원그래핀옥사이드와 포스페이트기를 표면에 담지한 이산화티타늄에 도입하여 환원그래핀옥사이드와 코발트포스페이트를 표면에 담지한 이산화티타늄을 제조하는 단계(단계 c);를 추가로 포함할 수 있다.The method for producing a photocatalytic composite according to the present invention comprises the steps of: (c) preparing a cobalt precursor by introducing a cobalt precursor into titanium dioxide carrying reduced graphene oxide and phosphate groups on its surface to produce titanium dioxide carrying reduced graphene oxide and cobalt phosphate on its surface; . ≪ / RTI >

상기 포스페이트가 NaH2PO4, Na2HPO4, Na3HPO4, KH2PO4, K2HPO4, 및 K3PO4로 이루어진 군에서 선택된 어느 하나일 수 있다.The phosphate may be any one selected from the group consisting of NaH 2 PO 4 , Na 2 HPO 4 , Na 3 HPO 4 , KH 2 PO 4 , K 2 HPO 4 , and K 3 PO 4 .

상기 코발트 전구체가 코발트 퍼클로레이트 헥사히드레이트(Co(ClO4)2·6H2O)일 수 있다.The cobalt precursor may be cobalt perchlorate hexahydrate (Co (ClO 4 ) 2 .6H 2 O).

상기 단계 c가 인산염 완충용액에 상기 환원그래핀옥사이드를 표면에 담지한 이산화티타늄을 분산시킨 후 코발트 전구체 용액을 첨가하여 환원그래핀옥사이드와 코발트포스페이트를 표면에 담지한 이산화티타늄을 제조하는 단계일 수 있다.The step (c) may be a step of dispersing the titanium dioxide supported on the surface of the reduced graphene oxide in a phosphate buffer solution and then adding a cobalt precursor solution to prepare titanium dioxide carrying reduced graphene oxide and cobalt phosphate on its surface have.

상기 단계 c가 pH 2.0 내지 4.0에서 수행될 수 있다.The step c may be carried out at a pH of 2.0 to 4.0.

본 발명의 다른 하나의 측면에 따르면 본 발명은 광조사 하에 상기 광촉매 복합체를 촉매로 사용하고 물을 반응시켜 과산화수소를 제조하는 단계를 포함하는 과산화수소의 제조방법을 제공한다.According to another aspect of the present invention, there is provided a method for producing hydrogen peroxide comprising the step of preparing hydrogen peroxide by reacting water using the photocatalytic composite as a catalyst under light irradiation.

상기 광조사에서 사용하는 광이 자외선일 수 있다.The light used in the light irradiation may be ultraviolet rays.

따라서 본 발명은 귀금속을 대체하여 과산화수소의 생산효율이 우수한 광촉매 복합체 및 그의 제조방법을 제공할 수 있다.Therefore, the present invention can provide a photocatalytic composite which is superior in the production efficiency of hydrogen peroxide by replacing the noble metal and a method for producing the same.

본 발명의 광촉매 복합체는 귀금속을 대신에 환원그래핀옥사이드가 담지된 이산화티타늄이 과산화수소의 생산 효율을 높이고, 인산기가 이산화티타늄 표면에서 과산화수소의 분해를 방지하여 과산화수소의 생산효율을 높이고, 코발트포스페이트는 유기 전자 공여체 없이 과산화수소를 생산하는 효과가 있다. 따라서, 본 발명의 광촉매 복합체는 공정 비용이 낮은 경제적인 과산화수소의 제조방법을 제공할 수 있다.In the photocatalytic composite of the present invention, instead of the noble metal, titanium dioxide carrying reduced graphene oxide enhances the production efficiency of hydrogen peroxide, the phosphoric acid group prevents the decomposition of hydrogen peroxide on the titanium dioxide surface to increase the production efficiency of hydrogen peroxide, There is an effect of producing hydrogen peroxide without an electron donor. Therefore, the photocatalytic composite of the present invention can provide an economical process for producing hydrogen peroxide having a low process cost.

도 1은 본 발명의 광촉매 복합체의 과산화수소 생성 메커니즘을 나타낸 도면이다.
도 2는 실시예 3 및 비교예 1 내지 4의 이산화티타늄에 담지된 물질에 따라 생성된 과산화수소의 농도를 측정하여 나타낸 그래프이다.
도 3은 실시예 1 내지 5 및 비교예 1의 이산화티타늄에 담지된 rGO의 중량비에 따라 생성된 과산화수소의 농도를 측정하여 나타낸 그래프이다.
도 4는 실시예 2 및 비교예 1, 5, 7의 인산기의 유무에 따라 생성된 과산화수소의 농도를 측정하여 나타낸 그래프이다.
도 5는 인산기 존재 하에서, 실시예 6 내지 10 및 비교예 1의 이산화티타늄에 담지된 rGO의 중량비에 따라 생성된 과산화수소의 농도를 측정하여 나타낸 그래프이다.
도 6은 초기 과산화수소농도에 대한 시험예 1 내지 5 및 비교시험예 1 내지 5의 광촉매에 의해 분해 후 존재하는 과산화수소의 농도의 비를 측정하여 나타낸 그래프이다.
도 7은 실시예 11 내지 14의 광촉매의 과산화수소 생성농도를 측정하여 나타낸 그래프이다.
도 8은 실시예 2 및 비교예 1의 rGO 유무에 따른 라만스펙트럼을 나타낸 그래프이다.
도 9는 유기 전자 공여체 존재 하에, 실시예 7 및 비교예 5의 rGO 유무에 따른 XPS(X-ray photoelectron spectroscopy) 스펙트럼을 나타낸 그래프이다.
도 10은 유기 전자 공여체 부재 하에, 실시예 14 및 비교예 9의 rGO 유무에 따른 XPS(X-ray photoelectron spectroscopy) 스펙트럼을 나타낸 그래프이다.
도 11은 실시예 14의 FE-SEM 이미지, TEM 이미지 및 EELS mapping 사진이다.
1 is a view showing a hydrogen peroxide generation mechanism of the photocatalytic composite of the present invention.
FIG. 2 is a graph showing the concentration of hydrogen peroxide produced according to the titanium dioxide-borne material of Example 3 and Comparative Examples 1 to 4. FIG.
FIG. 3 is a graph showing the concentration of hydrogen peroxide produced according to the weight ratio of rGO supported on titanium dioxide in Examples 1 to 5 and Comparative Example 1. FIG.
4 is a graph showing the concentration of hydrogen peroxide produced by the presence or absence of a phosphate group in Example 2 and Comparative Examples 1, 5, and 7.
FIG. 5 is a graph showing the concentration of hydrogen peroxide produced according to the weight ratio of rGO supported on titanium dioxide in Examples 6 to 10 and Comparative Example 1 in the presence of phosphoric acid. FIG.
6 is a graph showing the ratio of the concentration of hydrogen peroxide present after decomposition by the photocatalysts in Test Examples 1 to 5 and Comparative Test Examples 1 to 5 against the initial hydrogen peroxide concentration.
Fig. 7 is a graph showing the concentration of hydrogen peroxide generated in the photocatalyst of Examples 11 to 14 measured. Fig.
FIG. 8 is a graph showing Raman spectra in the presence of rGO in Example 2 and Comparative Example 1. FIG.
FIG. 9 is a graph showing X-ray photoelectron spectroscopy (XPS) spectra in the presence of rGO in Example 7 and Comparative Example 5 in the presence of an organic electron donor.
10 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of Example 14 and Comparative Example 9 with or without rGO under the absence of an organic electron donor.
11 is an FE-SEM image, a TEM image, and an EELS mapping photograph of Example 14. Fig.

이하, 본 발명의 광촉매 복합체 및 그의 제조방법을 설명하기로 한다.Hereinafter, the photocatalytic composite of the present invention and the production method thereof will be described.

도 1을 참고하면, 본 발명의 광촉매 복합체는, 이산화티타늄(TiO2); 및 환원그래핀옥사이드(reduced Graphene Oxide, rGO);를 포함할 수 있고, 포스페이트기(phosphate group) 또는 코발트포스페이트(Cobalt phosphate, CoPi);를 추가로 포함할 수 있다.1, the photocatalytic composite of the present invention comprises titanium dioxide (TiO 2 ); And reduced Graphene Oxide (rGO), and may further include a phosphate group or cobalt phosphate (CoPi).

상기 환원그래핀옥사이드가 상기 이산화티타늄의 표면에 담지될 수 있다.The reduced graphene oxide may be supported on the surface of the titanium dioxide.

상기 광촉매 복합체는 상기 환원그래핀옥사이드의 함량이 이산화티타늄 100중량부에 대하여 1 내지 20중량부, 바람직하게는 1 내지 10중량일 수 있다.In the photocatalytic composite, the content of the reduced graphene oxide may be 1 to 20 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of titanium dioxide.

상기 인산기(포스페이트기, PO4 3-)가 상기 이산화티타늄 표면에 선택적으로 결합할 수 있다.The phosphate group (phosphate group, PO 4 3- ) can selectively bind to the titanium dioxide surface.

상기 코발트포스페이트가 상기 이산화티타늄 표면에 담지될 수 있다. The cobalt phosphate may be supported on the titanium dioxide surface.

상기 광촉매 복합체는 상기 코발트포스페이트의 함량이 상기 이산화티타늄 100중량부에 대하여 1중량부 내외, 바람직하게는 0.1 내지 10 중량부일 수 있다.
The content of the cobalt phosphate in the photocatalytic composite may be 1 part by weight or more, preferably 0.1 to 10 parts by weight based on 100 parts by weight of the titanium dioxide.

이하 광촉매 복합체의 제조방법에 대하여 설명한다.
Hereinafter, a method for producing the photocatalytic composite will be described.

환원그래핀옥사이드를Reduced graphene oxide 표면에  On the surface 담지한Bearing 이산화티타늄을 제조하는 단계 (단계a) The step of producing titanium dioxide (step a)

본 발명에 따르면, 환원그래핀옥사이드를 이산화티타늄과 접촉시켜 환원그래핀옥사이드를 표면에 담지한 이산화티타늄을 포함하는 광촉매복합체를 제조(단계 a)할 수 있다.According to the present invention, a photocatalytic composite comprising titanium dioxide in which reduced graphene oxide is supported on a surface by contacting reduced graphene oxide with titanium dioxide can be prepared (step a).

상기 환원그래핀옥사이드가 담지된 이산화티타늄은 150 내지 300℃에서 제조될 수 있다. 바람직하게는 초음파 처리 후 150 내지 300℃에서 수행될 수 있다.The reduced graphene oxide-supported titanium dioxide can be produced at 150 to 300 ° C. Preferably at 150 to < RTI ID = 0.0 > 300 C < / RTI >

환원그래핀옥사이드와Reduction with graphene oxide 포스페이트기(인산기)를The phosphate group (phosphoric acid group) 표면에  On the surface 담지한Bearing 이산화티타늄을 제조하는 단계(단계 b) The step of producing titanium dioxide (step b)

포스페이트(phosphate, 인산염)로 상기 환원그래핀옥사이드를 표면에 담지한 이산화티타늄의 표면을 개질하여 환원그래핀옥사이드와 포스페이트기(인산기)를 표면에 담지한 이산화티타늄을 제조(단계 b)할 수 있다.The surface of the titanium dioxide carrying the reducing graphene oxide on the surface thereof is modified with phosphate (phosphate) to prepare titanium dioxide carrying the reduced graphene oxide and the phosphate group (phosphoric acid group) on the surface (step b) .

상기 환원그래핀옥사이드가 담지된 이산화티타늄을 인산염 완충용액, 바람직하게는 인산칼륨 완충 용액에 첨가시켜 이산화티타늄 표면의 수산화기를 인산기로 선택적으로 치환시킬 수 있다. 상기 인산염 완충용액은 pH가 2.0 내지 4.0, 농도가 0.05 내지 0.2M인 것을 사용하는 것이 바람직하다.The titanium dioxide on which the reduced graphene oxide is supported can be added to a phosphate buffer solution, preferably a potassium phosphate buffer solution, to selectively substitute the hydroxyl group of the titanium dioxide surface with the phosphate group. The phosphate buffer solution preferably has a pH of 2.0 to 4.0 and a concentration of 0.05 to 0.2 M.

상기 포스페이트(인산염)로서 NaH2PO4, Na2HPO4, Na3HPO4, KH2PO4, K2HPO4, 또는 K3PO4를 사용할 수 있다.
As the phosphate (phosphate) may be used to NaH 2 PO 4, Na 2 HPO 4, Na 3 HPO 4, KH 2 PO 4, K 2 HPO 4, or K 3 PO 4.

환원그래핀옥사이드와Reduction with graphene oxide 코발트포스페이트를Cobalt phosphate 표면에  On the surface 담지한Bearing 이산화티타늄을 제조하는 단계(단계 c); Producing titanium dioxide (step c);

코발트 전구체를 상기 환원그래핀옥사이드와 포스페이트기를 표면에 담지한 이산화티타늄과 접촉시켜 환원그래핀옥사이드와 코발트포스페이트를 표면에 담지한 이산화티타늄을 제조(단계 c)할 수 있다.The cobalt precursor may be contacted with the titanium dioxide carrying the reducing graphene oxide and the phosphate group on the surface to prepare titanium dioxide carrying reduced graphene oxide and cobalt phosphate on the surface thereof (step c).

인산염 완충용액에 상기 환원그래핀옥사이드를 표면에 담지한 이산화티타늄을 분산시킨 후 코발트 전구체 용액을 첨가하여 환원그래핀옥사이드와 코발트포스페이트를 표면에 담지한 이산화티타늄을 제조할 수 있다.Titanium dioxide supported on the surface of the reduced graphene oxide is dispersed in a phosphate buffer solution and then a cobalt precursor solution is added to prepare titanium dioxide carrying reduced graphene oxide and cobalt phosphate on its surface.

상기 코발트 전구체로서 코발트 퍼클로레이트 헥사히드레이트(Co(ClO4)2·6H2O) 를 사용할 수 있다.Cobalt perchlorate hexahydrate (Co (ClO 4 ) 2 .6H 2 O) may be used as the cobalt precursor.

바람직하게는 상기 인산 칼륨 용액 및 코발트 용액은 수용액일 수 있고, 상기 인산 칼륨 용액은 인산기(PO4 3-)를 포함하는 1M 인산 칼륨 완충용액으로 Potassium phosphate monobasic (Aldrich, 99.99 %)와 phosphoric acid (Aldrich, ≥ 85 wt% in H2O, ≥99.999% trace metal basis)을 혼합하여 제조하여 사용할 수 있고, 코발트 용액은 코발트 이온(Co2+)를 포함하는 코발트 용액으로 정제수 20ml에 코발트 전구체로서 cobalt perchlorate hexahydrate (Aldrich) 0.2g을 사용하여 제조할 수 있다.Preferably may be in the potassium phosphate solution and a cobalt solution is an aqueous solution, wherein the potassium phosphate solution Potassium phosphate monobasic (Aldrich, 99.99% ) with 1M potassium phosphate buffer solution containing a phosphoric acid group (PO 4 3-) and phosphoric acid ( Aldrich, ≥ 85 wt% in H 2 O, ≥99.999% trace metal basis. The cobalt solution is a cobalt solution containing cobalt ions (Co 2+ ). In 20 ml of purified water, cobalt perchlorate hexahydrate (Aldrich).

상기 단계 c는 pH 2.0 내지 4.0에서 수행될 수 있다. 상기 단계 b의 pH는 최종적으로 HClO4을 사용하여 조절할 수 있다.The step c may be carried out at a pH of 2.0 to 4.0. The pH of step b may be finally adjusted using HClO 4 .

상기 광촉매 복합체의 제조방법이 환원그래핀옥사이드를 제조하는 단계를 추가로 포함할 수 있다.The manufacturing method of the photocatalytic composite may further include a step of producing reduced graphene oxide.

상기 환원그래핀옥사이드는 50 내지 150℃에서 제조될 수 있다.The reduced graphene oxide may be prepared at 50 to 150 < 0 > C.

상기 광촉매 복합체를 촉매로 사용하고, 광조사 하에 물을 반응시켜 과산화수소를 제조하는 과산화수소의 제조방법을 제공할 수 있다.The present invention can provide a method for producing hydrogen peroxide by using the photocatalytic composite as a catalyst and reacting water under light irradiation to produce hydrogen peroxide.

상기 광조사에서 사용하는 광이 자외선, 바람직하게는 300 내지 400nm의 파장을 갖는 광일 수 있다.The light used in the light irradiation may be ultraviolet light, preferably light having a wavelength of 300 to 400 nm.

상기 광촉매 복합체는 유기 전자 공여체 없이 과산화수소 제조에 사용될 수 있다.
The photocatalytic composite can be used for the production of hydrogen peroxide without an organic electron donor.

[실시예] [Example]

이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described. However, this is for illustrative purposes only, and thus the scope of the present invention is not limited thereto.

환원그래핀옥사이드Reduced graphene oxide 제조 Produce

그래핀옥사이드는 modified Hummers method를 사용하여 천연흑연(SP-1 grade 200 mesh, Bay Carbon Inc.)으로부터 준비되었다. 산화 흑연을 물 (200ml)에 넣고 1 시간 동안 초음파 처리(JAC 4020, 400W, Sonic)에 의해 단층 그래핀 옥사이드(GO)로 박리하였다 (복합체 0.5g 기준으로 1중량비의 경우 5mg 첨가, 중량비에 따라 첨가량을 조절함). GO를 환원하기 위해, 암모니아용액(Samchun chemicals, 28-30%) 0.4ml과 GO의 mg당 히드라진 수화물 10ul을 GO가 분산된 용액에 첨가하였다. 용액은 환류 콘덴서를 사용하여 95℃로 가열하고 환원그래핀옥사이드(rGO) 자체의 응집을 막기 위해 유리가 코팅된 교반자석을 넣고 천천히 교반하면서 2시간을 유지하여 환원그래핀옥사이드를 제조하였다.
Graphene oxide was prepared from natural graphite (SP-1 grade 200 mesh, Bay Carbon Inc.) using the modified Hummers method. The graphite oxide was peeled off with single layer graphene oxide (GO) by ultrasonication (JAC 4020, 400 W, Sonic) for 1 hour in water (200 ml) Lt; / RTI > To reduce the GO, 0.4 ml of ammonia solution (Samchun chemicals, 28-30%) and 10 ul of hydrazine hydrate per mg of GO were added to the GO-dispersed solution. The solution was heated to 95 ° C using a reflux condenser, and a reduced graphene oxide was prepared by stirring a glass-coated stirring magnet to keep the reduced graphene oxide (rGO) itself from agglomeration and holding it for 2 hours while stirring slowly.

실시예Example 1 :  One : 환원그래핀옥사이드Reduced graphene oxide // 티타늄옥사이드Titanium oxide (( rGOrGO // TiOTiO 22 (1(One wtwt %)) 및 %)) And HH 22 OO 22 의 제조Manufacturing

환원그래핀옥사이드 용액 200ml(rGO 5mg 함유)를 실온까지 냉각 후 이산화티타늄 분말(P25, Degussa) 0.495g을 첨가하였다. 이산화티타늄 파우더를 분산시키기 위해 용액을 초음파 배스에서 초음파처리를 한 다음, 1M 염산 10㎖를 고속 교반 중에 투입하였다. 석출된 rGO/TiO2 복합체를 중성 pH가 될 때까지 세척하고, 실온에서 건조시키고, 아르곤 기체 흐름 하에서 200℃에서 처리하여 rGO의 함량이 1wt%인 환원그래핀옥사이드/티타늄옥사이드(rGO/TiO2(1wt%)) 광촉매 복합체를 제조하였다.After reducing 200 ml of the reduced graphene oxide solution (containing 5 mg of rGO) to room temperature, 0.495 g of titanium dioxide powder (P25, Degussa) was added. To disperse the titanium dioxide powder, the solution was sonicated in an ultrasonic bath, and then 10 ml of 1M hydrochloric acid was added during high-speed stirring. The precipitated rGO / TiO 2 complex was washed to neutral pH, dried at room temperature and treated at 200 ° C. under an argon gas flow to obtain a reduced graphene oxide / titanium oxide (rGO / TiO 2) with an rGO content of 1 wt% (1 wt%)) photocatalytic composite.

상기 제조된 rGO/TiO2(1wt%) 20mg을 2-propanol 2ml와 정제수 38ml를 혼합하여 제조한 용액에 분산시키고, pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하였다.20 mg of the prepared rGO / TiO 2 (1 wt%) was dispersed in a solution prepared by mixing 2 ml of 2-propanol and 38 ml of purified water, and the pH was finally adjusted to pH 3.0 using HClO 4 .

반응기를 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 H2O2를 제조하였다.Using a 300-W Xe arc lamp (Oriel) as a light source, the reactor was irradiated with light through an IR filter and a cutoff filter (?? 320 nm) while continuously stirring the reactor. H 2 O 2 was prepared by purging continuously while bubbling O 2 during light irradiation.

실시예Example 2 :  2 : rGOrGO // TiOTiO 22 (6(6 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

rGO용액 200ml(rGO 5mg 함유)에 TiO2분말 0.495g을 첨가한 것 대신에 rGO용액 200ml(rGO 30mg 함유)에 TiO2분말 0.470g을 첨가하고 광촉매 복합체 제조시 rGO/TiO2(1wt%) 대신에 rGO/TiO2(6wt%)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 rGO/TiO2(6wt%) 광촉매 복합체 및 H2O2를 제조하였다. rGO solution 200ml (rGO containing 5mg) was used instead of 200ml rGO solution was added 0.470g TiO 2 powder and the manufacture photocatalyst composite rGO / TiO 2 (1wt%) to the (containing rGO 30mg) instead of addition of the TiO 2 powder, 0.495g on to and it is carried out as example 1 except for using rGO / TiO 2 (6wt%) was prepared rGO / TiO 2 (6wt%) photocatalytic composites and H 2 O 2.

실시예Example 3 :  3: rGOrGO // TiOTiO 22 (10(10 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

rGO용액 200ml(rGO 5mg 함유)에 TiO2분말 0.495g을 첨가한 것 대신에 rGO용액 200ml(rGO 50mg 함유)에 TiO2분말 0.450g을 첨가하고 광촉매 복합체 제조시 rGO/TiO2(1wt%) 대신에 rGO/TiO2(10wt%)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 rGO/TiO2(10wt%) 광촉매 복합체 및 H2O2를 제조하였다.rGO solution 200ml (rGO containing 5mg) was used instead of 200ml rGO solution was added 0.450g TiO 2 powder and the manufacture photocatalyst composite rGO / TiO 2 (1wt%) to the (containing rGO 50mg) instead of addition of the TiO 2 powder, 0.495g on to and it is carried out as example 1 except for using rGO / TiO 2 (10wt%) was prepared rGO / TiO 2 (10wt%) photocatalytic composites and H 2 O 2.

실시예Example 4 :  4 : rGOrGO // TiOTiO 22 (20(20 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

rGO용액 200ml(rGO 5mg 함유)에 TiO2분말 0.495g을 첨가한 것 대신에 rGO용액 200ml(rGO 100mg 함유)에 TiO2분말 0.400g을 첨가하고 광촉매 복합체 제조시 rGO/TiO2(1wt%) 대신에 rGO/TiO2(20wt%)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 rGO/TiO2(20wt%) 광촉매 복합체 및 H2O2를 제조하였다.rGO solution 200ml (rGO containing 5mg) was used instead of 200ml rGO solution was added 0.400g TiO 2 powder and the manufacture photocatalyst composite rGO / TiO 2 (1wt%) to the (containing rGO 100mg) in place of the addition of the TiO 2 powder, 0.495g on to and it is carried out as example 1 except for using rGO / TiO 2 (20wt%) was prepared rGO / TiO 2 (20wt%) photocatalytic composites and H 2 O 2.

실시예Example 5 :  5: rGOrGO // TiOTiO 22 (40(40 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

rGO용액 200ml(rGO 5mg 함유)에 TiO2분말 0.495g을 첨가한 것 대신에 rGO용액 200ml(rGO 200mg 함유)에 TiO2분말 0.300g을 첨가하고 광촉매 복합체 제조시 rGO/TiO2(1wt%) 대신에 rGO/TiO2(40wt%)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 rGO/TiO2(40wt%) 광촉매 복합체 및 H2O2를 제조하였다.rGO solution 200ml (rGO containing 5mg) was used instead of 200ml rGO solution was added 0.300g TiO 2 powder and the manufacture photocatalyst composite rGO / TiO 2 (1wt%) to the (containing rGO 200mg) in place of the addition of the TiO 2 powder, 0.495g on to and it is carried out as example 1 except for using rGO / TiO 2 (40wt%) was prepared rGO / TiO 2 (40wt%) photocatalytic composites and H 2 O 2.

실시예Example 6 :  6: rGOrGO // TiOTiO 22 /P(1/ P (1 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

환원그래핀옥사이드 용액 200ml(rGO 5mg 함유)를 실온까지 냉각 후 이산화티타늄 분말(P25, Degussa) 0.495g을 첨가하였다. 이산화티타늄 파우더를 분산시키기 위해 용액을 초음파 배스에서 초음파처리를 한 다음, 1M 염산 10㎖를 고속 교반 중에 투입하였다. 석출된 rGO/TiO2 복합체를 중성 pH가 될 때까지 세척하고, 실온에서 건조시키고, 아르곤 기체 흐름 하에서 200℃에서 처리하여 rGO/TiO2(1wt%)를 제조하였다.After reducing 200 ml of the reduced graphene oxide solution (containing 5 mg of rGO) to room temperature, 0.495 g of titanium dioxide powder (P25, Degussa) was added. To disperse the titanium dioxide powder, the solution was sonicated in an ultrasonic bath, and then 10 ml of 1M hydrochloric acid was added during high-speed stirring. The precipitated rGO / TiO 2 complex was washed to neutral pH, dried at room temperature and treated at 200 ° C under an argon gas flow to produce rGO / TiO 2 (1 wt%).

상기 제조된 rGO/TiO2(1wt%) 20mg을 1M potassium phosphate buffer solution 4ml와 정제수 34ml를 혼합하여 제조한 용액에 분산시키고, 분산용액에 2-프로판올(Aldrich) 2ml를 첨가했다. 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 rGO/TiO2/P(1wt%)를 제조하였다.20 mg of the prepared rGO / TiO 2 (1 wt%) was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer solution and 34 ml of purified water, and 2 ml of 2-propanol (Aldrich) was added to the dispersion solution. The pH of the solution was finally adjusted to pH 3.0 using HClO 4 to prepare rGO / TiO 2 / P (1 wt%).

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 제조하였다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to produce hydrogen peroxide.

실시예Example 7 :  7: rGOrGO // TiOTiO 22 /P(6/ P (6 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

rGO용액 200ml(rGO 5mg 함유)에 TiO2분말 0.495g을 첨가한 것 대신에 rGO용액 200ml(rGO 30mg 함유)에 TiO2분말 0.470g을 첨가하고 광촉매 복합체 제조시 rGO/TiO2(1wt%) 대신에 rGO/TiO2(6wt%)을 사용한 것을 제외하고는 상기 실시예 6과 동일하게 실시하여 rGO/TiO2/P(6wt%) 광촉매 복합체 및 H2O2를 제조하였다. rGO solution 200ml (rGO containing 5mg) was used instead of 200ml rGO solution was added 0.470g TiO 2 powder and the manufacture photocatalyst composite rGO / TiO 2 (1wt%) to the (containing rGO 30mg) instead of addition of the TiO 2 powder, 0.495g TiO 2 / P (6 wt%) photocatalytic composite and H 2 O 2 were prepared in the same manner as in Example 6, except that rGO / TiO 2 (6 wt%) was used.

실시예Example 8 :  8 : rGOrGO // TiOTiO 22 /P(10/ P (10 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

rGO용액 200ml(rGO 5mg 함유)에 TiO2분말 0.495g을 첨가한 것 대신에 rGO용액 200ml(rGO 50mg 함유)에 TiO2분말 0.450g을 첨가하고 광촉매 복합체 제조시 rGO/TiO2(1wt%) 대신에 rGO/TiO2(10wt%)을 사용한 것을 제외하고는 상기 실시예 6과 동일하게 실시하여 rGO/TiO2/P(10wt%) 광촉매 복합체 및 H2O2를 제조하였다. rGO solution 200ml (rGO containing 5mg) was used instead of 200ml rGO solution was added 0.450g TiO 2 powder and the manufacture photocatalyst composite rGO / TiO 2 (1wt%) to the (containing rGO 50mg) instead of addition of the TiO 2 powder, 0.495g RGO / TiO 2 / P (10 wt%) photocatalytic composite and H 2 O 2 were prepared in the same manner as in Example 6, except that rGO / TiO 2 (10 wt%) was used.

실시예Example 9 :  9: rGOrGO // TiOTiO 22 /P(20/ P (20 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

rGO용액 200ml(rGO 5mg 함유)에 TiO2분말 0.495g을 첨가한 것 대신에 rGO용액 200ml(rGO 100mg 함유)에 TiO2분말 0.400g을 첨가하고 광촉매 복합체 제조시 rGO/TiO2(1wt%) 대신에 rGO/TiO2(20wt%)을 사용한 것을 제외하고는 상기 실시예 6과 동일하게 실시하여 rGO/TiO2/P(20wt%) 광촉매 복합체 및 H2O2를 제조하였다. rGO solution 200ml (rGO containing 5mg) was used instead of 200ml rGO solution was added 0.400g TiO 2 powder and the manufacture photocatalyst composite rGO / TiO 2 (1wt%) to the (containing rGO 100mg) in place of the addition of the TiO 2 powder, 0.495g TiO 2 / P (20 wt%) photocatalytic composite and H 2 O 2 were prepared in the same manner as in Example 6, except that rGO / TiO 2 (20 wt%) was used.

실시예Example 10 :  10: rGOrGO // TiOTiO 22 /P(40/ P (40 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

rGO용액 200ml(rGO 5mg 함유)에 TiO2분말 0.495g을 첨가한 것 대신에 rGO용액 200ml(rGO 200mg 함유)에 TiO2분말 0.300g을 첨가하고 광촉매 복합체 제조시 rGO/TiO2(1wt%) 대신에 rGO/TiO2(40wt%)을 사용한 것을 제외하고는 상기 실시예 6과 동일하게 실시하여 rGO/TiO2/P(40wt%) 광촉매 복합체 및 H2O2를 제조하였다. rGO solution 200ml (rGO containing 5mg) was used instead of 200ml rGO solution was added 0.300g TiO 2 powder and the manufacture photocatalyst composite rGO / TiO 2 (1wt%) to the (containing rGO 200mg) in place of the addition of the TiO 2 powder, 0.495g RGO / TiO 2 / P (40 wt%) photocatalytic composite and H 2 O 2 were prepared in the same manner as in Example 6, except that rGO / TiO 2 (40 wt%) was used.

실시예Example 11 :  11: rGOrGO // TiOTiO 22 (6(6 wtwt %)를 이용한 %) HH 22 OO 22 제조 (유기 전자 공여체 없음) Manufacturing (no organic electron donor)

환원그래핀옥사이드 용액 200ml(rGO 30mg 함유)를 실온까지 냉각 후 이산화티타늄 분말(P25, Degussa) 0.470g을 첨가하였다. 이산화티타늄 파우더를 분산시키기 위해 용액을 초음파 배스에서 초음파처리를 한 다음, 1M 염산 10㎖를 고속 교반 중에 투입하였다. 석출된 rGO/TiO2 복합체를 중성 pH가 될 때까지 세척하고, 실온에서 건조시키고, 아르곤 기체 흐름 하에서 200℃에서 처리하여 rGO/TiO2(6wt%) 광촉매 복합체를 제조하였다.After reducing 200 ml of reduced graphene oxide solution (containing 30 mg of rGO) to room temperature, 0.470 g of titanium dioxide powder (P25, Degussa) was added. To disperse the titanium dioxide powder, the solution was sonicated in an ultrasonic bath, and then 10 ml of 1M hydrochloric acid was added during high-speed stirring. The precipitated rGO / TiO 2 complex was washed to neutral pH, dried at room temperature and treated at 200 ° C under an argon gas flow to produce a rGO / TiO 2 (6 wt%) photocatalytic complex.

상기 제조된 rGO/TiO2(6wt%) 20mg을 정제수 40ml와 혼합하여 제조한 용액에 분산시켰다. 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 유기 전자 공여체를 포함하지 않는 rGO/TiO2(6wt%)를 제조하였다.20 mg of the prepared rGO / TiO 2 (6 wt%) was dispersed in a solution prepared by mixing with 40 ml of purified water. The pH of the solution was finally adjusted to pH 3.0 using HClO 4 to prepare an organic donor-free rGO / TiO 2 (6 wt%).

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 제조하였다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to produce hydrogen peroxide.

실시예Example 12 :  12: rGOrGO // TiOTiO 22 /P(6/ P (6 wtwt %) 및 %) And HH 22 OO 22 의 제조 (유기 전자 공여체 없음)(Without organic electron donor)

환원그래핀옥사이드 용액 200ml(rGO 30mg 함유)를 실온까지 냉각 후 이산화티타늄 분말(P25, Degussa) 0.470g을 첨가하였다. 이산화티타늄 파우더를 분산시키기 위해 용액을 초음파 배스에서 초음파처리를 한 다음, 1M 염산 10㎖를 고속 교반 중에 투입하였다. 석출된 rGO/TiO2 복합체를 중성 pH가 될 때까지 세척하고, 실온에서 건조시키고, 아르곤 기체 흐름 하에서 200℃에서 처리하여 rGO/TiO2(6wt%)를 제조하였다.After reducing 200 ml of reduced graphene oxide solution (containing 30 mg of rGO) to room temperature, 0.470 g of titanium dioxide powder (P25, Degussa) was added. To disperse the titanium dioxide powder, the solution was sonicated in an ultrasonic bath, and then 10 ml of 1M hydrochloric acid was added during high-speed stirring. The precipitated rGO / TiO 2 complex was washed to neutral pH, dried at room temperature and treated at 200 ° C under an argon gas flow to produce rGO / TiO 2 (6 wt%).

상기 제조된 rGO/TiO2(6wt%) 20mg을 1M potassium phosphate buffer solution 4ml와 정제수 36ml를 혼합하여 제조한 용액에 분산시켰다. 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 유기 전자 공여체를 포함하지 않는 rGO/TiO2/P(6wt%)를 제조하였다.20 mg of the prepared rGO / TiO 2 (6 wt%) was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer solution and 36 ml of purified water. The pH of the solution was finally adjusted to pH 3.0 using HClO 4 to prepare rGO / TiO 2 / P (6 wt%) free of organic electron donors.

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 제조하였다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to produce hydrogen peroxide.

실시예Example 13 :  13: rGOrGO // TiOTiO 22 // CoCo (6(6 wtwt %) 및 %) And HH 22 OO 22 의 제조 (유기 전자 공여체 없음)(Without organic electron donor)

환원그래핀옥사이드 용액 200ml(rGO 30mg 함유)를 실온까지 냉각 후 이산화티타늄 분말(P25, Degussa) 0.470g을 첨가하였다. 이산화티타늄 파우더를 분산시키기 위해 용액을 초음파 배스에서 초음파처리를 한 다음, 1M 염산 10㎖를 고속 교반 중에 투입하였다. 석출된 rGO/TiO2 복합체를 중성 pH가 될 때까지 세척하고, 실온에서 건조시키고, 아르곤 기체 흐름 하에서 200℃에서 처리하여 rGO/TiO2(6wt%) 광촉매 복합체를 제조하였다.After reducing 200 ml of reduced graphene oxide solution (containing 30 mg of rGO) to room temperature, 0.470 g of titanium dioxide powder (P25, Degussa) was added. To disperse the titanium dioxide powder, the solution was sonicated in an ultrasonic bath, and then 10 ml of 1M hydrochloric acid was added during high-speed stirring. The precipitated rGO / TiO 2 The complex was washed to neutral pH, dried at room temperature and treated at 200 ° C under an argon gas flow to produce a rGO / TiO 2 (6 wt%) photocatalytic complex.

상기 제조된 rGO/TiO2(6wt%) 20mg을 정제수 40ml를 혼합하여 제조한 용액에 분산시키고, 정제수 20ml에 코발트 전구체로서 cobalt perchlorate hexahydrate (Aldrich) 0.2g으로 제조한 코발트 용액 0.124ml을 상기 분산액에 첨가한 다음 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 유기 전자 공여체를 포함하지 않는 rGO/TiO2/Co(6wt%)를 제조하였다.20 mg of the prepared rGO / TiO 2 (6 wt%) was dispersed in a solution prepared by mixing 40 ml of purified water, and 0.124 ml of a cobalt solution prepared from 0.2 g of cobalt perchlorate hexahydrate (Aldrich) as a cobalt precursor in 20 ml of purified water was added to the dispersion After the addition, the pH was finally adjusted to pH 3.0 using HClO 4 to prepare rGO / TiO 2 / Co (6 wt%) free of organic electron donors.

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 제조하였다.
The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to produce hydrogen peroxide.

실시예Example 14:  14: rGOrGO // TiOTiO 22 // CoPiCoPi (6(6 wtwt %) 및 %) And HH 22 OO 22 의 제조 (유기 전자 공여체 없음)(Without organic electron donor)

환원그래핀옥사이드 용액 200ml(rGO 30mg 함유)를 실온까지 냉각 후 이산화티타늄 분말(P25, Degussa) 0.470g을 첨가하였다. 이산화티타늄 파우더를 분산시키기 위해 용액을 초음파 배스에서 초음파처리를 한 다음, 1M 염산 10㎖를 고속 교반 중에 투입하였다. 석출된 rGO/TiO2 복합체를 중성 pH가 될 때까지 세척하고, 실온에서 건조시키고, 아르곤 기체 흐름 하에서 200℃에서 처리하여 rGO/TiO2(6wt%)를 제조하였다.After reducing 200 ml of reduced graphene oxide solution (containing 30 mg of rGO) to room temperature, 0.470 g of titanium dioxide powder (P25, Degussa) was added. To disperse the titanium dioxide powder, the solution was sonicated in an ultrasonic bath, and then 10 ml of 1M hydrochloric acid was added during high-speed stirring. The precipitated rGO / TiO 2 complex was washed to neutral pH, dried at room temperature and treated at 200 ° C under an argon gas flow to produce rGO / TiO 2 (6 wt%).

상기 제조된 rGO/TiO2(6wt%) 20mg을 1M 칼륨 인산 완충용액 4ml와 정제수 36ml를 혼합하여 제조한 용액에 분산시키고, 정제수 20ml에 코발트 전구체로서 cobalt perchlorate hexahydrate (Aldrich) 0.2g으로 제조한 코발트 용액 0.124ml를 상기 분산용액에 첨가한 다음 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 유기 전자 공여체를 포함하지 않는 rGO/TiO2/CoPi(6wt%)를 제조하였다.20 mg of the prepared rGO / TiO 2 (6 wt%) was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer and 36 ml of purified water, and 20 ml of purified water was added with cobalt perchlorate hexahydrate (Aldrich) 0.124 ml of the solution was added to the dispersion solution, and the pH was finally adjusted to pH 3.0 using HClO 4 to prepare rGO / TiO 2 / CoPi (6 wt%) containing no organic electron donor.

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 제조하였다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to produce hydrogen peroxide.

비교예Comparative Example 1:  One: TiOTiO 22 를 이용한 Using HH 22 OO 22 제조 Produce

TiO2 20mg을 2-propanol 2ml와 정제수 38ml를 혼합하여 제조한 용액에 분산시키고, pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하였다.20 mg of TiO 2 was dispersed in a solution prepared by mixing 2 ml of 2-propanol with 38 ml of purified water, and the pH was finally adjusted to pH 3.0 using HClO 4 .

반응기를 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 H2O2를 제조하였다.Using a 300-W Xe arc lamp (Oriel) as a light source, the reactor was irradiated with light through an IR filter and a cutoff filter (?? 320 nm) while continuously stirring the reactor. H 2 O 2 was prepared by purging continuously while bubbling O 2 during light irradiation.

비교예Comparative Example 2:  2: AgAg // TiOTiO 22 (1(One wtwt %)를 이용한 %) HH 22 OO 22 제조 Produce

TiO2상에 Ag의 광-증착은 200W 수은 램프를 사용하여 30분 동안 UV 조사 하에서 TiO2 0.25g, 증류수 480ml, 전자 공여체로서 메탄올 20ml와 은 전구체(AgNO3) 3.9mg을 포함하는 수용액에서 수행하여 Ag/TiO2(1wt%)를 얻었다.Ag of the light on the TiO 2 - TiO 2 is deposited under UV irradiation for 30 minutes using a 200W mercury lamp , Ag / TiO 2 (1 wt%) was obtained in an aqueous solution containing 0.25 g of distilled water, 480 ml of distilled water, 20 ml of methanol as electron donor and 3.9 mg of silver precursor (AgNO 3 ).

상기 Ag/TiO2(1wt%) 20mg을 2-propanol 2ml와 정제수 38ml를 혼합하여 제조한 용액에 분산시키고, pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하였다.20 mg of Ag / TiO 2 (1 wt%) was dispersed in a solution prepared by mixing 2 ml of 2-propanol and 38 ml of purified water, and the pH was finally adjusted to pH 3.0 using HClO 4 .

반응기를 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 H2O2를 제조하였다.Using a 300-W Xe arc lamp (Oriel) as a light source, the reactor was irradiated with light through an IR filter and a cutoff filter (?? 320 nm) while continuously stirring the reactor. H 2 O 2 was prepared by purging continuously while bubbling O 2 during light irradiation.

비교예Comparative Example 3:  3: AuAu // TiOTiO 22 (1(One wtwt %)를 이용한 %) HH 22 OO 22 제조 Produce

AgNO3 3.9mg 대신 HAuCl4 4.3mg을 사용한 것을 제외하고는 상기 비교예 2와 동일한 방법으로 수행하여 Au/TiO2(1wt%) 및 H2O2를 제조하였다.Au / TiO 2 (1 wt%) and H 2 O 2 were prepared in the same manner as in Comparative Example 2, except that 4.3 mg of HAuCl 4 was used instead of 3.9 mg of AgNO 3 .

비교예Comparative Example 4:  4: PtPt // TiOTiO 22 (1(One wtwt %)를 이용한 %) HH 22 OO 22 제조 Produce

AgNO3 3.9mg 대신 H2PtCl6 5.3mg을 사용한 것을 제외하고는 상기 비교예 2와 동일한 방법으로 수행하여 Pt/TiO2(1wt%) 및 H2O2를 제조하였다.Pt / TiO 2 (1 wt%) and H 2 O 2 were prepared in the same manner as in Comparative Example 2, except that 5.3 mg of H 2 PtCl 6 was used instead of 3.9 mg of AgNO 3 .

비교예Comparative Example 5:  5: TiOTiO 22 /P 및 / P and HH 22 OO 22 의 제조Manufacturing

TiO2 20mg을 1M potassium phosphate buffer solution 4ml, 2-propanol 2ml와 정제수 34m를 혼합하여 제조한 용액에 분산시켰다. 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 TiO2/P를 제조하였다.20 mg of TiO 2 was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer solution, 2 ml of 2-propanol and 34 ml of purified water. The pH of the solution was finally adjusted to pH 3.0 using HClO 4 to prepare TiO 2 / P.

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 제조하였다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to produce hydrogen peroxide.

비교예Comparative Example 6:  6: AgAg // TiOTiO 22 /P(1/ P (1 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

TiO2상에 Ag의 광-증착은 200W 수은 램프를 사용하여 30분 동안 UV 조사 하에서 TiO2 0.25g, 증류수 480ml, 전자 공여체로서 메탄올 20ml와 은 전구체(AgNO3) 3.9mg을 포함하는 수용액에서 수행하여 Ag/TiO2(1wt%)를 얻었다.Light of Ag on TiO 2 - deposition using a 200W mercury lamp for 30 minutes under UV irradiation TiO 2 0.25g, 480ml distilled water, and 20ml of methanol as the electron donor is performed in an aqueous solution containing the precursor (AgNO 3) 3.9mg To obtain Ag / TiO 2 (1 wt%).

상기 Ag/TiO2(1wt%) 20mg을 1M potassium phosphate buffer solution 4ml, 2-propanol 2ml와 정제수 34m를 혼합하여 제조한 용액에 분산시켰다. 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 Ag/TiO2/P(1wt%)를 제조하였다.20 mg of Ag / TiO 2 (1 wt%) was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer solution, 2 ml of 2-propanol and 34 ml of purified water. The pH of the solution was finally adjusted to pH 3.0 using HClO 4 to prepare Ag / TiO 2 / P (1 wt%).

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 제조하였다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to produce hydrogen peroxide.

비교예Comparative Example 7:  7: AuAu // TiOTiO 22 /P(1/ P (1 wtwt %) 및 %) And HH 22 OO 22 의 제조Manufacturing

AgNO3 3.9mg 대신 HAuCl4 4.3mg을 사용한 것을 제외하고는 상기 비교예 6과 동일한 방법으로 수행하여 Au/TiO2/P(1wt%) 및 H2O2를 제조하였다.AgNO 3 HAuCl 4 Au / TiO 2 / P (1 wt%) and H 2 O 2 were prepared in the same manner as in Comparative Example 6,

비교예Comparative Example 8:  8: PtPt // TiOTiO 22 /P(1/ P (1 wtwt %)를 이용한 %) HH 22 OO 22 제조 Produce

AgNO3 3.9mg 대신 H2PtCl6 5.3mg을 사용한 것을 제외하고는 상기 비교예 6과 동일한 방법으로 수행하여 Pt/TiO2/P(1wt%) 및 H2O2를 제조하였다.Pt / TiO 2 / P (1 wt%) and H 2 O 2 were prepared in the same manner as in Comparative Example 6, except that 5.3 mg of H 2 PtCl 6 was used instead of 3.9 mg of AgNO 3 .

비교예Comparative Example 9 :  9: TiOTiO 22 // CoPiCoPi  And HH 22 OO 22 의 제조 (유기 전자 공여체 없음)(Without organic electron donor)

TiO2 20mg을 1M 칼륨 인산 완충용액 4ml와 정제수 36ml를 혼합하여 제조한 용액에 분산시키고, 정제수 20ml에 코발트 전구체로서 cobalt perchlorate hexahydrate (Aldrich) 0.2g으로 제조한 코발트 용액 0.124ml를 상기 분산용액에 첨가한 다음 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 유기 전자 공여체를 포함하지 않는 TiO2/CoPi를 제조하였다.20 mg of TiO 2 was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer and 36 ml of purified water and 0.124 ml of a cobalt solution prepared by dissolving 0.2 g of cobalt perchlorate hexahydrate (Aldrich) as a cobalt precursor in 20 ml of purified water was added to the dispersion solution Then, the pH was finally adjusted to pH 3.0 using HClO 4 to prepare TiO 2 / CoPi free of organic electron donors.

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 제조하였다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to produce hydrogen peroxide.

HH 22 OO 22 의 분해시험Decomposition test of

시험예Test Example 1 :  One : rGOrGO // TiOTiO 22 (6(6 wtwt %)에 의한 %)On by HH 22 OO 22 의 분해Decomposition of

환원그래핀옥사이드 용액 200ml(rGO 30mg 함유)를 실온까지 냉각 후 이산화티타늄 분말(P25, Degussa) 0.470g을 첨가하였다. 이산화티타늄 파우더를 분산시키기 위해 용액을 초음파 배스에서 초음파처리를 한 다음, 1M 염산 10㎖를 고속 교반 중에 투입하였다. 석출된 rGO/TiO2 복합체를 중성 pH가 될 때까지 세척하고, 실온에서 건조시키고, 아르곤 기체 흐름 하에서 200℃에서 처리하여 rGO/TiO2(6wt%) 광촉매 복합체를 제조하였다.After reducing 200 ml of reduced graphene oxide solution (containing 30 mg of rGO) to room temperature, 0.470 g of titanium dioxide powder (P25, Degussa) was added. To disperse the titanium dioxide powder, the solution was sonicated in an ultrasonic bath, and then 10 ml of 1M hydrochloric acid was added during high-speed stirring. The precipitated rGO / TiO 2 complex was washed to neutral pH, dried at room temperature and treated at 200 ° C under an argon gas flow to produce a rGO / TiO 2 (6 wt%) photocatalytic complex.

상기 제조된 rGO/TiO2(6wt%) 20mg을 50mM 과산화수소 4ml, 정제수 36ml를 혼합하여 제조한 용액에 분산시키고, 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하였다.20 mg of the prepared rGO / TiO 2 (6 wt%) was dispersed in a solution prepared by mixing 4 ml of 50 mM hydrogen peroxide and 36 ml of purified water, and the pH of the solution was finally adjusted to pH 3.0 using HClO 4 .

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 분해시켰다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to decompose the hydrogen peroxide.

시험예Test Example 2:  2: rGOrGO // TiOTiO 22 /P(6/ P (6 wtwt %)에 의한 %)On by HH 22 OO 22 의 분해Decomposition of

환원그래핀옥사이드 용액 200ml(rGO 30mg 함유)를 실온까지 냉각 후 이산화티타늄 분말(P25, Degussa) 0.470g을 첨가하였다. 이산화티타늄 파우더를 분산시키기 위해 용액을 초음파 배스에서 초음파처리를 한 다음, 1M 염산 10㎖를 고속 교반 중에 투입하였다. 석출된 rGO/TiO2 복합체를 중성 pH가 될 때까지 세척하고, 실온에서 건조시키고, 아르곤 기체 흐름 하에서 200℃에서 처리하여 rGO/TiO2(6wt%) 광촉매 복합체를 제조하였다.After reducing 200 ml of reduced graphene oxide solution (containing 30 mg of rGO) to room temperature, 0.470 g of titanium dioxide powder (P25, Degussa) was added. To disperse the titanium dioxide powder, the solution was sonicated in an ultrasonic bath, and then 10 ml of 1M hydrochloric acid was added during high-speed stirring. The precipitated rGO / TiO 2 complex was washed to neutral pH, dried at room temperature and treated at 200 ° C under an argon gas flow to produce a rGO / TiO 2 (6 wt%) photocatalytic complex.

상기 제조된 rGO/TiO2(6wt%) 20mg을 1M potassium phosphate buffer solution 4ml, 50mM 과산화수소 4ml, 정제수 32ml를 혼합하여 제조한 용액에 분산시키고, 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 rGO/TiO2/P(6wt%)를 제조하였다.20 mg of the prepared rGO / TiO 2 (6 wt%) was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer solution, 4 ml of 50 mM hydrogen peroxide and 32 ml of purified water. The pH of the solution was finally adjusted to pH 3.0 using HClO 4 To prepare rGO / TiO 2 / P (6 wt%).

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 분해시켰다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to decompose the hydrogen peroxide.

비교시험예Comparative test example 1 :  One : TiOTiO 22 에 의한 On by HH 22 OO 22 의 분해Decomposition of

TiO2 20mg을 50mM 과산화수소 4ml, 정제수 36ml를 혼합하여 제조한 용액에 분산시키고, 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하였다.20 mg of TiO 2 was dispersed in a solution prepared by mixing 4 ml of 50 mM hydrogen peroxide and 36 ml of purified water, and the pH of the solution was finally adjusted to pH 3.0 using HClO 4 .

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 분해시켰다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to decompose the hydrogen peroxide.

비교시험예Comparative test example 2 :  2 : AgAg // TiOTiO 22 (1(One wtwt %)에 의한 %)On by HH 22 OO 22 의 분해Decomposition of

TiO2상에 Ag의 광-증착은 200W 수은 램프를 사용하여 30분 동안 UV 조사 하에서 TiO2 0.25g, 증류수 480ml, 전자 공여체로서 메탄올 20ml와 은 전구체(AgNO3) 3.9mg을 포함하는 수용액에서 수행하여 Ag/TiO2(1wt%)를 얻었다.Light of Ag on TiO 2 - deposition using a 200W mercury lamp for 30 minutes under UV irradiation TiO 2 0.25g, 480ml distilled water, and 20ml of methanol as the electron donor is performed in an aqueous solution containing the precursor (AgNO 3) 3.9mg To obtain Ag / TiO 2 (1 wt%).

상기 Ag/TiO2(1wt%) 20mg을 50mM 과산화수소 4ml, 정제수 36ml를 혼합하여 제조한 용액에 분산시키고, 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하였다.20 mg of Ag / TiO 2 (1 wt%) was dispersed in a solution prepared by mixing 4 ml of 50 mM hydrogen peroxide and 36 ml of purified water, and the pH of the solution was finally adjusted to pH 3.0 using HClO 4 .

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 분해시켰다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to decompose the hydrogen peroxide.

비교시험예Comparative test example 3 :  3: AuAu // TiOTiO 22 (1(One wtwt %)에 의한 %)On by HH 22 OO 22 의 분해Decomposition of

AgNO3 3.9mg 대신 HAuCl4 4.3mg을 사용한 것을 제외하고는 상기 비교시험예 2와 동일한 방법으로 수행하여 과산화수소를 분해시켰다.Hydrogen peroxide was decomposed in the same manner as in Comparative Test Example 2 except that 4.3 mg of HAuCl 4 was used instead of 3.9 mg of AgNO 3 .

비교시험예Comparative test example 4 :  4 : PtPt // TiOTiO 22 (1(One wtwt %)에 의한 %)On by HH 22 OO 22 의 분해Decomposition of

AgNO3 3.9mg 대신 H2PtCl6 5.3mg을 사용한 것을 제외하고는 상기 비교시험예 2와 동일한 방법으로 수행하여 과산화수소를 분해시켰다.Hydrogen peroxide was decomposed in the same manner as in Comparative Test Example 2 except that 5.3 mg of H 2 PtCl 6 was used instead of 3.9 mg of AgNO 3 .

비교 compare 시험예Test Example 5 :  5: TiOTiO 22 /P에 의한 By / P HH 22 OO 22 의 분해Decomposition of

TiO2 20mg을 1M potassium phosphate buffer solution 4ml, 50mM 과산화수소 4ml, 정제수 32ml를 혼합하여 제조한 용액에 분산시키고, 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 TiO2/P를 제조하였다.20 mg of TiO 2 was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer solution, 4 ml of 50 mM hydrogen peroxide and 32 ml of purified water, and the pH of the solution was finally adjusted to pH 3.0 with HClO 4 to prepare TiO 2 / P .

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 분해시켰다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to decompose the hydrogen peroxide.

비교 compare 시험예Test Example 6 :  6: AgAg // TiOTiO 22 /P(1/ P (1 wtwt %)에 의한 %)On by HH 22 OO 22 의 분해Decomposition of

TiO2상에 Ag의 광-증착은 200W 수은 램프를 사용하여 30분 동안 UV 조사 하에서 TiO2 0.25g, 증류수 480ml, 전자 공여체로서 메탄올 20ml와 은 전구체(AgNO3) 3.9mg을 포함하는 수용액에서 수행하여 Ag/TiO2(1wt%)를 얻었다.Light of Ag on TiO 2 - deposition using a 200W mercury lamp for 30 minutes under UV irradiation TiO 2 0.25g, 480ml distilled water, and 20ml of methanol as the electron donor is performed in an aqueous solution containing the precursor (AgNO 3) 3.9mg To obtain Ag / TiO 2 (1 wt%).

상기 Ag/TiO2(1wt%) 20mg을 1M potassium phosphate buffer solution 4ml, 50mM 과산화수소 4ml, 정제수 32ml를 혼합하여 제조한 용액에 분산시키고, 용액의 pH는 최종적으로 HClO4를 사용하여 pH 3.0으로 조절하여 Ag/TiO2/P(1wt%)를 제조하였다.20 mg of Ag / TiO 2 (1 wt%) was dispersed in a solution prepared by mixing 4 ml of 1 M potassium phosphate buffer solution, 4 ml of 50 mM hydrogen peroxide, and 32 ml of purified water. The pH of the solution was adjusted to pH 3.0 finally using HClO 4 Ag / TiO 2 / P (1 wt%).

반응기는 연속 교반하면서, 300-W Xe arc lamp(Oriel)을 광원으로 사용하여, 빛을 IR 필터와 cutoff filter (λ≥320 nm)통과시켜 반응기에 조사하였다. 빛을 조사하는 동안 O2를 버블링하면서 연속적으로 퍼징하여 과산화수소를 분해시켰다.The reactor was irradiated to the reactor with a 300-W Xe arc lamp (Oriel) as a light source while continuously stirring and passing light through an IR filter and a cutoff filter (? During the irradiation of light, O 2 was continuously purged while bubbling to decompose the hydrogen peroxide.

비교시험예Comparative test example 7 :  7: AuAu // TiOTiO 22 /P(1/ P (1 wtwt %)에 의한 %)On by HH 22 OO 22 의 분해Decomposition of

AgNO3 3.9mg 대신 HAuCl4 4.3mg을 사용한 것을 제외하고는 상기 비교시험예 6과 동일한 방법으로 수행하여 Au/TiO2/P(1wt%) 제조 및 과산화수소를 분해시켰다.Preparation of Au / TiO 2 / P (1 wt%) and decomposition of hydrogen peroxide were carried out in the same manner as in Comparative Test Example 6, except that 4.3 mg of HAuCl 4 was used instead of 3.9 mg of AgNO 3 .

비교시험예Comparative test example 8 :  8 : PtPt // TiOTiO 22 /P(1/ P (1 wtwt %)에 의한 %)On by HH 22 OO 22 의 분해Decomposition of

AgNO3 3.9mg 대신 H2PtCl6 5.3mg을 사용한 것을 제외하고는 상기 비교시험예 6과 동일한 방법으로 수행하여 Pt/TiO2/P(1wt%) 제조 및 과산화수소를 분해시켰다.
Pt / TiO 2 / P (1 wt%) was prepared and hydrogen peroxide was decomposed in the same manner as in Comparative Test Example 6, except that 5.3 mg of H 2 PtCl 6 was used instead of 3.9 mg of AgNO 3 .

DPDDPD 방법을 이용한 과산화수소의 농도 측정 Measurement of concentration of hydrogen peroxide using method

과산화수소의 농도는 DPD 방법을 이용하여 측정되었다. 광조사 중에 시료 분취액 1mL를 주사기로 수집하고, 0.45 um의 PTFE 필터(밀리 포어)로 여과하였다. 생성된 과산화수소의 농도에 따라, 샘플의 상이한 양이 DPD 방법의 검출 한계를 초과하지 않도록 첨가하였다. N,N-Diethyl-1,4-Phenylene-Diamine sulfate (DPD, 97%, Aldrich), peroxidase (POD, horseradish, Aldrich), 및 sodium phosphate buffer의 용액은, 아래와 같이 준비되었다. DPD 0.1g을 0.1N H2SO4 10 ml용액에 용해시키고 POD 5 mg을 정제수 5 ml에 용해시켰다. POD 용액을 5 일마다 한번씩 제조하여 사용하였다.The concentration of hydrogen peroxide was measured using the DPD method. During the light irradiation, 1 mL of sample aliquot was collected with a syringe and filtered with 0.45 um PTFE filter (Millipore). Depending on the concentration of hydrogen peroxide produced, different amounts of the sample were added so as not to exceed the detection limit of the DPD method. A solution of N, N-Diethyl-1,4-Phenylene-Diamine sulfate (DPD, 97%, Aldrich), peroxidase (POD, horseradish, Aldrich) and sodium phosphate buffer was prepared as follows. 0.1 g of DPD was dissolved in 10 ml of 0.1 N H 2 SO 4 and 5 mg of POD was dissolved in 5 ml of purified water. POD solution was used once every 5 days.

소듐 포스페이트 완충용액은 정제수 99.7 ml, 1M 일염기 소듐 포스페이트 용액 87.7 ml, 및 1M 이염기 소듐 포스페이트 헵타하이드레이트 용액 12.6 ml를 혼합하여 제작하였다. 시료 분취액 1 mL을 기준으로 인산 완충액 0.4 ml, 물 1.12 ml, 샘플 분취액 1 ml, DPD 0.05 ml, POD 및 0.05 mL을 혼합하고, 90초 동안 빠르게 교반하였다. 과산화수소의 농도에 따라서, 시료 분취액/물의 비율을 변경하였다. 과산화수소 농도의 검량선은 과산화수소 농도의 범위에 의존하여 얻었다. 흡광도는 UV/visible 분광광도계에 의해 551 nm에서 측정하였다.
The sodium phosphate buffer solution was prepared by mixing 99.7 ml of purified water, 87.7 ml of 1 M monobasic sodium phosphate solution, and 12.6 ml of 1 M dibasic sodium phosphate heptahydrate solution. 0.4 ml of phosphoric acid buffer, 1.12 ml of water, 1 ml of sample aliquot, 0.05 ml of DPD, 0.05 ml of POD and 0.05 ml of the sample aliquot were mixed and rapidly stirred for 90 seconds. The ratio of sample aliquots / water was varied according to the concentration of hydrogen peroxide. The calibration curves of hydrogen peroxide concentration were obtained depending on the range of hydrogen peroxide concentration. Absorbance was measured at 551 nm by UV / visible spectrophotometer.

물질특성측정Material property measurement

CoPi는 TiO2에 직접 담지된 이후, 성공적으로 물을 광산화하였다. TiO2, GO, 및 rGO/TiO2에 작용기의 변화는 Thermo Scientific iS50 FTIR-ATR에 의해 기록되었다. TiO2, GO, 및 rGO/TiO2의 라만스펙트럼은 532 nm의 레이저 여기와 함께 BrukerSenterra Raman microscope (BrukerOptics, Inc.)에 의해 얻어졌다. 단색 Al(1,500 eV의)을 사용하여 X-선 소스와 함께 X-선 광전자 분광법 (XPS) 분석은 ESCA LAB250 (VG Scientific)에 의해 수행되었다. 코발트포스페이트와 함께 착화된 rGO/TiO2의 형태는 전계 방출 주사 전자 현미경 (FE-SEM, JEOL, JSM), 투과 전자 현미경 (TEM, JEOL, JEM-2200FS) 및 Cs로 보정한 전자 에너지 손실 스펙트럼 (EELS) 분석으로 측정했다. Co K-edge X-ray absorption near edge structure (XANES)는 3.0 GeV에서 200 ㎃의 고리 전류와 함께 Pohang light source (PLS-II) BL8C빔 라인에서 수집되었다. 단색 X-선 빔은 액체질소로 냉각된 Si(111) 이중 결정 단색화 장치를 통해 진공 언듈레이터 방사원으로부터 얻었다. 적당한 두께로 균일하게 분산된 분말 샘플의 X-선 흡수 스펙트럼은 7-요소 저에너지 Ge 검출기(7-elements low energy Gr detector, Canberra)를 사용하여 형광모드로 기록하였다. TiO2의 강한 형광신호를 줄이기 위해, 40mm 폭 아르곤이 채워진 비닐팩은 샘플 및 형광검출기 사이에 위치했다. 고차 하모닉 오염물질은 ~30%로 X-선 강도 입사가 디튜닝에 의해 제거되었다. 에너지 보정은 세 번째 이온 챔버 앞에 배치된 Co 금속박을 기준으로 각각의 측정에 대해 동시에 수행되었다. 실험 스펙트럼 XANES의 데이터 정리는 표준 XAFS 절차를 통하여 수행되었다.
After the CoPi was deposited directly on the TiO 2 , it successfully photo-oxidized the water. Changes in functional groups on TiO 2 , GO, and rGO / TiO 2 were recorded by the Thermo Scientific iS50 FTIR-ATR. TiO 2, the Raman spectra of GO, and rGO / TiO 2 was obtained by the Raman microscope BrukerSenterra (BrukerOptics, Inc.) with a laser excitation of 532 nm. X-ray photoelectron spectroscopy (XPS) analysis with an X-ray source using monochromatic Al (1,500 eV) was performed by ESCA LAB250 (VG Scientific). The morphology of rGO / TiO 2 complexed with cobalt phosphate was investigated by field emission scanning electron microscopy (FE-SEM, JEOL, JSM), transmission electron microscopy (TEM, JEOL, JEM-2200FS) EELS) analysis. The Co K-edge X-ray absorption near-edge structure (XANES) was collected from a Pohang light source (PLS-II) BL8C beam line with a ring current of 200 mA at 3.0 GeV. The monochromatic X-ray beam was obtained from a vacuum undulator radiation source through a Si (111) double crystal monochromator cooled with liquid nitrogen. The X-ray absorption spectra of the powder samples uniformly dispersed at an appropriate thickness were recorded in a fluorescence mode using a 7-element low energy Ge detector (Canberra). To reduce the strong fluorescence signal of TiO 2 , a 40 mm wide argon filled vinyl pack was placed between the sample and the fluorescence detector. Higher order harmonic contaminants were removed by detuning at X-ray intensity incidence of ~ 30%. Energy calibration was performed simultaneously for each measurement based on the Co metal foil placed in front of the third ion chamber. Experimental spectra The XANES data set-up was performed using standard XAFS procedures.

광전화학Photoelectrochemistry 실험 Experiment

슬리러형 광전류는 퍼텐쇼스텟(Gamry, Reference 600)에 연결된 세 개의 전극계에 의해 측정되었다. Pt와이어, 흑연로드, 및 Ag/AgCl을 각각 작업전극, 상대전극, 및 표준전극으로 사용하였다. 광촉매 현탁액 (1.0 g/L, 0.1 M NaClO4, pH 1.8)은 전자셔틀로서 Fe3 +의 존재 하에서 UV cutoff filter (λ≥320 nm)와 함께 300-W Xe arc lamp에 의해 조사되었다. 광전류는 +0.7V(vs Ag/AgCl)로 바이어스 된 Pt전극과 함께 수집되었다.The slippery photocurrent was measured by three electrode systems connected to a potentiostat (Gamry, Reference 600). Pt wire, graphite rod, and Ag / AgCl were used as working electrode, counter electrode, and standard electrode, respectively. The photocatalyst suspension (1.0 g / L, 0.1 M NaClO 4 , pH 1.8) was irradiated with a 300-W Xe arc lamp with an UV cutoff filter (λ320 nm) in the presence of Fe 3 + as an electronic shuttle. Photocurrents were collected with a Pt electrode biased at + 0.7V (vs Ag / AgCl).

작업전극은 아르곤 기체 흐름 하에서 200℃에서 가열에 의한 doctor blade method (Ethanol was utilized.)에 의해 FTO 유리 위에 샘플을 고정하여 제작되었다. Pt와이어 및 Ag/AgCl은 각각 작업전극 및 기준전극으로서 사용되었다. 온오프 빛과 함께 광전류 응답은 Potentiostat(Gamry, Reference 600)에 연결된 세 개의 전극시스템에 의해 측정되었다. The working electrode was fabricated by fixing the sample on the FTO glass by the doctor blade method (Ethanol was utilized) by heating at 200 ° C under an argon gas flow. Pt wire and Ag / AgCl were used as a working electrode and a reference electrode, respectively. The photocurrent response with on-off light was measured by a three electrode system connected to a Potentiostat (Gamry, Reference 600).

모든 광전화학 측정을 다음과 같이 수행하였다; pHi = 3.0, [KClO4]=0.1 M, λ>320 nm, 카운터 전극으로서 Pt, +0.86 V (vs.Ag/AgCl)의 바이어스가 적용된, 연속적인 아르곤 가스 퍼징. All photochemical measurements were performed as follows; Continuous argon gas fuzzing with a bias of pH i = 3.0, [KClO 4 ] = 0.1 M, λ> 320 nm, Pt as the counter electrode, +0.86 V (vs.Ag / AgCl).

TiO2, TiO2/CoPi, rGO/TiO2, 및 rGO/TiO2/CoPi의 직선스위프전위법(linear sweep voltammetry)은 어둡고 Ar-포화된 조건하에 20 mV/s의 스캔속도로 0.1 M 인산 칼륨 완충용액(pH 7.0)에서 얻어졌다. CoPi의 광분해는 측정 전에 수행되었다.
The linear sweep voltammetry of TiO 2 , TiO 2 / CoPi, rGO / TiO 2 , and rGO / TiO 2 / CoPi was carried out under a dark, Ar-saturated condition at a scan rate of 20 mV / Buffer solution (pH 7.0). Photolysis of CoPi was performed before measurement.

광촉매Photocatalyst 유기 전자 공여체(2-프로판올) 존재 유무 (유 O, 무 X)Presence or absence of an organic electron donor (2-propanol) (O, X) 과산화수소 생성농도(mM) (광조사 200분 후)Concentration of hydrogen peroxide (mM) (after 200 minutes of irradiation) 종류Kinds rGO/TiO2의 그래핀 중량비 또는 금속/TiO2의 금속중량비the graphene weight ratio of rGO / TiO 2 or the metal weight ratio of metal / TiO 2 실시예 1Example 1 rGO/TiO2 rGO / TiO 2 1wt%1wt% OO 0.40.4 실시예 2Example 2 rGO/TiO2 rGO / TiO 2 6wt%6wt% OO 0.70.7 실시예 3Example 3 rGO/TiO2 rGO / TiO 2 10wt%10wt% OO 0.80.8 실시예 4Example 4 rGO/TiO2 rGO / TiO 2 20wt%20wt% OO 0.40.4 실시예 5Example 5 rGO/TiO2 rGO / TiO 2 40wt%40wt% OO 0.30.3 실시예 6Example 6 rGO/TiO2/PrGO / TiO 2 / P 1wt%1wt% OO 3.53.5 실시예 7 Example 7 rGO/TiO2/PrGO / TiO 2 / P 6wt%6wt% OO 4.34.3 실시예 8Example 8 rGO/TiO2/PrGO / TiO 2 / P 10wt%10wt% OO 3.33.3 실시예 9 Example 9 rGO/TiO2/PrGO / TiO 2 / P 20wt%20wt% OO 3.83.8 실시예 10Example 10 rGO/TiO2/PrGO / TiO 2 / P 40wt%40wt% OO 3.03.0 실시예 11Example 11 rGO/TiO2 rGO / TiO 2 6wt%6wt% XX 0.0010.001 실시예 12Example 12 rGO/TiO2/PrGO / TiO 2 / P 6wt%6wt% XX 0.030.03 실시예 13Example 13 rGO/TiO2/CorGO / TiO 2 / Co 6wt%6wt% XX 0.0010.001 실시예 14Example 14 rGO/TiO2/CoPirGO / TiO 2 / CoPi 6wt%6wt% XX 0.080.08 비교예 1Comparative Example 1 TiO2 TiO 2 -- OO 0.20.2 비교예 2Comparative Example 2 Ag/TiO2 Ag / TiO 2 1wt%1wt% OO 0.60.6 비교예 3Comparative Example 3 Au/TiO2 Au / TiO 2 1wt%1wt% OO 0.40.4 비교예 4Comparative Example 4 Pt/TiO2 Pt / TiO 2 1wt%1wt% OO 0.10.1 비교예 5Comparative Example 5 TiO2/PTiO 2 / P -- OO 0.0150.015 비교예 6Comparative Example 6 Ag/TiO2/PAg / TiO 2 / P 1wt%1wt% OO 4.74.7 비교예 7Comparative Example 7 Au/TiO2/PAu / TiO 2 / P 1wt%1wt% OO 4.54.5 비교예 8Comparative Example 8 Pt/TiO2/PPt / TiO 2 / P 1wt%1wt% OO 0.50.5 비교예 9Comparative Example 9 TiO2/CoPiTiO 2 / CoPi -- XX 0.020.02

rGO/TiO2 복합체는 UV-visible spectroscopy, Fourier transform infrared spectroscopy(FT-IR), Raman spectroscopy, 및 X-ray photoelectron spectroscopy (XPS)에 의해 분석되었다.The rGO / TiO 2 composites were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS).

도 2는 O2 평형상태에서 전자 공여체로서 2-프로판올을 이용하였고, UV조사 (λ≥320 nm)하에 실시예 3 및 비교예 1 내지 4의 이산화티타늄에 담지된 물질에 따라 생성된 과산화수소의 농도를 측정하여 나타낸 그래프이다. rGO가 담지된 이산화티타늄은 과산화수소의 생산을 현저하게 증가시키고 10 wt% rGO 함량에서 최대가 되는 것을 확인할 수 있다. Fig. 2 shows the results of the measurement of the concentration of hydrogen peroxide produced in accordance with the material carried on titanium dioxide of Example 3 and Comparative Examples 1 to 4 under UV irradiation ([lambda] > 320 nm) using 2-propanol as the electron donor in the O 2 equilibrium state As shown in FIG. The rGO-loaded titanium dioxide significantly increased the production of hydrogen peroxide and confirmed that it reached a maximum at 10 wt% rGO content.

도 3은 실시예 1 내지 5 및 비교예 1의 이산화티타늄에 담지된 rGO의 함량에 따라 생성된 과산화수소의 농도를 측정하여 나타낸 그래프이다. rGO 자체의 광촉매 활성은 수소생산에 대해 보고되었지만, rGO/TiO2 (40 wt%)의 과산화수소 광촉매 활성은, rGO의 주요역할이 광촉매라기 보다는 공촉매 또는 전자전달 매개체라고 해석할 수 있다.FIG. 3 is a graph showing the concentration of hydrogen peroxide produced according to the content of rGO supported on titanium dioxide in Examples 1 to 5 and Comparative Example 1. FIG. Although the photocatalytic activity of rGO itself has been reported for hydrogen production, the hydrogen peroxide photocatalytic activity of rGO / TiO 2 (40 wt%) can be interpreted as a cocatalytic or electron transfer mediator rather than a photocatalytic as the main role of rGO.

도 4는 과산화수소의 광촉매 생산에서 인산기의 효과를 보여주는 그래프이다. 인산 존재 하에서, 3시간 광조사 후 실시예 7의 광촉매는 4.5 mM 이상의 과산화수소를 생성했다. 또한, 인산기 존재 하에 과산화수소 생산속도는 실시예 7이 최대로 나타난 것을 도 5에서 확인할 수 있다.Figure 4 is a graph showing the effect of phosphate groups on the production of photocatalyst of hydrogen peroxide. In the presence of phosphoric acid, the photocatalyst of Example 7 produced hydrogen peroxide above 4.5 mM after 3 hours of light irradiation. In addition, the rate of hydrogen peroxide production in the presence of the phosphoric acid group can be confirmed in FIG.

도 6은 인산기의 유무에 따라, 시험예 1, 2 및 비교시험예 1 내지 8의 이산화티타늄에 담지된 물질에 따라 분해된 과산화수소의 농도를 측정하여 나타낸 그래프이다. 과산화수소는 인산기의 유무에 따라 Ag/TiO2, Au/TiO2의 광분해 효과를 확인할 수 있고, 인산기 존재 하에 Pt/TiO2는 낮은 활성을 보였다.FIG. 6 is a graph showing the concentration of hydrogen peroxide decomposed according to the presence or absence of a phosphate group in Test Examples 1 and 2 and Comparative Test Examples 1 to 8 according to the material carried on titanium dioxide. Hydrogen peroxide showed the photodegradation effect of Ag / TiO 2 and Au / TiO 2 depending on the presence or absence of phosphate groups, and Pt / TiO 2 showed low activity in the presence of phosphoric acid.

도 7은 각각의 유기 전자 공여체 부재 하에 실시예 11 내지 14에서 광촉매의 과산화수소 생성농도를 측정하여 나타낸 그래프이다. 실시예 11의 인산기와 코발트 이온이 없는 rGO/TiO2은 과산화수소 생산은 거의 미미하고, 실시예 13의 단독 코발트 이온 첨가 또한 과산화수소의 형성을 전혀 향상시키지 못하는 것으로 확인되었다. 한편, rGO/TiO2 현탁액에서 인산기 및 코발트 이온이 모두 공존하는 실시예 14는 O2 버블링 조건에서 과산화수소의 생산을 현저하게 최대 80 uM까지 향상시켰다.FIG. 7 is a graph showing the concentration of hydrogen peroxide generated in photocatalysts measured in Examples 11 to 14 under respective organic electron donor members. FIG. The hydrogen peroxide production of rGO / TiO 2 without the phosphoric acid group and the cobalt ion of Example 11 was almost insignificant, and it was confirmed that addition of the single cobalt ion of Example 13 did not improve the formation of hydrogen peroxide at all. On the other hand, in Example 14 in which both the phosphate group and the cobalt ion coexist in the rGO / TiO 2 suspension, the production of hydrogen peroxide remarkably improved up to 80 uM under the O 2 bubbling condition.

도 8은 유기 전자 공여체 존재 하에, 실시예 2 및 비교예 1의 rGO 유무에 따른 라만스펙트럼을 나타낸 그래프이다. 환원그래핀옥사이드에 기인한 G 및 D밴드가 나타나는 것으로 환원그래핀옥사이드가 담지된 이산화티타늄을 확인하였다.8 is a graph showing the Raman spectra in the presence of rGO in Example 2 and Comparative Example 1 in the presence of an organic electron donor. G and D bands due to reduced graphene oxide were observed, confirming titanium dioxide carrying reduced graphene oxide.

도 9는 유기 전자 공여체 존재 하에, 실시예 7 및 비교예 5의 rGO 유무에 따른 XPS(X-ray photoelectron spectroscopy) 스펙트럼을 나타낸 그래프이다. XPS 측정시 P2p스펙트럼이 나타나는 것으로 TiO2/P 및 rGO/TiO2/P의 인산기 존재를 확인하였다.FIG. 9 is a graph showing X-ray photoelectron spectroscopy (XPS) spectra in the presence of rGO in Example 7 and Comparative Example 5 in the presence of an organic electron donor. The presence of phosphate groups in TiO 2 / P and rGO / TiO 2 / P was confirmed by the appearance of P2p spectrum in XPS measurement.

도 10은 유기 전자 공여체 존재 하에, 실시예 14 및 비교예 9의 rGO 유무에 따른 XPS(X-ray photoelectron spectroscopy) 스펙트럼을 나타낸 그래프이다. XPS 측정시 P2p스펙트럼이 나타나는 것으로 TiO2/CoPi 및 rGO/TiO2/CoPi의 인산기 존재를 확인하였다.10 is a graph showing X-ray photoelectron spectroscopy (XPS) spectra in the presence of rGO in Example 14 and Comparative Example 9 in the presence of an organic electron donor. The presence of phosphate groups in TiO 2 / CoPi and rGO / TiO 2 / CoPi was confirmed by the appearance of P2p spectrum in XPS measurement.

도 11은 실시예 14의 FE-SEM 이미지(a), TEM 이미지(b) 및 EELS mapping 사진(c-f)이다. FE-SEM 이미지 및 TEM 이미지는 이산화티타늄 입자 표면에 rGO가 담지된 것을 보여준다. EELS mapping로, rGO/TiO2 복합체에서, 탄소, 인산기 및 코발트 이온의 존재를 확인했고, 인산기 및 코발트 이온은 rGO의 표면이 아닌 슬러리형 이산화티타늄 표면에서 CoPi의 in-situ 형성을 지원한다. CoPi는 직접 이산화티타늄에 담지되기 때문에, CoPi는 물을 광산화하는 것으로 판단된다. 11 is a FE-SEM image (a), a TEM image (b), and an EELS mapping photograph (cf) of Example 14. Fig. The FE-SEM image and the TEM image show rGO supported on the titanium dioxide particle surface. EELS mapping confirmed the presence of carbon, phosphate and cobalt ions in the rGO / TiO 2 composite, and phosphate and cobalt ions support the in-situ formation of CoPi on the slurry-type titanium dioxide surface rather than the rGO surface. Since CoPi is directly deposited on titanium dioxide, CoPi is considered to photo-oxidize water.

Claims (15)

환원그래핀옥사이드를 이산화티타늄과 접촉시켜 환원그래핀옥사이드를 표면에 담지한 이산화티타늄을 제조하는 단계(단계 a);
포스페이트(phosphate, 인산염)로 상기 환원그래핀옥사이드를 표면에 담지한 이산화티타늄의 표면을 개질하여 환원그래핀옥사이드와 포스페이트기(인산기)를 표면에 담지한 이산화티타늄을 제조하는 단계(단계 b); 및
코발트 전구체를 상기 환원그래핀옥사이드와 포스페이트기를 표면에 담지한 이산화티타늄에 도입하여 환원그래핀옥사이드와 코발트포스페이트를 표면에 담지한 이산화티타늄을 포함하는 광촉매 복합체를 제조하는 단계(단계 c);를 포함하고,
상기 단계 c가 pH 2.0 내지 4.0에서 수행되는 광촉매 복합체의 제조방법.
Contacting the reduced graphene oxide with titanium dioxide to produce titanium dioxide carrying reduced graphene oxide on the surface (step a);
(B) modifying the surface of the titanium dioxide carrying the reducing graphene oxide on its surface with phosphate (phosphate) to produce titanium dioxide carrying reduced graphene oxide and phosphate group (phosphoric acid group) on its surface; And
And a step (c) of preparing a photocatalytic composite comprising a cobalt precursor and titanium dioxide doped with reduced graphene oxide and cobalt phosphate on the surface by introducing the cobalt precursor into the titanium dioxide carrying the reducing graphene oxide and the phosphate group on the surface thereof and,
Wherein the step c is carried out at a pH of 2.0 to 4.0.
제1항에 있어서,
상기 포스페이트가 NaH2PO4, Na2HPO4, Na3HPO4, KH2PO4, K2HPO4, 및 K3PO4로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 광촉매 복합체의 제조방법.
The method according to claim 1,
Wherein the phosphate is any one selected from the group consisting of NaH 2 PO 4 , Na 2 HPO 4 , Na 3 HPO 4 , KH 2 PO 4 , K 2 HPO 4 , and K 3 PO 4 .
제1항에 있어서,
코발트 전구체가 코발트 퍼클로레이트 헥사히드레이트(Co(ClO4)2·6H2O)인 것을 특징으로 하는 광촉매 복합체의 제조방법.
The method according to claim 1,
Wherein the cobalt precursor is cobalt perchlorate hexahydrate (Co (ClO 4 ) 2 .6H 2 O).
제1항에 있어서,
상기 단계 c가 인산염 완충용액에 상기 환원그래핀옥사이드를 표면에 담지한 이산화티타늄을 분산시킨 후 코발트 전구체 용액을 첨가하여 환원그래핀옥사이드와 코발트포스페이트를 표면에 담지한 이산화티타늄을 제조하는 단계인 것을 특징으로 하는 광촉매 복합체의 제조방법.
The method according to claim 1,
The step c is a step of dispersing the titanium dioxide supported on the surface of the reduced graphene oxide in a phosphate buffer solution and then adding a cobalt precursor solution to prepare titanium dioxide carrying reduced graphene oxide and cobalt phosphate on the surface thereof Wherein the photocatalytic composite is obtained by a method comprising the steps of:
환원그래핀옥사이드를 이산화티타늄과 접촉시켜 환원그래핀옥사이드를 표면에 담지한 이산화티타늄을 제조하는 단계(단계 a);
포스페이트(phosphate, 인산염)로 상기 환원그래핀옥사이드를 표면에 담지한 이산화티타늄의 표면을 개질하여 환원그래핀옥사이드와 포스페이트기(인산기)를 표면에 담지한 이산화티타늄을 제조하는 단계(단계 b);
코발트 전구체를 상기 환원그래핀옥사이드와 포스페이트기를 표면에 담지한 이산화티타늄에 도입하여 환원그래핀옥사이드와 코발트포스페이트를 표면에 담지한 이산화티타늄을 포함하는 광촉매 복합체를 제조하는 단계(단계 c); 및
광조사 하에 상기 광촉매 복합체를 촉매로 사용하고 물을 반응시켜 과산화수소를 제조하는 단계(단계 d);를 포함하고,
상기 단계 c가 pH 2.0 내지 4.0에서 수행되는 과산화수소의 제조방법.
Contacting the reduced graphene oxide with titanium dioxide to produce titanium dioxide carrying reduced graphene oxide on the surface (step a);
(B) modifying the surface of the titanium dioxide carrying the reducing graphene oxide on its surface with phosphate (phosphate) to produce titanium dioxide carrying reduced graphene oxide and phosphate group (phosphoric acid group) on its surface;
A step (c) of preparing a photocatalytic composite comprising a cobalt precursor and titanium dioxide doped with reduced graphene oxide and cobalt phosphate on the surface by introducing the cobalt precursor into the titanium dioxide carrying the reduced graphene oxide and the phosphate group on the surface thereof; And
(Step d) of producing hydrogen peroxide by reacting water using the photocatalytic composite as a catalyst under light irradiation,
Wherein step c is carried out at a pH of 2.0 to 4.0.
제5항에 있어서,
상기 광조사에서 사용하는 광이 자외선임을 특징으로 하는 과산화수소의 제조방법.
6. The method of claim 5,
Wherein the light used in the light irradiation is ultraviolet light.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020140120305A 2014-09-11 2014-09-11 Method for preparing reduced graphene oxide-titanium dioxide photocatalyst composite and method for producing hydrogen peroxide as a solar fuel using the same KR101563346B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140120305A KR101563346B1 (en) 2014-09-11 2014-09-11 Method for preparing reduced graphene oxide-titanium dioxide photocatalyst composite and method for producing hydrogen peroxide as a solar fuel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140120305A KR101563346B1 (en) 2014-09-11 2014-09-11 Method for preparing reduced graphene oxide-titanium dioxide photocatalyst composite and method for producing hydrogen peroxide as a solar fuel using the same

Publications (1)

Publication Number Publication Date
KR101563346B1 true KR101563346B1 (en) 2015-10-27

Family

ID=54428631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140120305A KR101563346B1 (en) 2014-09-11 2014-09-11 Method for preparing reduced graphene oxide-titanium dioxide photocatalyst composite and method for producing hydrogen peroxide as a solar fuel using the same

Country Status (1)

Country Link
KR (1) KR101563346B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903482A (en) * 2016-05-20 2016-08-31 宁夏大学 CoP/TiO2 composite photocatalyst as well as preparation and use thereof
WO2021059716A1 (en) * 2019-09-26 2021-04-01 学校法人早稲田大学 Hydrogen peroxide production method
CN114377672A (en) * 2022-01-12 2022-04-22 周口师范学院 In-situ preparation method of precious metal and black mesoporous titanium dioxide nanocomposite
CN114890478A (en) * 2022-05-13 2022-08-12 武汉科技大学 Superlattice material, preparation method thereof and application of superlattice material in modification of lithium-sulfur battery diaphragm
CN115521685A (en) * 2022-10-08 2022-12-27 北京星驰恒动科技发展有限公司 Coating, preparation method of coating and space cabin

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Diane K Zhong 외 2인, J. Am. Chem. Soc. 2011, 133, 18370-18377쪽
Diane K Zhong외 4인, Energy Environ. Sci., 2011, 4, 1759-1764쪽*
Miwako Teranishi외 2인, J. AM. CHEM. SOC. 2010, 132, 7850-7851쪽*
Wenqing Fan외 3인, J. Phys. Chem. C, 2011, 115 (21), 10694-10701쪽*

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903482A (en) * 2016-05-20 2016-08-31 宁夏大学 CoP/TiO2 composite photocatalyst as well as preparation and use thereof
CN105903482B (en) * 2016-05-20 2018-09-28 宁夏大学 A kind of CoP/TiO2Composite photo-catalyst and its preparation and application
WO2021059716A1 (en) * 2019-09-26 2021-04-01 学校法人早稲田大学 Hydrogen peroxide production method
CN114377672A (en) * 2022-01-12 2022-04-22 周口师范学院 In-situ preparation method of precious metal and black mesoporous titanium dioxide nanocomposite
CN114890478A (en) * 2022-05-13 2022-08-12 武汉科技大学 Superlattice material, preparation method thereof and application of superlattice material in modification of lithium-sulfur battery diaphragm
CN115521685A (en) * 2022-10-08 2022-12-27 北京星驰恒动科技发展有限公司 Coating, preparation method of coating and space cabin
CN115521685B (en) * 2022-10-08 2023-10-27 北京星驰恒动科技发展有限公司 Paint, preparation method of paint and space capsule

Similar Documents

Publication Publication Date Title
Kumar et al. Mechanochemically synthesized Pb-free halide perovskite-based Cs 2 AgBiBr 6–Cu–RGO nanocomposite for photocatalytic CO 2 reduction
KR101563346B1 (en) Method for preparing reduced graphene oxide-titanium dioxide photocatalyst composite and method for producing hydrogen peroxide as a solar fuel using the same
Zada et al. Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2, 4-dichlorophenol decomposition path
KR101816531B1 (en) Photocatalyst composite and method for treating wastewater using the same
Kim et al. Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light
Sinatra et al. A Au/Cu2O–TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?
Jourshabani et al. Controllable synthesis of mesoporous sulfur-doped carbon nitride materials for enhanced visible light photocatalytic degradation
Zhou et al. Fabricating MoS2 nanoflakes photoanode with unprecedented high photoelectrochemical performance and multi-pollutants degradation test for water treatment
Xiao et al. Nanostructured gold/bismutite hybrid heterocatalysts for plasmon-enhanced photosynthesis of ammonia
Bharath et al. Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO2 to methanol toward the removal of an organic pollutant from the atmosphere
Yu et al. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites
Momeni Fabrication of copper decorated tungsten oxide–titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light
Kim et al. Glucose–TiO2 charge transfer complex-mediated photocatalysis under visible light
Lin et al. ZnO1− x/carbon dots composite hollow spheres: Facile aerosol synthesis and superior CO2 photoreduction under UV, visible and near-infrared irradiation
Ge et al. In situ synthesis of cobalt–phosphate (Co–Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities
Hossain et al. Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3
Hu et al. Efficient photocatalytic degradation of tetrabromodiphenyl ethers and simultaneous hydrogen production by TiO2-Cu2O composite films in N2 atmosphere: Influencing factors, kinetics and mechanism
Feng et al. Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state
Rathi et al. Significant enhancement of photoactivity in hybrid TiO2/g-C3N4 nanorod catalysts modified with Cu–Ni-based nanostructures
Khan et al. Synthesis of environmentally encouraged, highly robust pollutants reduction 3-D system consisting of Ag/g-C3N4 and Cu-complex to degrade refractory pollutants
Kannan et al. Facile one-step synthesis of cerium oxide-carbon quantum dots/RGO nanohybrid catalyst and its enhanced photocatalytic activity
Liu et al. CoP imbedded g-C3N4 heterojunctions for highly efficient photo, electro and photoelectrochemical water splitting
Zhu et al. MXene-motivated accelerated charge transfer over TMCs quantum dots for solar-powered photoreduction catalysis
Fiaz et al. One pot solvothermal synthesis of Co3O4@ UiO-66 and CuO@ UiO-66 for improved current density towards hydrogen evolution reaction
Alido et al. Synthesis of Ag/hybridized 1T-2H MoS2/TiO2 heterostructure for enhanced visible-light photocatalytic activity

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee