KR101550758B1 - Filter media for fuel-water separation and manufacturing method thereof - Google Patents

Filter media for fuel-water separation and manufacturing method thereof Download PDF

Info

Publication number
KR101550758B1
KR101550758B1 KR1020140012958A KR20140012958A KR101550758B1 KR 101550758 B1 KR101550758 B1 KR 101550758B1 KR 1020140012958 A KR1020140012958 A KR 1020140012958A KR 20140012958 A KR20140012958 A KR 20140012958A KR 101550758 B1 KR101550758 B1 KR 101550758B1
Authority
KR
South Korea
Prior art keywords
fiber
nonwoven fabric
oil
water separation
filter
Prior art date
Application number
KR1020140012958A
Other languages
Korean (ko)
Other versions
KR20150092506A (en
Inventor
최영옥
변성원
김정연
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020140012958A priority Critical patent/KR101550758B1/en
Publication of KR20150092506A publication Critical patent/KR20150092506A/en
Application granted granted Critical
Publication of KR101550758B1 publication Critical patent/KR101550758B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/277Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter

Abstract

본 발명에서는 케이폭 섬유와 열가소성 고분자 섬유가 혼섬된 복합부직포를 포함하는 유수분리 필터용 여재를 제공한다. 본 발명에 따르는 유수분리 필터용 여재는 친환경적인 케이폭 소재를 이용하면서도 케이폭 소재의 단점인 형태안정성을 극복하였고, 또한, 유수분리 성능도 우수하다.The present invention provides a filter material for an oil separation filter comprising a composite nonwoven fabric in which a kwon fiber and thermoplastic polymer fibers are mixed. The filter material for an oil-water separation filter according to the present invention overcomes morphological stability, which is a disadvantage of the cowwoven material, while using an environmentally-friendly cowwoven material, and also has excellent water-oil separation performance.

Description

유수분리 필터용 여재 및 그의 제조방법{FILTER MEDIA FOR FUEL-WATER SEPARATION AND MANUFACTURING METHOD THEREOF}TECHNICAL FIELD The present invention relates to a filter medium for an oil-water separation filter and a method of manufacturing the filter medium.

본 발명은 유수분리 필터용 여재 및 그의 제조방법에 관한 것으로, 보다 상세하게는 케이폭 소재와 열가소성 고분자 섬유를 혼섬하여 케이폭 소재의 형태안정성을 극복하면서도 유수분리 성능이 우수한 유수분리 필터용 여재 및 그 제조방법에 관한 것이다.More particularly, the present invention relates to a filter material for an oil separation filter having excellent water-oil separating performance while overcoming morphological stability of a cowwoven material by mixing a cowwoven material and a thermoplastic polymer fiber, ≪ / RTI >

유수분리 필터는 자동차나 선박, 항공기 등의 운송수단용 엔진에 장착되어, 연료 중의 수분을 제거하기 위하여 사용된다. 주로 펄프 및 합성섬유 필터 여재가 사용되고 있으며, 특히, 케이폭 섬유를 이용한 유수분리 필터재의 개발은 친환경적이라는 점에서 최근 관심의 대상이 되고 있다.An oil-water separation filter is mounted on an engine for a vehicle such as an automobile, a ship or an airplane, and is used to remove moisture in the fuel. In particular, pulp and synthetic fiber filter media are used, and in particular, the development of an oil separation filter material using Kawan fiber has recently become an object of interest because it is eco-friendly.

에를 들어, 특허문헌 1에는 친유성 섬유상 매트를 채용한 유수분리장치가 개시되어 있다.For example, Patent Document 1 discloses a water-oil separation apparatus employing a lipophilic fibrous mat.

특허문헌 2에는 밀도를 달리하는 다층 형태의 공기필터로서, 양단의 낮은 밀도층의 필터재에 섬유소재로서 케이폭 섬유를 사용한 오일미스트 제거용 필터가 개시되어 있다.Patent Document 2 discloses a filter for removing oil mist using a multi-layered air filter having different densities, and a filter material of a low density layer at both ends of the filter material using a kawan fiber as a fiber material.

한편, 특허문헌 3에는 섬유 흡수제로서 케이폭과 같은 천연섬유를 사용하는 인클로져를 포함하는 기어 어셈블리가 개시되어 있다.On the other hand, Patent Document 3 discloses a gear assembly including an enclosure using natural fibers such as a cowling as a fiber absorbent.

그러나, 이상의 특허문헌들에서는 섬유소재, 특히 케이폭 소재의 `발수성`이 아니라 `친유성`을 이용한 발명들이고, 또한, 섬유의 사용형태에 있어서도 케이폭 섬유를 벌크 형태로 그대로 사용하는 것이어서 재료의 효율성이나 유수분리 성능 자체를 실현하는데에 어려움이 있다. However, in the above-mentioned patent documents, it is the invention using the fiber material, in particular the `lipophilicity`, not the` water repellency` of the clay material, and also the use of the clay fiber in the form of bulk in the form of the fiber, There is a difficulty in realizing the water separation performance itself.

WO2001-026770AWO2001-026770A JP1999-090145AJP1999-090145A KR2009-0008235AKR2009-0008235A

본 발명의 목적은 친환경적인 케이폭 소재를 이용하여, 케이폭 소재의 단점인 형태안정성을 극복하면서도 유수분리 성능이 우수한 유수분리 필터용 여재를 제공하는 것이다.It is an object of the present invention to provide a filter material for an oil separation filter which is superior in oil separation performance while overcoming the morphological stability which is a disadvantage of the closure material by using an environmentally friendly material.

본 발명의 다른 목적은 상기 유수분리 필터용 여재의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing the filter material for an oil-water separation filter.

본 발명에서는 케이폭 섬유와 열가소성 고분자 섬유가 혼섬된 복합부직포를 포함하는 유수분리 필터용 여재를 제공한다.The present invention provides a filter material for an oil separation filter comprising a composite nonwoven fabric in which a kwon fiber and thermoplastic polymer fibers are mixed.

상기 케이폭 섬유와 열가소성 고분자 섬유의 혼섬비는 중량비로 10:90 내지 70:30인 것이 바람직하다.The horn ratio ratio of the above-mentioned kapok fiber and the thermoplastic polymer fiber is preferably from 10:90 to 70:30 by weight.

상기 열가소성 고분자 섬유는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌-폴리프로필렌 공중합체, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, LM-PET(저융점폴리에스테르), 나일론 6 및 나일론 66으로 구성된 군으로부터 선택되는 하나 이상으로부터 얻어지는 섬유인 것이 바람직하고, 더욱 바람직하게는 폴리프로필렌 섬유 또는 LM-PET 섬유이다.Wherein the thermoplastic polymer fiber is selected from the group consisting of polyethylene, polypropylene, polyethylene-polypropylene copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, LM-PET (low melting point polyester), nylon 6 and nylon 66 It is preferably a fiber obtained from at least one selected, and more preferably a polypropylene fiber or an LM-PET fiber.

상기 열가소성 고분자 섬유는 섬도 1 내지 20데니어; 평균 섬유장이 30 내지 100mm의 단섬유인 것이 바람직하다.Wherein the thermoplastic polymer fiber has a fineness of 1 to 20 denier; And an average fiber length of 30 to 100 mm.

상기 복합부직포의 중량은 50 내지 300g/m2인 것이 바람직하다.The weight of the composite nonwoven fabric is preferably 50 to 300 g / m 2 .

상기 복합부직포는 케이폭 섬유와 열가소성 고분자 섬유가 혼섬되고 카딩되어 웹으로 형성된 다음, 니들펀칭 또는 열접착으로 결합된 것일 수 있다.The composite nonwoven fabric may be formed by web-forming a mixture of the kwon fiber and the thermoplastic polymer fiber, carded and then bonded by needle punching or thermal bonding.

상기 복합부직포는 벨트프레스 또는 칼렌더링으로 고밀도화된 것일 수 있다.The composite nonwoven fabric may be densified by a belt press or a knife rendering.

또한, 본 발명에서는 케이폭 섬유와 열가소성 고분자 섬유가 혼섬된 복합부직포의 일면 또는 양면에 불소수지 나노섬유층이 형성된 유수분리 필터용 여재를 제공한다.Also, the present invention provides a filter material for an oil separation filter in which a fluorine resin nanofiber layer is formed on one side or both sides of a composite nonwoven fabric in which a kwon fiber and a thermoplastic polymer fiber are mixed.

상기 불소수지는 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체(FEP), 테트라플루오로에틸렌-플루오로알킬비닐에테르 공중합체(PFA), 트라플루오로에틸렌-에틸렌 공중합체(ETFE), 테트라플루오로에틸렌-헥사플루오로프로필렌-비닐리덴플루오라이드 삼원공중합체(THV), 폴리테트라플루오르에틸렌(PTFE), 폴리불화비닐리덴(PVdF) 및 폴리클로로트리플루오로에틸렌(PCTFE)로 구성된 군으로부터 선택되는 하나 이상인 것일 수 있다. The fluororesin may be at least one selected from the group consisting of tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-fluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) One selected from the group consisting of ethylene-hexafluoropropylene-vinylidene fluoride terpolymer (THV), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) and polychlorotrifluoroethylene (PCTFE) Or more.

상기 불소수지 나노섬유층의 중량은 1 내지 20g/m2인 것이 바람직하다.The weight of the fluororesin nanofiber layer is preferably 1 to 20 g / m 2 .

상기 나노섬유층을 형성하는 나노섬유는 평균직경 100 내지 500nm인 것이 바람직하다.The nanofiber forming the nanofiber layer preferably has an average diameter of 100 to 500 nm.

상기 불소수지 나노섬유층은 복합부직포의 일면에 불소수지 나노섬유를 전기방사하여 형성되는 것임이 바람직하다.The fluororesin nanofiber layer is preferably formed by electrospinning a fluororesin nanofiber on one surface of the composite nonwoven fabric.

또한 본 발명에서는 케이폭 섬유와 열가소성 고분자 섬유를 중량비 10:90 내지 70:30의 비율로 혼섬하는 제1단계; 상기 혼섬 후에 카딩하여 웹을 형성하는 제2단계; 및 상기 형성된 웹을 니들펀칭 또는 열접착으로 고정하는 제3단계;를 포함하는 유수분리 필터용 여재의 제조방법을 제공한다.Also, in the present invention, the first step of blending the kwon fiber and the thermoplastic polymer fiber at a weight ratio of 10:90 to 70:30; A second step of forming a web by carding after the hybridization; And a third step of fixing the formed web by needle punching or thermal bonding.

상기 제3단계 후에 벨트프레스 또는 칼렌더링하여 고밀도화하는 제4단계가 추가로 포함될 수 있다.And a fourth step of performing belt press or calendering to increase densification after the third step.

상기 제4단계 후에 복합부직포의 일면에 불소수지 나노섬유를 전기방사하는 단계를 추가로 포함할 수 있다.After the fourth step, electrospinning of the fluorine resin nanofibers may be further performed on one surface of the composite nonwoven fabric.

본 본명에 따르는 유수분리 필터용 여재는 친환경적인 케이폭 소재를 이용하면서도 케이폭 소재의 단점인 형태안정성을 극복하였고, 또한, 유수분리 성능도 우수하다.The filter material for oil separator filter according to the present invention overcomes morphological stability which is a disadvantage of cowwoven material while using environmentally friendly cowwoven material and also has excellent oil water separation performance.

도 1a 내지 1d는 순서대로, 실시예 3, 7, 11 및 15에서 제조된 케이폭 복합부직포 표면을 1,000배 확대한 주사현미경 사진이다.
도 1e는 실시예 15의 복합부직포 표면에 전기방사된 나노섬유에 대한 SEM 사진(10,000배)이고, 도 1f는 실시예 15의 복합부직포의 케이폭 섬유에 대한 SEM 사진(1,000배)이다.
도 2는 실시예 1~3 및 비교예 1~3의 복합부직포들에 대한 수접촉각 측정결과를 도표화한 그래프이다.
도 3a는 실시예 및 비교예 복합부직포에 대한 유수분리효율을 시간의 경과에 따라 도표화한 그래프이고, 도 3b는 유수분리차압을 시간경과에 따라 도표화한 그래프이다.
1A to 1D are SEM micrographs of the surface of the composite woven nonwoven fabric produced in Examples 3, 7, 11 and 15 in 1,000-fold magnification.
FIG. 1E is an SEM photograph (10,000 times) of the nanofibers electrospun on the surface of the composite nonwoven fabric of Example 15, and FIG. 1F is an SEM photograph (1,000 times) of the composite nonwoven fabric of Example 15.
FIG. 2 is a graph showing the results of water contact angle measurement for the composite nonwoven fabrics of Examples 1 to 3 and Comparative Examples 1 to 3. FIG.
FIG. 3A is a graph plotting the water separation efficiency of the composite nonwoven fabrics of Examples and Comparative Examples over time, and FIG. 3B is a graph plotting the water separation pressure difference over time.

[첫 번째 실시형태][First embodiment]

본 발명이 제공하는 유수분리 필터용 여재의 한 실시형태는 케이폭 섬유와 열가소성 고분자 섬유가 혼섬된 복합부직포를 포함한다.One embodiment of the filter material for an oil-water separation filter provided by the present invention includes a composite nonwoven fabric in which a clathrate fiber and a thermoplastic polymer fiber are mixed.

본 발명에 따르는 복합부직포의 한 성분으로 사용되는 케이폭 섬유는, 일명 자바섬유라고도 불리는 것으로서, 케이폭 나무(케이바 펜탄트라, Ceiba pentantra)의 열매로부터 얻어지는 천연섬유이며, 상기 케이폭 나무의 주산지는 자바, 수마트라, 인도, 태국 등이다. 상기 케이폭 섬유는 그 형상이 중공형으로 저비중이며, 천연의 왁스층을 가지고 있어 소수성인 특징이 있기 때문에, 복합부직포가 발수성을 갖도록 한다. The kapok fiber used as a component of the composite nonwoven fabric according to the present invention is also called a so-called Java fiber, which is a natural fiber obtained from the fruit of a cedarwood (Ceiba pentantra) Sumatra, India and Thailand. The composite woven fabric is water-repellent because it has a hollow shape and low cost and has a natural wax layer and is hydrophobic.

본 발명에 따르는 유수분리 필터용 여재의 실시형태에서, 상기 케이폭 섬유는 자연에서 채취된 섬유를 그대로 사용할 수도 있고, 필요한 길이로 절단된 단섬유가 사용될 수 있다.In the embodiment of the filter material for an oil-water separation filter according to the present invention, the natural fiber can be used as it is, or short fibers cut to a required length can be used.

한편, 본 발명에 따르는 복합부직포의 다른 성분으로 사용되는 열가소성 고분자 섬유는 부직포의 형태를 유지하고, 유수분리 과정에서 그 부직포에 압력이 가해지는 조건에서도 부직포가 부서지거나 찢어지지 않도록 하는 기능을 한다.On the other hand, the thermoplastic polymer fibers used as the other component of the composite nonwoven fabric according to the present invention maintains the nonwoven fabric shape and functions to prevent the nonwoven fabric from being broken or torn even under the pressure applied to the nonwoven fabric during the water separation process.

상기 열가소성 고분자는 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리에틸렌-폴리프로필렌 공중합체와 같은 폴리올레핀 섬유, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, LM-PET(저융점폴리에스테르)와 같은 폴리에스테르 섬유, 나일론 6, 나일론 66과 같은 폴리아미드일 수 있다. 바람직하게는, 강도가 높으면서도 소수성이 큰 폴리올레핀 섬유, 그중에서도 폴리프로필렌 섬유 또는 LM-PET 섬유가 가장 바람직하다.The thermoplastic polymer may be selected from, for example, polyolefin fibers such as polyethylene, polypropylene, polyethylene-polypropylene copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly Ester fiber, nylon 6, nylon 66, and the like. Preferably, polyolefin fibers having high strength and high hydrophobicity, among them polypropylene fibers or LM-PET fibers, are most preferred.

상기 열가소성 고분자 섬유는 섬도 1 내지 20데니어인 것이 바람직하다. 섬도가 1데니어 미만인 경우에는 필터여재의 압력손실이 증가되는 문제가 있고, 20데니어를 초과하는 경우에는 웹 결합력이 감소될 수 있다는 단점이 있다.The thermoplastic polymer fibers preferably have a fineness of 1 to 20 denier. When the fineness is less than 1 denier, there is a problem that the pressure loss of the filter media is increased, and when the fineness is more than 20 denier, the web binding force may be decreased.

한편, 상기 열가소성 고분자 섬유는 평균 섬유장 30 내지 100mm의 단섬유인 것이 바람직하다. 섬유장 30mm에 이르지 못하는 경우에는 카딩성이 떨어져서 웹으로 제조하기 어려우며, 섬유장이 100mm를 초과하는 경우 섬유끼리 뭉치는 현상이 발생하여 균일한 무게의 부직포를 제조하는 것이 어렵다.On the other hand, the thermoplastic polymer fibers are preferably short fibers having an average fiber length of 30 to 100 mm. When the fiber length is less than 30 mm, the carding property is decreased and it is difficult to manufacture the web. When the fiber length exceeds 100 mm, the fibers are bundled together and it is difficult to produce a nonwoven fabric having a uniform weight.

복합부직포의 케이폭 섬유와 열가소성 고분자 섬유의 혼섬비는 중량비로 10:90 내지 70:30인 것이 바람직하다. 케이폭 섬유의 함량이 10중량%에 이르지 못하면 발수성이 떨어져 유수분리의 기능이 발현되지 않는다. 70중량%를 초과하면 깨지기 쉽고, 밀도가 낮아 비산성이 큰 케이폭의 특성상 카딩성이 떨어져 웹형성이 원할하지 않아 부직포의 제조가 어려운 단점이 있다.It is preferable that the horn ratio ratio of the kapok fiber and the thermoplastic polymer fiber of the composite nonwoven fabric is 10:90 to 70:30 by weight. If the content of the kwon fiber does not reach 10% by weight, the water repellency becomes poor and the function of oil-water separation is not exhibited. If it is more than 70% by weight, it tends to be fragile, and the density is low, so that the carding property is poor due to the nature of the capillary having a large acidity, so that the formation of the web is not easy and the production of the nonwoven fabric is difficult.

상기 복합부직포의 무게는 50 내지 300g/m2인 것이 바람직하다. 무게가 50g/m2에 이르지 못하면 강도가 약해지고, 300g/m2를 초과하는 경우에는 압력손실이 증가될 수 있다.The weight of the composite nonwoven fabric is preferably 50 to 300 g / m 2 . If the weight does not reach 50 g / m 2 , the strength becomes weak, and if it exceeds 300 g / m 2 , the pressure loss may increase.

[두 번째 실시형태][Second embodiment]

본 발명이 제공하는 유수분리 필터용 여재의 한 실시형태는 케이폭 섬유와 열가소성 고분자 섬유가 혼섬된 복합부직포의 일면에 불소수지 나노섬유층이 형성된 것이다.One embodiment of the filter medium for an oil-water separation filter provided by the present invention is a fluorine resin nanofiber layer formed on one side of a composite nonwoven fabric in which a cross-linked woven fabric and a thermoplastic polymer fiber are mixed.

두 번째 실시형태에서는 첫 번째 실시형태에 따르는 복합부직포의 일면 또는 양면에 불소수지 섬유층을 형성함으로써 복합부직포의 발수성을 더욱 향상시킬 수 있다. 또한, 상기 불소수지 섬유층을 나노섬유로 형성함으로써 기공을 더욱 작게하여 유수분리 성능을 향상시킬 수 있다.In the second embodiment, the water repellency of the composite nonwoven fabric can be further improved by forming a fluororesin fiber layer on one surface or both surfaces of the composite nonwoven fabric according to the first embodiment. Further, by forming the fluororesin fiber layer with nanofibers, pores can be further reduced to improve water-oil separation performance.

상기 불소수지는 예를 들어, 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체(FEP), 테트라플루오로에틸렌-플루오로알킬비닐에테르 공중합체(PFA), 트라플루오로에틸렌-에틸렌 공중합체(ETFE), 테트라플루오로에틸렌-헥사플루오로프로필렌-비닐리덴플루오라이드 삼원공중합체(THV), 폴리테트라플루오르에틸렌(PTFE), 폴리불화비닐리덴(PVdF) 및 폴리클로로트리플루오로에틸렌(PCTFE)로 구성된 군으로부터 선택되는 하나 이상일 수 있다.The fluororesin may include, for example, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-fluoroalkyl vinyl ether copolymer (PFA), trifluoroethylene-ethylene copolymer (ETFE) , Tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer (THV), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) and polychlorotrifluoroethylene (PCTFE) ≪ / RTI >

나노섬유층의 형성에 의한 유수분리 성능의 향상은 형성되는 층의 단위 면적당 무게 및/또는 상기 나노섬유층을 구성하는 단위 나노섬유의 직경에 의존한다. 구체적으로, 본 발명에 따르는 두 번째 실시형태에서, 상기 불소수지 나노섬유층의 중량은 1 내지 20g/m2 이고; 나노섬유층을 형성하는 나노섬유는 평균직경 100 내지 500nm인 것이 바람직하다. 상기 중량이 1g/m2 미만이거나 나노섬유의 평균직경이 500nm을 초과하는 경우에는 유수분리성능의 향상이 미미하여, 고가의 불소수지 섬유를 코팅하는 실익이 없다. 한편, 중량이 20g/m2를 초과하거나 나노섬유의 직경이 100nm미만인 경우에는 유수분리 성능은 향상되나 투과유량이 지나치게 적어지는 문제점이 있다.The improvement in the water separation performance by the formation of the nanofiber layer depends on the weight per unit area of the layer to be formed and / or on the diameter of the unit nanofibers constituting the nanofiber layer. Specifically, in the second embodiment according to the present invention, the weight of the fluororesin nanofiber layer is 1 to 20 g / m 2 ; The nanofiber forming the nanofiber layer preferably has an average diameter of 100 to 500 nm. When the weight is less than 1 g / m < 2 > or the average diameter of the nanofibers is more than 500 nm, the improvement in oil-water separation performance is insignificant and there is no advantage of coating expensive fluororesin fibers. On the other hand, when the weight exceeds 20 g / m 2 or the diameter of the nanofibers is less than 100 nm, the oil-water separating performance is improved, but the permeate flow rate becomes too small.

[제조방법][Manufacturing method]

또한, 본 발명에서는 케이폭 섬유와 열가소성 고분자 섬유를 중량비 10:90 내지 70:30의 비율로 혼섬하는 제1단계; 상기 혼섬 후에 카딩하여 웹을 형성하는 제2단계; 및 상기 형성된 웹을 니들펀칭 또는 열접착으로 고정하는 제3단계;를 포함하는 유수분리 필터용 여재의 제조방법을 제공한다.In addition, in the present invention, the first step of mixing the kwon fiber and the thermoplastic polymer fiber at a weight ratio of 10:90 to 70:30; A second step of forming a web by carding after the hybridization; And a third step of fixing the formed web by needle punching or thermal bonding.

본 발명에 따르는 유수분리 필터용 여재의 제조방법은 본질적으로 유기용매나 물을 사용하지 않는 것으로서, 소위 건식 방법이다.The method for producing a filter medium for an oil-water separation filter according to the present invention is a so-called dry method in which an organic solvent or water is not essentially used.

제1단계에서 혼섬되는 케이폭 섬유와 열가소성 고분자에 관하여는 상술한 바와 같으며, 혼섬 방법 역시 공지의 방법에 따를 수 있다. As described above, the crosslinked fiber and the thermoplastic polymer that are mixed in the first step are as described above, and the method of blending can also be performed according to a known method.

제2단계에서의 카딩은 혼섬된 섬유 집합체를 일정 수준으로 가지런히 평행이 되게하는 공정으로, 얇은 웹을 형성시킨다. 상기 카딩을 거쳐서 얻은 웹의 형상은 카딩기의 와이어에 의하여 섬유 집합체가 기계방향으로 배열되면서 구성 섬유간에 서로 연결되어 얇은 막 형태의 슬라이버 상태이다.The carding in the second step is a process of making the blended fiber assembly parallel to a certain level, thereby forming a thin web. The shape of the web obtained through the carding is in the form of a thin film-like sliver connected to each other between the constituent fibers while the fiber aggregates are arranged in the machine direction by the wires of the carding machine.

카딩공정에서 이용가능한 카딩의 방식에는 특별한 제한이 없는 바, 예를 들어, 롤러카드, 플랫카드, 유니언카드 등 당업계에서 공지된 카딩방법을 사용할 수 있다.There is no particular limitation on the carding method that can be used in the carding process. For example, a carding method known in the art such as a roller card, a flat card, and a union card can be used.

카딩기를 거쳐 형성된 웹은 부피는 크지만 밀도가 매우 낮다. 따라서, 이를 그대로 접착하는 경우 제조되는 부직포가 너무 얇아 목표중량에 이를 수 없는 경우가 있으며, 따라서, 부직포의 목표 중량에 맞추어 웹을 서로 필요한 만큼 겹치는 공정(cross-lapping)이 추가될 수도 있다.The web formed through the carding machine is large in volume but very low in density. Therefore, when the nonwoven fabric is directly adhered thereto, the nonwoven fabric to be manufactured is too thin to reach the target weight. Therefore, a process of cross-lapping the webs as necessary may be added in accordance with the target weight of the nonwoven fabric.

제3단계에서 수행되는 니들펀칭 또는 열접착은 이를 통하여 웹을 물리적 및/또는 열적으로 결합시켜 부직포를 제조하는 방법이다. 케이폭 섬유를 포함하는 웹을 니들펀칭하는 경우 일정수준의 침밀도에 이르기까지는 물성이 증가하지만, 그 이후에는 오히려 물성이 저하될 수 있다. 특히, 부서지기 쉬운 케이폭 섬유를 포함하는 본 발명의 제조방법에서는 니들펀칭시 예비펀칭(pre-punching)에 의해 약하게 결합시킨 이후 주펀칭(main punching)으로 강하게 결합시키는 2단계의 펀칭방법을 적용하는 것이 바람직하다. 본 발명의 제조방법에서는 특히, 케이폭 섬유의 중공특성 때문에 니들링에 의해 쉽게 케이폭 섬유가 부서질 수 있어서 상대적으로 약한 조건에서 펀칭하는 것이 바람직하다. 후술하는 실시예들에서 예비펀칭은 500~300회/min로 약하게, 주펀칭은 500~900회/min로 수행하였으나, 이에 한정되는 것은 아니다. 예를 들어, 사용 원사의 종류에 따라(ex. LM-PET) 니들펀칭을 행하지 않고, 더블벨트 프레스 공정을 통하여 웹을 열적으로 결합시킬 수도 있다.The needle punching or thermal bonding performed in the third step is a method for manufacturing a nonwoven fabric by physically and / or thermally bonding the web through the punching or thermal bonding. When needle punching webs containing kawan fibers, the physical properties increase to a certain level of needle density, but after that, the physical properties may deteriorate. Particularly, in the manufacturing method of the present invention including the easily breakable cable, a two-step punching method is employed in which the needle punching is weakly bonded by pre-punching and then strongly bonded by main punching . In the manufacturing method of the present invention, it is preferable that punching is performed in a relatively weak condition because the folding of the folded fiber can be easily caused by needling due to the hollow property of the folded fiber. In the embodiments described below, the preliminary punching is performed at 500 to 300 times / min while the main punching is performed at 500 to 900 times / min. However, the present invention is not limited thereto. For example, the web may be thermally bonded through a double-belt press process without needle punching (LM-PET) depending on the type of yarn used.

본 발명에 따르는 제조방법에서, 상기 제3단계 후에는 제조된 복합부직포를 고밀도화하는 제4단계가 추가될 수 있다. 복합부직포의 고밀도화는 벨트프레스Double Belt Press, BP) 또는 칼렌더링(Calendering, CA) 공법으로 수행될 수 있다. 벨트프레스 공정은 상하 두 개의 가열벨트(heating belt)사이로 제조된 부직포를 통과시켜 설정된 온도 및 압력을 가하여 부직포의 표면 편평도를 높이고 치밀한 구조를 갖게 하는 공정이다. 한편, 칼렌더링은 회전하는 두 개의 가열롤러(heating roller) 사이로 부직포를 통과시키면서 가열 및 가압함으로써 고밀도화가 되도록 하는 공정이다.In the manufacturing method according to the present invention, after the third step, a fourth step of densifying the composite nonwoven fabric produced may be added. High density of the composite nonwoven fabric can be performed by a belt press Double Belt Press (BP) or a calendering (CA) method. The belt press process is a process of passing a predetermined temperature and pressure through a nonwoven fabric fabricated between two upper and lower heating belts to increase the surface flatness of the nonwoven fabric and to have a dense structure. On the other hand, the knife rendering is a process for achieving high density by heating and pressing a nonwoven fabric while passing through two rotating heating rollers.

제4단계는 바람직하게는 공정 전 후 복합부직포의 두께가 공정 전의 두께에 비하여 3/4 내지 1/4가 되도록 수행한다. 고밀도화 공정에서 공정 후 부직포의 두께가 공정 전 두께의 1/4 미만이 되는 경우에는 투과유량의 감소가 커진다.The fourth step is preferably performed so that the thickness of the composite nonwoven fabric before and after the process becomes 3/4 to 1/4 of the thickness before the process. In the densification process, when the thickness of the nonwoven fabric after the process becomes less than 1/4 of the pre-process thickness, the decrease in the permeation flow rate becomes large.

본 발명에 따르는 제조방법에서, 상기 4단계 후에는 복합부직포의 일면에 불소수지 나노섬유를 전기방사하는 제5단계가 추가로 포함될 수 있다. 전기방사법은 용매와 폴리머를 조합한 후 고전압을 인가하여 방사함으로써 나노파이버를 제조하는 공지의 기술이다. 용매에 적당한 재질의 용재를 녹인 후 고전압을 인가하고, 방사시 용매가 녹아있던 용질은 나노 와이어 형태로 복합부직포가 감겨진 드럼에 방사되고, 시간이 경과 다음 증발하여 나노섬유층이 형성된다. 본 발명의 제조방법에서 복합부직포의 일면에 불소수지 나노섬유층을 형성하는 수단으로서 전기방사법을 채택함으로써, 서로 다른 섬유재료로 형성되는 복함부직포 층과 불소수지 나노섬유층이 별도의 접착제 없이도 복합화될 수 있다.In the manufacturing method according to the present invention, after the fourth step, a fifth step of electrospinning the fluororesin nanofibers to one surface of the composite nonwoven fabric may be further included. Electrospinning is a known technique for producing nanofibers by combining a solvent and a polymer and then applying a high voltage to spin. After dissolving a solvent material suitable for the solvent and applying a high voltage, the solute in which the solvent is dissolved during spinning is radiated to a drum in which the composite nonwoven fabric is wound in the form of nanowires, and after a lapse of time, the nanofiber layer is formed by evaporation. By employing the electrospinning method as a means for forming the fluororesin nanofiber layer on one surface of the composite nonwoven fabric in the manufacturing method of the present invention, the composite nonwoven fabric layer and the fluororesin nanofiber layer formed of different fiber materials can be combined without a separate adhesive .

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is intended to more specifically illustrate the present invention, and the scope of the present invention is not limited to these embodiments.

1. 유수분리 필터용 여재의 제조1. Preparation of filter media for oil-water separation filter

실시예 1~4Examples 1 to 4

유수분리용 케이폭 복합부직포 제조를 위하여 케이폭 섬유와 PP 섬유를 1/9, 3/7, 5/5 및 7/3의 중량비율로 혼섬하였다. 실시예에 사용된 케이폭 섬유는 인도네시아 자바산으로, 평균 섬유장은 약 18~32mm이고 굵기는 20~25㎛ 직경의 것을 사용하였다. 케이폭을 주원료로 하여, 건식공정에 의한 케이폭 복합부직포 제조를 위하여 섬도 2데니어 및 섬유장 51mm의 폴리프로필렌(polypropylene, PP) 단섬유(staple fiber)를 사용하였다.For the fabrication of composite nonwoven fabric for water repellency, Kawon fiber and PP fiber were blended at weight ratios of 1/9, 3/7, 5/5 and 7/3. The kapok fiber used in the examples was Javanese of Indonesia, having an average fiber length of about 18 to 32 mm and a diameter of 20 to 25 탆. A polypropylene (PP) staple fiber with a fineness of 2 denier and a fiber length of 51 mm was used for the manufacture of a composite nonwoven fabric by the dry process using the kraft cloth as the main raw material.

혼합된 섬유를 카드기를 이용하여 웹으로 형성한 후 크로스래핑한 다음, 니들펀칭(Needle Punching, NP) 공정을 진행하여 100g/m2 중량의 부직포를 제조하였다. 케이폭 섬유를 포함하는 웹을 니들펀칭하는 경우, 케이폭 섬유의 중공특성 때문에 부서지기 쉽고 강도가 약해 상대적으로 약한 조건에서 펀칭하는 것이 바람직하다. 따라서 본 발명의 실시예들에서는 300회/min로 약하게 1차로 예비펀칭을 한 후, 500~900회/min로 2차로 주펀칭을 실시하여 강하게 결합시켰다.The mixed fibers were formed into a web using a card machine, cross-lapped, and then subjected to a needle punching (NP) process to produce a nonwoven fabric having a weight of 100 g / m 2 . When needle punching a web containing a kerchief fiber, it is preferable to punch the web in a relatively weak condition because the hollow property of the kerchief fiber tends to break and the strength is weak. Therefore, in the embodiments of the present invention, preliminary punching is performed weakly at a rate of 300 times / min, and then main punching is performed at 500 to 900 times / min.

실시예 5~8Examples 5 to 8

유수분리 성능을 극대화시키기 위하여, 실시예 1~4에서 제조된 부직포에 대하여 벨트프레스(Double Belt Press, BP) 공정을 수행하여 고밀도화하였다. 이때, 벨트프레스 공정은 벨트 압력(belt pressure) 0~30 N/cm2, 라인-스피드(line speed) 1.5 m/min, 온도 110~130℃의 공정조건으로 진행하였다.In order to maximize the water separation performance, the nonwoven fabrics prepared in Examples 1 to 4 were densified by a double belt press (BP) process. At this time, the belt press process was carried out under the following process conditions: belt pressure of 0 to 30 N / cm 2 , line speed of 1.5 m / min, and temperature of 110 to 130 ° C.

실시예 9~12Examples 9-12

유수분리 성능을 극대화시키기 위하여, 실시예 1~4에서 제조된 부직포에 대하여 칼렌더링(Calendering, CA) 공정을 수행하여 고밀도화하였다. 상기 칼렌더링은 가열온도 110℃, 롤 압력 5~20 kgf/cm2, 라인-스피드 2.5 m/min의 조건에서 수행하였다.In order to maximize the water separation performance, the nonwoven fabrics prepared in Examples 1 to 4 were densified by calendering (CA) process. The knife rendering was performed at a heating temperature of 110 캜, a roll pressure of 5 to 20 kgf / cm 2 , and a line speed of 2.5 m / min.

실시예 13~15Examples 13 to 15

유수분리용 케이폭 복합부직포 제조를 위하여 케이폭 섬유와 LM-PET 섬유를 3/7, 5/5, 7/3의 중량비율로 혼섬하였다. 실시예에 사용된 케이폭 섬유는 실시예 1~4에 사용된 케이폭 섬유와 같다. 이성분 바인더 섬유인 LM-PET(low melt-PET, ㈜휴비스) 섬유는 섬도 4데니어, 섬유장 51mm을 사용하였다. 혼합된 섬유를 카딩기를 이용하여 웹으로 형성한 후 크로스 래핑하여 70g/m2 의 중량으로 제조한 후 더블벨트프레스 공정을 이용하여 열접착하였다. 이 때 온도는 150~170℃, line speed 4.0 m/min 으로 시행하였다. 이성분바인더로 사용된 LM-PET 섬유는 저융점 폴리에스테르 섬유로 150~160℃의 온도에서 쉽게 용융되는 성질로, 열로서 kapok 섬유와 결합할 수 있기 때문에 실시예 1~4와 달리 니들펀칭 공정으로 결합하지 않고 더블벨트프레스 공정을 진행하여 결합하였다.In order to fabricate the composite nonwoven fabric for water repellency, Kawon fiber and LM-PET fiber were blended at a weight ratio of 3/7, 5/5 and 7/3. The kapok fibers used in the examples are the same as the kapok fibers used in Examples 1 to 4. [ LM-PET (low melt-PET, Huvis) bicomponent fiber, which is a binary binder fiber, has a fineness of 4 denier and a fiber length of 51 mm. The mixed fibers were formed into a web using a carding machine and cross-lapped to produce a weight of 70 g / m < 2 >, followed by thermal bonding using a double belt press process. The temperature was 150 ~ 170 ℃ and the line speed was 4.0 m / min. The LM-PET fiber used as the binary binder is a low-melting-point polyester fiber and is easily melted at a temperature of 150 to 160 ° C. Therefore, the LM-PET fiber can be bonded to the kapok fiber as heat. Therefore, unlike Examples 1 to 4, The double belt press process was carried out and joined.

실시예 16~21Examples 16 to 21

유수분리 성능을 극대화시키기 위하여, 실시예 5~8에서 제조된 부직포에 대하여 폴리비닐리덴플루오라이드(Polyvinyliden Fluoride, PVDF) 섬유를 전기방사하여 나노섬유층이 형성된 복합부직포를 제조하였다. 전기방사는 디메틸아세트아미드/아세톤=7/3 wt% 용액에 PVDF(Kynar) 용액 25~29wt%를 용해한 후, 인가접압 15kV, TCD 18cm, needle gauge 21, 공기압 0.04kPa의 조건에서, 실시예 5~8에서 제조된 케이폭 부직포 표면에 직접 전기방사를 진행하였다. 이때 적층된 나노섬유의 섬유경은 평균 100~500nm이고, 나노섬유층의 중량은 1~3g/m2이었다.In order to maximize the water separation performance, polyvinylidene fluoride (PVDF) fibers were electrospun to the nonwoven fabrics prepared in Examples 5 to 8 to prepare composite nonwoven fabrics having nanofiber layers formed thereon. Electrospinning was performed by dissolving 25 to 29 wt% of a PVDF (Kynar) solution in a 7/3 wt% solution of dimethylacetamide / acetone = acetonitrile / acetone at a pressure of 15 kV, TCD 18 cm, needle gauge 21 and air pressure of 0.04 kPa. Electrospinning was conducted directly on the surface of the nonwoven fabric made from Kwangwon. At this time, the average diameter of the laminated nanofibers was 100 to 500 nm, and the weight of the nanofiber layer was 1 to 3 g / m 2 .

비교예 1Comparative Example 1

대조군으로서, 섬도 2데니어 및 섬유장 51mm의 폴리프로필렌 단섬유(staple fiber) 만을 사용하여 카드기를 이용하여 웹으로 형성한 후, 크로스래핑한 다음, 거친 후 니들펀칭(Needle Punching, NP) 공정을 진행하여 100g/m2 중량의 부직포를 제조하였다. As a control, a polypropylene staple fiber having a fineness of 2 denier and a fiber length of 51 mm was used to form a web using a card machine, followed by cross-lapping, followed by a needle punching (NP) To prepare a nonwoven fabric having a weight of 100 g / m 2 .

비교예 2, 비교예 3Comparative Example 2, Comparative Example 3

비교예 2는, 비교예 1을 실시예 5~8과 같은 조건으로 벨트프레스 공정을 통하여 고밀도 작업을 진행하였다. 비교예 3은, 유수분리 성능을 극대화시키기 위하여 비교예 2를 실시예 16~21과 같은 조건으로 전기방사하여 나노섬유를 적층시켰다.In Comparative Example 2, Comparative Example 1 was subjected to a high-density work through a belt press process under the same conditions as in Examples 5 to 8. In Comparative Example 3, nanofibers were laminated by electrospinning Comparative Example 2 under the same conditions as in Examples 16 to 21 in order to maximize water-oil separation performance.

조성Furtherance 혼합비Mixing ratio 중량 (g/m2)Weight (g / m 2 ) 공정fair 실시예 1Example 1 Kapok/PPKapok / PP 1/91/9 100100 NPNP 실시예 2Example 2 Kapok/PPKapok / PP 3/73/7 100100 NPNP 실시예 3Example 3 Kapok/PPKapok / PP 5/55/5 100100 NPNP 실시예 4Example 4 Kapok/PPKapok / PP 7/37/3 100100 NPNP 실시예 5Example 5 Kapok/PPKapok / PP 1/91/9 100100 실시예 1을 BP 가공Example 1 was subjected to BP machining 실시예 6Example 6 Kapok/PPKapok / PP 3/73/7 100100 실시예 2을 BP 가공Example 2 was subjected to BP machining 실시예 7Example 7 Kapok/PPKapok / PP 5/55/5 100100 실시예 3을 BP 가공Example 3 was subjected to BP machining 실시예 8Example 8 Kapok/PPKapok / PP 7/37/3 100100 실시예 4를 BP 가공Example 4 was subjected to BP machining 실시예 9Example 9 Kapok/PPKapok / PP 1/91/9 100100 실시예 1을 CA 가공Example 1 was subjected to CA processing 실시예 10Example 10 Kapok/PPKapok / PP 3/73/7 100100 실시예 2을 CA 가공Example 2 was subjected to CA processing 실시예 11Example 11 Kapok/PPKapok / PP 5/55/5 100100 실시예 3을 CA 가공Example 3 was subjected to CA processing 실시예 12Example 12 Kapok/PPKapok / PP 7/37/3 100100 실시예 4를 CA 가공Example 4 was subjected to CA processing 실시예 13Example 13 Kapok/LM-PETKapok / LM-PET 3/73/7 7070 BP (열접착)BP (thermal bonding) 실시예 14Example 14 Kapok/LM-PETKapok / LM-PET 5/55/5 7070 BP (열접착)BP (thermal bonding) 실시예 15Example 15 Kapok/LM-PETKapok / LM-PET 7/37/3 7070 BP (열접착)BP (thermal bonding) 실시예 16Example 16 Kapok/PPKapok / PP 1/91/9 100100 실시예 5과 ES 나노웹의 결합Combination of Example 5 and ES Nanoweb 실시예 17 Example 17 Kapok/PPKapok / PP 3/73/7 100100 실시예 6과 ES 나노웹의 결합Combination of Example 6 with ES Nanoweb 실시예 18Example 18 Kapok/PPKapok / PP 5/55/5 100100 실시예 7과 ES 나노웹의 결합Combination of Example 7 and ES Nanoweb 실시예 19Example 19 Kapok/PPKapok / PP 7/37/3 100100 실시예 8과 ES 나노웹의 결합Combination of Example 8 with ES Nanoweb 실시예 20Example 20 Kapok/LM-PETKapok / LM-PET 5/55/5 7070 실시예 14와 ES 나노웹의 결합Combination of Example 14 with ES Nanoweb 실시예 21Example 21 Kapok/LM-PETKapok / LM-PET 5/55/5 7070 실시예 18과 ES 나노웹의 결합Example 18 and the binding of ES nanowires 비교예 1Comparative Example 1 PP PP -- 100100 NPNP 비교예 2Comparative Example 2 PPPP -- 100100 비교예 2를 BP가공Comparative Example 2 was subjected to BP processing 비교예 3Comparative Example 3 PPPP -- 100100 비교예 2와 ES 나노웹의 결합The binding of ES nanoweb with Comparative Example 2

2. 평가2. Evaluation

2.1. 시차주사전자현미경 사진 2.1. Differential scanning electron microscope photograph

제조된 케이폭부직포의 표면관찰을 위하여 시차주사전자현미경(Scanning electron microscope, Hitachi S-4800)을 이용하여 1,000배 확대하여 관찰하였다.To observe the surface of the manufactured nonwoven fabric, 1,000 times magnification was observed using a scanning electron microscope (Hitachi S-4800).

도 1a 내지 1d는 순서대로, 케이폭과 PP가 5:5의 중량비로 제조 및 가공된 실시예 3, 7, 11 및 18의 케이폭 복합부직포 표면을 1,000배 확대한 주사현미경 사진이다. 도 1a 내지 1d를 참조하면, 벨트프레스 및 칼렌더링 가공에 의하여 케이폭 섬유의 중공이 다소 납작해졌으나 부서지지는 않았음을 확인할 수 있었다. 그리고 고밀도 가공 후 전기방사한 부직포 표면을 나타낸 도 1d를 살펴보면, 케이폭부직포의 표면이 균일하게 나노웹으로 덮여져 있음을 알 수 있었다. 1A to 1D are SEM micrographs of the surface of the polypropylene composite nonwoven fabric of Examples 3, 7, 11 and 18, which were prepared and processed in a weight ratio of 5: 5 with a ratio of 5: 5. Referring to Figs. 1A to 1D, it was confirmed that the hollow of the kapok fiber was flattened by the belt press and the knife rendering process, but was not broken. 1d showing the surface of the nonwoven fabric electrospun after the high-density processing, it can be seen that the surface of the nonwoven fabric is uniformly covered with the nanoweb.

도 1e는 실시예 18의 복합부직포 표면에 전기방사된 나노섬유에 대한 SEM 사진(10,000배)이다. 상기 도 1e를 참조하면, 나노섬유의 직경은 대략 100~500nm임이 확인된다.1E is a SEM photograph (10,000 times) of nanofibers electrosprayed on the surface of the composite nonwoven fabric of Example 18. FIG. Referring to FIG. 1E, it is confirmed that the diameter of the nanofibers is approximately 100 to 500 nm.

도 1f는 실시예 18의 복합부직포의 케이폭 섬유에 대한 SEM 사진(1,000배)이다. 상기 사진으로부터 케이폭 표면 위에 전기방사된 나노웹이 균일하게 적층되어 있으며 나노섬유의 직경을 확인할 수 있었다.Fig. 1F is an SEM photograph (1,000 times) of the kapok fiber of the composite nonwoven fabric of Example 18. Fig. From the above photograph, it is possible to confirm the diameter of the nanofiber by uniformly laminating the electrospun nanofibers on the surface of the casing.

2.2. 기공분석2.2. Pore analysis

캐필러리 플로우 포로미터(Capillary flow porometer, CFP-1200-AEL, PMI Inc.) 장비를 사용하여 ASTM F316 규격에 준하여 제조된 부직포의 기공크기를 측정하였다.The pore size of the nonwoven fabric manufactured according to the ASTM F316 standard was measured using a capillary flow porometer (CFP-1200-AEL, PMI Inc.).

기공크기 분석결과를 표 2에 정리하였다. 비교예 1의 기공크기가 대략 110㎛인 것에 비하여 실시예 3, 7, 11의 경우 대략 22~33㎛로 측정되었으며, 전기방사웹이 도입된 실시예 18의 경우, 약 3㎛로 측정되었다. 이로써 전기방사법을 이용하여 케이폭 부직포 표면에 나노웹을 도입할 경우, 기공제어를 통하여 유수분리 성능이 향상될 것으로 판단된다.The pore size analysis results are summarized in Table 2. The pore size of Comparative Example 1 was measured to be about 22 to 33 mu m in the case of Examples 3, 7 and 11, and about 3 mu m in the case of Example 18 in which the electrospun web was introduced. Thus, when the nanoweb is introduced into the surface of the nonwoven fabric by electrospinning, the water separation performance will be improved by pore control.

조성Furtherance 공정fair 평균
기공크기(㎛)
Average
Pore size (탆)
최대
기공크기(㎛)
maximum
Pore size (탆)
실시예 3Example 3 Kapok/PP=5/5Kapok / PP = 5/5 NPNP 33.0633.06 91.5991.59 실시예 7Example 7 Kapok/PP=5/5Kapok / PP = 5/5 NP + BPNP + BP 31.7831.78 80.4980.49 실시예 11Example 11 Kapok/PP=5/5Kapok / PP = 5/5 NP + CANP + CA 22.6122.61 56.5156.51 실시예 18Example 18 Kapok/PP=5/5Kapok / PP = 5/5 NP + BP + ESNP + BP + ES 2.912.91 6.396.39 비교예 1Comparative Example 1 PP 부직포PP nonwoven fabric NPNP 109.13109.13 189.72189.72

2.3. 접촉각2.3. Contact angle

접촉각측정장치(Drop shape analysis system, DSA 100)를 이용하여 접촉각을 측정하여 제조된 케이폭의 발수 및 친유특성을 평가하였다. 액적볼륨(Dosing volume)은 2로 설정하였다.The water - repellency and hydrophilic properties of the prepared kawan were measured by measuring the contact angle using a contact angle measuring device (DSA 100). Dosing volume was set to 2.

접촉각 평가결과를 아래의 표 3에 정리하였으며, 도 2는 케이폭 복합부직포의 수접촉각 측정결과를 도표화한 그래프이다. 이들을 참조하면, 발수 및 친유성이 우수하다고 알려진 PP 부직포(비교예 1)가 133°이었으며, 제조된 케이폭 복합 부직포는 모두 140°이상으로 PP 부직포에 비하여 높게 측정되었음을 확인할 수 있었다. 그리고 실시예 7 및 비교예 2는 약 150°이상으로 측정되어, 고밀도가공을 통하여 접촉각이 향상되었음을 확인하였다. 고밀도가공 후 나노웹과 결합된 실시예 11 및 비교예 3의 부직포들은 고밀도화 가공된 시료에 비해 접촉각이 낮아졌음에도 불구하고, 140°이상으로 여전히 소수성 및 친유성을 지니고 있음을 알 수 있었다.The results of the contact angle evaluation are summarized in Table 3 below, and FIG. 2 is a graph plotting the results of water contact angle measurement of the clay composite nonwoven fabric. Referring to these results, it was confirmed that the PP nonwoven fabric (Comparative Example 1) known to have excellent water repellency and lipophilicity was 133 °, and that all of the manufactured nonwoven fabrics were 140 ° or more, which was higher than that of the PP nonwoven fabric. And Example 7 and Comparative Example 2 were measured to be about 150 ° or more, and it was confirmed that the contact angle was improved through high-density machining. The nonwoven fabrics of Example 11 and Comparative Example 3 bonded to the nanoweb after high density processing had still hydrophobic and lipophilic properties of more than 140 ° although the contact angle was lower than that of the densified processed specimen.

조성Furtherance 혼합비Mixing ratio 중량 (g/m2)Weight (g / m 2 ) 공정fair 접촉각(°)Contact angle (°) 실시예 3Example 3 Kapok/PPKapok / PP 5/55/5 100100 NPNP 146.8146.8 실시예 7Example 7 Kapok/PPKapok / PP 5/55/5 100100 실시예 3를 BP 가공Example 3 was processed by BP processing 160.0160.0 실시예 11Example 11 Kapok/PPKapok / PP 5/55/5 100100 실시예 3과 나노웹의 결합Combination of Example 3 and Nanobubbles 142.3142.3 비교예 1Comparative Example 1 PP 부직포PP nonwoven fabric -- 100100 NPNP 133.8133.8 비교예 2Comparative Example 2 PP 부직포PP nonwoven fabric -- 100100 비교예 1을 BP 가공Comparative Example 1 was subjected to BP processing 154.9154.9 비교예 3Comparative Example 3 PP 부직포PP nonwoven fabric -- 100100 비교예 2와 나노웹의 결합Comparison of Comparative Example 2 with Nanoweb 140.9140.9

2.4. 유수분리 특성2.4. Oil separation characteristics

유수분리 필터 시험기(Fuel/water separation filter test standard, Bonavista technology Inc.)를 이용하여 ISO 16332 규격에 의하여 유수분리효율 및 차압을 10, 20, 30, 40, 50, 60분 후 각각 평가하였다. 이때 시험오일은 디젤유를 사용하였으며, H2O 농도는 10,000 ppm으로 설정하였으며, 아래의 식(1)에 의하여 효율이 계산되었다.The oil separation efficiency and the differential pressure were evaluated at 10, 20, 30, 40, 50 and 60 minutes according to ISO 16332 using a Fuel / water separation filter test standard (Bonavista technology Inc.). At this time, diesel oil was used as the test oil, H 2 O concentration was set to 10,000 ppm, and the efficiency was calculated by the following equation (1).

유수분리 효율=[(상류측 농도 - 하류측 농도)/하류측 농도]×100(%) ---(1)Oil water separation efficiency = [(upstream side concentration - downstream side concentration) / downstream side concentration] × 100 (%) --- (1)

유수분리 성능측정 60분 후의 케이폭 부직포의 여과효율 및 차압을 아래의 표 4에 정리하였다. 도 3a는 실시예 및 비교예 복합부직포에 대한 유수분리효율을, 도 3b는 유수분리차압을 시간경과에 따라 도표화한 그래프이다. 표 4, 도3a 및 도3b를 참조하면, 일반적으로 발수성능이 우수하여 유수분리 필터여재로 사용되는 비교예1(PP 부직포)의 유수분리효율은 74.2%로 측정되어 실시예 2, 3, 및 4에 비하여 높은 수치였다. The filtration efficiency and the differential pressure of the nonwoven fabric of Kwon after 60 minutes of measuring the water separation performance are summarized in Table 4 below. FIG. 3A is a graph showing the water separation efficiency for the composite nonwoven fabrics of Examples and Comparative Examples, and FIG. 3B is a graph plotting the water separation pressure difference over time. 3A, and 3B, the water separation efficiency of Comparative Example 1 (PP nonwoven fabric), which is generally used as a water separation filter media, is excellent in water repellency and is measured to be 74.2%. Thus, in Examples 2, 3, 4, respectively.

케이폭과 PP가 5/5로 혼합된 실시예 3, 7, 11 및 18을 살펴보면, 고밀도 가공을 한 실시예 5 및 실시예 6은 고밀도가공전인 실시예 3에 비하여 약 7% 가량 효율이 상승되었음을 확인하였다. 특히, 벨트프레스 가공 후 나노웹과 결합된 실시예 18의 경우에는 효율이 99.9%로 높게 측정되었음에도 불구하고 차압이 많이 상승하지 않았다. 또한 케이폭과 LM-PET가 5/5로 혼합된 후 나노웹이 결합된 실시예 20을 살펴보면, 케이폭과 PP가 혼합된 실시예에 비하여 중량이 낮아 차압이 낮음에도 불구하고 효율은 99.9%로 높게 측정되었음을 확인하였으며, 나노웹의 결합으로 인한 압력손실의 증가가 발생하지 않았다. 이들로부터 고밀도공정 후 PVDF 나노웹 결합공정이 저차압 및 고효율 유수분리 특성발현에 효과적임을 확인하였다. Examples 3, 7, 11, and 18, in which the kappa and PP were mixed in a ratio of 5/5, showed that the efficiencies of Examples 5 and 6, which were high-density processed, were improved by about 7% Respectively. Particularly, in the case of Example 18 combined with the nanoweb after belt press processing, the differential pressure did not rise much even though the efficiency was measured as high as 99.9%. Also, in Example 20 in which the nano-web was bonded after 5/5 of the mixture of the kappa and the LM-PET was mixed, the efficiency was 99.9% And no increase in pressure loss due to the binding of the nanoweb occurred. From these results, it was confirmed that the PVDF nano - web bonding process after high - density process is effective for low differential pressure and high efficiency water - oil separation.

조성Furtherance 혼합비Mixing ratio 중량 (g/m2)Weight (g / m 2 ) 공정fair 효율
(%)
efficiency
(%)
차압
(mmH2O)
Differential pressure
(mmH 2 O)
실시예 1Example 1 Kapok/PPKapok / PP 1/91/9 100100 NPNP 71.171.1 2.852.85 실시예 2Example 2 Kapok/PPKapok / PP 3/73/7 100100 NPNP 78.078.0 3.303.30 실시예 3Example 3 Kapok/PPKapok / PP 5/55/5 100100 NPNP 86.486.4 2.662.66 실시예 4Example 4 Kapok/PPKapok / PP 7/37/3 100100 NPNP 91.091.0 3.203.20 실시예 7Example 7 Kapok/PPKapok / PP 5/55/5 100100 실시예 3을 BP 가공Example 3 was subjected to BP machining 93.493.4 1.781.78 실시예 11Example 11 Kapok/PPKapok / PP 5/55/5 100100 실시예 3을 CA 가공Example 3 was subjected to CA processing 95.495.4 3.913.91 실시예 14Example 14 Kapok/LM-PETKapok / LM-PET 5/55/5 7070 BP + CABP + CA 74.174.1 1.541.54 실시예 18Example 18 Kapok/PPKapok / PP 5/55/5 100100 실시예 5와
나노웹의 결합
Example 5
Combination of Nano Web
99.999.9 2.402.40
실시예 20Example 20 Kapok/LM-PETKapok / LM-PET 5/55/5 7070 실시예 14과 나노웹의 결합Example 14: Combination of Nanobubbles with Nanoparticles 99.999.9 1.291.29 비교예 1Comparative Example 1 PP 부직포PP nonwoven fabric -- 100100 NPNP 74.274.2 2.182.18 비교예 3Comparative Example 3 PP 부직포PP nonwoven fabric -- 100100 비교예 2와 나노웹의 결합Comparison of Comparative Example 2 with Nanoweb 96.596.5 4.274.27

본 명세서에서는 본 발명자들이 수행한 다양한 실시예 가운데 몇 개의 예만을 들어 설명하는 것이나 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고, 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다. It is to be understood that the present invention is not limited to the above embodiments and various changes and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention.

Claims (17)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 연료 중의 수분을 제거하기 위한 유수분리 필터용 여재로서,
케이폭 섬유와 열가소성 고분자 섬유가 10:90 내지 70:30의 중량비로 혼섬된 복합부직포의 일면 또는 양면에 불소수지 나노섬유층이 형성된 것이고,
상기 불소수지 나노섬유층의 중량은 1 내지 20g/m2이며, 상기 나노섬유층을 형성하는 나노섬유는 평균직경 100~500nm인 것을 특징으로 하는
유수분리 필터용 여재.
A filter medium for an oil-water separation filter for removing water in fuel,
Wherein the fluororesin nanofiber layer is formed on one surface or both surfaces of the composite nonwoven fabric in which the kwon fiber and the thermoplastic polymer fiber are mixed at a weight ratio of 10:90 to 70:30,
Wherein the weight of the fluorine resin nanofiber layer is 1 to 20 g / m 2 , and the nanofiber forming the nanofiber layer has an average diameter of 100 to 500 nm
Filter media for oil - water separation filters.
제9항에 있어서, 상기 불소수지는 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체(FEP), 테트라플루오로에틸렌-플루오로알킬비닐에테르 공중합체(PFA), 트리플루오로에틸렌-에틸렌 공중합체(ETFE), 테트라플루오로에틸렌-헥사플루오로프로필렌-비닐리덴플루오라이드 삼원공중합체(THV), 폴리테트라플루오르에틸렌(PTFE), 폴리불화비닐리덴(PVdF) 및 폴리클로로트리플루오로에틸렌(PCTFE)로 구성된 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 유수분리 필터용 여재.The fluororesin according to claim 9, wherein the fluororesin is at least one selected from the group consisting of tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-fluoroalkyl vinyl ether copolymer (PFA), trifluoroethylene- ETFE), tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer (THV), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) and polychlorotrifluoroethylene (PCTFE) And at least one selected from the group consisting of water and oil. 삭제delete 삭제delete 제9항에 있어서, 불소수지 나노섬유층은 복합부직포의 일면에 불소수지 나노섬유를 전기방사하여 형성된 것을 특징으로 하는 유수분리 필터용 여재.The filter material for an oil water separation filter according to claim 9, wherein the fluororesin nanofiber layer is formed by electrospinning fluorine resin nanofibers on one surface of the composite nonwoven fabric. 케이폭 섬유와 열가소성 고분자 섬유를 중량비 10:90 내지 70:30의 비율로 혼섬하는 단계;
상기 혼섬 후에 카딩하여 웹을 형성하는 단계;
상기 형성된 웹을 니들펀칭 또는 열접착으로 고정하는 단계; 및
복합부직포의 일면에 불소수지 나노섬유를 전기방사하는 단계;를 포함하는 제9항의 유수분리 필터용 여재의 제조방법.
Fusing the kwon fiber and the thermoplastic polymer fiber at a weight ratio of 10:90 to 70:30;
Forming a web by carding after the hybridization;
Fixing the formed web by needle punching or thermal bonding; And
A method for manufacturing a filter material for an oil water separating filter according to claim 9, comprising: electrospinning the fluorine resin nanofibers on one surface of the composite nonwoven fabric.
제14항에 있어서, 상기 고정하는 단계 후에 벨트프레스 또는 칼렌더링하여 고밀도화하는 단계를 추가로 포함하는 것을 특징으로 하는 유수분리 필터용 여재의 제조방법.15. The method of claim 14, further comprising the step of densifying the belt pressing or calendering after the fixing step. 삭제delete 제9항에 있어서, 상기 열가소성 섬유는 섬도 1 내지 20데니어, 평균 섬유장 30 내지 100mm의 단섬유이며, 상기 복합부직포의 중량은 50 내지 300g/m2인 것을 특징으로 하는 유수분리 필터용 여재.The filter material for an oil water separation filter according to claim 9, wherein the thermoplastic fiber is a monofilament having a fineness of 1 to 20 denier and an average fiber length of 30 to 100 mm, and the composite nonwoven fabric has a weight of 50 to 300 g / m 2 .
KR1020140012958A 2014-02-05 2014-02-05 Filter media for fuel-water separation and manufacturing method thereof KR101550758B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140012958A KR101550758B1 (en) 2014-02-05 2014-02-05 Filter media for fuel-water separation and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140012958A KR101550758B1 (en) 2014-02-05 2014-02-05 Filter media for fuel-water separation and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20150092506A KR20150092506A (en) 2015-08-13
KR101550758B1 true KR101550758B1 (en) 2015-09-08

Family

ID=54056774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140012958A KR101550758B1 (en) 2014-02-05 2014-02-05 Filter media for fuel-water separation and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101550758B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396665B (en) * 2018-11-29 2020-01-21 华中科技大学 Method for preparing oil-water separation membrane by picosecond laser
JP6873093B2 (en) * 2018-12-03 2021-05-19 旭化成アドバンス株式会社 Cotton
GB2616026A (en) * 2022-02-24 2023-08-30 Modla Ppe Ltd Filter material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280354B1 (en) 2012-02-16 2013-07-01 한국생산기술연구원 Manufacturing method of kapok-based nonwoven fabric complex and kapok-based nonwoven fabric complex thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280354B1 (en) 2012-02-16 2013-07-01 한국생산기술연구원 Manufacturing method of kapok-based nonwoven fabric complex and kapok-based nonwoven fabric complex thereby

Also Published As

Publication number Publication date
KR20150092506A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
KR102340662B1 (en) Multilayer filtration material for filter, method for manufacturing same, and air filter
AU2011220734B2 (en) Compressed nanofiber composite media
US20160166953A1 (en) Filter media including fine staple fibers
KR100952421B1 (en) Filter element for cleaning inlet air of internal combustion engine and process for preparing the same
US20100300295A1 (en) Air Filter And Air Filter Assembly For Vacuum Cleaner With The Air Filter
KR102298572B1 (en) Self supporting pleatable web and an oil filter including the same
KR20120042952A (en) Filtration cloth for dust collection machine
KR100678338B1 (en) Filter element for cleaning air and process for preparing the same
WO2008084233A1 (en) Microfiber split film filter felt and method of making same
KR101550758B1 (en) Filter media for fuel-water separation and manufacturing method thereof
JP2024026107A (en) High burst strength wet nonwoven filtration media and methods for producing same
KR102342025B1 (en) Laid thermal bonding filter substrate for composite filter media, Composite filter media containing the same, and Mask containing the same
TWI604100B (en) Fluorine resin fiber-containing fluorine resin sheet and method for manufacturing the same
KR20100016968A (en) A fuel filter for fuel pump of automobile and method of preparing the same
KR101117779B1 (en) Dual layers composite fabrics of polyester spunbond nonwoven fabrics and woven fabric used as primary backing cloth for artificial turf
KR102064359B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
CN113906176B (en) Melt-blown nonwoven fabric, filter, and method for producing melt-blown nonwoven fabric
KR101252341B1 (en) Polypropylene needle-punching non-woven fabric for an oil-absorber having excellent mechanical strength and manufacturing method thereof
KR102541477B1 (en) Biodegradable complex media for air filter and Manufacturing method thereof
US20210086116A1 (en) High burst strength wet-laid nonwoven filtration media and process for producing same
KR102583894B1 (en) Thermal bonding biodegradable filter substrates for air filter media and air filter complex media
KR102109454B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
JP2022102607A (en) Nonwoven fabric for car floor material and car floor material
JP2019148024A (en) Laminated long-fiber nonwoven fabric and method for manufacturing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 5