KR101536937B1 - Method for removal of antibiotics in water using steam activated biochar derived from burcucumber(Sicyos angulatus L.) - Google Patents

Method for removal of antibiotics in water using steam activated biochar derived from burcucumber(Sicyos angulatus L.) Download PDF

Info

Publication number
KR101536937B1
KR101536937B1 KR1020130020263A KR20130020263A KR101536937B1 KR 101536937 B1 KR101536937 B1 KR 101536937B1 KR 1020130020263 A KR1020130020263 A KR 1020130020263A KR 20130020263 A KR20130020263 A KR 20130020263A KR 101536937 B1 KR101536937 B1 KR 101536937B1
Authority
KR
South Korea
Prior art keywords
activated
water
vapor
visible
antibiotic
Prior art date
Application number
KR1020130020263A
Other languages
Korean (ko)
Other versions
KR20140106125A (en
Inventor
옥용식
아누쉬카 라자파크샤
메쓰티카 비타나게
임정은
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020130020263A priority Critical patent/KR101536937B1/en
Publication of KR20140106125A publication Critical patent/KR20140106125A/en
Application granted granted Critical
Publication of KR101536937B1 publication Critical patent/KR101536937B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법에 관한 것으로서 보다 상세하게는 가시박을 탄화처리하여 얻은 가시박 바이오차를 증기로 처리하여 활성화시킨 증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가하여 상기 항생물질을 증기 활성화된 가시박 바이오차에 흡착시켜 제거함으로써 수중의 항생물질을 제거할 수 있는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법에 관한 것이다.[0001] The present invention relates to a method for removing an antibiotic substance from a water vapor using a vapor activated bacterium, and more particularly, to a method for removing an antibiotic substance from a vapor activated bacterium by using a steam activated bacterium, The present invention relates to a method for removing an antibiotic substance from water by using a steam-activated visible-light biochip capable of removing the antibiotic substance from water by adding the antibiotic substance to the water containing antibiotic substance and adsorbing the antibiotic substance on the vapor- will be.

Description

증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법{Method for removal of antibiotics in water using steam activated biochar derived from burcucumber(Sicyos angulatus L.)}[0001] The present invention relates to a method for removing an antibiotic substance from water using steam activated activated carbon microbes (Sicyos angulatus L.)

본 발명은 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법에 관한 것으로서 보다 상세하게는 가시박을 탄화처리하여 얻은 가시박 바이오차를 증기로 처리하여 활성화시킨 증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가하여 상기 항생물질을 증기 활성화된 가시박 바이오차에 흡착시켜 제거함으로써 수중의 항생물질을 제거할 수 있는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법에 관한 것이다.
[0001] The present invention relates to a method for removing an antibiotic substance from a water vapor using a vapor activated bacterium, and more particularly, to a method for removing an antibiotic substance from a vapor activated bacterium by using a steam activated bacterium, The present invention relates to a method for removing an antibiotic substance from water by using a steam-activated visible-light biochip capable of removing the antibiotic substance from water by adding the antibiotic substance to the water containing antibiotic substance and adsorbing the antibiotic substance on the vapor- will be.

동물의 질병 치료 및 예방과 성장 촉진을 위해 사용하는 항생물질은 동물 체내에 투여된 후 약 10∼20%만이 사용되고 대부분 동물의 체외로 배출된다. Antibiotics used for the treatment and prevention of diseases of animals and the promotion of growth are only used about 10 to 20% after they are administered to animals, and most of them are released to the outside of animals.

배출된 항생물질은 배설물, 소변 등의 다양한 경로를 통해 토양, 수계 등의 환경으로 유입되는데, 이러한 항생물질의 환경으로의 유입에 따라 항생물질에 대한 내성을 지니는 박테리아 생성 등의 문제점을 야기하여 인간의 건강 및 환경 생태 건전성에 위협을 초래할 수 있다.Exhausted antibiotics are introduced into soil, water, and other environments through various routes such as excreta and urine. The introduction of such antibiotics into the environment causes problems such as bacterial resistance, which is resistant to antibiotics, Health and environmental health can be a threat to health.

실제로 소, 돼지, 닭, 염소 등의 동물을 대량으로 사육하는 장소의 주변의 토양, 지하수, 하천 등의 환경에서 항생물질의 잔류가 보고되고 있다.In fact, antibiotic residues are reported in environments such as soils, groundwater, and rivers in the vicinity of places where animals such as cows, pigs, chickens and goats are raised in large quantities.

상기의 항생물질을 제거하기 위해 활성탄(activated carbon)을 흡착제로 사용하여 항생물질을 활성탄에 흡착시켜 항생물질 제거에 사용되고 있으나, 활성탄을 처리하는 비용 등의 문제로 인해 항생물질 제거를 위한 흡착제로서의 활성탄 이외의 대체 성분의 개발이 필요한 실정이다.In order to remove antibiotics, activated carbon is used as an adsorbent to adsorb antibiotics on activated carbon to remove antibiotics. However, due to problems such as cost of treating activated carbon, activated carbon as an adsorbent for removing antibiotics It is necessary to develop other substitute components.

가시박(burcucumber[Sicyos angulatus L.])은 북아메리가 원산지인 박과의 1년생 식물로 덩굴손을 이용해 넓게 퍼져 주변 식물의 광조건을 저해시키며, 빠른 번식력으로 일반 경작지까지 분포면적을 넓혀 작물생산량 감소 및 토종 생태계 교란 문제를 야기하고 있다. Burcucumber ( Sicyos angulatus L. ) is a perennial plant originating in northern america. It spreads widely using tendrils to inhibit the light conditions of surrounding plants. It spreads its distribution area to general cropland with rapid propagation and decreases crop yield And native ecosystem disturbances.

이에 따라 2009년 6월 1일 환경부에서 가시박을 생태계 교란식물로 지정하고 전국적으로 가시박을 제거하기 위한 작업이 행해지고 있다.As a result, on June 1, 2009, the Ministry of the Environment designated the plant as an ecosystem disturbing plant and has been working on the elimination of visible specks nationwide.

그러나 이미 가시박의 분포면적이 넓고 빠른 번식력으로 인해 제거되는 가시박의 양이 많아지면서 종래 가시박의 제거 시 소각처리의 비용이 증가함에 따라 가시박의 처리 또한 문제가 되고 있다.However, since the amount of visible light removed due to the large distribution area of the visible light and the rapid reproductive force is increased, the cost of the incineration treatment is increased when the visible light is removed.

최근 조류(藻類)와 식물 자원, 즉 나무, 풀, 농작물의 가지, 잎, 뿌리, 열매 등의 바이오매스(biomass)를 무산소분위기하에서의 가열에 의한 열분해(pyrolysis) 또는 비활성기체하에서의 가열에 의한 열분해(pyrolysis)를 통해 생산된 바이오차(biochar)가 고유의 물리·화학적 특성으로 인해 유·무기 오염물질의 흡착제거에 우수한 효율을 보유한 것으로 보고되고 있다. Recently, biomass such as algae and plant resources such as trees, grasses, branches, leaves, roots, and fruits of crops have been pyrolysis by heating under anaerobic atmosphere or pyrolysis by heating under inert gas It has been reported that biochar produced through pyrolysis has excellent efficiency in adsorption removal of organic and inorganic contaminants due to inherent physical and chemical properties.

본 발명의 발명자는 가시박을 이용하여 수중의 항생물질을 제거에 대한 연구를 수행하던 중 가시박을 탄화처리하여 얻은 가시박 바이오차를 증기로 처리하여 활성화시킨 증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가하여 상기 항생물질을 증기 활성화된 가시박 바이오차에 흡착시켜 제거함으로써 수중의 항생물질을 제거할 수 있음을 알게 되어 본 발명을 완성하였다.The inventors of the present invention conducted research on removing antibiotics in water by using a visible thin film, and found that the vapor-activated thin-film bio-tea obtained by carbonizing the thin film and activating the thin film bio- The present inventors have found that the antibiotic substance can be removed by adsorbing the antibiotic substance on the vapor-activated caustic biochip by adding it to the water containing the substance, thereby completing the present invention.

본 발명은 환경, 특히 수중에 함유된 항생물질의 효과적인 제거 뿐만 아니라 외래식물인 가시박의 잔유물을 효율적으로 재활용 할 수 있는 유용한 기술이다. The present invention is a useful technique that can effectively recycle residues of foreign plants, as well as effective removal of antibiotics contained in the environment, particularly in water.

한편, 항생물질 제거와 관련된 선행기술로서 한국특허출원 제2007-0061226호에 가축이나 양식어류에 있어서, 질병예방 및 성장촉진을 위하여 사료에 배합되는 항생물질이 체내에 잔류된 상태에서 식용으로 섭취되는 것을 방지하기 위하여, 베타락탐환을 갖는 항생물질을 분해하는 베타라타마제를 도살 또는 출하 전 살아있는 가축(어류)에 투여함으로써, 식용 가축류, 가금류 및 양식어류의 체내에 잔류하는 항생물질을 신속히 제거하는 방법이 있다.As a prior art related to the removal of antibiotics, Korean Patent Application No. 2007-0061226 discloses a method for preventing and growing antibiotics contained in feeds for the prevention and growth of diseases in livestock and aquaculture, , Beta-lactamase, which degrades antibiotic substances having a beta lactam ring, is rapidly removed from the living body of edible livestock, poultry, and aquaculture by administering to the live livestock (fish) before slaughter or shipment There is a way.

그러나 본 발명과 상기 선행기술은 발명의 기술적 특징이 서로 달라 발명의 구성이 서로 다른 발명이다.
However, the present invention and the prior art are different from each other in the technical features of the invention and are different from each other in the invention.

본 발명의 목적은 항생물질이 함유된 수중에서 항생물질을 제거하는 방법을 제공하고자 한다.
It is an object of the present invention to provide a method for removing antibiotics from water containing antibiotics.

본 발명은 증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가하여 항생물질을 증기 활성화된 가시박 바이오차에 흡착시켜 제거할 수 있는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법을 제공한다.
The present invention relates to a process for the removal of antibiotics in water using a vapor-activated spiked bio-car, which can be removed by adsorbing the antibiotic to the vapor-activated spiked bio-car by adding the steam-activated spiked bio- ≪ / RTI >

본 발명의 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법은 항생물질이 함유된 물에 가시박을 건조한 가시박 바이오매스 및 가시박을 탄화처리하여 얻은 가시박 바이오차를 각각 첨가하여 항생물질을 흡착시키는 것에 비해 항생물질의 흡착능이 높아 항생물질이 함유된 물의 정화에 매우 우수한 효과가 있다.The method of the present invention for removing an antibiotic substance from water using a steam activated biofilm of the present invention is a method for removing antibiotics from water by adding a biocide obtained by drying a dried bark of water and a bark of a bark obtained by carbonizing the bark, Compared to adsorbing substances, the adsorbing ability of antibiotics is high, which is very effective for the purification of water containing antibiotics.

한편, 본 발명을 이용하여 수중의 항생물질 처리시 생태계 교란물질인 가시박의 처리에 유용할 뿐만 아니라, 종래 수중의 항생물질 처리시 흡착제로 사용되는 활성탄의 처리비용(1500달러(US dollar)/ton)에 비해 적은 비용(246달러(US dollar)/ton)이 소모되므로 경제적으로 수중의 항생물질을 제거할 수 있다.
In addition, the present invention can be applied not only to the treatment of visible bark, which is an ecosystem disturbing material, but also to the treatment cost of activated carbon (US $ 1,500 / day) used as an adsorbent in the treatment of antibiotics in water, ($ 246 / ton) is consumed as compared with the case where the amount of antibiotics in the water is reduced.

본 발명은 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법을 나타낸다.The present invention shows a method for removing an underwater antibiotic using a steam-activated visible-light bio-car.

본 발명은 증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가하여 항생물질을 증기 활성화된 가시박 바이오차에 흡착시켜 제거하는 것을 특징으로 하는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법을 나타낸다. The present invention relates to a process for the production of a steam-activated, viscous, bio-tea, comprising the steps of adding a vapor-activated, viscous bio-tea to water containing antibiotics to adsorb and remove the antibiotic on a vapor- Describes the material removal method.

상기에서 물 1리터(L)에 대하여 항생물질 2.5∼50mg이 용해된 수용액에 증기 활성화된 가시박 바이오차 0.1∼1g을 첨가하고 3∼48시간 동안 항생물질을 증기 활성화된 가시박 바이오차를 흡착시켜 항생물질을 제거할 수 있다.In the above, 0.1-1 g of steam-activated caustic bioassay was added to an aqueous solution of 2.5 to 50 mg of antibiotic dissolved in 1 liter of water, and the antibiotic was adsorbed for 3 to 48 hours on a vapor- To remove antibiotics.

상기에서 증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가시 항생물질이 함유된 물의 온도는 25℃ 이하로 유지할 수 있다.The temperature of the water containing the antibiotic substance can be maintained at 25 캜 or lower when the vapor-activated caustic biochar of the above is added to water containing antibiotics.

상기에서 증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가시 항생물질이 함유된 물의 온도는 4℃ 이상 내지 25℃ 이하로 유지할 수 있다.The temperature of the water containing the antibiotic substance can be maintained at 4 to 25 캜 when the steam-activated caustic biochore is added to the water containing antibiotics.

상기에서 증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가시 항생물질이 함유된 물의 온도는 20∼25℃으로 유지할 수 있다.The temperature of the antibiotic-containing water can be maintained at 20 to 25 占 폚 when the vapor-activated caustic biochore is added to water containing antibiotics.

상기에서 증기 활성화된 가시박 바이오차는 가시박을 탄화처리하여 가시박 바이오차를 얻는 단계; 상기의 가시박 바이오차를 증기로 처리하는 단계를 포함하여 얻은 것을 사용할 수 있다.Wherein the vapor-activated visible-light biochain is obtained by carbonizing the visible light to obtain a visible-light biochip; And a step of treating the visible thin-film bio-tea with steam.

상기에서 증기 활성화된 가시박 바이오차는 가시박을 0.1∼0.9기압(atm)의 압력, 300∼900℃에서 1∼5시간 동안 탄화처리하여 가시박 바이오차를 얻는 단계; 상기의 가시박 바이오차에 80∼120℃의 수증기로 10분∼3시간 동안 처리하는 단계를 포함하여 얻은 것을 사용할 수 있다.Wherein the vapor-activated visible-light biochain is obtained by carbonizing the visible light at a pressure of 0.1 to 0.9 atm and at a temperature of 300 to 900 ° C for 1 to 5 hours to obtain a visible-light biochip; Treating the visible thin-film biochar with the water vapor of 80 to 120 캜 for 10 minutes to 3 hours may be used.

상기에서 증기 활성화된 가시박 바이오차는 가시박을 1.0기압(atm)의 압력, 300℃에서 3시간 동안 탄화처리하여 가시박 바이오차를 얻는 단계; 상기의 가시박 바이오차에 100℃의 수증기로 30분 동안 처리하는 단계를 포함하여 얻은 것을 사용할 수 있다.In the above, the vapor-activated visible-light biocha is obtained by carbonizing the visible film at a pressure of 1.0 atm and at 300 ° C for 3 hours to obtain a viscous bio-tea; Treating the visible thin-film biochar with the steam of 100 캜 for 30 minutes may be used.

상기에서 증기 활성화된 가시박 바이오차는 가시박을 1.0기압(atm)의 압력, 700℃에서 3시간 동안 탄화처리하여 가시박 바이오차를 얻는 단계; 상기의 가시박 바이오차에 100℃의 수증기로 30분 동안 처리하는 단계를 포함하여 얻은 것을 사용할 수 있다.In the above, the vapor-activated visible-light biochain is obtained by carbonizing the visible light at a pressure of 1.0 atm and at 700 ° C for 3 hours to obtain a visible-visor biochannel; Treating the visible thin-film biochar with the steam of 100 캜 for 30 minutes may be used.

상기에서 수중에 함유된 항생물질은 설파메타진(sulfamethazine), 설파메톡사졸(sulfamethoxazole), 테트라사이클린(tetracycline), 클로로테트라사이클린(chlorotetracycline), 옥시테트라사이클린(oxytetracycline) 중에서 선택된 어느 하나 이상일 수 있다.The antibiotics contained in the above water may be any one or more selected from sulfamethazine, sulfamethoxazole, tetracycline, chlorotetracycline, and oxytetracycline.

상기에서 수중에 함유된 항생물질은 설파메타진(sulfamethazine)일 수 있다.
The antibiotic contained in the above water may be sulfamethazine.

본 발명의 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법에 대해 다양한 조건으로 실시한바, 본 발명의 목적을 달성하기 위해서는 상기에서 언급한 조건에 의해 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법을 제공하는 것이 바람직하다.
In order to achieve the object of the present invention, the method of removing the water-in-water antibiotic using the steam-activated visible-light biocha of the present invention was carried out under the conditions mentioned above, It is desirable to provide a method for removing antibiotics.

이하 본 발명의 내용을 제조예, 실시예 및 시험예를 통하여 구체적으로 설명한다. 그러나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다.
Hereinafter, the content of the present invention will be described in detail through Production Examples, Examples and Test Examples. However, these are for the purpose of illustrating the present invention in more detail, and the scope of the present invention is not limited thereto.

<제조예 1> 증기 활성화된 가시박 바이오차(SA-BC700) 제조PREPARATION EXAMPLE 1 Preparation of Steam-Activated Visible Peptide Bio-Tea (SA-BC700)

가시박을 1.0기압(atm)의 압력, 700℃에서 3시간 동안 탄화처리하여 가시박 바이오차를 얻은 후 상기 가시박 바이오차를 100℃의 수증기(steam)로 45분 동안 처리함으로써 증기 활성화된 가시박 바이오차(SA-BC700)를 제조하였다.
The visible film was subjected to a carbonization treatment at a pressure of 1.0 atm and at 700 ° C for 3 hours to obtain a viscous bio-tea, and then the viscous bio-tea was treated with steam at 100 ° C for 45 minutes, (SA-BC700) was prepared.

<제조예 2> 가시박 바이오차 제조(BC300)PREPARATION EXAMPLE 2 Preparation of Visible Pellets (BC300)

가시박을 1.0기압(atm)의 압력, 300℃에서 3시간 동안 탄화처리하여 가시박 바이오차(BC300)를 제조하였다.
The visible film was subjected to a carbonization treatment at a pressure of 1.0 atm and at a temperature of 300 캜 for 3 hours to prepare a viscous bacterium BC300.

<제조예 3> 가시박 바이오차 제조(BC700)&Lt; Preparation Example 3 > Preparation of visible pouch biocha (BC700)

가시박을 1.0기압(atm)의 압력, 700℃에서 3시간 동안 탄화처리하여 가시박 바이오차(BC700)를 제조하였다.
Visible foil was carbonized at a pressure of 1.0 atm and at 700 캜 for 3 hours to prepare a viscous bamboo tea (BC700).

<실시예 1>&Lt; Example 1 >

물 1리터(L)에 대하여 항생물질로서 설파메타진(sulfamethazine) 50mg이 첨가한 후 흡착제로서 상기 제조예 1에서 제조한 증기 활성화된 가시박 바이오차(SA-BC700) 1g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 50 mg of sulfamethazine as an antibiotic to 1 liter of water (L), 1 g of the activated vaporizable activated carbon (SA-BC700) prepared in Preparation Example 1 as an adsorbent was added, and the mixture was stirred for 48 hours Antibiotics were adsorbed.

상기에서 증기 활성화된 가시박 바이오차(SA-BC700)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which antibiotics were added was maintained at 25 캜 when the steam-activated visible-light biocha (SA-BC 700) was introduced.

<비교예 1-1>&Lt; Comparative Example 1-1 >

물 1리터(L)에 대하여 항생물질로서 설파메타진 50mg이 첨가한 후 흡착제로서 상기 제조예 3에서 제조한 가시박 바이오차(BC300) 1g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 50 mg of sulfamethazine as an antibiotic substance to 1 liter of water (L), 1 g of Kashibak biocha (BC300) prepared in Preparation Example 3 was added as an adsorbent and the antibiotic was adsorbed for 48 hours.

상기에서 가시박 바이오차(BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃으로 유지하였다.
The temperature of the water to which the antibiotic substance was added was maintained at 25 캜 when the viscous bacterium BC300 was added.

<비교예 1-2>&Lt; Comparative Example 1-2 >

물 1리터(L)에 대하여 항생물질로서 설파메타진 50mg이 첨가한 후 흡착제로서 상기 제조예 4에서 제조한 가시박 바이오차(BC700) 1g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 50 mg of sulfamethazine as an antibiotic to 1 liter of water (L), 1 g of the viscous bacterium (BC700) prepared in Preparation Example 4 was added as an adsorbent and the antibiotic was adsorbed for 48 hours.

상기에서 가시박 바이오차(BC700)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
In the above, the temperature of the water to which the antibiotic substance was added was maintained at 25 캜 when the viscous bacterium BC 700 was added.

<비교예 1-3>&Lt; Comparative Example 1-3 >

물 1리터(L)에 대하여 항생물질로서 설파메타진 50mg이 첨가한 후 흡착제로서 가시박 바이오매스(BM) 1g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 50 mg of sulfamethazine as an antibiotic to 1 liter of water, 1 g of Visible biomass (BM) was added as an adsorbent and the antibiotic was adsorbed for 48 hours.

상기에서 가시박 바이오매스(BM)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.The temperature of the water to which the antibiotic substance was added was maintained at 25 캜 when the viscous biomass (BM) was added.

상기에서 가시박 바이오매스(BM)는 가시박을 60℃에서 48시간 동안 건조한 후 0.5∼1mm 크기로 절단한 다음 1mm 크기로 체(sieve) 거름한 것을 사용하였다.
In the above, Visible Biomass (BM) was dried at 60 ° C for 48 hours, cut into 0.5-1 mm size and sieved to 1 mm size.

<시험예 1> 항생물질 흡착량 측정&Lt; Test Example 1 > Measurement of antibiotic adsorption amount

상기 실시예 1, 비교예 1-1 내지 비교예 1-3에서 각각의 흡착제에 대한 항생물질인 설파메타진의 흡착정도를 Langmuir 등온흡착 모델식의 방법에 의해 측정하고 이의 결과를 아래의 표 1에 나타내었다.The degree of adsorption of sulfamethazine, an antibiotic substance, to each adsorbent in Example 1 and Comparative Examples 1-1 to 1-3 was measured by the Langmuir adsorption model equation, and the results are shown in Table 1 below Respectively.

항생물질 흡착량 측정 결과Antibiotic adsorption amount measurement result 항목Item 최대 흡착량(mg/g)Maximum adsorption (mg / g) 흡착상수(KL)Adsorption constant (K L ) 결정계수(R2)The coefficient of determination (R 2 ) 실시예 1Example 1 32.19132.191 9.532×10-1 9.532 x 10 -1 0.9270.927 비교예 1-1Comparative Example 1-1 15.65615.656 4.513×10-2 4.513 × 10 -2 0.9590.959 비교예 1-2Comparative Example 1-2 18.77618.776 7.940×10-1 7.940 × 10 -1 0.8830.883 비교예 1-3Comparative Example 1-3 6.6696.669 1.066×10-2 1.066 x 10 -2 0.9400.940

*상기 표 1의 결과에서 흡착상수(KL), 결정계수(R2)는 각각의 흡착제가 설파메타진의 흡착 반응이 Langmuir 등온흡착 모델이 제시하는 흡착기작에 얼마나 잘 맞는지를 수치화한 것으로 특히 결정계수(R2)는 1에 가까울수록 잘 들어 맞음을 의미한다.
* The adsorption constant (K L ) and the determination coefficient (R 2 ) in the results of Table 1 are the numerical values indicating how well each adsorbent suits the adsorption mechanism of sulfamethazine by the Langmuir adsorption model, The closer to 1 the coefficient (R 2 ), the better fit.

상기 표 1의 결과에서처럼 항생물질인 설파메타진의 흡착정도는 실시예 1에서의 증기 활성화된 가시박 바이오차(SA-BC700)의 흡착량 > 비교예 1-2의 가시박 바이오차(BC700)의 흡착량 > 비교예 1-1의 가시박 바이오차(BC300)의 흡착량 > 비교예 1-3의 가시박 바이오매스(BM)의 흡착량의 순서로 나타내고 있어 본 발명의 증기 활성화된 가시박 바이오차가 가시박 바이오차 및 가시박 바이오매스에 비해 수중의 항생물질에 대한 흡착능이 우수함을 알 수 있었다.As shown in the above Table 1, the degree of adsorption of sulfamethazine, the antibiotic substance, was determined by the adsorption amount of the vapor-activated visible-field biochar (SA-BC700) in Example 1> Adsorption amount > The adsorption amount of visible thin film biocide (BC300) of Comparative Example 1-1> adsorption amount of visible thin film biomass (BM) of Comparative Example 1-3, It was found that the adsorbability of antibiotics in water was superior to that of Chaga garbage biocham and thorn leaf biomass.

특히 증기 활성화된 가시박 바이오차(SA-BC700)의 항생물질 흡착량은 가시박 바이오매스(BM)의 항생물질 흡착량 대비 4.82배, 가시박 바이오차(BC300)의 항생물질 흡착량 대비 2.06배, 가시박 바이오차(BC700)의 항생물질 흡착량 대비 1.71배 증가하고 있음을 알 수 있어 이를 통해 가시박 바이오차에 대한 증기 처리는 가시박 바이오차의 항생물질 흡착제거 효율을 증대시킬 수 있는 우수한 방법임을 알 수 있었다.
In particular, the amount of antibiotic adsorbed on the steam activated baculovirus (SA-BC700) was 4.82 times as much as the amount of antibiotic adsorbed on visible biomass (BM), 2.06 times as much as the amount of antibiotic adsorbed on the bacillus biocar (BC300) (BC700), which is 1.71 times higher than the amount of antibiotic adsorbed by Kashipak biocha (BC700). Therefore, the vapor treatment of Kashipak biocha Method.

<제조예 4> 증기 활성화된 가시박 바이오차(SA-BC300) 제조PREPARATION EXAMPLE 4 Preparation of Vapor-Activated Thin Film Bio-Tea (SA-BC300)

가시박을 1.0기압(atm)의 압력, 300℃에서 3시간 동안 탄화처리하여 가시박 바이오차를 얻은 후 상기 가시박 바이오차를 100℃의 수증기(steam)로 45분 동안 처리함으로써 증기 활성화된 가시박 바이오차(SA-BC300)를 제조하였다.
The visible film was subjected to carbonization treatment at a pressure of 1.0 atm and at 300 ° C for 3 hours to obtain a viscous bio-tea, and then the viscous bio-tea was treated with steam at 100 ° C for 45 minutes, (SA-BC300).

<실시예 2-1>&Lt; Example 2-1 >

물 1리터(L)에 대하여 항생물질로서 설파메타진(sulfamethazine) 30mg이 첨가한 후 흡착제로서 상기 제조예 4에서 제조한 증기 활성화된 가시박 바이오차(SA-BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of sulfamethazine as an antibiotic to 1 liter of water (L), 0.5 g of the vapor-activated caustic bioaccumulator (SA-BC300) prepared in Preparation Example 4 was added as an adsorbent, The antibiotics were adsorbed for a while.

상기에서 증기 활성화된 가시박 바이오차(SA-BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which antibiotics were added was maintained at 25 캜 when the steam-activated visible-light bio-car (SA-BC300) was introduced.

<실시예 2-2>&Lt; Example 2-2 >

물 1리터(L)에 대하여 항생물질로서 설파메톡사졸(sulfamethoxazole) 30mg이 첨가한 후 흡착제로서 상기 제조예 4에서 제조한 증기 활성화된 가시박 바이오차(SA-BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.30 mg of sulfamethoxazole was added as an antibiotic to 1 liter of water and then 0.5 g of vapor activated caustic bioassay (SA-BC300) prepared in Preparation Example 4 was added as an adsorbent. After 48 hours The antibiotics were adsorbed for a while.

상기에서 증기 활성화된 가시박 바이오차(SA-BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which antibiotics were added was maintained at 25 캜 when the steam-activated visible-light bio-car (SA-BC300) was introduced.

<실시예 2-3>&Lt; Example 2-3 >

물 1리터(L)에 대하여 항생물질로서 테트라사이클린(tetracycline) 30mg이 첨가한 후 흡착제로서 상기 제조예 4에서 제조한 증기 활성화된 가시박 바이오차(SA-BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of tetracycline as an antibiotic to 1 liter of water (L), 0.5 g of the activated vaporized activated carbon (SA-BC300) prepared in Preparation Example 4 was added as an adsorbent, and the mixture was stirred for 48 hours Antibiotics were adsorbed.

상기에서 증기 활성화된 가시박 바이오차(SA-BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which antibiotics were added was maintained at 25 캜 when the steam-activated visible-light bio-car (SA-BC300) was introduced.

<실시예 2-4><Example 2-4>

물 1리터(L)에 대하여 항생물질로서 클로로테트라사이클린(chlorotetracycline) 30mg이 첨가한 후 흡착제로서 상기 제조예 4에서 제조한 증기 활성화된 가시박 바이오차(SA-BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of chlorotetracycline as an antibiotic to 1 liter of water (L), 0.5 g of the vapor-activated caustic bioaccumulator (SA-BC300) prepared in Preparation Example 4 was added as an adsorbent, The antibiotics were adsorbed for a while.

상기에서 증기 활성화된 가시박 바이오차(SA-BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which antibiotics were added was maintained at 25 캜 when the steam-activated visible-light bio-car (SA-BC300) was introduced.

<실시예 2-5><Example 2-5>

물 1리터(L)에 대하여 항생물질로서 옥시테트라사이클린(oxytetracycline) 30mg이 첨가한 후 흡착제로서 상기 제조예 4에서 제조한 증기 활성화된 가시박 바이오차(SA-BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of oxytetracycline as an antibiotic to 1 liter of water (L), 0.5 g of the vapor-activated caustic bioaccumulator (SA-BC300) prepared in Preparation Example 4 was added as an adsorbent, The antibiotics were adsorbed for a while.

상기에서 증기 활성화된 가시박 바이오차(SA-BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which antibiotics were added was maintained at 25 캜 when the steam-activated visible-light bio-car (SA-BC300) was introduced.

<비교예 2-1>&Lt; Comparative Example 2-1 >

물 1리터(L)에 대하여 항생물질로서 설파메타진(sulfamethazine) 30mg이 첨가한 후 흡착제로서 상기 제조예 2에서 제조한 가시박 바이오차(BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of sulfamethazine as an antibiotic substance to 1 liter of water, 0.5 g of Vasikobiocha (BC300) prepared in Preparation Example 2 was added as an adsorbent, and the antibiotic was adsorbed for 48 hours .

상기에서 제조예 2에서 제조한 가시박 바이오차(BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which the antibiotic substance was added was maintained at 25 占 폚 when the viscous bacillus (BC300) prepared in Preparation Example 2 was added.

<비교예 2-2>&Lt; Comparative Example 2-2 &

물 1리터(L)에 대하여 항생물질로서 설파메톡사졸(sulfamethoxazole) 30mg이 첨가한 후 흡착제로서 상기 제조예 2에서 제조한 가시박 바이오차(BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.30 mg of sulfamethoxazole was added as an antibiotic to 1 liter of water and then 0.5 g of Kashibak Biocha (BC300) prepared in Preparation Example 2 was added thereto as an adsorbent, and the antibiotic was adsorbed for 48 hours .

상기에서 제조예 2에서 제조한 가시박 바이오차(BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which the antibiotic substance was added was maintained at 25 占 폚 when the viscous bacillus (BC300) prepared in Preparation Example 2 was added.

<비교예 2-3>&Lt; Comparative Example 2-3 >

물 1리터(L)에 대하여 항생물질로서 테트라사이클린(tetracycline) 30mg이 첨가한 후 흡착제로서 상기 제조예 2에서 제조한 가시박 바이오차(BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of tetracycline as an antibiotic to 1 liter of water (L), 0.5 g of the viscous bacterium BC300 prepared in Preparation Example 2 was added as an adsorbent, and the antibiotic was adsorbed for 48 hours .

상기에서 제조예 2에서 제조한 가시박 바이오차(BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which the antibiotic substance was added was maintained at 25 占 폚 when the viscous bacillus (BC300) prepared in Preparation Example 2 was added.

<비교예 2-4>&Lt; Comparative Example 2-4 &

물 1리터(L)에 대하여 항생물질로서 클로로테트라사이클린(chlorotetracycline) 30mg이 첨가한 후 흡착제로서 상기 제조예 2에서 제조한 가시박 바이오차(BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.30 mg of chlorotetracycline was added as an antibiotic to 1 liter of water and then 0.5 g of Kashipak biocha (BC300) prepared in Preparation Example 2 was added thereto as an adsorbent, and the antibiotic was adsorbed for 48 hours .

상기에서 제조예 2에서 제조한 가시박 바이오차(BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which the antibiotic substance was added was maintained at 25 占 폚 when the viscous bacillus (BC300) prepared in Preparation Example 2 was added.

<비교예 2-5>&Lt; Comparative Example 2-5 &

물 1리터(L)에 대하여 항생물질로서 옥시테트라사이클린(oxytetracycline) 30mg이 첨가한 후 흡착제로서 상기 제조예 2에서 제조한 가시박 바이오차(BC300) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of oxytetracycline as an antibiotic to 1 liter of water (L), 0.5 g of Kashipak biocha (BC300) prepared in Preparation Example 2 was added as an adsorbent and the antibiotic was adsorbed for 48 hours .

상기에서 제조예 2에서 제조한 가시박 바이오차(BC300)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.
The temperature of the water to which the antibiotic substance was added was maintained at 25 占 폚 when the viscous bacillus (BC300) prepared in Preparation Example 2 was added.

<비교예 2-6>&Lt; Comparative Example 2-6 >

물 1리터(L)에 대하여 항생물질로서 설파메타진(sulfamethazine) 30mg이 첨가한 후 흡착제로서 가시박 바이오매스(BM) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of sulfamethazine as an antibiotic to 1 liter of water, 0.5 g of Visible biomass (BM) was added as an adsorbent and the antibiotic was adsorbed for 48 hours.

상기에서 가시박 바이오매스(BM)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.The temperature of the water to which the antibiotic substance was added was maintained at 25 캜 when the viscous biomass (BM) was added.

상기에서 가시박 바이오매스(BM)는 가시박을 60℃에서 48시간 동안 건조한 후 0.5∼1mm 크기로 절단한 다음 1mm 크기로 체(sieve) 거름한 것을 사용하였다.
In the above, Visible Biomass (BM) was dried at 60 ° C for 48 hours, cut into 0.5-1 mm size and sieved to 1 mm size.

<비교예 2-7><Comparative Example 2-7>

물 1리터(L)에 대하여 항생물질로서 설파메톡사졸(sulfamethoxazole) 30mg이 첨가한 후 흡착제로서 가시박 바이오매스(BM) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of sulfamethoxazole as an antibiotic to 1 liter of water, 0.5 g of Visible biomass (BM) was added as an adsorbent and the antibiotic was adsorbed for 48 hours.

상기에서 가시박 바이오매스(BM)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.The temperature of the water to which the antibiotic substance was added was maintained at 25 캜 when the viscous biomass (BM) was added.

상기에서 가시박 바이오매스(BM)는 가시박을 60℃에서 48시간 동안 건조한 후 0.5∼1mm 크기로 절단한 다음 1mm 크기로 체(sieve) 거름한 것을 사용하였다.
In the above, Visible Biomass (BM) was dried at 60 ° C for 48 hours, cut into 0.5-1 mm size and sieved to 1 mm size.

<비교예 2-8>&Lt; Comparative Example 2-8 &

물 1리터(L)에 대하여 항생물질로서 테트라사이클린(tetracycline) 30mg이 첨가한 후 흡착제로서 가시박 바이오매스(BM) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of tetracycline as an antibiotic to 1 liter of water, 0.5 g of potassium bicarbonate (BM) as an adsorbent was added and the antibiotic was adsorbed for 48 hours.

상기에서 가시박 바이오매스(BM)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.The temperature of the water to which the antibiotic substance was added was maintained at 25 캜 when the viscous biomass (BM) was added.

상기에서 가시박 바이오매스(BM)는 가시박을 60℃에서 48시간 동안 건조한 후 0.5∼1mm 크기로 절단한 다음 1mm 크기로 체(sieve) 거름한 것을 사용하였다.
In the above, Visible Biomass (BM) was dried at 60 ° C for 48 hours, cut into 0.5-1 mm size and sieved to 1 mm size.

<비교예 2-9>&Lt; Comparative Example 2-9 &

물 1리터(L)에 대하여 항생물질로서 클로로테트라사이클린(chlorotetracycline) 30mg이 첨가한 후 흡착제로서 가시박 바이오매스(BM) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of chlorotetracycline as an antibiotic to 1 liter of water, 0.5 g of Visible biomass (BM) was added as an adsorbent and the antibiotic was adsorbed for 48 hours.

상기에서 가시박 바이오매스(BM)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.The temperature of the water to which the antibiotic substance was added was maintained at 25 캜 when the viscous biomass (BM) was added.

상기에서 가시박 바이오매스(BM)는 가시박을 60℃에서 48시간 동안 건조한 후 0.5∼1mm 크기로 절단한 다음 1mm 크기로 체(sieve) 거름한 것을 사용하였다.
In the above, Visible Biomass (BM) was dried at 60 ° C for 48 hours, cut into 0.5-1 mm size and sieved to 1 mm size.

<비교예 2-10>&Lt; Comparative Example 2-10 &

물 1리터(L)에 대하여 항생물질로서 옥시테트라사이클린(oxytetracycline) 30mg이 첨가한 후 흡착제로서 가시박 바이오매스(BM) 0.5g을 투입하고 48시간 동안 항생물질을 흡착시켰다.After adding 30 mg of oxytetracycline as an antibiotic to 1 liter of water, 0.5 g of Visible Biomass (BM) was added as an adsorbent and the antibiotic was adsorbed for 48 hours.

상기에서 가시박 바이오매스(BM)를 투입시 항생물질이 첨가된 물의 온도는 25℃로 유지하였다.The temperature of the water to which the antibiotic substance was added was maintained at 25 캜 when the viscous biomass (BM) was added.

상기에서 가시박 바이오매스(BM)는 가시박을 60℃에서 48시간 동안 건조한 후 0.5∼1mm 크기로 절단한 다음 1mm 크기로 체(sieve) 거름한 것을 사용하였다.
In the above, Visible Biomass (BM) was dried at 60 ° C for 48 hours, cut into 0.5-1 mm size and sieved to 1 mm size.

<시험예 2> 항생물질 흡착량 측정Test Example 2 Measurement of antibiotic adsorption amount

상기 실시예 2-1 내지 실시예 2-5, 비교예 2-1 내지 비교예 2-10에서 각각의 흡착제에 대한 항생물질의 흡착양을 측정하고 이의 결과를 아래의 표 2에 나타내었다.The adsorption amounts of antibiotics to the respective adsorbents in Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-10 were measured, and the results are shown in Table 2 below.

항생물질 흡착량 측정 결과Antibiotic adsorption amount measurement result 항목Item 흡착량Adsorption amount 실시예 2-1Example 2-1 100100 실시예 2-2Example 2-2 100100 실시예 2-3Example 2-3 100100 실시예 2-4Examples 2-4 100100 실시예 2-5Example 2-5 100100 비교예 2-1Comparative Example 2-1 8686 비교예 2-2Comparative Example 2-2 8585 비교예 2-3Comparative Example 2-3 8585 비교예 2-4Comparative Example 2-4 8686 비교예 2-5Comparative Example 2-5 8787 비교예 2-6Comparative Example 2-6 7575 비교예 2-7Comparative Example 2-7 7474 비교예 2-8Comparative Example 2-8 7575 비교예 2-9Comparative Example 2-9 7474 비교예 2-10Comparative Example 2-10 7373

*상기 표 2의 결과에서 비교예 2-1 내지 비교예 2-10에 대한 각각의 흡착량에 대한 수치는 실시예 2-1, 실시예 2-2, 실시예 2-3, 실시예 2-4 및 실시예 2-5에서 흡착제에 대한 항생물질 흡착량을 수치를 100으로 하였을 때 환산한 수치로서 수치가 높을수록 흡착제에 대한 항생물질 흡착량이 많음을 의미한다.
* Values for adsorption amounts for Comparative Examples 2-1 to 2-10 in the results of Table 2 are shown in Table 2-1, Example 2-2, Example 2-3, Example 2- 4 and Example 2-5, when the value of the amount of antibiotic adsorbed on the adsorbent is taken as 100, the higher the value, the higher the amount of antibiotic adsorbed on the adsorbent.

상기 표 2의 결과에서처럼 항생물질인 설파메타진, 설파메톡사졸, 테트라사이클린, 클로로테트라사이클린 및 옥시테트라사이클린에 대한 흡착정도는 증기 활성화된 가시박 바이오차(SA-BC300)가 증기 처리를 하지 않은 가시박 바이오차(BC700) 및 가시박 바이오매스(BM)에 비해 우수하여 본 발명의 증기 활성화된 가시박 바이오차가 가시박 바이오차 및 가시박 바이오매스에 비해 수중의 항생물질에 대한 흡착능이 우수함을 알 수 있었다.
As shown in the above Table 2, the degree of adsorption to the antibiotics sulfamethazine, sulfamethoxazole, tetracycline, chlorotetracycline, and oxytetracycline was significantly higher than that of the non-vapor-activated (SA-BC300) (BC700) and Visible-Biomass (BM), the vapor-activated visible-light biochain of the present invention is superior to the visible-light biocide and visible-light biomass in adsorbability to water antibiotics Could know.

상술한 바와 같이 본 발명의 바람직한 제조예, 실시예 및 시험예를 참조하여 설명하였지만 본 발명의 기술 분야에서 통상의 지식을 가진 통상의 기술자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
While the present invention has been described with reference to the preferred embodiments, examples and test examples, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. It will be understood that various modifications and changes may be made thereto without departing from the spirit and scope of the invention.

본 발명의 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법은 항생물질이 함유된 물에 가시박을 건조한 가시박 바이오매스 및 가시박을 탄화처리하여 얻은 가시박 바이오차를 각각 첨가하여 항생물질을 흡착시키는 것에 비해 항생물질의 흡착능이 높아 항생물질이 함유된 물의 정화에 매우 우수한 효과가 있다. 한편, 본 발명을 이용하여 수중의 항생물질 처리시 생태계 교란물질인 가시박의 처리에 유용할 뿐만 아니라, 종래 수중의 항생물질 처리시 흡착제로 사용되는 활성탄의 처리비용(1500달러(US dollar)/ton)에 비해 적은 비용(246달러(US dollar)/ton)이 소모되므로 경제적으로 수중의 항생물질을 제거할 수 있어 산업상 이용가능성이 있다.The method of the present invention for removing an antibiotic substance from water using a steam activated biofilm of the present invention is a method for removing antibiotics from water by adding a biocide obtained by drying a dried bark of water and a bark of a bark obtained by carbonizing the bark, Compared to adsorbing substances, the adsorbing ability of antibiotics is high, which is very effective for the purification of water containing antibiotics. In addition, the present invention can be applied not only to the treatment of visible bark, which is an ecosystem disturbing material, but also to the treatment cost of activated carbon (US $ 1,500 / day) used as an adsorbent in the treatment of antibiotics in water, ($ 246 / ton) is consumed as compared with the case of the conventional method.

Claims (8)

증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가하여 항생물질을 증기 활성화된 가시박 바이오차에 흡착시켜 제거하는 것을 특징으로 하며,
상기 증기 활성화된 가시박 바이오차는 가시박을 탄화처리하여 가시박 바이오차를 얻는 단계;
상기의 가시박 바이오차를 증기로 처리하는 단계를 포함하여 얻은 것임을 특징으로 하는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법.
The method of claim 1, wherein the steam activated spiked bacillus is added to water containing antibiotics to adsorb antibiotics on a vapor-activated spakey biochain,
Wherein the vapor-activated visible-light biochain is obtained by carbonizing the visible light to obtain a visible-light biochip;
And a step of treating the visible-light bio-car with the steam.
삭제delete 제1항에 있어서,
물 1리터(L)에 대하여 항생물질 2.5∼50mg이 용해된 수용액에 증기 활성화된 가시박 바이오차 0.1∼1g을 첨가하고 3∼48시간 동안 항생물질을 증기 활성화된 가시박 바이오차를 흡착시키는 것을 특징으로 하는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법.
The method according to claim 1,
0.1 to 1 g of vapor-activated caustic bioassay is added to an aqueous solution of 2.5 to 50 mg of antibiotics per liter (L) of water and the antibiotic is adsorbed for 3 to 48 hours on a vapor-activated caustic biochore A method for removing antibiotics in water using a vapor activated activated carbon biochar.
제1항에 있어서,
증기 활성화된 가시박 바이오차를 항생물질이 함유된 물에 첨가시 항생물질이 함유된 물의 온도는 20∼25℃ 임을 특징으로 하는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법.
The method according to claim 1,
Wherein the temperature of the water containing the antibiotic substance is 20 to 25 占 폚 when the steam-activated caustic bio-tea is added to the water containing the antibiotic substance.
제1항에 있어서,
증기 활성화된 가시박 바이오차는 가시박을 0.1∼1.0기압(atm)의 압력, 300∼900℃에서 1∼5시간 동안 탄화처리하여 가시박 바이오차를 얻는 단계;
상기의 가시박 바이오차에 80∼120℃의 수증기로 10분∼3시간 동안 처리하는 단계를 포함하여 얻은 것임을 특징으로 하는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법.
The method according to claim 1,
Activating the activated vapor-phase bio-tea is a step of carbonizing the activated carbon at a pressure of 0.1 to 1.0 atm and at a temperature of 300 to 900 ° C for 1 to 5 hours to obtain a viscous bio-tea;
Treating the visible thin-film biochar with the steam of 80 to 120 ° C for 10 minutes to 3 hours.
제1항에 있어서,
증기 활성화된 가시박 바이오차는 가시박을 1.0기압(atm)의 압력, 300℃에서 3시간 동안 탄화처리하여 가시박 바이오차를 얻는 단계;
상기의 가시박 바이오차에 100℃의 수증기로 30분 동안 처리하는 단계를 포함하여 얻은 것임을 특징으로 하는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법.
The method according to claim 1,
Activation of the steam activated bacterium The bacterium is carbonized at 300 ° C for 3 hours under a pressure of 1.0 atm to obtain a viscous bacterium;
Treating the visible thin-film bio-tea with water vapor at 100 ° C for 30 minutes. The method for removing antibiotic substances from water using the vapor activated thin-film bio-tea.
제1항에 있어서,
증기 활성화된 가시박 바이오차는 가시박을 1.0기압(atm)의 압력, 700℃에서 3시간 동안 탄화처리하여 가시박 바이오차를 얻는 단계;
상기의 가시박 바이오차에 100℃의 수증기로 30분 동안 처리하는 단계를 포함하여 얻은 것임을 특징으로 하는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법.
The method according to claim 1,
Activation of the activated vapor-phase biocham is a step of obtaining a visible vapor phase by carbonizing the visible vapor at a pressure of 1.0 atm and at 700 ° C for 3 hours;
Treating the visible thin-film bio-tea with water vapor at 100 ° C for 30 minutes. The method for removing antibiotic substances from water using the vapor activated thin-film bio-tea.
제1항에 있어서,
항생물질은 설파메타진(sulfamethazine), 설파메톡사졸(sulfamethoxazole), 테트라사이클린(tetracycline), 클로로테트라사이클린(chlorotetracycline), 옥시테트라사이클린(oxytetracycline) 중에서 선택된 어느 하나 이상인 것을 특징으로 하는 증기 활성화된 가시박 바이오차를 이용한 수중 항생물질 제거방법.
The method according to claim 1,
Wherein the antibiotic substance is at least one selected from the group consisting of sulfamethazine, sulfamethoxazole, tetracycline, chlorotetracycline, and oxytetracycline. Removal method of underwater antibiotic using bio - tea.
KR1020130020263A 2013-02-26 2013-02-26 Method for removal of antibiotics in water using steam activated biochar derived from burcucumber(Sicyos angulatus L.) KR101536937B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130020263A KR101536937B1 (en) 2013-02-26 2013-02-26 Method for removal of antibiotics in water using steam activated biochar derived from burcucumber(Sicyos angulatus L.)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130020263A KR101536937B1 (en) 2013-02-26 2013-02-26 Method for removal of antibiotics in water using steam activated biochar derived from burcucumber(Sicyos angulatus L.)

Publications (2)

Publication Number Publication Date
KR20140106125A KR20140106125A (en) 2014-09-03
KR101536937B1 true KR101536937B1 (en) 2015-07-17

Family

ID=51754665

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130020263A KR101536937B1 (en) 2013-02-26 2013-02-26 Method for removal of antibiotics in water using steam activated biochar derived from burcucumber(Sicyos angulatus L.)

Country Status (1)

Country Link
KR (1) KR101536937B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000334A (en) * 2016-05-12 2016-10-12 浙江大学 Modified reed biomass charcoal and preparing method and application thereof
CN105854805B (en) * 2016-05-31 2018-12-25 浙江大学 A kind of modification biological carbon microspheres and its preparation method and application
CN108855083B (en) * 2018-07-05 2021-01-29 西南交通大学 Method for removing sulfonamides in water by activating peracetic acid with modified zeolite
CN108911008B (en) * 2018-07-19 2020-12-25 湖南大学 Method for removing copper and tetracycline in water body
CN109364884B (en) * 2018-11-16 2021-01-29 华南师范大学 Phosphonic ultrafast straw fiber adsorption material and preparation method and application thereof
CN116371360A (en) * 2023-04-04 2023-07-04 华南协同创新研究院 Magnetic oil tea shell biochar material capable of adsorbing antibiotics and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2975011B1 (en) * 1998-07-17 1999-11-10 川崎重工業株式会社 Activated carbon for dioxin adsorption, method and apparatus for producing the same, and dioxin adsorption treatment method
US20050000915A1 (en) * 2003-07-01 2005-01-06 Hirotsugu Yokosawa In situ water treatment
KR101190282B1 (en) * 2012-02-21 2012-10-12 광운대학교 산학협력단 Biochar from wood waste for the removal of heavy metal and the method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2975011B1 (en) * 1998-07-17 1999-11-10 川崎重工業株式会社 Activated carbon for dioxin adsorption, method and apparatus for producing the same, and dioxin adsorption treatment method
US20050000915A1 (en) * 2003-07-01 2005-01-06 Hirotsugu Yokosawa In situ water treatment
KR101190282B1 (en) * 2012-02-21 2012-10-12 광운대학교 산학협력단 Biochar from wood waste for the removal of heavy metal and the method of manufacturing the same

Also Published As

Publication number Publication date
KR20140106125A (en) 2014-09-03

Similar Documents

Publication Publication Date Title
KR101536937B1 (en) Method for removal of antibiotics in water using steam activated biochar derived from burcucumber(Sicyos angulatus L.)
EP3724151A1 (en) Biochars and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
JP2019527057A (en) Graphene-based growth medium and method
Saxena et al. Conversion of biomass waste into biochar and the effect on mung bean crop production
JP2017512192A (en) Bio-derived composition for use in the agricultural field of the present invention
KR101670651B1 (en) Method for producing fermented liquid fertilizer of manure with reduced odor and heavy metal content using effective microorganism
US11097241B2 (en) Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
Waechter-Kristensen et al. Management of microbial factors in the rhizosphere and nutrient solution of hydroponically grown tomato
KR102056285B1 (en) Manufacturing method co cocopeat with tannin-reducing process, and plant treatment agent comprising the cocopeat manufactured by the same
Nungkat et al. Effects of organic matter application on methane emission from paddy fields adopting organic farming system
Takagi et al. Effect of long-term application of a fungicide, chlorothalonil (TPN) on upland ecosystem
KR102418221B1 (en) Carbon storage and circulating topsoil composition using bio-cars manufactured using ground wood or replaced wood generated during urban environment maintenance and manufacturing method of the same
US20220174985A1 (en) Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
CN115191168A (en) Method for restoring pseudo-ginseng continuous cropping soil biochar
CN1302711C (en) Functional water with deodorization activity and sterilization activity against multi-drug resistent bacteria, and a preparation method thereof
KR100908001B1 (en) Plant protective composition using trace element compound fertilizer and detoxication sulfur and manufacturing method thereof
KR20060006993A (en) Effective pre-treatment of livestock manure using the irradiation technology for development of environmental friendly bed soil
KR101428553B1 (en) Method for purifying veterinary antibiotics in water using biochar derived from burcucumber(Sicyos angulatus L.)
Mishra Interactions between Escherichia coli and the New Zealand native plants Leptospermum scoparium and Kunzea robusta: A dissertation submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University
Chaukhe et al. Fungicidal control of phomopsis blight of brinjal
Hoitink et al. Effect of composts in container media on diseases caused by soilborne plant pathogens
Angle Aflatoxin and aflatoxin-producing fungi in soil
JP5185585B2 (en) Plant seedling and planting methods using soil disease control materials and soil disease control materials
Das et al. Management of plant parasitic nematodes in Okra by Bio-fumigation
JP2013184890A (en) Agent for controlling meloidogyne

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190708

Year of fee payment: 5