KR101536640B1 - Method for regeneration of oxidoreductase cofactor using photo-biosystem and method for selectively enzymatic production of chiral alcohol using the same - Google Patents

Method for regeneration of oxidoreductase cofactor using photo-biosystem and method for selectively enzymatic production of chiral alcohol using the same Download PDF

Info

Publication number
KR101536640B1
KR101536640B1 KR1020130096907A KR20130096907A KR101536640B1 KR 101536640 B1 KR101536640 B1 KR 101536640B1 KR 1020130096907 A KR1020130096907 A KR 1020130096907A KR 20130096907 A KR20130096907 A KR 20130096907A KR 101536640 B1 KR101536640 B1 KR 101536640B1
Authority
KR
South Korea
Prior art keywords
rhodium
iii
complex
chiral
graphene
Prior art date
Application number
KR1020130096907A
Other languages
Korean (ko)
Other versions
KR20150020453A (en
Inventor
백진욱
챠우드리 수밋
박노중
쿠마 야다브 라제스
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020130096907A priority Critical patent/KR101536640B1/en
Publication of KR20150020453A publication Critical patent/KR20150020453A/en
Application granted granted Critical
Publication of KR101536640B1 publication Critical patent/KR101536640B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 광-바이오 시스템을 이용한 산화환원효소 보조인자의 재생방법 및 이를 이용한 효소반응으로 케톤으로부터 선택적으로 키랄 알코올을 제조하는 방법에 관한 것으로서, 본 발명에 따른 그래핀계 복합체를 이용한 산화환원효소 보조인자의 재생방법 및 이를 이용한 키랄 알코올 화합물의 제조방법은 가시광선을 흡수하는 그래핀-BODIPY 광촉매, 산화환원 매개체인 로듐(Ⅲ) 복합체, 특정 비극성 유기 용매, 최적화된 바이오 촉매인 알코올 디하이드로게나제 및 이의 보조인자를 포함하는 광-바이오 시스템을 사용함으로써, 산화환원효소의 보조인자를 55%의 높은 효율로 재생함과 동시에, 이를 이용한 경제적이고 환경 친화적인 효소 작용을 통하여 케톤 화합물로부터 95% 이상의 높은 광학순도를 갖는 키랄 알코올 화합물을 제조할 수 있으므로 키랄 알코올 제조 산업에 유용하게 사용될 수 있다.The present invention relates to a method for regenerating an oxidoreductase cofactor using a photo-biosystem, and a method for selectively producing a chiral alcohol from a ketone by an enzyme reaction using the same, wherein the redox enzyme- A method of regenerating a factor and a method of producing a chiral alcohol compound using the same is characterized in that a graphene-BODIPY photocatalyst that absorbs visible light, a rhodium (III) complex that is a redox medium, a specific nonpolar organic solvent, an alcoholic dihydrogenase And a co-factor thereof, the co-factor of the oxidoreductase is regenerated at a high efficiency of 55%, and at least 95% of the ketone compound is removed from the ketone compound through an economical and environmentally- Since a chiral alcohol compound having high optical purity can be produced, It may be useful in alcohol manufacturing industry.

Description

광-바이오 시스템을 이용한 산화환원효소 보조인자의 재생방법 및 이를 이용한 효소반응으로 키랄 알코올을 제조하는 방법{Method for regeneration of oxidoreductase cofactor using photo-biosystem and method for selectively enzymatic production of chiral alcohol using the same}TECHNICAL FIELD The present invention relates to a method for regenerating an oxidoreductase cofactor using an opto-biosystem and a method for producing a chiral alcohol by an enzyme reaction using the same.

본 발명은 광-바이오 시스템을 이용한 산화환원효소 보조인자의 재생방법 및 이를 이용한 효소반응으로 케톤으로부터 선택적으로 키랄 알코올을 제조하는 방법에 관한 것이다.
The present invention relates to a method for regenerating an oxidoreductase cofactor using a photo-biosystem, and a method for selectively producing a chiral alcohol from a ketone by an enzyme reaction using the same.

키랄 테크놀로지(Chirotechnology)는 유기합성 화학, 생명공학, 촉매화학 기술들로 구성된 Hi-tech 기술로 입체적 비대칭 구조의 유기 화합물을 선택적으로 합성하여 키랄 화합물을 제조하는 기술을 통칭하며, 키랄 의약품 및 바이오 제품의 핵심 원료인 키랄 중간체의 제조를 위한 핵심 기술이다.
Chirotechnology is a Hi-tech technology composed of organic synthetic chemistry, biotechnology, and catalytic chemical technologies, and refers to a technology for selectively synthesizing organic compounds of three-dimensional asymmetric structure to produce chiral compounds. Chiral pharmaceuticals and bioproducts Is a core technology for the production of chiral intermediates, which are key raw materials for the process.

동물이나 식물에서 추출되는 천연물은 광학활성을 나타내는 한 가지 이성질체로만 구성된 경우가 많다. 두 이성질체가 같은 비율로 혼합된 것을 라세미 혼합물(racemic compound)이라 하는데 라세미 혼합물의 경우에는 광학활성이 상쇄되어 없어지지만, 두 이성질체의 혼합 비율이 바뀌면 광학활성이 나타난다. Natural products extracted from animals and plants are often composed of only one isomer that exhibits optical activity. The racemic mixture of two isomers in the same ratio is referred to as a racemic compound. In the case of a racemic mixture, the optical activity is canceled out, but when the mixing ratio of the two isomers is changed, the optical activity appears.

대부분의 의약품의 경우 한가지 입체 이성질체만 약리효과를 나타낸다고 알려져 있고, 다른 한가지 입체 이성질체는 기형아 출산, 간 독성, 또는 위장 장애 등 심각한 부작용을 유발할 수 있는 위험성을 지니는 것으로 알려져 있어, 미국 FDA에서는 의약품 제조 시 약효 성분을 나타나지 않는 입체 이성질체가 철저히 제거된 키랄 화합물만을 허가하고 있다.In the case of most pharmaceuticals, only one stereoisomer is known to exhibit a pharmacological effect, while the other stereoisomer is known to have a risk of causing serious side effects such as birth defects, liver toxicity, or gastrointestinal disorder. Only chiral compounds that have been completely removed from stereoisomers that do not show active ingredients are permitted.

따라서, 이러한 엄격한 기준을 맞추고 경쟁력 있는 약을 개발하기 위하여 키랄 화합물을 저렴한 비용으로 대량생산이 가능하도록 선진국을 중심으로 많은 나라에서 활발한 연구가 진행 중에 있다.
Therefore, in order to meet these strict standards and to develop competitive drugs, active research is underway in many countries, especially in developed countries, in order to mass-produce chiral compounds at low cost.

키랄 화합물은 항상 서로에 대해 거울상인 구조로 된 이성질체를 지니고 있는데 이들을 광학 이성질체라고 하며, 키랄리티(chirality)는 생합성과 신진대사를 조절하는 주요 인자이다. 이를 지니고 있는 키랄 화합물은 여러 산업에 걸쳐 매우 중요한 역할을 담당하고 있으며 관련 산업으로 의약, 농약, 식음료 산업, 석유화학 산업 등이 있다. 키랄 화합물은 단일 이성질체로 있을 때만 키랄 화합물 고유의 성질을 나타낼 수 있으므로 키랄 화합물 산업에서 가장 중요한 공정 중의 하나는 단일 이성질체 제조라고 할 수 있다. 광학 이성질체는 화학 구조상의 차이가 없음에도 불구하고 각 이성질체가 가지는 특이성은 매우 크며 이성질체 간의 서로 다른 활성 때문에 이들을 제대로 활용하기 위해서는 이성질체들이 단일 이성질체 상태로 제조되어야만 한다. 일반적인 유기 합성법으로 키랄 화합물을 제조할 시 단일 이성질체만 형성되는 것이 아니고 이성질체의 혼합물인 라세메이트(Racemate)가 제조되며 이들의 분리는 일반적인 분리방법으로는 한계가 있다.Chiral compounds always have enantiomers that are mirror image of each other. These are called optical isomers, and chirality is a key factor in regulating biosynthesis and metabolism. Chiral compounds have a very important role in many industries, and related industries are medicine, pesticide, food and beverage industry, and petrochemical industry. One of the most important processes in the chiral compound industry is the production of a single isomer, since a chiral compound can exhibit the inherent properties of a chiral compound only when it is in a single isomer. Although optical isomers differ in their chemical structure, the specificity of each isomer is very large and due to the different activities among the isomers, the isomers must be prepared in a single isomeric state in order to utilize them properly. When a chiral compound is prepared by a general organic synthesis method, not only a single isomer is formed but racemate, which is a mixture of isomers, is prepared, and their separation is limited by a general separation method.

키랄 화합물을 얻는 방법으로는 천연물 이용법, 광분할법, 비대칭 합성법, 비대칭 촉매 이용법 등의 방법이 있다.As a method for obtaining the chiral compound, there are methods such as natural material utilization method, optical resolution method, asymmetric synthesis method, asymmetric catalyst utilization method and the like.

이중, 키랄 화합물의 단일 이성질체를 제조하기 위한 방법으로는 촉매 등을 이용한 비대칭 합성방법과 제조된 광학 이성질체 혼합물을 분리하는 방법을 이용하고 있으며 키랄 화합물 분리를 위해서 지금까지 널리 사용된 방법으로는 1) 재결정법, 2) HPLC법 등이 있다. 재결정법은 적용에 많은 한계를 지니고 있으며 재결정법으로 분리할 수 없는 광학 이성질체 혼합물이 많이 존재한다. 이러한 재결정법의 단점을 극복하기 위해서 HPLC법이 발달되어 왔으나, HPLC를 이용한 분리는 높은 분리 성능을 나타내는 반면, 한번에 처리할 수 있는 처리 용량이 적은 단점을 지니고 있으며, 한번에 처리할 수 있는 양의 제한은 곧바로 고비용 공정으로 연결되므로 관련 산업으로의 적용에 제한이 따르게 된다.
As a method for producing a single isomer of a chiral compound, an asymmetric synthesis method using a catalyst or the like and a method for separating the prepared optical isomer mixture are used. As a method widely used for chiral compound separation, 1) Recrystallization method, and 2) HPLC method. Recrystallization has many limitations in application and there are many optical isomer mixtures which can not be separated by recrystallization. Although the HPLC method has been developed to overcome the disadvantages of such a recrystallization method, separation using HPLC has a disadvantage in that it has high separation efficiency, but has a disadvantage in that the processing capacity to be processed at one time is low, Is directly connected to a high-cost process, which limits the application to related industries.

한편, 친환경 정책에 따른 각종 규제들로 인해 환경 친화적 공정이 각광받고 있고, 이로 인해 바이오촉매 시장이 점차 확대되고 있다.On the other hand, environment-friendly processes are attracting attention due to various regulations based on eco-friendly policies, and the biocatalyst market is gradually expanding.

바이오촉매 효소(enzyme)는 초정밀성, 특이성, 선택성 및 고효율성의 특성을 가지고 있어 다양한 산업분야에 이용되고 있으며, 점차 그 이용분야가 확대되고 있다. 이는 상온, 상압에서 산화환원 반응, 전이 반응, 가수분해 반응, 이탈 및 부가 반응, 이성화반응, 합성반응 등의 일반적인 촉매로서 기능은 물론이고, 고온, 고압, 유기용매 등의 특수한 반응조건에서도 촉매반응을 수행할 수 있는 특성을 가지고 있어, 산업적 적용 범위가 무한하다고 할 수 있으므로, 미래 산업용 소재로서 활용가치가 매우 높다. 또한, 효소의 촉매효율성이 기존의 비효소적 촉매반응에 비하여 108 - 1,014배나 높은 것으로 알려져 있으며, 화학촉매에 비하여 반응 특이성 및 선택성이 매우 높은 것으로 밝혀져 있다.Biocatalyst enzymes are used in various industrial fields due to their properties of super precision, specificity, selectivity and high efficiency, and they are gradually being used. This is not only a general catalyst such as redox reaction, transition reaction, hydrolysis reaction, elimination and addition reaction, isomerization reaction and synthesis reaction at room temperature and normal pressure, but also catalytic reaction under special reaction conditions such as high temperature, high pressure, It can be said that the range of industrial application is infinite, so it is very useful value as a material for future industrial use. In addition, the catalytic efficiency of the enzyme is known to be 108 to 1,014 times higher than that of the conventional non-enzymatic catalytic reaction, and it has been found that the reaction specificity and selectivity are higher than the chemical catalyst.

그러나, 키랄 화합물 생성시 사용되는 산화환원효소(oxidoreductase) 반응에는 필수적으로 니코틴아미드 보조인자(NAD, NADP) 또는 플라빈 보조인자(FAD, FMN)가 사용되며, 이들 보조인자는 고가이므로 비용이 많이 드는 문제가 있다.However, the nicotinamide cofactor (NAD, NADP) or flavin cofactor (FAD, FMN) is used for the oxidoreductase reaction used in the production of chiral compounds, there is a problem.

따라서, 생촉매 반응의 효율을 높이고, 경제적이고 산업 가능성이 있는 공정을 만들기 위해서는, 효소의 지속적 반응 수행을 위하여 보조인자가 지속적으로 재생되어야 할 필요가 있다.
Therefore, in order to increase the efficiency of the biocatalytic reaction and make the process economically and industrially feasible, it is necessary that the auxiliary person is continuously regenerated in order to perform the continuous reaction of the enzyme.

이에, 전기 화학적 재생(electrochemical regeneration)은 기존의 제2효소/기질 재생방법을 대체할 수 있는 하나의 매력적인 방법으로 여겨져 왔다. 하지만 전기 화학적 재생방법에서도 NAD(P)+의 NAD(P)H로의 환원이 열역학적으로 선호되는 전압 조건에서도 전극과 NAD(P)+사이의 느린 전자전달 속도로 인하여 재생 효율이 떨어지는 단점이 있었다. Thus, electrochemical regeneration has been viewed as an attractive alternative to the existing second enzyme / substrate regeneration method. However, in the electrochemical regeneration method, the reduction of NAD (P) + to NAD (P) H was also disadvantageous in that the regeneration efficiency was lowered due to the slow electron transfer rate between the electrode and NAD (P) + even under the thermodynamically favorable voltage condition.

이를 해결하기 위하여 균등질의 산화환원 매개체(mediator)를 사용하여 전극과 NAD(P)+사이에 전자를 전달하는 방법이 개발된 바 있으며, 일례 중 대표적으로 로듐(Ⅲ) 복합체인 (펜타메틸사이클로펜타디에닐-2,2'-바이피리딘클로로)로듐(Ⅲ):[Cp*Rh(bpy)H2O]2+(이하 Mox)를 NAD(P)+에의 전자전달을 위한 매개체로 사용하는 방법이 개발되었다.To solve this problem, a method of transferring electrons between an electrode and NAD (P) + using a uniform-quality redox mediator has been developed. As one example, a rhodium (Ⅲ) complex (pentamethylcyclopenta dienyl-2,2'-bipyridine-chloro) rhodium (ⅲ): [Cp * Rh (bpy) H 2 O] 2+ ( hereinafter M ox) that uses as a medium for electron transfer to the NAD (P) + Method was developed.

상기 전자전달 매개체 중에서 로듐(Ⅲ) 복합체 Mox는 전기화학/화학적 과정을 거쳐 활성 환원체인 Mred2로 변환되어 NADH의 재생에 관여한다. Mox는 두 개의 전자를 받아들여 전기 화학적인 변화로 Mred1의 상태가 된다(E-step). 이어서 상기 Mred1은 총 전자의 양은 변하지 않고 용액 상에서 하나의 양성자를 취함으로써 화학적인 과정을 통해 Mred2로 변환된다(C-step). 상기 활성 환원체인 Mred2는 전자 두 개와 양성자 하나를 NAD(P)+에 제공하여 NAD(P)H로 변환시키고, 이때 자신은 초기상태인 Mox로 돌아가게 된다(도 1 참조). 그러나, 전극을 사용하는 전기 화학적 재생방법은 외부에서 전기에너지를 주입해야 하는 문제가 있다.Among these electron transport mediators, the rhodium (III) complex M ox is electrochemically / chemically converted into an active reduction M red2 , which is involved in the regeneration of NADH. M ox accepts two electrons and becomes a state of M red1 by an electrochemical change (E-step). The M red1 is then converted to M red2 through a chemical process by taking one proton in solution without changing the total amount of electrons (C-step). The active reduction chain M red2 provides two electrons and one proton to NAD (P) + and converts it to NAD (P) H, whereupon it returns to the initial state M ox (see FIG. 1 ). However, in the electrochemical regeneration method using an electrode, there is a problem that electric energy is injected from the outside.

또한, 종래 금속 나노입자를 이용한 산화환원효소 보조인자의 전기 화학적 재생방법에 관하여 개시되어 있으나, 재생 수율이 만족할 만큼 좋지 못했다(특허문헌 1).
Further, although a method of electrochemically regenerating an oxidoreductase cofactor using metal nanoparticles has been disclosed, the regeneration yield is not satisfactory (Patent Document 1).

한편, 최근 대체 에너지로서 광화학 에너지를 이용하여 보조인자를 재생하는 방법에 관심이 증가하고 있다. 상기 광화학 에너지는 풍부한 태양 에너지를 사용하기 때문에 깨끗하며 경제적이다.On the other hand, there is a growing interest in methods for regenerating cofactors using photochemical energy as alternative energy. The photochemical energy is clean and economical because it uses abundant solar energy.

상기 광화학 보조인자 재생을 위하여 몇몇 연구가 진행되었는데, 보다 구체적으로는 효소 매개체로서 균질상(용해성 색소 감광제) 또는 비균질상(TiO2/CdS 광촉매)에서 광화학 보조인자 재생 실험을 수행하였으며, 그 결과 낮은 특이적 활성 및 낮은 수율, 기질 저해, 높은 비용 등의 문제가 나타났다. 또한 균질 매개체로부터의 보조인자의 정제/분리의 어려움, 유해한 전자 대체물질 등의 문제도 나타나, 광화학 보조인자 재생에 대한 연구가 절실히 요구되고 있다.
Several studies have been carried out for the regeneration of the photochemical cofactor. More specifically, photochemical cofactor regeneration experiments were carried out in homogeneous (soluble dye sensitizer) or heterogeneous (TiO 2 / CdS photocatalyst) Specific activity and low yield, substrate inhibition, and high cost. In addition, difficulties in purifying / separating cofactors from homogeneous media and harmful electronic substitute materials have appeared, and research on the regeneration of photochemical auxiliary factors is urgently required.

이에, 본 발명자들은 가시광선 광촉매를 이용하여 태양 에너지로부터 산화환원효소 보조인자의 효율적인 재생으로 인해 키랄 화합물을 선택적 및 높은 효율로 제조하는 방법을 개발하고자 각고의 노력을 거듭한 결과, 그래핀-BODIPY 광촉매가 비극성 유기 용매 하에서 태양 에너지를 사용하여 추가적인 에너지 비용의 낭비 없이 높은 효율로 산화환원효소의 보조인자를 재생하여 효소반응으로 키랄 알코올 화합물을 선택적 및 높은 효율로 제조할 수 있음을 확인하고 본 발명을 완성하였다.
Accordingly, the present inventors have repeatedly made efforts to develop a method for selectively and cholerically producing a chiral compound by efficiently regenerating an oxidoreductase cofactor from solar energy using a visible light photocatalyst. As a result, they have found that graphene-BODIPY It is confirmed that chiral alcohol compound can be selectively and efficiently produced by the enzyme reaction by regenerating co-factor of redox enzyme with high efficiency without waste of additional energy cost by using solar energy in a nonpolar organic solvent, .

국내 공개 특허 제2010-0011160호.Korean Patent Publication No. 2010-0011160.

본 발명의 목적은 그래핀계 광촉매를 사용하는 광-바이오 시스템을 이용함으로써 태양 에너지를 사용하여 추가적인 에너지 비용 없이 산화환원효소의 보조인자를 재생하는 방법을 제공하는데 있다.It is an object of the present invention to provide a method for regenerating auxotrophic factors of oxidoreductase using solar energy by using a photo-biosystem using a graphene photocatalyst without additional energy cost.

본 발명의 다른 목적은 상기 산화환원효소 보조인자의 재생방법을 이용한 효소반응에 의해 케톤으로부터 키랄 알코올을 선택적으로 제조하는 방법을 제공하는데 있다.
It is another object of the present invention to provide a method for selectively producing a chiral alcohol from a ketone by an enzyme reaction using the regenerating method of the oxidoreductase cofactor.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 반응기에 인산완충용액; 산화형의 산화환원효소 보조인자; 산화환원 매개체인 로듐(Ⅲ) 복합체; 하기 화학식 1로 표시되는 그래핀-BODIPY 광촉매; 및 비극성 유기 용매/물의 혼합용매를 주입하고 불활성 기체의 분위기 하에서 빛을 조사하면서 교반시켜 환원형의 산화환원효소 보조인자를 생성시키는 단계를 포함하는 산화환원효소 보조인자의 재생방법을 제공한다:The present invention relates to a process for preparing a phosphate buffer solution; Oxidase type oxidoreductase cofactor; A rhodium (III) complex as an redox medium; A graphene-BODIPY photocatalyst represented by the following formula (1); And a non-polar organic solvent / water mixed solvent, and stirring the mixture under irradiation of light in an atmosphere of an inert gas to produce a reducing type oxidoreductase cofactor.

[화학식 1][Chemical Formula 1]

Figure 112013074028447-pat00001
.
Figure 112013074028447-pat00001
.

또한, 본 발명은 반응기에 인산완충용액; 산화형의 산화환원효소 보조인자; 산화환원 매개체인 로듐(Ⅲ) 복합체; 상기 화학식 1로 표시되는 그래핀-BODIPY 광촉매; 비극성 유기 용매/물의 혼합용매; 알코올 디하이드로게나제; 및 케톤 유도체를 넣고 불활성 기체의 분위기 하에서 빛을 조사하면서 교반시켜 케톤 유도체를 환원시킴으로써 키랄 알코올 화합물을 생산하는 단계를 포함하는 광-바이오 시스템을 이용한 키랄 알코올 화합물의 제조방법을 제공한다.
In addition, the present invention relates to a method for preparing a phosphate buffer solution; Oxidase type oxidoreductase cofactor; A rhodium (III) complex as an redox medium; A graphene-BODIPY photocatalyst represented by the general formula (1); A mixed solvent of a nonpolar organic solvent / water; Alcohol dehydrogenase; And a step of adding a ketone derivative and stirring the mixture under irradiation of light in an atmosphere of an inert gas to reduce the ketone derivative, thereby producing a chiral alcohol compound. The present invention also provides a method for producing a chiral alcohol compound using the photo-biosystem.

본 발명에 따른 그래핀계 복합체를 이용한 산화환원효소 보조인자의 재생방법 및 이를 이용한 키랄 알코올 화합물의 제조방법은 가시광선을 흡수하는 그래핀-BODIPY 광촉매, 산화환원 매개체인 로듐(Ⅲ) 복합체, 특정 비극성 유기 용매, 최적화된 바이오 촉매인 알코올 디하이드로게나제 및 이의 보조인자를 포함하는 광-바이오 시스템을 사용함으로써, 산화환원효소의 보조인자를 55%의 높은 효율로 재생함과 동시에, 이를 이용한 경제적이고 환경 친화적인 효소 작용을 통하여 케톤 화합물로부터 95% 이상의 높은 광학순도를 갖는 키랄 알코올 화합물을 제조할 수 있으므로 키랄 알코올 제조 산업에 유용하게 사용될 수 있다.
The method for regenerating an oxidoreductase cofactor using the graphene complex according to the present invention and the method for producing the chiral alcohol compound using the same include a graphene-BODIPY photocatalyst that absorbs visible light, a rhodium (III) complex that is a redox mediator, By using a photo-biosystem containing an organic solvent, an alcoholic dihydrogenase as an optimized biocatalyst and its cofactor, the cofactor of the oxidoreductase can be regenerated with a high efficiency of 55% A chiral alcohol compound having an optical purity of 95% or more can be prepared from a ketone compound through environmentally friendly enzymatic action, and thus can be usefully used in the chiral alcohol production industry.

도 1은 로듐(Ⅲ) 복합체 M의 전기 화학적 변환을 나타낸 도면이다.
도 2는 본 발명에 따른 광-바이오 시스템에 의해 케톤 화합물을 환원시켜 키랄 알코올을 제조하는 방법의 모식도이다.
도 3은 실험예 1에 있어서 그래핀-BODIPY 광촉매의 광 조사 시간에 따른 산화환원효소 보조인자의 전환율을 나타내는 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a diagram showing electrochemical conversion of rhodium (III) complex M;
2 is a schematic diagram of a method for producing a chiral alcohol by reducing a ketone compound by a photo-biosystem according to the present invention.
FIG. 3 is a graph showing the conversion rate of an oxidoreductase cofactor according to irradiation time of a graphene-BODIPY photocatalyst in Experimental Example 1. FIG.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 반응기에 인산완충용액; 산화형의 산화환원효소 보조인자; 산화환원 매개체인 로듐(Ⅲ) 복합체; 하기 화학식 1로 표시되는 그래핀-BODIPY 광촉매; 및 비극성 유기 용매/물의 혼합용매를 주입하고 불활성 기체의 분위기 하에서 빛을 조사하면서 교반시켜 환원형의 산화환원효소 보조인자를 생성시키는 단계를 포함하는 산화환원효소 보조인자의 재생방법을 제공한다:The present invention relates to a process for preparing a phosphate buffer solution; Oxidase type oxidoreductase cofactor; A rhodium (III) complex as an redox medium; A graphene-BODIPY photocatalyst represented by the following formula (1); And a non-polar organic solvent / water mixed solvent, and stirring the mixture under irradiation of light in an atmosphere of an inert gas to produce a reducing type oxidoreductase cofactor.

Figure 112013074028447-pat00002
Figure 112013074028447-pat00002

이하, 상기 각 구성요소 별로 보다 상세히 설명한다.
Hereinafter, each of the above components will be described in detail.

먼저, 본 발명에 따른 전기 화학적 환원의 대상이 되는 상기 산화형의 산화환원효소 보조인자는 니코틴아마이드 보조인자인 NAD+,(nicotinamide adenine dinucleotide), NADP+(nicotinamide adenine dinucleotide phosphate) 또는 플라빈 보조인자인 FAD+(flavin adenine dinucleotide), FMN+(flavin mononucleotide)일 수 있으며, 바람직하게는 NAD+ 또는 NADP+일 수 있다.The oxidizing type oxidoreductase aids to be subjected to the electrochemical reduction according to the present invention include nicotinamide adenine dinucleotide (NAD + ), nicotinamide adenine dinucleotide phosphate (NADP + ) or FAD + flavin adenine dinucleotide, FMN + (flavin mononucleotide), preferably NAD + or NADP + . & Lt ; / RTI >

이때, 상기 산화환원효소 보조인자의 첨가량은 전체 용량에 대하여 0.75-1.25 mM의 농도로 첨가되는 것이 바람직하며, 상기 범위를 벗어나면 재생 효율이 저하되는 문제가 있다.
At this time, the amount of the oxidoreductase cofactor is preferably added in a concentration of 0.75-1.25 mM based on the total volume, and if it is out of the range, the regeneration efficiency is lowered.

다음으로, 본 발명에 따른 상기 산화환원 매개체로서 로듐(Ⅲ) 복합체는 산화형의 산화환원효소 보조인자에 전자를 전달하기 위한 매개체의 역할을 수행한다.Next, the rhodium (III) complex as the redox mediator according to the present invention acts as a mediator for transferring electrons to the oxidation-type oxidoreductase cofactor.

종래에 로듐(Ⅲ) 복합체인 (펜타메틸사이클로펜타다이에닐-2,2'-바이피리딘클로로)로듐(Ⅲ):[Cp*Rh(bpy)H2O]2+(이하 Mox)은 NAD(P)+에의 전자전달을 위한 매개체(K. Vuorilehto, S. Lutz, C. Wandrey, Bioelectrochemistry 2004, 65, 1) 및 FAD+에의 전자전달을 위한 매개체(F. Hollmann et al. Journal of Molecular Catalysis B: Enzymatic 19-20(2003) 167-176)로 사용된 바 있다. 따라서, 상기 산화환원 매개체는 전자와 양성자를 전달함으로써 산화환원효소 보조인자의 재생 동역학(kinetics)을 개량하는데 사용된다.(Pentamethylcyclopentadienyl-2,2'-bipyridine chloro) rhodium (III): [Cp * Rh (bpy) H 2 O] 2+ (hereinafter M ox ) which is a rhodium Mediators for electron transfer to NAD (P) + (K. Vuorilehto, S. Lutz, C. Wandrey, Bioelectrochemistry 2004, 65, 1) and mediators for electron transfer to FAD + (F. Hollmann et al. Journal of Molecular Catalysis B: Enzymatic 19-20 (2003) 167-176). Thus, the redox mediator is used to improve the regeneration kinetics of the redox enzyme co-factor by transferring electrons and protons.

이때, 상기 로듐(Ⅲ) 복합체는 (2,2'-바이피리딘)-(펜타메틸사이클로펜타다이에닐)로듐(Ⅲ)을 사용하는 것이 바람직하나, 이에 제한되지 않는다.
At this time, the rhodium (III) complex is preferably (2,2'-bipyridine) - (pentamethylcyclopentadienyl) rhodium (III) but is not limited thereto.

다음으로, 본 발명에 따른 상기 광촉매는 기존의 전극을 대신하여 태양광을 흡수하여 자신이 지니고 있는 전자들로 채워진 가전자대(valance band)로부터 전자를 비어 있는 전도대(conduction band)로 이동시킴으로써 산화환원 매개체가 전자를 잘 받아들여 화학반응을 수행하도록 하는 역할을 한다. 이때, 지구에서 이용 가능한 전체 태양광 에너지 중 46%가 가시광선 영역이고 단지 4%가 자외선 영역인 바, 본 발명에서 사용되는 광촉매는 가시광선을 흡수하여 전자를 들뜨게 할 수 있는 물질인 것이 바람직하다. 상기 가시광선 흡수 광촉매로는 바람직하게 하기 화학식 1로 표시되는 그래핀-BODIPY 광촉매를 사용할 수 있다.Next, the photocatalyst according to the present invention absorbs sunlight in place of a conventional electrode, and moves the electrons from the valance band filled with the electrons to an empty conduction band, It plays a role in allowing the mediator to accept the electrons and perform chemical reactions. At this time, 46% of the total solar energy available in the earth is in the visible light region and only 4% is in the ultraviolet region. It is preferable that the photocatalyst used in the present invention is a material capable of absorbing visible light to excite electrons . As the visible light absorbing photocatalyst, a graphene-BODIPY photocatalyst represented by the following general formula (1) can be used.

[화학식 1][Chemical Formula 1]

Figure 112013074028447-pat00003
.
Figure 112013074028447-pat00003
.

본 발명에 따른 상기 화학식 1의 화합물은 통상의 방법에 의해 제조될 수 있는 모든 염, 수화물, 용매화물을 모두 포함한다.The compound of formula (I) according to the present invention includes all salts, hydrates and solvates which can be prepared by a conventional method.

본 발명에 따른 부가염은 통상의 방법으로 제조할 수 있으며, 예를 들면 화학식 1의 화합물을 수혼화성 유기용매, 예를 들면 아세톤, 메탄올, 에탄올, 또는 아세토니트릴 등에 녹이고 과량의 유기산을 가하거나 무기산의 산 수용액을 가한 후 침전시키거나 결정화시켜서 제조할 수 있다. 이어서 이 혼합물에서 용매나 과량의 산을 증발시킨 후 건조시켜서 부가염을 얻거나 또는 석출된 염을 흡인 여과시켜 제조할 수 있다.
The addition salt according to the present invention can be prepared by a conventional method, for example, by dissolving the compound of Chemical Formula 1 in a water-miscible organic solvent such as acetone, methanol, ethanol, acetonitrile, etc., And then precipitating or crystallizing the acid solution. Subsequently, in this mixture, a solvent or an excess acid is evaporated and dried to obtain an additional salt, or the precipitated salt may be produced by suction filtration.

본 발명에 따른 상기 광촉매는 전자의 들뜸으로 광촉매 내 가전자대에 생성된 정공(h+VB)을 안정화시키기 위하여 환원제와 함께 사용될 수 있으며, 사용 가능한 환원제로는 예를 들면, 트라이에톡시아르신(TEOA), EDTA, 트라이에틸아민(TEA), NaBH4, 시트르산나트륨(sodium citrate) 등을 들 수 있다.The photocatalyst according to the present invention can be used together with a reducing agent to stabilize holes (h + VB) generated in a valence band in a photocatalyst by lifting electrons. Examples of usable reducing agents include triethoxyarsine TEOA), and the like EDTA, triethylamine (TEA), NaBH 4, sodium citrate (sodium citrate).

이때, 상기 환원제의 첨가량은 0.5-20 mM인 것이 바람직하다.At this time, the amount of the reducing agent added is preferably 0.5-20 mM.

만일 상기 환원제의 첨가량이 0.5 mM 미만인 경우, 반응 시스템이 불안정해져 지는 문제가 있고, 20 mM을 초과하는 경우에는 수율이 오히려 감소하는 문제가 있다.
If the added amount of the reducing agent is less than 0.5 mM, the reaction system becomes unstable, and if it is more than 20 mM, the yield is rather reduced.

본 발명에 따른 가시광선 광촉매를 이용한 산화환원효소의 보조인자 재생방법의 메카니즘은 다음과 같다.The mechanism of the auxiliary factor regeneration method of the oxidoreductase using the visible light photocatalyst according to the present invention is as follows.

구체적으로, 본 발명에서는 산화환원 매개체로 로듐(Ⅲ) 복합체를 사용하였으며, 이 경우, 도 2에 나타낸 바와 같이, 광촉매인 그래핀계 복합체가 가시광선을 흡수하여 전자가 들뜸으로써 Mox에 전자를 전달하여 Mred1을 형성하며(단계 a); 상기 단계 a의 Mred1는 산화되어 Mred2를 형성하고(단계 b); 상기 단계 b의 Mred2가 산화형 산화환원효소 보조인자에게 전자와 양성자를 전달하여 환원형 산화환원효소 보조인자를 형성하게 된다(단계 c).
Specifically, in the present invention, a rhodium (III) complex is used as a redox medium. In this case, as shown in FIG . 2 , a graphene composite that is a photocatalyst absorbs visible light and excites electrons, To form M red1 (step a); M red1 in step a is oxidized to form M red2 (step b); M is red2 of step b is oxidized to the oxidation-reduction enzyme cofactor transfer electrons and protons form the reduced form redox enzyme cofactor (step c).

다음으로, 본 발명에 따른 상기 비극성 유기 용매/물의 혼합용매는 출발물질인 케톤 화합물이 물에 잘 용해되지 않을 뿐만 아니라 수상(aqueous phase)에서는 반응이 일어나지 않으며, 생촉매인 효소는 수상에서 작용하므로, 출발물질을 용해시키고, 생촉매의 반응을 위한 환경을 제공하는 역할을 수행한다.Next, the non-polar organic solvent / water mixture solvent according to the present invention does not dissolve the ketone compound as a starting material in water but does not react in the aqueous phase and the enzyme as a biocatalyst acts on the water phase , Dissolve the starting material, and provide an environment for the reaction of the biocatalyst.

이때, 사용되는 유기 용매는 비극성 용매인 n-헥산 또는 n-헵탄을 사용할 수 있으며, 바람직하게는 n-헵탄/물의 혼합용매를 사용할 수 있다.
At this time, n-hexane or n-heptane, which is a non-polar solvent, may be used as the organic solvent to be used, and a mixed solvent of n-heptane / water may be preferably used.

본 발명에 따른 화학식 1로 표시되는 광촉매의 NADPH 재생 효율을 측정한 결과, 광 조사가 이루어지지 않은 경우에는 NADP+가 환원된 NADPH가 검출되지 않았으나, 광조사가 수행된 이후 알코올 디하이드로게나제에 의한 환원반응이 진행되어 NADPH이 검출되었다. 특히, 340 nm 이상의 파장에서 2시간 이상 조사한 경우에는 NADP+에서 NADPH로의 전환율이 55%으로 NADPH의 재생 효율이 현저히 우수한 것으로 나타났다(실험예 1 참조).As a result of measuring the NADPH regeneration efficiency of the photocatalyst represented by Formula 1 according to the present invention, NADP + reduced NADPH was not detected in the case where no irradiation was performed. However, after irradiation with light, the alcohol dehydrogenase And the NADPH was detected. In particular, when irradiated at a wavelength of 340 nm or more for 2 hours or more, the conversion efficiency of NADPH from NADP + to NADPH was 55%, indicating that the regeneration efficiency of NADPH was remarkably excellent (see Experimental Example 1).

따라서, 본 발명에 따른 그래핀계 광촉매는 우수한 전환효율로 산화환원효소의 보조인자를 재생하는 효과가 우수하므로, 이를 효소 작용을 이용하는 광-바이오 시스템에 적용할 경우, 태양 에너지를 사용하여 추가에너지 비용이 들지 않으므로 경제적이고 환경 친화적이라는 장점이 있다.
Therefore, the graphene photocatalyst according to the present invention has an excellent effect of regenerating the co-factor of redox enzyme with excellent conversion efficiency. Therefore, when the photocatalyst is applied to a photo-biosystem using enzymatic action, It is economically and environmentally friendly.

또한, 본 발명은 반응기에 인산완충용액; 산화형의 산화환원효소 보조인자; 산화환원 매개체인 로듐(Ⅲ) 복합체; 그래핀-BODIPY 광촉매; 비극성 유기 용매/물의 혼합용매; 알코올 디하이드로게나제; 및 케톤 유도체를 넣고 불활성 기체의 분위기 하에서 빛을 조사하면서 교반시켜 케톤 유도체를 환원시킴으로써 키랄 알코올 화합물을 생산하는 단계를 포함하는 광-바이오 시스템을 이용한 키랄 알코올 화합물의 제조방법을 제공한다:In addition, the present invention relates to a method for preparing a phosphate buffer solution; Oxidase type oxidoreductase cofactor; A rhodium (III) complex as an redox medium; GRAPHIN-BODIPY photocatalyst; A mixed solvent of a nonpolar organic solvent / water; Alcohol dehydrogenase; And producing a chiral alcohol compound by adding a ketone derivative and stirring the mixture under irradiation of light in an atmosphere of an inert gas to reduce the ketone derivative, thereby providing a chiral alcohol compound using the photo-biosystem,

[화학식 1][Chemical Formula 1]

Figure 112013074028447-pat00004
.
Figure 112013074028447-pat00004
.

본 발명에 따른 전기 화학적 환원의 대상이 되는 상기 산화형의 산화환원효소 보조인자는 니코틴아마이드 보조인자인 NAD+,(nicotinamide adenine dinucleotide), NADP+(nicotinamide adenine dinucleotide phosphate) 또는 플라빈 보조인자인 FAD+(flavin adenine dinucleotide), FMN+(flavin mononucleotide)일 수 있으며, 바람직하게는 NAD+ 또는 NADP+일 수 있다.The oxidized - type oxidoreductase aids to be subjected to the electrochemical reduction according to the present invention include nicotinamide adenine dinucleotide (NAD + ), nicotinamide adenine dinucleotide phosphate (NADP + ), or FAD + flavin adenine dinucleotide, FMN + (flavin mononucleotide), preferably NAD + or NADP + . & Lt ; / RTI >

이때, 상기 산화환원효소 보조인자의 첨가량은 전체 용량에 대하여 0.75-1.25 mM의 농도로 첨가되는 것이 바람직하며, 상기 범위를 벗어나면 재생 효율이 저하되는 문제가 있다.
At this time, the amount of the oxidoreductase cofactor is preferably added in a concentration of 0.75-1.25 mM based on the total volume, and if it is out of the range, the regeneration efficiency is lowered.

또한, 본 발명에 따른 상기 산화환원 매개체로서 로듐(Ⅲ) 복합체는 산화형의 산화환원효소 보조인자에 전자를 전달하기 위한 매개체의 역할을 수행한다.In addition, the rhodium (III) complex as the redox mediator according to the present invention acts as a mediator for transferring electrons to the oxidation-type oxidoreductase cofactor.

종래에 로듐(Ⅲ) 복합체인 (펜타메틸사이클로펜타다이에닐-2,2'-바이피리딘클로로)로듐(Ⅲ):[Cp*Rh(bpy)H2O]2+(이하 Mox)은 NAD(P)+에의 전자전달을 위한 매개체(K. Vuorilehto, S. Lutz, C. Wandrey, Bioelectrochemistry 2004, 65, 1) 및 FAD+에의 전자전달을 위한 매개체(F. Hollmann et al. Journal of Molecular Catalysis B: Enzymatic 19-20(2003) 167-176)로 사용된 바 있다. 따라서, 상기 산화환원 매개체는 전자와 양성자를 전달함으로써 산화환원효소 보조인자의 재생 동역학(kinetics)을 개량하는데 사용된다.(Pentamethylcyclopentadienyl-2,2'-bipyridine chloro) rhodium (III): [Cp * Rh (bpy) H 2 O] 2+ (hereinafter M ox ) which is a rhodium Mediators for electron transfer to NAD (P) + (K. Vuorilehto, S. Lutz, C. Wandrey, Bioelectrochemistry 2004, 65, 1) and mediators for electron transfer to FAD + (F. Hollmann et al. Journal of Molecular Catalysis B: Enzymatic 19-20 (2003) 167-176). Thus, the redox mediator is used to improve the regeneration kinetics of the redox enzyme co-factor by transferring electrons and protons.

이때, 상기 로듐(Ⅲ) 복합체는 (2,2'-바이피리딘)-(펜타메틸사이클로펜타다이에닐)로듐(Ⅲ)을 사용하는 것이 바람직하나, 이에 제한되지 않는다.
At this time, the rhodium (III) complex is preferably (2,2'-bipyridine) - (pentamethylcyclopentadienyl) rhodium (III) but is not limited thereto.

나아가, 본 발명에 따른 상기 비극성 유기 용매/물의 혼합용매는 출발물질인 케톤 화합물이 물에 잘 용해되지 않을 뿐만 아니라 수상(aqueous phase)에서는 반응이 일어나지 않으며, 생촉매인 효소는 수상에서 작용하므로, 출발물질을 용해시키고, 생촉매의 반응을 위한 환경을 제공하는 역할을 수행한다.In addition, the non-polar organic solvent / water mixed solvent according to the present invention does not dissolve the ketone compound as a starting material in water but does not react in the aqueous phase, and the enzyme as a biocatalyst acts on the water phase, Dissolve the starting material and provide an environment for the reaction of the biocatalyst.

이때 사용되는 유기 용매는 비극성 용매인 n-헥산 또는 n-헵탄을 사용할 수 있다. 바람직하게는 n-헵탄/물의 혼합용매를 사용할 수 있다.
The non-polar solvent n-hexane or n-heptane may be used as the organic solvent. A mixed solvent of n-heptane / water is preferably used.

나아가, 본 발명에 따른 상기 알코올 디하이드로게나제는 락토바실러스 케피르(Lactobacillus Kefir)을 알코올로 추출한 추출물로부터 얻어진 알코올 디하이드로게나제(LKADH)를 사용할 수 있으나, 이에 제한되는 것은 아니다.Further, the alcohol dehydrogenase according to the present invention may be an alcohol dehydrogenase (LKADH) obtained from an extract of Lactobacillus Kefir with alcohol, but is not limited thereto.

이때, 상기 알코올 디하이드로게나제의 농도는 1.0 U 이상인 것이 바람직하다. 알코올 디하이드로게나제의 농도가 1.0 U 미만이 되는 경우, 키랄 알코올의 전환율이 감소되는 문제가 있다.
At this time, the concentration of the alcohol dehydrogenase is preferably 1.0 U or more. When the concentration of the alcohol dehydrogenase is less than 1.0 U, the conversion of the chiral alcohol is reduced.

본 발명에 따른 화학식 1로 표시되는 광촉매를 이용하여 알킬케톤, 사이클로알킬케톤, 아릴케톤 및 헤테로아릴케톤으로부터 각 화합물에 대응하는 키랄 알코올을 제조하여 광학순도를 측정한 결과, 출발물질로 사용되는 케톤의 치환기 종류에 상관없이 30% 이상의 키랄 알코올로의 전환율을 나타내었다. 특히, 제조되는 키랄 알코올의 광학순도는 95% 이상으로 현저히 우수한 선택성을 나타냈다(실시예 2-7 참조).The chiral alcohol corresponding to each compound was prepared from the alkyl ketone, the cycloalkyl ketone, the aryl ketone, and the heteroaryl ketone using the photocatalyst represented by the formula (1) according to the present invention and the optical purity was measured. As a result, The conversion to chiral alcohols was 30% or more regardless of the substituent type. In particular, the optical purity of the chiral alcohol to be produced showed a remarkable selectivity of over 95% (see Examples 2-7).

따라서, 본 발명에 따른 그래핀계 광촉매는 우수한 전환효율로 산화환원효소의 보조인자를 재생하는 효과가 우수할 뿐만 아니라, 케톤으로부터 키랄 알코올을 제조할 경우 키랄 알코올 이성질체에 대한 현저히 높은 선택성을 가지므로, 이를 광-바이오 시스템에 적용할 경우 태양 에너지를 사용하여 추가에너지 비용이 들지 않으므로 경제적이고 환경 친화적이라는 장점이 있다.
Therefore, the graphene photocatalyst according to the present invention not only has excellent effect of regenerating co-factor of redox enzyme with excellent conversion efficiency but also has remarkably high selectivity to chiral alcohol isomer when producing chiral alcohol from ketone, When applied to opto-biosystems, it does not require additional energy costs by using solar energy, which is advantageous in that it is economical and environmentally friendly.

이하, 본 발명을 제조예, 실시예 및 실험예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Production Examples, Examples and Experimental Examples.

단, 하기 제조예, 실시예 및 실험예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 제조예, 실시예 및 실험예에 의해 한정되는 것은 아니다.
However, the following Production Examples, Examples and Experimental Examples are illustrative of the present invention specifically, and the content of the present invention is not limited by Production Examples, Examples and Experimental Examples.

<< 제조예Manufacturing example 1>  1> 그래핀계Graphene 복합체( Complex CCGCCG -- BODIPYBODIPY )의 제조)

그래파이트 분말(Junsei Chemicals Co. Ltd. Lot. No. D12590-5)을 준세이 케미칼사로부터 구입하였다. 분석용 등급 NaNO3, KMnO4 및 98% H2SO4, 30% H2O2 수용액을 삼전화학(경기도 평택시)으로부터 구입하였으며 추가 정제 없이 바로 사용하였다. 피콜릴(CAS No. 1539-46-0), 2,4-다이메틸-3-에틸-피롤(CAS No. 512-22-6 ~97%), 시아누르 염화물(CAS No. 9550-1), 보론 트라이플루오라이드 에테레이트[(C2H5)2O. BF3] (Cat. No. 17550-1), DDQ (~98% 순도), DIEA (Cat No. D12590-5), 인산나트륨 완충액, 트라이에탄올아민 ≥98% (Cas No. 102-71-6), NAD+ 99% 순도(Cas No. 53-84-9)를 시그마-알드리치사로부터 구입하였다. 아닐린(Cat. No. 01384-01)을 간토 케미칼사로부터 구입하였다. 용매들은 HPLC 등급을 사용하였다. 초순수를 Millipore System(Tech Sinhan Science)에 의해 제조하였다.
A graphite powder (Junsei Chemicals Co. Ltd. Lot. No. D12590-5) was purchased from Junsei Chemical Co. Analytical grade NaNO 3 , KMnO 4 and 98% H 2 SO 4 , 30% H 2 O 2 aqueous solution were purchased from Samseon Chemical (Pyungtaek, Gyeonggi-do) and used immediately without further purification. Picolyl (CAS No. 1539-46-0), 2,4-dimethyl-3-ethyl-pyrrole (CAS No. 512-22-6-97%), cyanuric chloride (CAS No. 9550-1) , Boron trifluoride etherate [(C 2 H 5 ) 2 O. BF 3 ] (Cat. No. 17550-1), DDQ (~ 98% purity), DIEA (Cat No. D12590-5) Buffer, triethanolamine ≥98% (Cas No. 102-71-6), NAD + 99% purity (Cas No. 53-84-9) were purchased from Sigma-Aldrich. Aniline (Cat. No. 01384-01) was purchased from Kanto Chemical Company. The solvents were HPLC grade. Ultrapure water was prepared by Millipore System (Tech Sinhan Science).

단계 1: 1-Step 1: 1- 클로로Chloro -2--2- 아미노벤젠Aminobenzene -3--3- 옥시Oxy -- 벤즈알데하이드Benzaldehyde -- 트리아진의Triazinic 제조 Produce

Figure 112013074028447-pat00005
Figure 112013074028447-pat00005

문헌(Hu YH, Wang H, Hu B. Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy. ChemSusChem 2010;3:782-796.)에 따라 1-클로로-2-아미노벤젠-3-옥시-벤즈알데하이드-트리아진을 제조하였다.Chloro-2-aminobenzene-3-oxy-benzaldehyde-acetic acid was prepared according to literature (Hu YH, Wang H, Hu B. Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy. ChemSusChem 2010; 3: 782-796. Triazine was prepared.

구체적으로 0℃의 얼음조에서 시아누르 염화물(2.206 g, 12.0 mmol)을 100 ml의 염화메틸렌에 용해시키고, 4-하이드록시벤즈알데하이드(1.620 g, 13.2 mmol) 및 다이이소프로필에틸아민(2.52 ml, 14.4 mmol)을 DCM(50 ml)에 녹인 용액을 첨가하였다. 혼합물을 0℃에서 40분 동안 추가 교반시켰다. 반응 완료를 TLC(에틸 아세테이트/헥산 = 5/40)로 모니터링하였다. 아닐린(1.227 g, 13.2 mmol) 및 DIPEA(2.52 ml, 14.4 mmol)의 혼합물을 30 ml의 DCM에 녹인 용액을 동일한 온도에서 첨가한 다음 얼음조를 제거하였다. 2시간 교반 후, 실온에서 TLC(에틸 아세테이트/헥산 = 25/75)로 모니터링하고, 반응물을 실리카겔 컬럼(약 120 g)을 통해 통과시킨 다음 에틸 아세테이트로 세척하였다. 진공 하에서 농축시키고, 생성물을 플래쉬 크로마토그래피(에틸 아세테이트/헥산=1/6 내지 1/4)로 정제하여 1-클로로-2-아미노벤젠-3-옥시-벤즈알데하이드-트리아진을 백색 고체로 얻었다(2.96 g, 수율 76%).Specifically, cyanuric chloride (2.206 g, 12.0 mmol) was dissolved in 100 ml of methylene chloride in an ice bath at 0 ° C and 4-hydroxybenzaldehyde (1.620 g, 13.2 mmol) and diisopropylethylamine (2.52 ml , 14.4 mmol) in DCM (50 ml). The mixture was further stirred at 0 &lt; 0 &gt; C for 40 minutes. The completion of the reaction was monitored by TLC (ethyl acetate / hexane = 5/40). A solution of aniline (1.227 g, 13.2 mmol) and DIPEA (2.52 ml, 14.4 mmol) in 30 ml of DCM was added at the same temperature and then the ice bath was removed. After stirring for 2 hours, the reaction was monitored by TLC (ethyl acetate / hexane = 25/75) at room temperature, and the reaction was passed through a silica gel column (about 120 g) and washed with ethyl acetate. Concentration in vacuo and purification of the product by flash chromatography (ethyl acetate / hexane = 1/6 to 1/4) yielded 1-chloro-2-aminobenzene-3-oxy-benzaldehyde-triazine as a white solid (2.96 g, 76% yield).

1H NMR (CDCl3): δ 7.00-7.99 (m, 7H), 8.02 (d, 2H, J = 8.6 Hz), 10.04 (s, 1H); 1 H NMR (CDCl 3): δ 7.00-7.99 (m, 7H), 8.02 (d, 2H, J = 8.6 Hz), 10.04 (s, 1H);

13C NMR (CDCl3): δ 120.5, 121.02, 122.63, 125.11, 128.93, 129.21, 131.29, 134.30, 136.21, 156.31, 190.76.; 13 C NMR (CDCl 3 ):? 120.5, 121.02, 122.63, 125.11, 128.93, 129.21, 131.29, 134.30, 136.21, 156.31, 190.76;

EI+ 질량 분석, m/z 326.0 (M+H)+ 및 Rf=0.39.
EI + mass spectrometry, m / z 326.0 (M + H) &lt; + & gt ; and Rf = 0.39.

단계 2: 1-Step 2: 1- 피콜릴아민Picolylamine -2--2- 아미노벤젠Aminobenzene -3--3- 옥시Oxy -- 벤즈알데하이드Benzaldehyde -- 트리아진의Triazinic 제조 Produce

Figure 112013074028447-pat00006
Figure 112013074028447-pat00006

문헌(Hu YH, Wang H, Hu B. Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy. ChemSusChem 2010;3:782-796.)에 따라 1-피콜릴아민-2-아미노벤젠-3-옥시-벤즈알데하이드-트리아진을 제조하였다.According to the literature (Hu YH, Wang H, Hu B. Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy. ChemSusChem 2010; 3: 782-796.), 1-picolylamine-2-aminobenzene- Aldehyde-triazine was prepared.

구체적으로, K2CO3 수용액(1.104 g/12 ml 물), 다이-(2-피콜릴)아민(400 mg, 4.0 mmol)의 존재 하에서 상기 단계 1에서 제조된 1-클로로-2-아미노벤젠-3-옥시-벤즈알데하이드-트리아진(2.0 mmol)을 THF(70 ml)에 용해시켰다. 반응물을 5시간 동안 환류시킨 다음 혼합물을 약 15 ml가 되도록 농축시키고, 100 ml의 클로로포름을 첨가하였다. 유기층을 물로 세척하고 무수 황산 마그네슘으로 건조시켰다. 진공 하에서 농축한 후 생성물을 플래쉬 크로마토그래피(에틸 아세테이트/헥산=75/25)로 정제하여 목적화합물을 88%의 수율로 얻었다.Specifically, K 2 CO 3 Chloro-2-aminobenzene-3-oxy-benzaldehyde prepared in step 1 above in the presence of an aqueous solution (1.104 g / 12 ml water), di- (2-picolyl) amine (400 mg, 4.0 mmol) -Triazine (2.0 mmol) was dissolved in THF (70 ml). The reaction was refluxed for 5 hours, then the mixture was concentrated to about 15 ml and 100 ml of chloroform was added. The organic layer was washed with water and dried over anhydrous magnesium sulfate. After concentration in vacuo, the product was purified by flash chromatography (ethyl acetate / hexane = 75/25) to give the desired compound in 88% yield.

1H NMR (CDCl3): δ 4.82 (s, 2H), 4.99 (s, 2H), 6.92-7.09 (m, 2H), 7.11-7.50 (m, 9H), 7.54-7.77 (m, 2H), 7.83 (d, 2H, J = 8.50 Hz), 8.42 (d, 1H, J = 4.5 Hz), 8.54 (d, 1H, J = 4.5 Hz), 9.96 (s, 1H); 1 H NMR (CDCl 3): δ 4.82 (s, 2H), 4.99 (s, 2H), 6.92-7.09 (m, 2H), 7.11-7.50 (m, 9H), 7.54-7.77 (m, 2H), (D, 2H, J = 8.50 Hz), 8.42 (d, 1H, J = 4.5 Hz), 8.54 (d, 1H, J = 4.5 Hz), 9.96 (s, 1H);

13C NMR (CDCl3): δ 53.87, 120.83, 121.38, 121.75, 122.20, 122.49, 123.38, 128.73, 130.90, 133.42, 136.49, 136.70, 138.91, 149.42, 157.17, 157.36, 165.37, 167.20, 190.97.; 13 C NMR (CDCl 3):? 53.87, 120.83, 121.38, 121.75, 122.20, 122.49, 123.38, 128.73, 130.90, 133.42, 136.49, 136.70, 138.91, 149.42, 157.17, 157.36, 165.37, 167.20, 190.97.

EI+ 질량 분석, m/z 489.0 (M+H)+.EI + mass analysis, m / z 489.0 (M + H) &lt; + & gt ; .

단계 3: Step 3: 트리아진Triazine 트리포드Tripod BODIPYBODIPY 의 제조Manufacturing

Figure 112013074028447-pat00007
Figure 112013074028447-pat00007

1-피콜릴아민-2-아미노벤젠-3-옥시-벤즈알데하이드-트리아진(1.20 mmol) 및 2, 4-다이메틸피롤(0.24g, 2.56 mmol)을 60 ml의 무수 THF에 녹인 용액에 촉매량의 트라이플루오로아세트산을 실온, 아르곤 존재 하에서 첨가하였다. 20시간 동안 교반시킨 후, 혼합물에 2,3-디클로로-5,6-다이시아노-1,4-벤조퀴논(1.20 mmol)을 30 ml의 무수 THF에 녹인 용액을 10분 동안 천천히 첨가한 다음 반응 용액을 실온에서 2시간 동안 추가로 교반시켰다. 다음으로 혼합물을 산화알루미늄 컬럼(~40 g)에 통과시켜 불순물을 제거한 다음 MC/MeOH(97.5/2.5) 용매로 용리시켜 어두운 갈색 용액을 얻었다. 농축 후 잔사를 진공 하에서 밤새 건조시킨 다음 추가 정제 단계 없이 바로 사용하였다.To a solution of 1-picolylamine-2-aminobenzene-3-oxy-benzaldehyde-triazine (1.20 mmol) and 2,4-dimethylpyrrole (0.24 g, 2.56 mmol) in 60 ml of anhydrous THF, Of triflu or o acetic acid were added at room temperature in the presence of argon. After stirring for 20 hours, a solution of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (1.20 mmol) in 30 ml of anhydrous THF was slowly added to the mixture for 10 minutes The reaction solution was further stirred at room temperature for 2 hours. The mixture was then passed through an aluminum oxide column (~ 40 g) to remove impurities and eluted with a MC / MeOH (97.5 / 2.5) solvent to give a dark brown solution. After concentration, the residue was dried in vacuo overnight and immediately used without further purification steps.

무수 THF (60 ml) 및 트라이에틸아민(6.0 ml)을 생성물이 함유된 플라스크에 아르곤 분위기 및 실온에서 교반시키면서 반복적으로 첨가한 후 보론 트라이플루오라이드-디에테레이트(6.0 ml)를 20분 동안 드로핑 깔대기를 이용하여 적하하였다. 혼합물을 밤새 교반시킨 다음 Al2O3 컬럼(~40 g)에 통과시키고 MC/MeOH(98.03/1.97) 혼합용매로 세척하였다. 용매를 농축시킨 후 잔사를 DCM(100 ml)에 재용해시키고, 15% K2CO3 수용액(3 × 200 ml) 및 물(160 ml)로 충분히 세척한 다음 황산 마그네슘으로 건조시켰다. 건조된 유기층을 진공 하에서 농축시키고, 생성물을 플래쉬 크로마토그래피(DCM/MeOH = 98/2)로 정제하여 목적화합물을 30% 수율로 얻었다.To a flask containing anhydrous THF (60 ml) and triethylamine (6.0 ml) were added repeatedly while stirring under an argon atmosphere and at room temperature, and then boron trifluoride-dietherate (6.0 ml) And poured using a ping funnel. The mixture was stirred overnight and then passed through an Al 2 O 3 column (~ 40 g) and washed with MC / MeOH (98.03 / 1.97) mixed solvent. After concentration of the solvent, the residue was redissolved in DCM (100 ml), washed thoroughly with 15% aqueous K 2 CO 3 (3 × 200 ml) and water (160 ml) and dried over magnesium sulfate. The dried organic layer was concentrated in vacuo and the product was purified by flash chromatography (DCM / MeOH = 98/2) to give the title compound in 30% yield.

1H NMR (CDCl3): δ 0.93 (t, 6H, J = 7.5 Hz, CH3 of ethyl group), 1.30 (s, 6H, CH3 on BODIPY), 2.25 (q, 4H, J= 7.5Hz, CH2 of ethyl group), 2.53 (s, 6H, CH3 on BODIPY closest to N), 4.85 (s, 2H), 4.94 (s, 2H), 6.99 (s, 2H), 7.01 (m, 1H), 7.11-7.22 (m, 10H), 7.24 (m, 2H), 7.59 (m, 2H), 8.53 (d, 1H, J = 4.5 Hz), 8.54 (d, 1H, J = 4.5 Hz). 1 H NMR (CDCl 3 ):? 0.93 (t, 6H, J = 7.5 Hz, CH 3 of ethyl group), 1.30 (s, 6H, CH 3 on BODIPY) 2H), 6.99 (s, 2H), 7.01 (m, 1H), 7.11-7.22 (m, 2H) 1H, J = 4.5 Hz), 7.24 (m, 2H), 7.59 (m, 2H), 8.53 (d, 1H, J = 4.5 Hz).

13C NMR (CDCl3): δ 8.97, 12.46, 14.57, 17.00, 30.91, 46.14, 120.20, 121.44, 121.43, 122.21, 122.33, 122.82, 123.39, 128.81, 129.08, 136.52, 136.63, 138.22, 149.28, 149.44, 153.79, 157.30;
13 C NMR (CDCl 3 ): δ 8.97, 12.46, 14.57, 17.00, 30.91, 46.14, 120.20, 121.44, 121.43, 122.21, 122.33, 122.82, 123.39, 128.81, 129.08, 136.52, 136.63, 138.22, 149.28, 149.44, , 157.30;

1B NMR (CDCl3): -2.234-3.124 (D, 1B).; 1 B NMR (CDCl 3): -2.234-3.124 (D, 1B) .;

EI+ 질량 분석, m/z 707.0 (M+H)+.
EI + mass spectrometry, m / z 707.0 (M + H) &lt; + & gt ; .

단계 4: 화학적으로 변환된 그래핀(Step 4: Chemically transformed graphene ( chemicallychemically convertedconverted graphenegraphene ; ; CCGCCG )의 제조)

산화 그래핀을 천연 그래파이트로부터 헤머스 방법(Jr WSH, Offeman RE, J. Am. Chem. Soc 1958;80(6): 1339.)에 의해 제조하였다.Oxide graphene was prepared from natural graphite by the Hemers method (Jr WSH, Offeman RE, J. Am. Chem. Soc 1958; 80 (6): 1339.).

구체적으로, 5.0 g의 분말화된 플레이크 그래파이트(325 메쉬) 및 2.5 g의 질산나트륨을 1.15 리터의 황산에 넣었다. 성분들은 안전을 목적으로 얼음조에 넣었다. 격렬한 교반을 유지하면서 15.0 g의 과망간산 칼륨을 현탁액에 첨가하였다. 현탁액의 온도를 20℃가 넘지 않도록 주의하면서 첨가 비율을 조절하였다. 다음으로 얼음조를 치우고 상기 현탁액의 온도를 30분 동안 35℃로 상승시켰다. 반응이 진행됨에 따라 혼합물은 점차적으로 두꺼워지고 거품이 이는 것이 중단되었다. 20분 후에 상기 혼합물은 단지 적은 양의 기체를 갖는 약간 갈색을 띈 회색 페이스트가 되었다. 30분 후, 1.0 리터의 물을 상기 페이스트에 천천히 교반시키면서 넣어서 폭발적인 거품을 유도하였으며, 온도를 98℃로 상승시켰다. 희석된 현탁액을 이 온도에서 15분 동안 유지시켰다. 다음으로, 상기 현탁액을 약 2.0 리터의 따뜻한 물로 추가 희석시켰으며, 잔여 과망간산염 및 이산화망간을 투명한 용해 가능한 황산 망간이 되도록 줄이기 위하여 과산화수소로 처리하였다. 상기 과산화수소를 처리하는 동안 상기 현탁액은 연노란색으로 변했다. 상기 현탁액을 여과하여 그 결과로 노란 갈색, 즉 케이크형이 되었다. 부반응에 의해 형성되는 약간 용해 가능한 멜리트산 염의 침전물을 피하기 위하여 상기 현탁액이 따뜻한 상태에서 여과를 수행하였다. 약간 노란 갈색 여과 케이크를 총 2.0 리터의 온수로 3번 세척한 후, 산화 그래파이트 잔사를 4.0 리터의 물에 분산시켜 약 0.0285 g의 고체를 얻었다. 남아있는 염 불순물은 수지로 된 음이온 및 양이온 교환기로 처리하여 제거하였다. 원심분리 후 40℃에서 오산화인으로 탈수시켜 산화 그래파이트의 건조 형태를 얻었다.Specifically, 5.0 g of powdered flake graphite (325 mesh) and 2.5 g of sodium nitrate were placed in 1.15 liters of sulfuric acid. Ingredients were placed in an ice bath for safety purposes. 15.0 g of potassium permanganate was added to the suspension while stirring vigorously. The rate of addition was adjusted with care being taken so that the temperature of the suspension did not exceed 20 占 폚. The ice bath was then removed and the temperature of the suspension was raised to 35 DEG C for 30 minutes. As the reaction progressed, the mixture gradually thickened and the bubbling ceased. After 20 minutes the mixture became a slightly brownish gray paste with only a small amount of gas. After 30 minutes, 1.0 liter of water was slowly added to the paste with stirring to induce an explosive foam, and the temperature was raised to 98 占 폚. The diluted suspension was kept at this temperature for 15 minutes. Next, the suspension was further diluted with about 2.0 liters of warm water and treated with hydrogen peroxide to reduce residual permanganate and manganese dioxide to a clear soluble manganese sulfate. During the treatment with hydrogen peroxide the suspension turned pale yellow. The suspension was filtered, resulting in a yellowish brown, i.e., cake-like. Filtration was carried out in the warm state of the suspension to avoid precipitation of the slightly soluble melitic acid salt formed by side reactions. After washing the slightly yellow-brown filter cake three times with a total of 2.0 liters of hot water, the oxidized graphite residue was dispersed in 4.0 liters of water to obtain a solid of about 0.0285 g. The remaining salt impurities were removed by treating with resin anions and cation exchangers. After centrifugation, dehydration was carried out at 40 DEG C with phosphorus pentoxide to obtain a dried form of oxidized graphite.

CCG는 Pulickel M. Ajayan의 방법(Gao W, Alemany LB, Ci L, Ajayan PM, Nature Chemisty 2009;1: 403-408.)으로 제조하였다. 구체적으로, 건조 산화그래파이트(GO)를 탈이온수에 분산시켜 콜로이드 용액을 얻었다. 이 용액의 pH를 9-10으로 조정하였다. 수소화붕소나트륨을 상기 산화 그래파이트(GO) 용액에 자기 교반하면서 직접 첨가하여 분산시키고, 혼합물을 일정하게 교반시키면서 1시간 동안 80℃에서 유지시켰다. 환원된 생성물을 여과 및 많은 양의 물로 수 회 세척하여 대부분의 잔사 이온을 제거하였다. 이 적당히 환원된 산화 그래파이트(GO)를 오산화인이 들어있는 진공 데시케이터에 넣고 2일 동안 유지시킨 다음, 농축된 황산에 재분산시키고 180℃로 승온시킨 다음, 12시간 동안 교반시켰다. 냉각 후 분산액을 탈이온수로 희석시켰다. 최종 생성물을 여과하여 분리하였다.
CCG was prepared by the method of Pulickel M. Ajayan (Gao W, Alemany LB, Ci L, Ajayan PM, Nature Chemisty 2009; 1: 403-408). Specifically, dry oxidized graphite (GO) was dispersed in deionized water to obtain a colloidal solution. The pH of this solution was adjusted to 9-10. Sodium borohydride was directly added to the oxidized graphite (GO) solution with magnetic stirring and dispersed, and the mixture was kept at 80 DEG C for 1 hour with constant stirring. The reduced product was washed several times with filtration and a large amount of water to remove most of the residual ions. This moderately reduced oxidized graphite (GO) was placed in a vacuum desiccator containing phosphorus pentoxide, held for 2 days, redispersed in concentrated sulfuric acid, heated to 180 &lt; 0 &gt; C and stirred for 12 hours. After cooling, the dispersion was diluted with deionized water. The final product was isolated by filtration.

단계 5: Step 5: CCGCCG -- BODIPYBODIPY 의 제조Manufacturing

Figure 112013074028447-pat00008
Figure 112013074028447-pat00008

상기 CCG-BODIPY를 문헌(Zhang X, Huang Y, Wang Y, Ma Y, Liu Z, Chen Y, Carbon 2008;47:313-347)에 보고된 방법을 응용하여 합성하였다.The CCG-BODIPY was synthesized by applying the method reported in Zhang X, Huang Y, Wang Y, Ma Y, Liu Z, Chen Y, Carbon 2008; 47: 313-347.

구체적으로, 화학적으로 변환된 그래핀(CCG, 50 mg)을 촉매량의 DMF의 존재 하에서 70℃에서 24시간 동안 SOCl2(25 ml)와 반응시켜 CCG의 아실 클로라이드를 얻었다. 과량의 SOCl2를 감압 하에서 증발시킨 후 잔여 SOCl2를 톨루엔으로 세척하였다. 다음으로 BODIPY(150 mg)를 촉매량의 트라이에틸아민(1 ml), 아르곤 및 상기 잔사의 존재 하에서 DCM(50 ml)에 넣고 130℃에서 3일 동안 교반시켰다. 반응이 완료된 후, 용액을 아세톤에 부었다. 그 결과로 생성된 현탁액을 0.1 μm 기공 크기 및 직경 47 mm의 막 필터를 통해 여과하였다. 생성물을 CHCl3/CH2Cl2를 이용하여 상기 동일한 절차를 통해 수 회 다시 세척하였다. UV 분광학 및 박막 크로마토그래피로 최종 세척시 여액에 BODIPY가 존재하지 않음을 확인하였다. 다음으로 CCG-BODIPY를 소량의 물로 세척하여 산-아민 불순물을 제거하고 최종적으로 진공 하에서 건조시켜 그래핀계 광촉매인 혼성 CCG-BODIPY(40 mg)를 얻었다.
Specifically, chemically converted graphene (CCG, 50 mg) was reacted with SOCl 2 (25 ml) at 70 &lt; 0 &gt; C in the presence of a catalytic amount of DMF for 24 hours to give the acyl chloride of CCG. Excess SOCl 2 was evaporated under reduced pressure and the residual SOCl 2 was washed with toluene. BODIPY (150 mg) was then added to DCM (50 ml) in the presence of a catalytic amount of triethylamine (1 ml), argon and the above residue, and the mixture was stirred at 130 ° C for 3 days. After the reaction was complete, the solution was poured into acetone. The resulting suspension was filtered through a membrane filter with a pore size of 0.1 [mu] m and a diameter of 47 mm. The product can be through the same procedure using a CHCl 3 / CH 2 Cl 2 and washed once again. UV spectroscopy and thin layer chromatography showed no BODIPY in the filtrate. Next, CCG-BODIPY was washed with a small amount of water to remove acid-amine impurities and finally dried under vacuum to obtain a hybrid CCG-BODIPY (40 mg) as a graphene photocatalyst.

<< 제조예Manufacturing example 2> 로듐(Ⅲ) 복합체의 제조 2> Preparation of rhodium (III) complex

NAD+와 그래핀계 광촉매와의 전자를 전달하기 위한 유기금속 매개체로 로듐(Ⅲ) 복합체인 (펜타메틸사이클로펜타디에닐-2,2'-바이피리딘클로로)로듐(Ⅲ)(이하 M이라 함; M=[Cp*Rh(bpy)H2O]+; Cp*=C5Me5, bpy=2,2'-바이피리딘)을 사용하였다. 상기 로듐(Ⅲ) 복합체 M은 Kelle와 Gratzel의 방법(F. Hollmann, B. Witholt, A. Schmid, J. Mol. Catal. B 2002, 19-20, 167)으로 합성하였다.
(Pentamethylcyclopentadienyl-2,2'-bipyridinechloro) rhodium (III) (hereinafter referred to as M) as an organometallic mediator for transferring electrons between NAD + and a graphene photocatalyst. M = [Cp * Rh (bpy) H 2 O] + ; Cp * = C 5 Me 5 , bpy = 2,2'-bipyridine) was used. The rhodium (III) complex M was synthesized by the method of Kelle and Gratzel (F. Hollmann, B. Witholt, A. Schmid, J. Mol. Catal . B 2002, 19-20 , 167).

<< 실시예Example 1 -  One - 실시예Example 6> 화학식 1로 표시되는  6 > 그래핀Grapina -- BODIPYBODIPY 광촉매Photocatalyst 및 알코올  And alcohol 디하이드로게나제를Dihydrogenase 이용한 케톤의 환원반응 Reduction reaction of ketone used

아르곤 분위기 하에서 3 ml의 석영 큐벳 반응기에 2.4 mL 인산나트륨 완충용액(NaH2PO4-Na2HPO4, pH 7.0, 0.1 M), n-헵탄(0.6 mL), 40 mM 케톤 유도체, 0.4 mM의 NADP+ 및 4.8 mg(즉, 2 U)의 생촉매(효소)로서 락토바실러스 케피르 알코올 디하이드로게나제(Lactobacillus Kefir Alcohol Dehydrogenase, LKADH)/40 mM 케톤 유도체에 대하여 상기 제조예 2에서 제조된 로듐(Ⅲ) 복합체(0.62 μmol), 1.24 mM의 트라이에탄올아민(TEOA) 및 광촉매로서 상기 제조예 1에서 제조된 그래핀-BODIPY 복합체(0.5 mg, DMF에 녹인 용액 30 μL)으로 이루어진 반응 혼합물 3 mL을 넣고, 30℃에서 50시간 동안 450W 제논 램프(λ≥420 nm)에서 나오는 빛의 존재 하에서 격렬하게 교반시켰다. 이후, 반응 혼합물을 0.2 μm 막 필터에 통과시키고, 이어서 격렬하게 혼합 에틸 아세테이트로 3번(3 × 3 mL) 추출하였다. 유기상을 모아 염수로 세척하고 황산 마그네슘으로 건조시켰다. 용매를 진공 하에서 증발시키고 남은 잔사를 실리카겔 컬럼(~20% 헥산에 녹인 EtOAc 사용)에 통과시켜 키랄 알코올 생성물 및 미반응된 케톤 화합물의 혼합물을 얻었다. 생성된 키랄 알코올을 1H NMR을 통해 확인하였으며, 키랄 가스크로마토그래피(chiral GC, 5890 Series Ⅱ, HP)를 이용하여 정량 분석하였다.(NaH 2 PO 4 -Na 2 HPO 4 , pH 7.0, 0.1 M), n-heptane (0.6 mL), a 40 mM ketone derivative, and 0.4 mM of sodium chloride in a 3 ml quartz cuvette reactor under an argon atmosphere NADP + and 4.8 mg (i.e., 2 U) biocatalyst Lactobacillus Kane pireu alcohol dehydrogenase the (Lactobacillus as (an enzyme) of (0.62 占 퐉 ol), 1.24 mM of triethanolamine (TEOA) prepared in Preparation Example 2, and 1.24 mM of triethanolamine (TEOA) prepared in Preparation Example 2 were added to a Kefir Alcohol Dehydrogenase (LKADH) / 40 mM ketone derivative 3 mL of the reaction mixture consisting of the pin-BODIPY complex (0.5 mg, 30 μL of the solution dissolved in DMF) was added and vigorously stirred at 30 ° C. for 50 hours in the presence of light from a 450 W xenon lamp (λ≥420 nm). The reaction mixture was then passed through a 0.2 μm membrane filter, followed by vigorous extraction with mixed ethyl acetate three times (3 × 3 mL). The organic phase was collected, washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was passed through a silica gel column (using EtOAc in ~ 20% hexane) to give a mixture of the chiral alcohol product and the unreacted ketone compound. The resulting chiral alcohols were identified by 1 H NMR and quantitatively analyzed by chiral gas chromatography (chiral GC, 5890 Series II, HP).

출발물질인 케톤(아세토페논) 유도체 및 제조된 키랄 알코올 및 정량 분석 결과를 하기 표 1에 나타내었다.The ketone (acetophenone) derivatives as starting materials, the chiral alcohols prepared, and quantitative analysis results are shown in Table 1 below.

케톤Ketone 키랄 알코올 Chiral alcohol 알코올 전환율 (%)Alcohol Conversion Rate (%) e.e (%)e.e (%) 실시예 1Example 1

Figure 112013074028447-pat00009
Figure 112013074028447-pat00009
Figure 112013074028447-pat00010
Figure 112013074028447-pat00010
4141 >99.9> 99.9 실시예 2Example 2
Figure 112013074028447-pat00011
Figure 112013074028447-pat00011
Figure 112013074028447-pat00012
Figure 112013074028447-pat00012
4444 >99.9> 99.9
실시예 3Example 3
Figure 112013074028447-pat00013
Figure 112013074028447-pat00013
Figure 112013074028447-pat00014
Figure 112013074028447-pat00014
3838 95.095.0
실시예 4Example 4
Figure 112013074028447-pat00015
Figure 112013074028447-pat00015
Figure 112013074028447-pat00016
Figure 112013074028447-pat00016
4545 97.097.0
실시예 5Example 5
Figure 112013074028447-pat00017
Figure 112013074028447-pat00017
Figure 112013074028447-pat00018
Figure 112013074028447-pat00018
3030 98.098.0
실시예 6Example 6
Figure 112013074028447-pat00019
Figure 112013074028447-pat00019
Figure 112013074028447-pat00020
Figure 112013074028447-pat00020
3434 >99.9> 99.9

표 1에 나타낸 바와 같이, 본 발명에 따른 그래핀-BODIPY 광촉매 및 알코올 디하이드로게나제를 이용한 광-바이오 시스템을 통하여 n-헵탄/물의 유기상/수상의 2상 반응 매체에서 라세메이트 형태인 케톤 유도체로부터 광학활성을 갖는 키랄 알코올을 95% 이상의 광학순도로 제조할 수 있음을 확인하였다.As shown in Table 1, through a photo-biosystem using a graphene-BODIPY photocatalyst and an alcohol dehydrogenase according to the present invention, ketone derivatives in the form of racemate in a two-phase reaction medium of n-heptane / It was confirmed that chiral alcohols having optical activity could be prepared with an optical purity of 95% or more.

이로부터, 본 발명에 따른 그래핀-BODIPY 광촉매를 이용한 광-바이오 시스템을 통하여 케톤 화합물을 높은 광학순도를 갖는 키랄 알코올로 환원할 수 있는 것을 알 수 있다.
From this, it can be seen that the ketone compound can be reduced to chiral alcohol having high optical purity through the photo-biosystem using the graphene-BODIPY photocatalyst according to the present invention.

<< 실험예Experimental Example 1> 화학식 1로 표시되는  1 > 광촉매를Photocatalyst 이용한  Used NADPHNADPH 전환율 측정  Measure Conversion Rate

본 발명에 따른 광-바이오 시스템의 NADPH 재생 방법에 있어서, 광촉매가 미치는 영향을 알아보기 위하여 다음과 같은 실험을 수행하였다.
In order to examine the effect of the photocatalyst in the NADPH regeneration method of the photo-biosystem according to the present invention, the following experiment was performed.

석영 큐벳 반응기에 인산완충용액(100 mM, pH 7.0)을 넣고, 광촉매로서 실시예 1에서 제조된 그래핀-BODIPY 복합체, 전자전달체로서 상기 제조에 2에서 제조된 로듐(Ⅲ) 복합체 0.2 mmol, NADP+ 0.4 mmol 및 트라이에탄올아민(TEOA) 400 mmol을 투입하고 상온에서 교반시켰다. 반응은 아르곤 분위기 하에서 450W 제논 램프(λ≥420 nm)를 이용하였다. 이후 NADPH의 농도를 분광광도계(UV-1800, Shimadzu)를 이용하여 340 nm에서 측정하였다. 2.5시간 동안 반응을 수행하여 시간에 따른 NADPH의 전환율을 측정하고, 그 결과를 도 3에 나타내었다.
A phosphate buffer solution (100 mM, pH 7.0) was added to the quartz cuvette reactor, and the graphene-BODIPY complex prepared in Example 1 as a photocatalyst and 0.2 mmol of the rhodium (III) complex prepared in the above- + 0.4 mmol and triethanolamine (TEOA) (400 mmol) were added and stirred at room temperature. A 450 W xenon lamp (? 420 nm) was used under an argon atmosphere. The concentration of NADPH was then measured at 340 nm using a spectrophotometer (UV-1800, Shimadzu). For 2.5 hours to perform the reaction by measuring the conversion of NADPH according to the time and the results are shown in Fig.

도 3에 나타낸 바와 같이, 본 발명에 따른 화학식 1로 표시되는 그래핀-BODIPY 광촉매는 광 조사가 이루어지지 않는 경우, NADP+에 대한 환원이 이루어지지 않으나, 광 조사가 이루어지기 시작하면서 환원 반응이 진행되어 NADPH로 전환되는 것으로 나타났다. 또한, 420 nm 이상의 파장에서 2.5시간 광 조사한 경우, NADP+로부터 NADPH로의 전환율은 55%로서 그 전환 효율이 상당히 우수한 것으로 확인되었다.
As shown in FIG . 3 , the graphene-BODIPY photocatalyst represented by Formula 1 according to the present invention is not reduced to NADP + when light irradiation is not performed. However, when light irradiation is started, And converted to NADPH. In addition, when light was irradiated at a wavelength of 420 nm or longer for 2.5 hours, the conversion efficiency from NADP + to NADPH was 55%, and it was confirmed that the conversion efficiency was remarkably excellent.

따라서, 그래핀-BODIPY 광촉매를 사용할 때 우수한 전환율로 산화환원효소의 보조인자를 재생할 수 있으며, 태양 에너지를 사용하여 추가에너지 비용이 들지 않고므로, 경제적이고 환경 친화적으로 대량생산 및 자동화가 가능하므로 본 발명에 따른 광-바이오 시스템을 이용한 키랄 화합물 제조 시 그래핀-BODIPY 광촉매를 사용하는 것이 바람직하다.Therefore, when the graphene-BODIPY photocatalyst is used, it is possible to regenerate the co-factor of the oxidoreductase with an excellent conversion rate, and since no additional energy cost is incurred by using solar energy, mass production and automation can be economically and environmentally friendly, It is preferable to use a graphene-BODIPY photocatalyst when preparing a chiral compound using the photo-biosystem according to the present invention.

Claims (10)

반응기에 인산완충용액; 산화형의 산화환원효소 보조인자; 산화환원 매개체인 로듐(Ⅲ) 복합체; 하기 화학식 1로 표시되는 그래핀-BODIPY 광촉매; 및 비극성 유기 용매 및 물의 혼합용매를 주입하고 불활성 기체의 분위기 하에서 빛을 조사하면서 교반시켜 환원형의 산화환원효소 보조인자를 생성시키는 단계를 포함하는 산화환원효소 보조인자의 재생방법:
[화학식 1]
Figure 112015035681463-pat00021
.
Phosphate buffer solution in the reactor; Oxidase type oxidoreductase cofactor; A rhodium (III) complex as an redox medium; A graphene-BODIPY photocatalyst represented by the following formula (1); And a step of injecting a mixed solvent of a nonpolar organic solvent and water and stirring the mixture while irradiating light in an atmosphere of an inert gas to produce a reducing type oxidoreductase cofactor.
[Chemical Formula 1]
Figure 112015035681463-pat00021
.
제1항에 있어서,
상기 산화형의 산화환원효소 보조인자는 NAD+, NADP+, FAD+ 및 FMN+으로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 산화환원효소 보조인자의 재생방법.
The method according to claim 1,
Wherein the oxidation-type oxidoreductase-aiding agent is any one selected from the group consisting of NAD + , NADP + , FAD + and FMN + .
제1항에 있어서,
상기 로듐(Ⅲ) 복합체는 (2,2'-바이피리딘)-(펜타메틸사이클로펜타다이에닐)로듐(Ⅲ)인 것을 특징으로 하는 산화환원효소 보조인자의 재생방법.
The method according to claim 1,
Wherein the rhodium (III) complex is (2,2'-bipyridine) - (pentamethylcyclopentadienyl) rhodium (III).
제1항에 있어서,
상기 비극성 유기 용매는 n-헥산 또는 n-헵탄인 것을 특징으로 하는 산화환원효소 보조인자의 재생방법.
The method according to claim 1,
Wherein the non-polar organic solvent is n-hexane or n-heptane.
반응기에 인산완충용액; 산화형의 산화환원효소 보조인자; 산화환원 매개체인 로듐(Ⅲ) 복합체; 하기 화학식 1로 표시되는 그래핀-BODIPY 광촉매; 비극성 유기 용매 및 물의 혼합용매; 알코올 디하이드로게나제; 및 케톤 유도체를 넣고 불활성 기체의 분위기 하에서 빛을 조사하면서 교반시켜 케톤 유도체를 환원시킴으로써 키랄 알코올 화합물을 생산하는 단계를 포함하는 광-바이오 시스템을 이용한 키랄 알코올 화합물의 제조방법:
[화학식 1]
Figure 112013074028447-pat00022
.
Phosphate buffer solution in the reactor; Oxidase type oxidoreductase cofactor; A rhodium (III) complex as an redox medium; A graphene-BODIPY photocatalyst represented by the following formula (1); A mixed solvent of a nonpolar organic solvent and water; Alcohol dehydrogenase; And producing a chiral alcohol compound by adding a ketone derivative and stirring the mixture under irradiation of light in an atmosphere of an inert gas to reduce the ketone derivative, thereby producing a chiral alcohol compound using the photo-
[Chemical Formula 1]
Figure 112013074028447-pat00022
.
제5항에 있어서,
상기 산화형의 산화환원효소 보조인자는 NAD+, NADP+, FAD+ 및 FMN+으로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 광-바이오 시스템을 이용한 키랄 알코올 화합물의 제조방법.
6. The method of claim 5,
Wherein the oxidation-type oxidoreductase co-promoter is any one selected from the group consisting of NAD + , NADP + , FAD + and FMN + .
제5항에 있어서,
상기 로듐(Ⅲ) 복합체는 (2,2'-바이피리딘)-(펜타메틸사이클로펜타다이에닐)로듐(Ⅲ)인 것을 특징으로 하는 광-바이오 시스템을 이용한 키랄 알코올 화합물의 제조방법.
6. The method of claim 5,
Wherein the rhodium (III) complex is (2,2'-bipyridine) - (pentamethylcyclopentadienyl) rhodium (III).
제5항에 있어서,
상기 비극성 유기 용매는 n-헥산 또는 n-헵탄인 것을 특징으로 하는 광-바이오 시스템을 이용한 키랄 알코올 화합물의 제조방법.
6. The method of claim 5,
Wherein the nonpolar organic solvent is n-hexane or n-heptane.
제5항에 있어서,
상기 알코올 디하이드로게나제는 락토바실러스 케피르(Lactobacillus Kefir)로부터 추출되는 것을 특징으로 하는 광-바이오 시스템을 이용한 키랄 알코올 화합물의 제조방법.
6. The method of claim 5,
Wherein the alcohol dehydrogenase is extracted from Lactobacillus Kefir. &Lt; RTI ID = 0.0 &gt; 21. &lt; / RTI &gt;
제5항에 있어서,
상기 알코올 디하이드로게나제는 1.0 U 이상의 농도로 첨가되는 것을 특징으로 하는 광-바이오 시스템을 이용한 키랄 알코올 화합물의 제조방법.
6. The method of claim 5,
Wherein the alcohol dihydrogenase is added at a concentration of 1.0 U or more.
KR1020130096907A 2013-08-14 2013-08-14 Method for regeneration of oxidoreductase cofactor using photo-biosystem and method for selectively enzymatic production of chiral alcohol using the same KR101536640B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130096907A KR101536640B1 (en) 2013-08-14 2013-08-14 Method for regeneration of oxidoreductase cofactor using photo-biosystem and method for selectively enzymatic production of chiral alcohol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130096907A KR101536640B1 (en) 2013-08-14 2013-08-14 Method for regeneration of oxidoreductase cofactor using photo-biosystem and method for selectively enzymatic production of chiral alcohol using the same

Publications (2)

Publication Number Publication Date
KR20150020453A KR20150020453A (en) 2015-02-26
KR101536640B1 true KR101536640B1 (en) 2015-07-23

Family

ID=52579241

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130096907A KR101536640B1 (en) 2013-08-14 2013-08-14 Method for regeneration of oxidoreductase cofactor using photo-biosystem and method for selectively enzymatic production of chiral alcohol using the same

Country Status (1)

Country Link
KR (1) KR101536640B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150114843A1 (en) * 2013-10-25 2015-04-30 The University Of North Carolina At Chapel Hill Electrocatalytic hydrogen production promoted by visible light

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120026656A (en) * 2010-09-10 2012-03-20 한국화학연구원 Novel visible light active graphene-porphyrin photocatalyst, method for regeneration of oxidoreductase cofactor and method for enzymatic production of formic acid from carbon dioxide using the same
KR20120031275A (en) * 2012-01-30 2012-04-02 한국화학연구원 The method for regeneration of oxidoreductase cofactor using visible light active photocatalyst and the method for production of l-glutamate therethrough

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120026656A (en) * 2010-09-10 2012-03-20 한국화학연구원 Novel visible light active graphene-porphyrin photocatalyst, method for regeneration of oxidoreductase cofactor and method for enzymatic production of formic acid from carbon dioxide using the same
KR20120031275A (en) * 2012-01-30 2012-04-02 한국화학연구원 The method for regeneration of oxidoreductase cofactor using visible light active photocatalyst and the method for production of l-glutamate therethrough

Also Published As

Publication number Publication date
KR20150020453A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
Ma et al. Photocatalytic synthesis of 2, 5-diformylfuran from 5-hydroxymethyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides
Wöltinger et al. Zeolite‐Encapsulated Cobalt Salophen Complexes as Efficient Oxygen‐Activating Catalysts in Palladium‐Catalyzed Aerobic 1, 4‐Oxidation of 1, 3‐Dienes
Chen et al. Visible-light-driven selective oxidation of glucose in water with H-ZSM-5 zeolite supported biomimetic photocatalyst
Kurpil et al. Photooxidation of N-acylhydrazones to 1, 3, 4-oxadiazoles catalyzed by heterogeneous visible-light-active carbon nitride semiconductor
US20120035388A1 (en) Platinum/carbon nanotube catalyst, the preparation process and use thereof
KR101220427B1 (en) Novel visible light active graphene-porphyrin photocatalyst, method for regeneration of oxidoreductase cofactor and method for enzymatic production of formic acid from carbon dioxide using the same
JP2013216696A (en) New opiate reduction utilizing catalytic hydrogen transfer reaction
US10335775B2 (en) Magnetically separable iron-based heterogeneous catalysts for dehydrogenation of alcohols and amines
EP3255053B1 (en) METHOD OF PREPARING WATER-CRACKING CATALYST HAVING Mn4CaO4 AS CORE STRUCTURE AND APPLICATION THEREOF
Liu et al. Effective and recyclable dendritic ligands for the enantioselective epoxidation of enones
Titinchi et al. Tri-and tetradentate copper complexes: a comparative study on homogeneous and heterogeneous catalysis over oxidation reactions
JPH07206735A (en) Oxidizing method for alkane with new porphyrin synthesized from dipyrromethane and aldehyde
Liu et al. Bi4O5Br2 catalyzed selective oxidative of C= C double bonds to ketones with molecular oxygen under visible-light irradiation
Sepahvand et al. The magnetic graphene oxide/NHC catalyzed aerobic direct amidation and cross-dehydrogenative coupling of aldehydes
KR101536640B1 (en) Method for regeneration of oxidoreductase cofactor using photo-biosystem and method for selectively enzymatic production of chiral alcohol using the same
KR101339649B1 (en) Novel visible light active graphene-based photocatalyst, method for regeneration of oxidoreductase cofactor and method for enzymatic production of formic acid from carbon dioxide using the same
EP3705484B1 (en) Cluster compound containing mn3sro4 and mn4sro4 core structures, preparation method thereof, and application for same
KR101382218B1 (en) Preparation method of chiral alcohol compounds using photo­biosystem
KR102466619B1 (en) Covalent organic framework, photocatalyst comprising the same, and method for production of formic acid from carbon dioxide by applying the same to a photocatalyst-enzyme integrated system
CN113171798B (en) Heterogeneous iron catalyst, preparation method thereof and process for preparing 2-methyl-1, 4-naphthoquinone by catalysis
KR20120031275A (en) The method for regeneration of oxidoreductase cofactor using visible light active photocatalyst and the method for production of l-glutamate therethrough
KR101143388B1 (en) The method for regeneration of oxidoreductase cofactor using visible light active photocatalyst and the method for production of L-glutamate therethrough
Huang et al. Dye-sensitized hematite compososite photocatalyst and its photocatalytic performance of aerobic annulation
KR101561609B1 (en) Novel visible light active graphene-isatinporphyrin photocatalyst, method for regeneration of oxidoreductase cofactor and method for enzymatic production of methanol from carbon dioxide using the same
KR102669996B1 (en) Fluorene-porphyrin thin film type photocatalyst prepared by interfacial synthesis method and carbon dioxide conversion reaction and chemical conversion reaction using solar energy using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190711

Year of fee payment: 5