KR101532211B1 - Pharmaceutical composition and method for treating stoke based on the inhibition of AMPK - Google Patents

Pharmaceutical composition and method for treating stoke based on the inhibition of AMPK Download PDF

Info

Publication number
KR101532211B1
KR101532211B1 KR1020140052583A KR20140052583A KR101532211B1 KR 101532211 B1 KR101532211 B1 KR 101532211B1 KR 1020140052583 A KR1020140052583 A KR 1020140052583A KR 20140052583 A KR20140052583 A KR 20140052583A KR 101532211 B1 KR101532211 B1 KR 101532211B1
Authority
KR
South Korea
Prior art keywords
stroke
ampk
compound
zinc
treating
Prior art date
Application number
KR1020140052583A
Other languages
Korean (ko)
Inventor
김양희
박황서
고재영
엄재원
김태윤
서보라
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Priority to KR1020140052583A priority Critical patent/KR101532211B1/en
Priority to PCT/KR2015/004303 priority patent/WO2015167246A1/en
Application granted granted Critical
Publication of KR101532211B1 publication Critical patent/KR101532211B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/423Oxazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided is a composition for treating stroke which treats stroke by processing a novel compound suppressing zinc neurotoxic AMPK activation which is one of the main causes of stroke. According to an embodiment of the present invention, the composition contains a compound having a chemical formula in the specification as an active ingredient.

Description

AMPK 억제기능에 기반한 뇌졸중 치료용 약학적 조성물 및 방법{Pharmaceutical composition and method for treating stoke based on the inhibition of AMPK}[0001] The present invention relates to a pharmaceutical composition and a method for treating a stroke based on AMPK inhibitory function,

본 발명은 뇌졸중 치료용 약학적 조성물 및 방법에 관한 것으로서, 더 상세하게는 AMPK 억제기능에 기반한 새로운 뇌졸중 치료용 약학적 조성물 및 방법에 관한 것이다.The present invention relates to a pharmaceutical composition and method for the treatment of stroke, and more particularly, to a pharmaceutical composition and method for treating a stroke based on AMPK inhibitory function.

뇌졸중(腦卒中, stroke)은 뇌혈류 이상으로 인해 갑작스레 유발된 국소적인 신경학적 증상을 통칭하는 말이다. 뇌는 몸 전체에서 무게로는 체중의 2%만 차지하지만, 뇌로 가는 혈류량은 심박출량의 15%, 산소 소모량은 몸 전체 산소 소모량의 20%나 된다. 게다가 뇌는 에너지원으로 포도당만을 사용하므로 에너지 공급이 잠시만 중단되어도 쉽게 괴사가 일어난다. 따라서 뇌혈류의 이상은 뇌손상과 밀접한 관련이 있다. 뇌졸중에 의한 뇌손상은 흥분독성(excitotoxicity), 산화성손상(oxidative stress), 아폽토시스(apoptosis) 및 아연독성(zinc neurotoxicity) 등의 다양한 독성기전을 포함하고 있어 뇌손상을 막기 위해서는 다양한 신경독성에 모두 효과적인 약물의 발굴이 필요하다.Stroke is a term referring to local neurological symptoms caused by sudden onset of cerebral blood flow abnormalities. The brain occupies only 2% of the body weight by weight, but the blood flow to the brain is 15% of the cardiac output and the oxygen consumption is 20% of the total body oxygen consumption. Moreover, since the brain uses only glucose as an energy source, necrosis easily occurs even if the energy supply is interrupted for a while. Thus, cerebral blood flow abnormalities are closely related to brain damage. Brain damage caused by stroke includes various toxic mechanisms such as excitotoxicity, oxidative stress, apoptosis and zinc neurotoxicity, and therefore, it is effective for various neurotoxicity to prevent brain damage Drug discovery is needed.

현재, 뇌졸중 치료를 위한 많은 연구가 진행되었으나 아직까지 뚜렷한 치료제 개발이 되고 있지 않다. 뇌허혈-재관류 손상은 여러 가지 복잡한 신경세포사 기전에 입각한 약물 개발 및 효과 평가를 위해 시험관내 모델이나 동물 모델과 같은 객관적인 평가 시스템이 필요하나 약물치료에 다른 생체 징후의 변화나 부작용을 평가할 수 있는 방법이 전임상 연구에서는 매우 제한적이어서 임상 시험 시 부작용으로 인한 실패를 초래할 가능성이 높다. 특히 NMDA 길항제(antagonist)를 중심으로 많은 임상연구들이 진행되었으나 모두 실패하였다.Currently, many studies have been conducted for the treatment of stroke, but no clear treatment has yet been developed. Cerebral ischemia-reperfusion injury requires an objective evaluation system such as an in vitro model or an animal model for development and evaluation of drugs based on various complicated neuronal cell death mechanisms, but a method for evaluating changes in other vital signs or side effects in drug therapy This preclinical study is very limited and is likely to cause failure due to side effects in clinical trials. In particular, many clinical studies have been conducted centering on NMDA antagonists, but all have failed.

대한민국 공개특허 제1283416호는 AMPK 저해제 화합물 C 또는 FAS 저해제 C75를 허혈성 마우스에 투여하여 경색부의 크기를 유의하게 감소시켜 뇌졸중 또는 허혈성 상해 후 기능이 보존 되게 하는 신경보호 방법에 대해 개시하고 있다. Korean Patent Laid-Open Publication No. 1283416 discloses a neuroprotective method for administering an AMPK inhibitor compound C or an FAS inhibitor C75 to an ischemic mouse to significantly reduce the size of the infarction portion so that the function after stroke or ischemic injury is preserved.

그러나, 상기 선행기술의 경우 허혈 모델 동물에 대하여만 뇌신경보호 효과를 입증한 것으로서 허혈이 아닌 다른 기전에 의한 뇌졸중에 대한 치료효과까지 보증하는 것은 아니다. 본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 다양한 기전에 의한 뇌졸중에 효과적인 AMPK 억제기능에 기반한 새로운 뇌졸중 치료제를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, the above-described prior arts have only proved the protective effects of neurons against ischemic model animals, and do not guarantee the therapeutic effect against stroke caused by other mechanisms than ischemia. It is an object of the present invention to provide a novel therapeutic agent for stroke, which is based on AMPK inhibitory function, which is effective for various strokes by various mechanisms, to solve various problems including the above problems. However, these problems are exemplary and do not limit the scope of the present invention.

본 발명은 일관점에 따르면, 하기 구조식을 갖는 화합물을 유효성분으로 함유하는 뇌졸중 치료용 약학적 조성물이 제공된다: According to one aspect of the present invention, there is provided a pharmaceutical composition for treating stroke, which comprises, as an active ingredient, a compound having the following structural formula:

Figure 112014041662828-pat00001
.
Figure 112014041662828-pat00001
.

본 발명의 다른 일 관점에 따르면, 하기 구조식을 갖는 화합물을 뇌졸중에 걸린 개체에 투여하는 단계를 포함하는 뇌졸중의 치료방법이 제공된다:According to another aspect of the present invention there is provided a method of treating a stroke comprising administering to a subject suffering from stroke a compound having the structure:

Figure 112014041662828-pat00002
.
Figure 112014041662828-pat00002
.

상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 뇌졸중의 주요 원인인 아연신경독성의 AMPK 활성을 억제하는 새로운 화합물을 처리하여 뇌졸중 치료효과를 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to one embodiment of the present invention as described above, a new compound that inhibits AMPK activity of zinc neurotoxicity, which is a major cause of stroke, can be treated to achieve the therapeutic effect of stroke. Of course, the scope of the present invention is not limited by these effects.

도 1은 배양된 대뇌피질 신경세포에 아연처리 후 신경독성이 증가되었음을 TUNEL 염색으로 확인한 사진(A)과 AMPK 억제제인 Compound C (+Cpd C) 처리 후 세포독성 정도를 TUNEL 염색과 LDH assay를 통해 정량화한 그래프이다(B 및 C).
도 2는 배양된 대뇌피질 신경세포에 아연처리 후 AMPK 활성이 증가됨을 확인한 Western blot 사진(A)과 enzyme activity assay(B) 그래프이다.
도 3은 배양된 대뇌피질 신경세포에 아연처리 후 아폽토시스 촉진 유전자인 Bim의 발현증가와 caspase-3 활성을 관찰한 Western blot 사진(A)과 AMPK 억제제인 Compound C (+Cpd C) 처리 후 Bim 발현증가와 caspase-3 활성이 모두 감소된 것을 확인한 Western blot 사진(B)이다.
도 4는 AMPK activity assay kit(CycLex, Japan)와 recombinant AMPK (α2/β1/γ1; CycLex, Japan)를 구입하여 효소활성을 측정하고 compound C 효과와 비교하여 비슷하거나 좀 더 강한 억제효과를 나타내는 40개의 후보 화합물을 선별한 그래프이다.
도 5는 배양된 대뇌피질 신경세포에 다양한 신경독성을 유발한 뒤, 선별된 7개의 화합물을 처리하고 아폽토시스 정도를 LDH assay를 통해 정량화하여 아폽토시스 억제 여부를 관찰한 그래프이다.
도 6은 뇌졸중 동물모델에 최종 선별된 약물 #35를 투여하여 뇌손상 억제효과를 관찰한 그래프와 실험동물의 뇌손상 정도를 대조군과 비교한 그림이다.
도 7은 최종 선별된 약물 #35를 랫트에 투여하고 비장(A), 간(B) 및 신장(C)을 적출하여 급성 독성 테스트 결과를 나타낸 그래프이다.
FIG. 1 shows the cytotoxicity of TUNEL staining and post-treatment of Compound C (+ Cpd C), which is an AMPK inhibitor, by TUNEL staining and LDH assay, showing that neurotoxicity after zinc treatment was increased in cultured cortical neurons Which is a quantified graph (B and C).
FIG. 2 is a Western blot photograph (A) and enzyme activity assay (B) graph showing that AMPK activity is increased after zinc treatment in cultured cortical nerve cells.
FIG. 3 shows Western blot photographs (A) showing the increase of Bim expression and caspase-3 activity after zinc treatment in cultured cerebral cortical neurons, and Bim expression after treatment with Compound C (+ Cpd C) And caspase-3 activity were all decreased (Fig.
Figure 4 shows the effect of the enzyme activity on the AMPK activity assay kit (CycLex, Japan) and recombinant AMPK (α2 / β1 / γ1; CycLex, Japan) Of the candidate compounds.
FIG. 5 is a graph showing various neurotoxicities induced in cultured cerebral cortical neurons, followed by treating seven selected compounds, and quantifying the level of apoptosis through LDH assay and observing inhibition of apoptosis.
FIG. 6 is a graph showing the effect of inhibiting brain injury by administering drug # 35 finally selected in an animal model of stroke, and comparing the degree of brain damage in experimental animals with that of the control group.
FIG. 7 is a graph showing the result of acute toxicity test by administering the finally selected drug # 35 to rats and extracting spleen (A), liver (B) and kidney (C).

용어의 정의:Definition of Terms:

본 문서에서 사용되는 "AMPK(AMP-activated protein kinase)"는 촉매 α 서브유닛(α1 또는 α2), 및 2개의 조절 서브유닛(β 및 γ)으로 구성된 헤테로삼량체 단백질이다. AMPK는 세포 에너지 수준이 낮을 때 인산화되고 활성화되며 다시 세포 대사 작용을 조절하여 유전자 발현을 장기간에 걸쳐 조절하여 ATP의 수준을 회복한다. AMP/ATP 비의 증가, 세포 pH 및 산화 환원 상태의 변화 및 크레아틴/포스포크레아틴 비의 증가가 AMPK를 활성화시키는 것으로 공지되어 있다.As used herein, "AMP-activated protein kinase (AMPK)" is a heterotrimeric protein consisting of a catalytic α subunit (α1 or α2) and two regulatory subunits (β and γ). AMPK is phosphorylated and activated when cell energy level is low, and regulates cellular metabolism and regulates gene expression over a long period of time to restore ATP levels. It is known that an increase in AMP / ATP ratio, a change in cell pH and redox state, and an increase in creatine / phosphocreatine ratio activate AMPK.

발명의 상세한 설명:DETAILED DESCRIPTION OF THE INVENTION [

본 발명의 일 관점에 따르면, 하기 구조식을 갖는 화합물을 유효성분으로 함유하는 뇌졸중 치료용 약학적 조성물이 제공된다:According to one aspect of the present invention, there is provided a pharmaceutical composition for treating stroke, which comprises, as an active ingredient, a compound having the following structural formula:

Figure 112014041662828-pat00003
.
Figure 112014041662828-pat00003
.

상기 화합물 IUPAC 명칭은 N-[2-[2-(1H-indol-3-yl)ethylamino]-2-oxoethyl]-3-phenyl-2,1-benzoxazole-5-carboxamide으로서, 상기 화합물은 AMPK(AMP-activated protein kinase) 효소 활성을 억제하여 신경보호 효과를 제공하며, 상기 AMPK 효소는 α2 서브유닛이 키나아제 효소활성 가지고 있다.The compound IUPAC designation is N- [2- [1H-indol-3-yl) ethylamino] -2-oxoethyl] -3-phenyl-2,1-benzoxazole-5-carboxamide, AMP-activated protein kinase) enzyme activity to provide a neuroprotective effect. The AMPK enzyme has kinase enzyme activity of the? 2 subunit.

상기 뇌졸중은 출혈성(hemorrhagic) 뇌졸중, 허혈성(ischemic) 뇌졸중 및 금속 독성(metal toxicity) 뇌졸중일 수 있다. The stroke may be a hemorrhagic stroke, an ischemic stroke, and a metal toxicity stroke.

상기 금속은 납(lead), 수은(mercury), 망간(manganese), 비소(arsenic), 탈륨(thallium), 철(iron), 아연(zinc), 카드뮴(cadmium), 비스무스(bismuth) 또는 주석(tin)일 수 있다. The metal may be selected from the group consisting of lead, mercury, manganese, arsenic, thallium, iron, zinc, cadmium, bismuth or tin tin).

상기 허혈성 뇌졸중은 흥분성 신경세포사 또는 산화성 신경세포사에 의해 유발되는 뇌졸중일 수 있다. 지금까지 가장 널리 알려진 뇌허혈에 의한 신경세포사 기전으로는 2가지가 있다. 하나는 뇌허혈에 의해서 세포바깥에 과도한 글루타메이트(glutamate)가 축적되게 되며, 이러한 글루타메이트가 세포 내로 유입되어 결국 과도한 세포 내 칼슘의 축적으로 신경세포사가 유발된다는 흥분성 신경세포사 기전(Kang TC, et al., J.Neurocytol.,30:945-955,2001)이고, 다른 하나는 허혈-재관류시에 갑작스러운 산소 공급으로 인한 생체 내 라디칼의 증가로 인해 DNA 및 세포질에 손상을 입어 유발된다는 산화성 신경세포사이다(Won MH, et al., BrainRes., 836: 70-78, 1999; Sub AY., Chen YM., J. Biomed. Sci., 5: 401-414, 1998; Flowers F, Zimmerman JJ. New Horiz. 6: 169-180, 1998).The ischemic stroke may be a stroke caused by excitatory neuronal cell death or oxidative neuronal cell death. The most widely known mechanisms of neuronal death due to cerebral ischemia are two. One is the accumulation of excess glutamate outside the cell by cerebral ischemia. This glutamate enters the cell and eventually causes excessive accumulation of intracellular calcium, resulting in neuronal death (Kang TC, et al. J. Neurocytol ., 30: 945-955, 2001) and the other is the oxidative neuronal cell cycle that is caused by damage to DNA and cytoplasm due to an increase of in vivo radicals due to abrupt oxygen supply during ischemia-reperfusion Won MH, et al, BrainRes, 836: 70-78, 1999; Sub AY, Chen YM, J. Biomed Sci, 5:....... 401-414, 1998; Flowers F, Zimmerman JJ New Horiz. 6: 169-180,1998).

본 발명의 다른 관점에 따르면, 하기 구조식을 갖는 화합물을 뇌졸중에 걸린 개체에 투여하는 단계를 포함하는 뇌졸중의 치료방법이 제공된다:According to another aspect of the present invention there is provided a method of treating a stroke comprising administering to a subject suffering from stroke a compound having the structure:

Figure 112014041662828-pat00004
.
Figure 112014041662828-pat00004
.

상기 투여는 경구 투여 또는 정맥내 주입, 피하주입, 뇌실내 주입(intracerebroventricular injection), 뇌척수액내 주입(intracerebrospinal fluid injection), 근육내 주입 및 경피흡수로 구성되는 군으로부터 선택되는 비경구 투여일 수 있다.Such administration may be parenteral administration, selected from the group consisting of oral or intravenous infusion, subcutaneous infusion, intracerebroventricular injection, intracerebrospinal fluid injection, intramuscular injection and transdermal absorption.

본 발명의 약학적 조성물에서 상기 화합물의 유효량은 환자의 환부의 종류,적용부위, 처리회수, 처리시간, 제형, 환자의 상태, 보조제의 종류 등에 따라 변할수 있다. 사용량은 특별히 한정되지 않지만, 0.01μg/kg/day 내지 10 mg/kg/day일일 수 있다. 상기 1일량은 1일에 1회, 또는 적당한 간격을 두고 하루에 2~3회에 나눠 투여해도 되고, 수일(數日) 간격으로 간헐(間歇)투여해도 된다.The effective amount of the compound in the pharmaceutical composition of the present invention may vary depending on the kind of the affected part of the patient, the application site, the number of treatment, the treatment time, the formulation, the condition of the patient, The amount to be used is not particularly limited, but may be 0.01 μg / kg / day to 10 mg / kg / day. The above-mentioned daily dose may be administered once a day or two or three times a day at appropriate intervals, or intermittently administered at intervals of several days.

본 발명의 약학적 조성물에서 상기 화합물은, 조성물 총 중량에 대하여 0.1-100 중량%로 함유될 수 있다. 본 발명의 약학적 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다. 또한, 약학적 조성물의 제조에는 고체 또는 액체의 제제용 첨가물을 사용할 수 있다. 제제용 첨가물은 유기 또는 무기 중 어느 것이어도 된다.In the pharmaceutical composition of the present invention, the compound may be contained in an amount of 0.1 to 100% by weight based on the total weight of the composition. The pharmaceutical compositions of the present invention may further comprise suitable carriers, excipients and diluents conventionally used in the manufacture of pharmaceutical compositions. In addition, solid pharmaceutical preparations or liquid pharmaceutical preparations can be used for the preparation of pharmaceutical compositions. The preparation additive may be either organic or inorganic.

부형제로서는 예를 들면 유당, 자당, 백당, 포도당, 옥수수 전분(cornstarch), 전분, 탈크, 소르비트, 결정 셀룰로오스, 덱스트린, 카올린, 탄산칼슘 및 이산화규소 등을 들 수 있다. 결합제로서는 예를 들면 폴리비닐알코올, 폴리비닐에테르, 에틸셀룰로오스, 메틸셀룰로오스, 아라비아고무, 트래거캔스(tragacanth),젤라틴, 셀락(shellac), 히드록시프로필셀룰로오스, 히드록시프로필메틸셀룰로오스, 구연산칼슘, 덱스트린 및 펙틴(pectin) 등을 들 수 있다. 활택제로서는 예를 들면 스테아린산마그네슘, 탈크, 폴리에틸렌글리콜, 실리카, 경화식물유 등을 들 수있다. 착색제로서는 통상 의약품에 첨가하는 것이 허가되어 있는 것이라면 모두 사용할 수 있다. 이들의 정제, 과립제에는 당의(糖衣), 젤라틴코팅, 기타 필요에 따라 적절히 코팅할 수 있다. 또한, 필요에 따라 방부제, 항산화제 등을 첨가할 수있다.Examples of excipients include lactose, sucrose, saccharose, glucose, cornstarch, starch, talc, sorbit, crystalline cellulose, dextrin, kaolin, calcium carbonate and silicon dioxide. Examples of the binder include polyvinyl alcohol, polyvinyl ether, ethylcellulose, methylcellulose, gum arabic, tragacanth, gelatin, shellac, hydroxypropylcellulose, hydroxypropylmethylcellulose, calcium citrate, Dextrin and pectin, and the like. Examples of the lubricant include magnesium stearate, talc, polyethylene glycol, silica, and hydrogenated vegetable oil. Any coloring agent may be used as long as it is usually allowed to be added to pharmaceuticals. These tablets and granules can be suitably coated with sugar (sugar coating), gelatin coating, and others as required. If necessary, preservatives, antioxidants and the like may be added.

본 발명의 약학적 조성물은 당업계에서 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있으며(예: 문헌 [Remington's Pharmaceutical Science, 최신판;Mack Publishing Company, Easton PA), 제제의 형태는 특별히 한정되는 것은 아니다. 이들 제형은 모든 제약 화학에 일반적으로 공지된 처방서인 문헌[Remington's Pharmaceutical Science, 15th Edition, 1975, Mack Publishing Company, Easton, Pennsylvania 18042(Chapter 87: Blaug, Seymour)에 기술되어 있다. The pharmaceutical composition of the present invention can be prepared by any of the formulations conventionally produced in the art (for example, Remington's Pharmaceutical Science (latest edition; Mack Publishing Company, Easton PA), the form of the formulation is not particularly limited . These formulations are generally known prescription Seo literature [Remington's Pharmaceutical Science, 15 th Edition, 1975, Mack Publishing Company, Easton, Pennsylvania 18042 all Agency: is described in (Chapter 87 Blaug, Seymour).

본 발명의 약학적 조성물에서 상기 화합물은 경구 또는 비경구로 투여되는 것이 가능하며, 바람직하게는 비경구 투여로 정맥내 주입, 피하 주입, 뇌실내 주입(intracerebroventricular injection), 뇌척수액내 주입(intracerebrospinal fluid injection), 근육내 주입 및 복강 주입 등으로 투여할 수 있다. In the pharmaceutical composition of the present invention, the compound can be administered orally or parenterally. Preferably, the compound is administered by intravenous injection, subcutaneous injection, intracerebroventricular injection, intracerebrospinal fluid injection, , Intramuscular injection, and intraperitoneal injection.

이하, 실시예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail by way of examples. It should be understood, however, that the invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, Is provided to fully inform the user.

일반적 방법General method

대뇌피질 신경세포(Cerebral Cortex Neurons) 배양Culture of Cerebral Cortex Neurons

본 발명에서 사용한 마우스 대뇌피질 신경세포는 마우스 배아의 뇌로부터 추출 배양하여 5% 우태아혈청(FBS)과 5% 마혈청(HS)을 첨가한 Dulbecco's modified Eagle's mediuM(DMEM, Gibco, Grand Island, NY, US)을 이용하여 95% 습도, 5% CO2 및 37℃ 온도 조건에서 배양하였다. 상기 세포의 활성화와 분화를 위해 24-well 조직 배양 플레이트에서 2 x104 세포의 밀도로 증식하였고 아연 및 화합물을 처리하기 전에는 FBS와 HS가 없는 DMEM 배지에서 배양하였다.The mouse cerebral cortical neurons used in the present invention were extracted from the brain of mouse embryos and cultured in Dulbecco's modified Eagle's medium (DMEM, Gibco, Grand Island, NY) supplemented with 5% fetal bovine serum (FBS) and 5% , US) at 95% humidity, 5% CO 2 and 37 ° C. The cells were grown at a density of 2 × 10 4 cells in 24-well tissue culture plates for activation and differentiation and cultured in DMEM medium without FBS and HS before zinc and compound treatment.

실시예 1: AMPK 억제제에 의한 세포독성 감소확인Example 1: Confirmation of reduction of cytotoxicity by AMPK inhibitor

아연독성(Zinc toxicity)은 뇌졸중의 대표적인 원인기전 중 하나로서, 상기 배양된 대뇌피질 신경세포에서 유발된 아연독성이 AMPK 억제제 처리에 따른 독성 감소여부를 확인하였다. Zinc toxicity is one of the major causative mechanisms of stroke, and zinc toxicity induced by the cultured cerebral cortical neurons has been confirmed to be reduced by treatment with AMPK inhibitor.

구체적으로, 본 발명의 일 실시예에 따른 배양된 대뇌피질 신경세포에 300 uM의 아연(ZnCl2)을 10분간 처리한 후 제거하고 10시간 후에 세포독성(Cytotoxicity)을 TUNEL 염색 또는 LDH(Lactate Dehydrogenase) 분석을 통해 관찰하였다. 또한 상기 세포에 AMPK 억제제인 Compound C(+Cpd C, Tocris)를 20 uM로 처리한 후 신경독성 감소를 관찰하였다. Specifically, the cultured cerebral cortical neurons according to an embodiment of the present invention were treated with 300 μM zinc (ZnCl 2 ) for 10 minutes and then removed for 10 hours. Cytotoxicity was measured by TUNEL staining or Lactate Dehydrogenase (LDH) ) Analysis. In addition, the cells were treated with 20 μM of Compound C (+ Cpd C, Tocris), which is an AMPK inhibitor, and the decrease of neurotoxicity was observed.

그 결과, 대뇌피질 신경세포에 아연 처리 후 신경독성이 증가되었음을 TUNEL 염색으로 확인하였고(도 1A) 세포독성 정도를 TUNEL 염색과 LDH 분석을 통해 정량화하고 AMPK 억제제인 Compound C(+Cpd C) 처리에 의해 아연신경독성이 현저히 감소했음을 확인하였다(도 1B 및 1C). As a result, it was confirmed by TUNEL staining that neurotoxicity after zinc treatment was increased in cerebral cortical neurons (FIG. 1A). The degree of cytotoxicity was quantitated by TUNEL staining and LDH analysis and treated with Compound C (+ Cpd C) Lt; RTI ID = 0.0 > 1B < / RTI > and 1C).

실시예 2: 아연처리 후 AMPK 활성 관찰Example 2: AMPK activity after zinc treatment

아연독성과 AMPK 효소 활성간의 상관관계를 파악하고자 대뇌피질 신경세포에 아연 처리 후 AMPK 활성을 웨스턴 블랏과 효소활성 분석을 통해 관찰하였다.In order to investigate the relationship between zinc toxicity and AMPK enzyme activity, AMPK activity after zinc treatment in cerebral cortical neurons was examined by western blot analysis and enzyme activity assay.

2-1: 웨스턴 블랏(Western blot)2-1: Western blot

배양된 대뇌피질 신경세포에 300 uM의 아연(ZnCl2)을 10분간 처리한 후 제거하고 0.5, 1, 2, 4, 6시간 후에 상기 세포 샘플을 단백질 레더와 함께 폴리아크릴아마이드 겔에 로딩하고 단백질 크기에 따라 분리하였다. 그 후, 항체를 처리하고 세척한 뒤 판독하였다. Cultured cerebral cortical neurons were treated with 300 μM zinc (ZnCl 2 ) for 10 minutes and then removed. After 0.5, 1, 2, 4, and 6 hours, the cell sample was loaded onto a polyacrylamide gel with protein leather, And were separated according to their size. The antibody was then treated, washed and read.

그 결과, 아연처리 후 30분 후부터 AMPK alpha-1과 alpha-2의 트레오닌 잔기(threonine residue)에 인산화됨이 관찰되었는데 이는 AMPK 활성(phosphorylated AMPK)을 의미한다. 그러나 다른 세린 잔기(serine residue)의 인산화는 관찰되지 않았다(도 2A).As a result, phosphorylation of AMPK alpha-1 and alpha-2 threonine residues was observed 30 minutes after zinc treatment, indicating AMPK activity (phosphorylated AMPK). However, no phosphorylation of other serine residues was observed (Figure 2A).

2-2: 효소활성 분석(enzyme activity assay)2-2: Enzyme activity assay

대뇌피질 신경세포에 상기와 같은 조건으로 아연을 처리한 후 0.5, 1, 2, 4 및 6시간 경과에 따라 각각 단백질 추출물을 얻어 AMPK activity assay kit(CycLex, Japan)를 이용하여 효소활성을 측정하였다.Protein extracts were obtained at 0.5, 1, 2, 4, and 6 hours after treatment of zinc on cortical neurons under the same conditions as above, and enzyme activity was measured using the AMPK activity assay kit (CycLex, Japan) .

그 결과, 아연 처리에 따른 AMPK 효소의 활성은 시간 의존적(Time-dependent) 으로 증가하는 것을 관찰하였다(도 2B). As a result, it was observed that the activity of AMPK enzyme by zinc treatment increased in a time-dependent manner (Fig. 2B).

실시예 3: AMPK 활성억제를 통한 아연독성 억제Example 3: Inhibition of zinc toxicity by inhibiting AMPK activity

대뇌피질 신경세포에 아연을 처리하여 AMPK 효소 활성이 증가하는 것이 세포사멸(apoptosis)과 관련이 있는지 관찰하였다. We examined whether the increase of AMPK enzyme activity by treatment of zinc in cerebral cortical neurons is related to apoptosis.

구체적으로, 대뇌피질 신경세포에 300 uM의 아연(ZnCl2)을 2, 3, 4, 5 및 6시간 동안 처리하여 아연독성을 유발하였다. 상기 각 샘플의 단백질을 분리하여 웨스턴 블랏을 실시하였고 AMPK 억제제인 Compound C(+Cpd C)를 20 uM로 처리하여 아연독성과 아폽토시스와의 관계를 확인하였다. Specifically, 300 μM zinc (ZnCl 2 ) was treated for 2, 3, 4, 5 and 6 hours in cerebral cortical neurons to induce zinc toxicity. Proteins of each sample were separated and subjected to Western blotting. The relationship between zinc toxicity and apoptosis was confirmed by treating 20 μM of AMPK inhibitor Compound C (+ Cpd C).

그 결과, 아연 처리 후 3시간 이후부터 BH3-only Bcl family 중에 하나인 아폽토시스 촉진 단백질(pro-apoptotic protein)인 Bim의 발현 증가가 관찰되었고caspase-3 활성도 관찰할 수 있었다(도 3A). 그러나 아연독성에 의한 Bim의 증가와 caspase-3 활성 증가가 AMPK 억제제인 compound C 처리에 의해 모두 감소된 것을 확인하였다(도 3B). 그러므로 AMPK 효소는 아연독성 기전에서 아폽토시스(apoptosis)와 관련되어 있으며 AMPK 효소의 활성억제는 아연독성에 의한 아폽토시스를 억제하는 것을 의미한다. As a result, the expression of Bim, a pro-apoptotic protein, which is one of BH3-only Bcl family, was observed and caspase-3 activity was observed 3 hours after zinc treatment (FIG. 3A). However, it was confirmed that the increase of Bim due to zinc toxicity and the increase of caspase-3 activity were all reduced by the treatment with compound C as an AMPK inhibitor (FIG. 3B). Therefore, AMPK enzyme is involved in apoptosis in zinc toxin mechanism, and inhibition of AMPK enzyme activity inhibits zinc poisoning by apoptosis.

실시예 4: AMPK 활성억제 화합물 스크리닝 및 억제효과 확인Example 4: Screening and inhibitory effect of AMPK activity inhibitor compound

4-1: 구조기반 가상 스크리닝(Structure-based virtual screening)4-1: Structure-based virtual screening

AMPK 활성억제제로 작용할 가능성이 있는 화합물을 대상으로 1차 스크리닝을 실시하였다. First screening was performed on compounds that might act as inhibitors of AMPK activity.

구체적으로, 상기 선행연구를 통해 AMPK 활성이 아연독성 기전에 관련되어 있음을 확인하였고, 다른 연구논문에서도 흥분독성 기전에서 AMPK 활성 및 Bim 발현 증가가 보고되었다. AMPK 효소는 α, β 및 γ 3개의 서브유닛이 복합구조를 이루어 작용하는 효소로, 이중 alpha 서브유닛이 키나아제 효소활성을 가지고 있다. 기존의 연구결과에서 AMPK alpha2가 alpha1과 달리 넉-아웃 마우스(knock-out mice)에서 허혈(ischemia)에 의한 신경독성을 현저히 억제한다고 보고하였다. 따라서 본 발명은 alpha2를 타겟으로 하여 AMPK 효소활성을 억제할 가능성이 있는 후보 케미컬(chemicals)을 구조기반 가상 스크리닝(Structure-based virtual screening)을 통해 선별하였고 결론적으로 208개의 후보 화합물이 선별되었다. Specifically, AMPK activity was found to be related to the zinc toxin mechanism through the preceding studies, and other studies also reported increased AMPK activity and Bim expression in the excitotoxic mechanism. The AMPK enzyme is an enzyme in which the α, β and γ subunits function as a complex structure, and the alpha subunit has a kinase enzyme activity. Previous studies have shown that AMPK alpha2 significantly inhibits ischemia-induced neurotoxicity in knock-out mice, unlike alpha1. Accordingly, the present invention selected candidate chemicals capable of inhibiting AMPK enzyme activity targeting alpha2 through structure-based virtual screening, and consequently 208 candidate compounds were selected.

4-2: AMPK 효소활성 분석(AMPK enzyme activity assay)4-2: Analysis of AMPK enzyme activity (AMPK enzyme activity assay)

상기 실시예 4-1에서 선별된 화합물 208개를 화합물 라이브러리 제조회사(Interbioscreen, Russia)로부터 입수하여 이들의 AMPK 효소활성 억제효과 관찰을 통해 2차 스크리닝을 실시하였다. 208 compounds selected in Example 4-1 were obtained from a compound library manufacturer (Interbioscreen, Russia) and subjected to secondary screening by observing their inhibitory effect on AMPK enzyme activity.

구체적으로, AMPK 효소활성은 AMPK activity assay kit(CycLex, Japan)와 recombinant AMPK(α2/β1/γ1; CycLex, Japan)를 이용하여 측정하였다. 상기 선별된 208개의 화합물과 기존에 잘 알려진 AMPK 억제제 compound C의 AMPK 효소활성 억제 효과를 측정한 결과, 40개의 약물이 10 μM에서 compound C와 비슷하거나 더 좋은 억제효과를 나타내는 것을 확인하였다(표 1). 상기 40개의 약물을 하기 표 1에 표시하였다. Specifically, the AMPK enzyme activity was measured using the AMPK activity assay kit (CycLex, Japan) and recombinant AMPK (α2 / β1 / γ1; CycLex, Japan). As a result of measuring the inhibitory effect of the above-mentioned 208 compounds and the well-known AMPK inhibitor compound C on the AMPK enzyme activity, it was confirmed that 40 drugs showed similar or better inhibitory effects to compound C at 10 μM (Table 1 ). The 40 drugs are shown in Table 1 below.

Compound IDCompound ID MeanMean
(% remaining activity)(% remaining activity)
SEMSEM Compound IDCompound ID MeanMean
(% remaining activity)(% remaining activity)
SEMSEM
#1#One -1.2626-1.2626 1.7681.768 #22# 22 -0.5291-0.5291 0.0000.000 #2#2 -1.7934-1.7934 0.0720.072 #23# 23 1.05821.0582 0.0000.000 #3# 3 -0.9684-0.9684 0.0360.036 #24# 24 5.05055.0505 5.0515.051 #4#4 5.55565.5556 0.2650.265 #25# 25 -0.1793-0.1793 0.5380.538 #5# 5 4.23284.2328 0.5290.529 #26# 26 -1.2554-1.2554 0.0360.036 #6# 6 2.38102.3810 0.7940.794 #27# 27 5.82015.8201 0.0000.000 #7# 7 3.43923.4392 0.2650.265 #28# 28 3.96833.9683 1.8521.852 #8#8 -0.2152-0.2152 0.2150.215 #29# 29 0.00000.0000 0.0000.000 #9# 9 0.57390.5739 0.3590.359 #30# 30 1.00001.0000 0.6670.667 #10# 10 -0.3945-0.3945 0.1790.179 #31# 31 0.36410.3641 0.8500.850 #11# 11 5.29105.2910 0.5290.529 #32# 32 0.12570.1257 0.1260.126 #12# 12 -1.3245-1.3245 0.6620.662 #33# 33 2.98012.9801 2.9802.980 #13# 13 -0.9684-0.9684 0.6810.681 #34# 34 0.31430.3143 0.5660.566 #14# 14 -0.1435-0.1435 0.0000.000 #35# 35 0.12140.1214 0.1210.121 #15# 15 5.02655.0265 0.2650.265 #36# 36 0.25140.2514 0.1260.126 #16# 16 6.34926.3492 0.5290.529 #37# 37 7.33337.3333 1.0001,000 #17# 17 2.91012.9101 0.2650.265 #38# 38 5.66675.6667 4.6674.667 #18# 18 2.90532.9053 0.6810.681 #39# 39 1.6671.667 3.3333.333 #19# 19 4.34004.3400 1.6141.614 #40# 40 3.66673.6667 0.0000.000 #20# 20 -1.7575-1.7575 0.0360.036 Compound CCompound C 5.30005.3000 0.7600.760 #21# 21 0.89670.8967 0.2510.251

4-3: 아연독성 억제효과 관찰4-3: Observation of inhibition effect on zinc toxicity

상기 실시예 4-2에서 선별된 화합물 40 개의 아연 신경독성 억제효과 관찰을 통해 3차 스크리닝을 실시하였다. The tertiary screening was carried out by observing the inhibitory effect on the zinc neurotoxicity of 40 compounds selected in Example 4-2.

구체적으로, 배양된 마우스의 대뇌피질 신경세포에 400 uM의 아연을 10분간 처리하고 제거한 후 12시간이 경과한 시점에서 상기 선별한 40개의 약물들을 각각 아연과 함께 처리하여 신경보호효과를 관찰하였다. 상기 세포의 사멸 정도는 LDH 분석을 통해 정량화하였는데 각각의 효과를 평균하여 수치로 나타내었고 선별된 각각의 약물들에 대해 별도의 실험을 4회 수행하였다(도 4).Specifically, 400 μM of zinc was cocultured to the cerebral cortical neurons of the cultured mouse for 10 minutes, and after 12 hours, the selected 40 drugs were treated with zinc to observe the neuroprotective effect. The degree of death of the cells was quantitated by LDH analysis. Each effect was averaged and expressed as a numerical value. Separate experiments were performed on each of the selected drugs four times (FIG. 4).

그 결과, 도 4에 나타난 바와 같이, 일부 화합물은 아연독성에 의한 세포사멸을 억제하였는데, 표 2에 나타난 바와 같이 이 중 7개의 화합물(#6, #11, #14, #17, #28, #35 및 #37)이 아연독성을 유의하게 억제하는 것으로 확인되었다. As a result, as shown in FIG. 4, some compounds inhibited cell death due to zinc toxicity. As shown in Table 2, seven compounds (# 6, # 11, # 14, # 17, # 28, # 35 and # 37) significantly inhibited zinc toxicity.

Compound IDCompound ID 유의성valence Compound IDCompound ID 유의성valence #1#One 0.54870.5487 #22# 22 0.02000.0200 #2#2 0.8483 0.8483 #23# 23 0.87570.8757 #3# 3 0.55970.5597 #24# 24 0.86990.8699 #4#4 0.02830.0283 #25# 25 0.48700.4870 #5# 5 0.93260.9326 #26# 26 0.66240.6624 #6# 6 0.02780.0278 #27# 27 0.30300.3030 #7# 7 0.00030.0003 #28# 28 0.00080.0008 #8#8 0.00010.0001 #29# 29 0.11370.1137 #9# 9 0.86490.8649 #30# 30 0.21420.2142 #10# 10 0.12530.1253 #31# 31 0.17770.1777 #11# 11 0.03110.0311 #32# 32 0.72760.7276 #12# 12 0.00000.0000 #33# 33 0.23860.2386 #13# 13 0.43840.4384 #34# 34 0.10430.1043 #14# 14 0.02200.0220 #35# 35 0.00160.0016 #15# 15 0.23780.2378 #36# 36 0.03810.0381 #16# 16 0.24880.2488 #37# 37 0.02900.0290 #17# 17 0.00480.0048 #38# 38 0.32250.3225 #18# 18 0.39610.3961 #39# 39 0.00270.0027 #19# 19 0.75900.7590 #40# 40 0.03900.0390 #20# 20 0.88890.8889 Compound CCompound C 0.00030.0003 #21# 21 0.61410.6141

4-4: 다양한 신경독성에 대한 억제효과 관찰4-4: Observation of inhibitory effect on various neurotoxicity

상기 실시예 4-3에서 선별한 7개 화합물의 신경독성 억제효과 관찰을 통해 4차 스크리닝을 실시하였다.  Four-way screening was carried out by observing the neurotoxic inhibitory effect of the seven compounds selected in Example 4-3.

구체적으로, 배양된 마우스의 대뇌피질 신경세포에 50 μM NMDA, 50 μM FeCl2, 100 uM H2O2, 2 μM TPEN(N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine, Sigma), 500 nM 스토로스포린(staurosporine, Abchem) 및 10 μM 에토포사이드(etoposide, Sigma)를 각각 처리 하여 세포독성을 유발한 후 상기 선별된 7개 화합물을 20 μM의 농도로 처리하여 세포사멸 억제 효과를 관찰하였고 세포사멸 정도는 LDH assay를 통해 정량화하였다. 상기 사용한 신경독성 모델은 뇌졸중의 원인기전으로 생각되는 흥분독성, 산화성 손상 및 세포사멸(apoptosis) 등이 포함되어 있는데 그 중 흥분독성 모델로는 NMDA를 처리하였고, 산화성손상 모델로는 철(iron) 독성과 H2O2 독성 모델을 사용하였으며, 세포사멸 모델로는 TPEN, 스토로스포린(staurosporine) 및 에토포사이드(etoposide) 독성모델을 이용하였다. 상기 TPEN은 아연 킬레이터(zinc chelator)로 신경세포에서 전형적인 세포사멸을 유발하는 것으로 잘 알려져 있고, 스토로스포린은 효소활성 억제제(kinase inhibitor)로 역시 대표적인 세포사멸 유발물질 중 하나이며 에토포사이드는 DNA 손상으로 인한 세포사멸을 유발한다고 알려진 약물이다. Specifically, in the cerebral cortical neurons of the cultured mouse, 50 μM of NMDA, 50 μM of FeCl 2 , 100 μM of H 2 O 2 , 2 μM of TPEN (N, N ', N'-tetrakis (2-pyridylmethyl) ethylenediamine, Sigma), 500 nM staurosporine (Abchem) and 10 μM etoposide (Sigma), respectively, to induce cytotoxicity. The 7 selected compounds were treated at a concentration of 20 μM to inhibit apoptosis The degree of apoptosis was quantitated by LDH assay. The neurotoxicity model used includes excitotoxicity, oxidative damage and apoptosis, which are thought to be causative factors of stroke. Of these, NMDA was treated as an excitotoxic model and iron as an oxidative damage model. Toxicity and H 2 O 2 toxicity models were used, and TPEN, staurosporine and etoposide toxicity models were used as apoptosis models. The TPEN is a zinc chelator and is known to cause typical apoptosis in neurons. Stressorin is also a kinase inhibitor and is one of the typical cell death inducers. It is a drug known to cause apoptosis due to damage.

그 결과, 상기 선별된 7개의 약물을 함께 처리하여 신경독성 감소에 따른 신경보호 효과를 관찰하였는데 특히, 화합물 #35 및 화합물 #28이 모든 독성에 억제효과를 나타냄을 알 수 있었다(도 5). 화합물 #35의 경우, 세포사멸 모델 중에 스토로스포린 독성만 억제하지 못하였으나 이는 스토로스포린이 유발하는 독성기전과 관련된 것으로, 다른 2개의 세포사멸 모델에 효과가 있는 것으로 확인되었으므로 최종 화합물로 선별하였다. 라이브러리 구입처로부터 상기 화합물 #35는 하기와 같은 구조를 갖는 N-[2-[2-(1H-indol-3-yl)ethylamino]-2-oxoethyl]-3-phenyl-2,1-benzoxazole-5-carboxamide임을 확인하였다:As a result, the seven selected drugs were treated together to observe the neuroprotective effect according to the reduction of neurotoxicity. In particular, Compound # 35 and Compound # 28 showed inhibitory effects on all toxicity (FIG. 5). Compound # 35 did not inhibit only the cytosolic toxin in the cell death model, but it was confirmed to be effective in the other two cell death models related to the toxin mechanism induced by the stresporin. Therefore, the compound was selected as the final compound . The compound # 35 was obtained from the place where the library was purchased. The compound # 35 was synthesized from N- [2- [2- (1H-indol-3-yl) ethylamino] -2-oxoethyl] -carboxamide: < / RTI >

Figure 112014041662828-pat00005
.
Figure 112014041662828-pat00005
.

실시예 5: 뇌졸중 동물모델에서 뇌손상 억제효과 관찰Example 5 Observation of Brain Damage Inhibitory Effect in Stroke Animal Model

상기 실시예 4-4에서 최종 선별된 화합물인 #35가 실제 동물 모델에서도 효과적인지 확인하기 위해 상기 화합물을 뇌손상을 유발한 뇌졸중 모델 동물에 처리한 후, 뇌손상 억제효과가 나타나는지 여부를 조사하였다.To determine whether the compound # 35, which was finally selected in Example 4-4, was also effective in an animal model, the compound was treated with stroke model animals that caused brain damage, .

구체적으로, 8-9 주령이 된 수컷 Sprague-Dawley(SD) 랫트(rat)를 이용하여 영구 중뇌동맥(MCA) 폐쇄모델을 제작하였다. 영구 중뇌동맥 폐쇄(MCAO) 전 30분 및 폐쇄 후 10분경과 시점에서 레이저 도플러 혈류측정기(Laser-Doppler flowmetry)를 이용하여 대뇌 혈류(CBF)를 측정하였고 하기 표 3에 표시하였다. 그 후, 상기 최종 선별된 AMPK 억제제 후보 화합물인 #35(4 ㎕ 내 100 ng) 또는 비히클(10% DMSO)을 MCAO 전 15분에 3.8 mm 깊이로 0.8 mm 후면 및 브레그마의 측면 1.2 mm의 뇌실내 주입(intracerebroventricular injection)하였다. 이 후, 상기 랫트의 운동 결핍(motor deficit) 정도를 평가 하였는데 평가의 기준(Longa et al., 1989)은 결핍을 나타내지 않는 것은 정상(Normal), 수직으로 정지할 때 앞발 연장의 실패는 경증(mild), 반대쪽으로 회전하는 것은 보통(moderate) 및 회전 손실(loss of circling) 또는 정확한 반사작용은 심각한 결핍(severe deficit)으로 분류하였다. 또한, 상기 랫트 모델에 허혈(ischemia)을 유도 후 24시간 경과한 시점에서 뇌를 수득하였고 2% 2,3,5-triphenyl tetrazoliuM chloride(TTC)로 염색하여 뇌경색(cerebral infarction) 정도를 측정하였다. Specifically, we used a male Sprague-Dawley (SD) rat, 8-9 weeks of age, to construct a permanent middle cerebral artery (MCA) occlusion model. Cerebral blood flow (CBF) was measured using laser-Doppler flowmetry at 30 minutes before and 10 minutes after closure of permanent middle cerebral artery (MCAO) and is shown in Table 3 below. Thereafter, the final selected AMPK inhibitor candidate compound, # 35 (100 ng in 4 μl) or vehicle (10% DMSO) was injected at 0.8 mm back to 3.8 mm depth in 15 minutes before MCAO and 1.2 mm Intracerebroventricular injection was performed. Thereafter, the degree of motor deficit of the rat was assessed. The criteria for evaluation (Longa et al., 1989) were normal (no deficiency), the failure of paw extension was mild mild, and moderate and loss of circling in the opposite direction, or severe deficit in the correct reflex action. Brain was obtained at 24 hours after induction of ischemia in the rat model, and cerebral infarction was measured by staining with 2% 2,3,5-triphenyl tetrazolium chloride (TTC).

그 결과, 본 발명을 통해 발굴된 최종 후보 화합물인 화합물 #35이 뇌졸중 동물모델 중 하나인 영구 중뇌동맥 폐쇄(permanent middle cerebral artery occulusion)에 따른 뇌손상을 현저하게 억제시킴을 최종 확인하였다(도 6).As a result, it was finally confirmed that Compound # 35, the final candidate compound discovered through the present invention, markedly inhibited brain damage caused by permanent middle cerebral artery occlusion, which is one of the animal models of stroke (Figure 6 ).

VehVeh AMPK 억제제AMPK inhibitor CBF(% of baseline)CBF (% of baseline) 36.9+2.536.9 + 2.5 38.4+2.438.4 + 2.4 Weight reduction(g)Weight reduction (g) 48.8+2.948.8 + 2.9 40.0+3.540.0 + 3.5

실시예 6: 급성 독성 테스트(Acute toxicity test)Example 6: Acute toxicity test < RTI ID = 0.0 >

상기 최종 선별된 화합물인 #35을 랫트에 주입하고 급성 독성 결과를 관찰하였다. The final selected compound, # 35, was injected into the rats and the acute toxicity results were observed.

구체적으로, 8-9 주령된 수컷 Sprague-Dawley(SD) 랫트에 상기 최종 선별된 AMPK 억제제 후보 화합물인 화합물 #35을 랫트 1 마리 당 100 μg/kg 또는 비히클(10% DMSO)을 정맥내 주입(intravenous injection)하였고 이를 4회 반복하였다. Specifically, Compound # 35, the final selected AMPK inhibitor candidate compound, was injected intraperitoneally (100 μg / kg or vehicle (10% DMSO) per rat in 8-9 week old male Sprague-Dawley intravenous injection) and repeated 4 times.

그 결과, 24시간 경과 후에도 죽는 랫트는 발견되지 않았고 랫트를 희생시켜 간, 비장 및 신장 장기들을 적출하여 무게를 측정하였고, 상기 랫트의 혈액을 채취하여 WBC, RBC, BUN, AST, ALT, CREA 및 GLU 등의 지표 결과를 확인하였으나 대조군과 비교하여 대부분의 지표가 정상으로 나타났으며 눈에 띄는 독성을 관찰되지 않았다(도 7). 상기 지표에 대한 결과를 하기 표 4에 표시하였다. As a result, no rat was found to die even after lapse of 24 hours, and liver, spleen and kidney organs were sacrificed and their weights were measured. WBC, RBC, BUN, AST, ALT, CREA GLU, etc., but most of the indicators were normal and no noticeable toxicity was observed compared to the control group (FIG. 7). The results for the index are shown in Table 4 below.

정상 범위Normal range Veh(n=4)Veh (n = 4) AMPK 억제제(n=4)AMPK inhibitor (n = 4) WBCB(x103 cell/uL) WBCB (x10 3 cell / uL) 6.6 - 12.66.6 - 12.6 10.5 ㅁ 3.510.5 ㅁ 3.5 9.9 ㅁ 2.59.9 ㅁ 2.5 RBC(x103 cell/uL) RBC (x10 < 3 > cell / uL) 6.8 - 9.86.8 - 9.8 6.7 ㅁ 0.56.7 ㅁ 0.5 6.4 ㅁ 0.36.4 ㅁ 0.3 BUN(mg/dL)BUN (mg / dL) 5 - 215 - 21 16.9 ㅁ 2.016.9 ㅁ 2.0 15.2 ㅁ 1.815.2 ㅁ 1.8 AST(U/L)AST (U / L) 45.7 - 80.845.7 - 80.8 64.2 ㅁ 5.064.2 ㅁ 5.0 91.2 ㅁ 15.391.2 ㅁ 15.3 ALT(U/L)ALT (U / L) 17.5 - 30.217.5 - 30.2 38.9 ㅁ 0.438.9 ㅁ 0.4 40.2 ㅁ 5.040.2 ㅁ 5.0 CREA(mg/dL)CREA (mg / dL) 0.2 - 0.80.2 - 0.8 0.4 ㅁ 0.10.4 ㅁ 0.1 0.4 ㅁ 0.00.4 ㅁ 0.0 GLU(mg/dL)GLU (mg / dL) 50 - 13550 - 135 175.5 ㅁ 26.5175.5 ㅁ 26.5 162.1 ㅁ 13.2162.1 ㅁ 13.2

상기 결과들을 종합해보면, AMPK 효소가 뇌졸중의 원인기전 중 하나로 생각되는 아연독성에 중요한 역할을 하고 있음을 발견하여 AMPK 효소 활성을 억제기능을 가지고 있는 새로운 화합물 후보군에서 여러 차례 스크리닝을 실시하여 탁월한 아연독성에 효과를 보인 화합물 #35을 최종 선별하고 뇌졸중 동물모델에 처리한 결과 현저하게 뇌손상을 억제됨을 확인하였으므로 AMPK 억제기능에 기반한 새로운 뇌졸중 치료제로 활용 가능하다.   Taken together, these results indicate that AMPK enzyme plays an important role in zinc toxicity, which is considered to be one of the causative factors of stroke, and has been subjected to screening several times in new candidate compounds having the function of inhibiting AMPK enzyme activity, The compound of the present invention has been shown to be effective as a novel stroke drug based on the AMPK inhibitory function.

본 발명은 상술한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (6)

하기 구조식을 갖는 화합물을 유효성분으로 함유하는 뇌졸중 치료용 약학적 조성물:
Figure 112014041662828-pat00006
.
A pharmaceutical composition for the treatment of stroke comprising a compound having the following structural formula as an active ingredient:
Figure 112014041662828-pat00006
.
제 1항에 있어서,
상기 뇌졸중은 출혈성(hemorrhagic) 뇌졸중, 허혈성(ischemic) 뇌졸중 또는 금속 독성(metal toxicity) 뇌졸중인 약학적 조성물.
The method according to claim 1,
Wherein the stroke is a hemorrhagic stroke, an ischemic stroke or a metal toxicity stroke.
제 2항에 있어서,
상기 금속은 납(lead), 수은(mercury), 망간(manganese), 비소(arsenic), 탈륨(thallium), 철(iron), 아연(zinc), 카드뮴(cadmium), 비스무스(bismuth) 또는 주석(tin)인 약학적 조성물.
3. The method of claim 2,
The metal may be selected from the group consisting of lead, mercury, manganese, arsenic, thallium, iron, zinc, cadmium, bismuth or tin tin. < / RTI >
제 2항에 있어서,
상기 허혈성 뇌졸중은 흥분성 신경세포사 또는 산화성 신경세포사에 의해 유발되는 것인, 약학적 조성물.
3. The method of claim 2,
Wherein said ischemic stroke is caused by excitatory neuronal cell death or oxidative neuronal cell death.
하기 구조식을 갖는 화합물을 뇌졸중에 걸린 인간을 제외한 포유동물 개체에 투여하는 단계를 포함하는 인간을 제외한 포유동물의 뇌졸중 치료방법:
Figure 112015037751362-pat00007
.
A method for treating a stroke in a mammal other than a human, comprising administering a compound having the following structural formula to a mammalian subject other than a human suffering from stroke:
Figure 112015037751362-pat00007
.
제 5항에 있어서,
상기 투여는 경구 투여 또는 정맥내 주입, 피하주입, 근육내 주입, 뇌실내 주입(intracerebroventricular injection), 뇌척수액내 주입(intracerebrospinal fluid injection), 근육내 주입 및 경피흡수로 구성되는 군으로부터 선택되는 비경구 투여인, 인간을 제외한 포유동물의 뇌졸중 치료방법.







6. The method of claim 5,
Such administration may be by parenteral administration selected from the group consisting of oral or intravenous infusion, subcutaneous infusion, intramuscular injection, intracerebroventricular injection, intracerebrospinal fluid injection, intramuscular injection, and percutaneous absorption A method for treating stroke in a mammal other than a human.







KR1020140052583A 2014-04-30 2014-04-30 Pharmaceutical composition and method for treating stoke based on the inhibition of AMPK KR101532211B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140052583A KR101532211B1 (en) 2014-04-30 2014-04-30 Pharmaceutical composition and method for treating stoke based on the inhibition of AMPK
PCT/KR2015/004303 WO2015167246A1 (en) 2014-04-30 2015-04-29 Pharmaceutical composition and method for treating stroke on basis of ampk suppression function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140052583A KR101532211B1 (en) 2014-04-30 2014-04-30 Pharmaceutical composition and method for treating stoke based on the inhibition of AMPK

Publications (1)

Publication Number Publication Date
KR101532211B1 true KR101532211B1 (en) 2015-06-30

Family

ID=53519986

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140052583A KR101532211B1 (en) 2014-04-30 2014-04-30 Pharmaceutical composition and method for treating stoke based on the inhibition of AMPK

Country Status (2)

Country Link
KR (1) KR101532211B1 (en)
WO (1) WO2015167246A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746199B1 (en) * 2016-07-04 2017-06-13 기초과학연구원 GSK3 Nitrogen-Containing Heteroaryl Derivatives and Their Use as GSK3 Inhibitors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911785B1 (en) * 2016-08-09 2018-10-26 세종대학교 산학협력단 Pharmaceutical composition for treating stoke based on the inhibition of AMPK

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080048550A (en) * 2005-09-23 2008-06-02 메모리 파마슈티칼스 코포레이션 Indazoles, benzothiazoles, benzoisothiazoles, benzisoxazoles, pyrazolopyridines, isothiazoloryridines, and preparation and uses thereof
KR20120078756A (en) * 2004-03-24 2012-07-10 더 존스 홉킨스 유니버시티 Novel method of neuroprotection by pharmacological inhibition of amp-activated protein kinase

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060120694A (en) * 2003-12-22 2006-11-27 메모리 파마슈티칼스 코포레이션 Indoles, 1h-indazoles, 1,2-benzisoxazoles, and 1,2-benzisothiazoles, and preparation and uses thereof
KR20120120416A (en) * 2010-02-11 2012-11-01 벤더르빌트 유니버시티 Benzisoxazoles and azabenzisoxazoles as mglur4 allosteric potentiators, compositions, and methods of treating neurological dysfunction
JP5728099B2 (en) * 2011-02-25 2015-06-03 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Novel cyclic azabenzimidazole derivatives useful as antidiabetic agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120078756A (en) * 2004-03-24 2012-07-10 더 존스 홉킨스 유니버시티 Novel method of neuroprotection by pharmacological inhibition of amp-activated protein kinase
KR20080048550A (en) * 2005-09-23 2008-06-02 메모리 파마슈티칼스 코포레이션 Indazoles, benzothiazoles, benzoisothiazoles, benzisoxazoles, pyrazolopyridines, isothiazoloryridines, and preparation and uses thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746199B1 (en) * 2016-07-04 2017-06-13 기초과학연구원 GSK3 Nitrogen-Containing Heteroaryl Derivatives and Their Use as GSK3 Inhibitors

Also Published As

Publication number Publication date
WO2015167246A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
Wang et al. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways
Khasabova et al. Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress
Barbeau The pathogenesis of Parkinson's disease: a new hypothesis
KR101351181B1 (en) Method for inhibiting cell death induction by inhibiting synthesis or secretion of AGE-albumin in mononuclear phagocyte system
Kolko Suppl 1: M5: Present and new treatment strategies in the management of glaucoma
Marshall et al. Formalin sensitivity and differential staining of mast cells in human dermis
KR20180094989A (en) A method for preventing and / or treating aging-related cognitive disorders and neuroinflammation
JP6507336B2 (en) Treatment of liver fibrosis using CBP / catenin inhibitors
KR101532211B1 (en) Pharmaceutical composition and method for treating stoke based on the inhibition of AMPK
Kim et al. Nucleocytoplasmic p27Kip1 export is required for ERK1/2-mediated reactive astroglial proliferation following status epilepticus
KR20130113430A (en) Inhibitors of erk for developmental disorders of neuronal connectivity
US20240216316A1 (en) Dihomo-gamma linolenic acid (dgla) is a novel senolytic
CN117045636A (en) Use of hydroxysafflor yellow a in treating platelet-associated diseases
KR101911785B1 (en) Pharmaceutical composition for treating stoke based on the inhibition of AMPK
KR20160145380A (en) Pharmaceutical composition for preventing or treating diabetic muscle atrophy comprising the activity inhibitor of tenc1
JP2012041314A (en) Kit for treating brain tumor, and brain tumor treatment method
US11717513B2 (en) Mirabegron for the treatment of retinal diseases
KR20150035276A (en) Composition for Preventing and Treating Atopic Dermatitis Comprising Rapamycin and Mycophenolic acid
EP2578212B1 (en) Compound inhibiting activation of the enzyme erk1/2 for use in the treatment of neurogenerative illnesses
KR101737051B1 (en) Pharmaceutical composition for treating diabetes
Meier-Ruge et al. Pharmacological aspects of dihydrogenated ergot alkaloids in experimental brain research
CN112843065B (en) Medicine for cognitive disorder and preparation method thereof
EP4403185A1 (en) Pharmaceutical composition for treating cognitive decline or for treating overweightness or obesity
EP4403184A1 (en) Pharmaceutical composition for use in treating cognitive decline, excess weight, or obesity
Cavalu et al. Unveiling citicoline's mechanisms and clinical relevance in the treatment of neuroinflammatory disorders

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190522

Year of fee payment: 5