KR101528751B1 - Method for producing ethylhexylglycerin - Google Patents
Method for producing ethylhexylglycerin Download PDFInfo
- Publication number
- KR101528751B1 KR101528751B1 KR1020140152999A KR20140152999A KR101528751B1 KR 101528751 B1 KR101528751 B1 KR 101528751B1 KR 1020140152999 A KR1020140152999 A KR 1020140152999A KR 20140152999 A KR20140152999 A KR 20140152999A KR 101528751 B1 KR101528751 B1 KR 101528751B1
- Authority
- KR
- South Korea
- Prior art keywords
- glycidyl ether
- water
- ethylhexyl
- ehge
- distillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/18—Polyhydroxylic acyclic alcohols
- C07C31/20—Dihydroxylic alcohols
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
본 발명은 에틸헥실글리세린의 제조방법에 관한 것으로, 더욱 구체적으로는 고순도의 에틸헥실글리세린을 대량 생산할 수 있는 에틸헥실글리세린의 제조방법에 관한 것이다.
The present invention relates to a process for producing ethylhexyl glycerin, and more particularly to a process for producing ethylhexyl glycerin capable of mass-producing high purity ethylhexyl glycerin.
화장품에 들어가는 보존제(방부제)는 화장품의 변질을 막고 소비자들, 특히 면역력이 약한 소비자들이 오염된 미생물에 의해 피부질환이나 염증 등의 피해를 받지 않도록 하기 위해서 첨가된다. 보존제는 파라벤류(메틸파라벤, 프로필파라벤, 에틸파라벤, 부틸파라벤 등), 페녹시에탄올, 프로필렌 글리콜, 1,2-헥산디올 등이 있다.Preservatives (preservatives) in cosmetics are added to prevent the deterioration of cosmetics and to prevent consumers, especially those with weakened immunity, from being exposed to contaminated microorganisms and suffering from skin diseases or inflammation. Preservatives include parabens (such as methylparaben, propylparaben, ethylparaben, butylparaben), phenoxyethanol, propylene glycol, 1,2-hexanediol, and the like.
보존제 중 가장 많이 사용되는 파라벤은 가격이 저렴하며, 미생물 번식 억제력이 좋아 세계적으로 가장 널리 쓰이는 보존제이다. 그러나, 2002년에 유방암 세포에서 파라벤의 에스트로겐 활동을 추적하는 내용이 발표되어 파라벤의 위험성이 대두되기 시작하였다. 또한, 파라벤이 유방암 세포를 증식시킬수 있으며, 내분비계 교란으로 피부노화를 불러온다는 연구발표로 인하여 부정적인 인식이 확산되고 있다. 이에, 많은 소비자들이 무방부제, 무파라벤 제품을 선호하는 경향이 주류를 이루고 있어, 무파라벤 타입의 제품 개발이 필요한 실정이다.The most commonly used preservatives are parabens, which are inexpensive and have the ability to inhibit microbial propagation, making them the most widely used preservatives in the world. However, in 2002, the content of tracing the estrogen activity of parabens in breast cancer cells was announced, and the risk of parabens began to rise. In addition, parabens are able to multiply breast cancer cells, and endocrine disruption causes skin aging. Therefore, many consumers tend to prefer non-paraben and paraben products, and it is necessary to develop paraben-type products.
한편, 에틸헥실글리세린(Ethylhexylglycerin)은 에폭시(Epoxy) 화합물인 에틸헥실글리시딜 에테르(Ethylhexylglycidyl ether)의 에폭시기를 오픈(Open, 가수분해 또는 Diester 등)하는 방법으로 제조되어 1개의 에테르(Ether)기와 2개의 하이드록시기(Hydroxyl)를 가진 물질이다. 다기능성 화장품 원료로서 피부 보습 효과가 우수하고 피부에 영양을 공급하며, 피부 자극이 적어 피부 트러블을 일으키지 않는 특징을 가져 주로 스킨 컨디셔닝 제품들에 많이 사용된다.On the other hand, ethylhexylglycerin is prepared by opening (opening, hydrolyzing, or diestering) the epoxy group of an epoxy compound, ethylhexylglycidyl ether, It is a substance with two hydroxyl groups (Hydroxyl). It is a multifunctional cosmetic raw material that has excellent skin moisturizing effect, supplies nutrition to the skin, has little skin irritation and does not cause skin troubles, and is mainly used in skin conditioning products.
한편, 에틸헥실글리세린을 제조하기 위하여 프로텍션(Protection)과 가수분해를 하는 2단계 또는 3단계 공정 제조 기술 연구가 많이 진행되고 있다. 하지만, 기존의 기술은 다단공정, 임계온도, 임계압력, 다량의 물 사용 등 대량생산을 위한 문제점이 있었다.On the other hand, in order to produce ethylhexylglycerin, there are many researches on the manufacturing technology of two-step or three-step process of performing protection and hydrolysis. However, existing technologies have problems for mass production such as multistage process, critical temperature, critical pressure, and large amount of water use.
또한, 알킬글리시딜 에테르(Alkylglycidyl ether)의 제조 기술 관련 특허로 US 5,162,547에는 알칼리메탈 하이드록사이드(Alkalimetal hydroxide) 촉매와 이소옥탄올(Isooctanol)에 크라운 에테르(crown-ether)를 용매로 하고 에피클로로하이드린(ECH)을 적가하여 에폭시화합물을 제조하는 기술이 기재되어 있다. 다만, 반응이 135℃의 고온에서 진행되어 선택율이 낮고, 정제가 어려운 문제점이 있었다.In addition, US Pat. No. 5,162,547 discloses a process for producing alkyl glycidyl ether. US Pat. No. 5,162,547 discloses a process for producing alkyl glycidyl ether by using an alkali metal hydroxide catalyst and crown ether as a solvent in isooctanol, Hydrin (ECH) is added dropwise to prepare an epoxy compound. However, the reaction proceeds at a high temperature of 135 占 폚, which results in a low selectivity and difficult purification.
또한, 알킬글리세릴 에테르(Alkylglyceryl ether)의 제조 기술 관련 특허로 JP 06-025053(1994년)에는 글리시딜 에테르(glycidyl ether)의 가수분해에 있어서, 초산을 용매로 사용하고, 반응액은 알카리 수용액으로 처리하여 부산물의 생성을 방지하고 반응율을 증가시켜 글리세릴 에테르(glyceryl ether)를 합성하는 기술이 기재되어 있다. 다만, 과량의 초산의 사용으로 인한 설비 부식 문제 및 작업환경의 문제로 대량생산을 하는데 문제점이 있다. 또한, JP 2002-114727(2002년)에는 카르복실산(carboxylic acid), 베이스(base), 물(water)을 혼합한 후 글리시딜 에테르(glycidyl ether)를 적가하여 글리세릴 에테르(glyceryl ether)를 제조하는 기술이 기재되어 있다. 다만, 200℃의 고온에서 가수분해(hydrolysis)하여 부반응물이 생성되는 단점이 있다. 또한, JP 2006-282620(2006년)에는 임계온도, 압력, 관형반응기를 사용하여 글리세릴 에테르를 제조하는 기술이 기재되어 있다. 다만, 임계조건과 반응시간이 긴 문제점을 가지고 있다.Further, JP 06-025053 (1994) discloses a process for producing an alkyl glyceryl ether by using acetic acid as a solvent in the hydrolysis of glycidyl ether, A method of treating glyceryl ether with an aqueous solution to prevent the formation of by-products and to increase the reaction rate to synthesize glyceryl ether. However, there is a problem in mass production due to corrosion of facilities due to use of excessive acetic acid and work environment. In JP 2002-114727 (2002), glyceryl ether was added dropwise to a mixture of carboxylic acid, base and water followed by addition of glycidyl ether. Is disclosed. However, there is a disadvantage that by-products are formed by hydrolysis at a high temperature of 200 ° C. JP 2006-282620 (2006) discloses a technique for producing glyceryl ether using critical temperature, pressure, and tubular reactor. However, critical conditions and reaction time have long problems.
이에, 본 발명의 발명자들은 저온, 저압의 조건 및 단축된 공정을 이용하여 고순도의 에틸헥실글리세린을 고수율로 수득할 수 있는 에틸헥실글리세린의 제조방법에 대하여 예의 연구한 결과 본 발명에 이르게 되었다.
Accordingly, the inventors of the present invention have made intensive study on a method for producing ethylhexylglycerin which can obtain high purity ethylhexylglycerin at a high yield by using a low temperature and low pressure condition and a shortened process.
본 발명은 고순도의 에틸헥실글리세린(Ethylhexyglycerin)을 대량 생산할 수 있는 에틸헥실글리세린의 제조방법을 확립하고 최적화하는 것을 목적으로 한다.
An object of the present invention is to establish and optimize a process for producing ethylhexylglycerin capable of mass-producing high purity ethylhexyglycerin.
상기 목적을 달성하기 위하여, 본 발명은 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 물, 유기 용매 및 촉매를 교반하는 단계 (A); 상기 교반 후, 80~120℃에서 15~25시간 동안 반응시켜 에틸헥실글리세린을 합성하는 단계 (B); 상기 합성 후, 에틸아세테이트(Ethylacetate)를 가하는 단계 (C); 상기 단계 (C)에서, 분리된 물층을 제거한 후, 유기층을 수세하는 단계 (D); 및 상기 수세된 유기층을 증류하여 에틸헥실글리세린을 수득하는 단계 (E);를 포함하는 것을 특징으로 하는 에틸헥실글리세린의 제조방법을 제공한다.In order to achieve the above object, the present invention relates to a process for producing a polyurethane foam, comprising: (A) stirring 2-ethylhexyl glycidyl ether, water, an organic solvent and a catalyst; (B) reacting the resulting mixture with stirring at 80 to 120 ° C for 15 to 25 hours to synthesize ethylhexyl glycerin; After the synthesis, step (C) of adding ethyl acetate (Ethylacetate) is carried out; (D) removing the separated water layer and washing the organic layer in the step (C); And (E) distilling the washed organic layer to obtain ethylhexylglycerin. The present invention also provides a process for producing ethylhexyl glycerin.
이하에서는 본 발명의 에틸헥실글리세린의 제조방법에 대해 상세히 설명하겠다.Hereinafter, the method for producing ethylhexyl glycerin of the present invention will be described in detail.
< 단계 (A): 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 물, 유기 용매 및 촉매를 교반하는 단계><Step (A): Step of stirring 2-ethylhexyl glycidyl ether, water, organic solvent and catalyst>
본 단계는 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 물, 유기 용매 및 촉매를 교반하는 단계로, 질소 분위기 하에서 20~40분 동안 수행되는 것이 좋다. This step is a step of stirring 2-ethylhexyl glycidyl ether, water, an organic solvent and a catalyst, and is preferably carried out for 20 to 40 minutes under a nitrogen atmosphere.
또한, 상기 2-에틸헥실글리시딜 에테르, 물 및 유기 용매의 첨가비는 2-에틸헥실글리시딜 에테르 1중량부 대비 물 60~160중량부, 유기 용매 10~33중량부인 것이 바람직하다. 상기 조건을 만족시킬 경우 에틸헥실글리세린의 생성량을 증가시킬 수 있다.The addition ratio of the 2-ethylhexyl glycidyl ether, water and the organic solvent is preferably 60-160 parts by weight of water and 10-33 parts by weight of the organic solvent, relative to 1 part by weight of 2-ethylhexyl glycidyl ether. When the above conditions are satisfied, the amount of ethylhexyl glycerin produced can be increased.
또한, 상기 촉매는 삼불화붕소(BF3)인 것이 바람직하다. 상기 촉매를 사용할 경우 에틸헥실글리세린의 생성량을 증가시킬 수 있기 때문이다.Further, it is preferable that the catalyst is boron trifluoride (BF 3 ). This is because when the catalyst is used, the amount of ethylhexyl glycerin can be increased.
또한, 상기 유기 용매는 다이메틸설폭사이드(dimethylsulfoxide, DMSO)인 것이 바람직하다. 상기 유기 용매를 사용할 경우 에틸헥실글리세린의 생성량을 증가시킬 수 있기 때문이다.In addition, the organic solvent is preferably dimethylsulfoxide (DMSO). When the organic solvent is used, the amount of ethylhexyl glycerin can be increased.
한편, 상기 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether)는 바람직하게 2-에틸헥산올(2-Ethylhexanol), 수산화나트륨(NaOH), 상전이촉매를 교반하는 단계 (가); 상기 교반 후, 에피클로로하이드린(Epichlorohydrin)을 적가하는 단계 (나); 상기 적가 후, 20~60℃에서 3~20시간 동안 반응시켜 2-에틸헥실글리시딜 에테르를 합성하는 단계 (다); 상기 합성 후, 여과하여 2-에틸헥실글리시딜 에테르를 포함하는 여과물을 수득하고, 수세하는 단계 (라); 및 상기 수세된 여과물을 증류하여 2-에틸헥실글리시딜 에테르를 수득하는 단계 (마);로부터 제조되는 것이 좋다.On the other hand, the 2-ethylhexyl glycidyl ether is preferably a step (a) of stirring 2-ethylhexanol, sodium hydroxide (NaOH) and a phase transfer catalyst; After the stirring, a step (b) of adding epichlorohydrin dropwise is carried out; After the dropwise addition, the reaction is carried out at 20 to 60 ° C for 3 to 20 hours to synthesize 2-ethylhexylglycidyl ether (c); After the above synthesis, the reaction product is filtered to obtain a filtrate containing 2-ethylhexyl glycidyl ether, followed by washing with water (step (d)); And distilling the washed filtrate to obtain 2-ethylhexyl glycidyl ether (e).
이하에서는 상기 2-에틸헥실글리시딜 에테르의 수득 방법에 대해 상세히 설명하겠다.Hereinafter, the method for obtaining the 2-ethylhexyl glycidyl ether will be described in detail.
<단계 (가): 2-에틸헥산올(2-Ethylhexanol), 수산화나트륨(NaOH), 상전이촉매를 교반하는 단계><Step (A): Step of stirring 2-ethylhexanol, sodium hydroxide (NaOH) and phase transfer catalyst>
본 단계는 2-에틸헥산올(2-Ethylhexanol), 수산화나트륨(NaOH) 및 상전이촉매를 교반하는 단계로, 2-에틸헥산올 1mo1 대비 수산화나트륨 1.5~3mol 및 상전이촉매 0.0025~0.005mol을 투입한 후, 질소 분위기 하에서 30~50℃의 온도로 20~60분 동안 수행되는 것이 바람직하다.This step is a step of stirring 2-ethylhexanol, sodium hydroxide (NaOH) and a phase transfer catalyst. It is charged with 1.5-3 mol of sodium hydroxide and 0.0025-0.005 mol of a phase transfer catalyst relative to 1 mol of 2-ethylhexanol And then at a temperature of 30 to 50 DEG C under a nitrogen atmosphere for 20 to 60 minutes.
상기 상전이촉매는 테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB)인 것이 바람직하다. 상기 촉매를 사용할 경우 2-에틸헥실글리시딜 에테르의 생성량을 증가시킬 수 있다.
The phase transfer catalyst is preferably tetra-n-butyl ammonium bromide (TBAB). When the catalyst is used, the amount of 2-ethylhexyl glycidyl ether can be increased.
<단계 (나): 상기 교반 후, 에피클로로하이드린(Epichlorohydrin)을 적가하는 단계>≪ Step (B): After stirring, adding epichlorohydrin dropwise,
본 단계는 상기 교반 후, 에피클로로하이드린(Epichlorohydrin)을 적가하는 단계로, 2-에틸헥산올 1mol 대비 에피클로로하이드린 1.5~3mol을 30~50℃에서 20~120분 동안 적가하는 것이 바람직하다.
In this step, epichlorohydrin is added dropwise after the stirring, and 1.5-3 mol of epichlorohydrin relative to 1 mol of 2-ethylhexanol is added dropwise at 30-50 ° C for 20-120 minutes .
<단계 (다): 상기 적가 후, 20~60℃에서 3~20시간 동안 반응시켜 2-에틸헥실글리시딜 에테르를 합성하는 단계><Step (C): After dropwise addition, the reaction is carried out at 20 to 60 ° C for 3 to 20 hours to synthesize 2-ethylhexylglycidyl ether.
본 단계는 상기 적가 후, 20~60℃에서 3~20시간 동안 반응시켜 2-에틸헥실글리시딜 에테르를 합성하는 단계로, 상기 온도 및 시간 범위를 만족할 시 다량의 2-에틸헥실글리시딜 에테르를 합성할 수 있다.
This step is a step of adding 2-ethylhexyl glycidyl ether by reacting at 20 to 60 ° C. for 3 to 20 hours after the dropwise addition. When the temperature and time range are satisfied, a large amount of 2-ethylhexylglycidyl Ether can be synthesized.
<단계 (라): 상기 합성 후, 여과하여 2-에틸헥실글리시딜 에테르를 포함하는 여과물을 수득하고, 수세하는 단계>≪ Step (D): After the above synthesis, filtration is performed to obtain a filtrate containing 2-ethylhexyl glycidyl ether,
본 단계는 상기 합성 후, 여과하여 2-에틸헥실글리시딜 에테르를 포함하는 여과물을 수득하고, 수세하는 단계로, 2-에틸헥실글리시딜 에테르를 합성 후, 발생하는 NaCl 포함 슬러지를 여과한 후, 과량의 NaOH 및 잔존하고 있는 NaCl을 제거하기 위하여 수세하는 단계이다.In this step, after the synthesis, filtration is performed to obtain a filtrate containing 2-ethylhexyl glycidyl ether, followed by washing with water. After the synthesis of the 2-ethylhexyl glycidyl ether, the resulting sludge containing NaCl is filtered And then washing with water to remove excess NaOH and remaining NaCl.
상기 여과 방법은 원심분리기 또는 여과지를 이용하여 여과할 수 있다. 원심분리기를 이용하여 여과할 경우, 2500~4000 rpm, 10~30분의 조건에서 수행할 수 있다. 또한, 여과지를 이용하여 여과할 경우, 15~25 ㎛의 구멍 사이즈를 가지는 여과지로 1차 여과한 후, 2.5 ㎛ 구멍 사이즈를 가지는 여과지로 2차 여과할 수 있다.The filtration method can be performed using a centrifugal separator or filter paper. In case of filtration using a centrifugal separator, the filtration can be carried out at 2500 to 4000 rpm for 10 to 30 minutes. When the filter paper is used for filtration, it may be firstly filtered through a filter paper having a pore size of 15 to 25 μm, and then subjected to second filtration with a filter paper having a pore size of 2.5 μm.
상기 수세는 여과된 여과물에 증류수를 여과물의 40~70중량%를 투입한 후, 5~15분 동안 교반하고 20~40분 동안 정체시킨 후, 물층을 제거하는 과정이다. 수세는 수세수의 pH가 7.5 이하가 될때 까지 수행되는 것이 바람직하다.The washing is performed by adding 40 to 70% by weight of distilled water to the filtered filtrate, stirring the mixture for 5 to 15 minutes, stagnating for 20 to 40 minutes, and then removing the water layer. It is preferable that washing with water is carried out until the pH of washing water becomes 7.5 or less.
한편, 상기 수세 후, 수세된 여과물의 수분을 탈수하기 위한 탈수 과정을 더 포함할 수 있다. 예를 들어 Na2SO4를 5~10중량% 투입한 후, 교반 및 여과하여 탈수하는 것이다.
Meanwhile, after the washing with water, it may further include a dehydration process for dehydrating the water that has been washed with water. For example, 5 to 10% by weight of Na 2 SO 4 is added, followed by stirring and filtration for dehydration.
<단계 (마): 상기 수세된 여과물을 증류하여 2-에틸헥실글리시딜 에테르를 수득하는 단계><Step (e): Distilling the washed filtrate to obtain 2-ethylhexyl glycidyl ether>
본 단계는 상기 수세된 여과물을 증류하여 2-에틸헥실글리시딜 에테르를 수득하는 단계로, 고순도의 2-에틸헥실글리시딜 에테르를 수득하기 위한 단계이다.This step is a step for obtaining high purity 2-ethylhexyl glycidyl ether by distilling the washed filtrate to obtain 2-ethylhexyl glycidyl ether.
상기 증류는 0.1~1torr, 40~60℃의 조건에서 1차 증류한 후, 0.1~1torr, 70~90℃의 조건 2차 증류하는 것이 바람직하다. 1차 증류는 미반응 알코올을 증류하기 위함이고, 2차 증류는 2-에틸헥실글리시딜 에테르를 증류하기 위함이다. 이와 같이 2차 증류할 경우, 고순도의 2-에틸헥실글리시딜 에테르를 수득할 수 있다.
It is preferable that the distillation is first distillation at a temperature of 0.1 to 1 torr and at a temperature of 40 to 60 ° C and second distillation at a temperature of 0.1 to 1 torr and 70 to 90 ° C. The primary distillation is for distilling the unreacted alcohol and the secondary distillation is for distilling the 2-ethylhexyl glycidyl ether. When the second distillation is carried out in this manner, 2-ethylhexyl glycidyl ether of high purity can be obtained.
<단계 (B): 상기 교반 후, 80~120℃에서 15~25시간 동안 반응시켜 에틸헥실글리세린을 합성하는 단계><Step (B): After stirring, the reaction is carried out at 80 to 120 ° C for 15 to 25 hours to synthesize ethylhexyl glycerin.
본 단계는 상기 교반 후, 80~120℃에서 15~25시간 동안 반응시켜 에틸헥실글리세린을 합성하는 단계로, 2-에틸헥실글리시딜 에테르의 링 오픈 반응이 진행되어 에틸헥실글리세린을 합성하는 단계이다. 80℃ 이하에서는 에틸헥실글리세린의 생성량이 매우 적으며, 120℃ 이상은 경제적이지 못하다. 또한, 15시간 이하는 충분히 링 오븐 반응이 진행되지 않아 에틸헥실글리세린의 생성량이 매우 적고, 25시간 이후는 경제적이지 못하다.
This step is a step of synthesizing ethylhexylglycerin by reacting at 80 to 120 ° C for 15 to 25 hours after the stirring, and the ring opening reaction of 2-ethylhexylglycidyl ether proceeds to synthesize ethylhexylglycerin to be. Below 80 ℃, the amount of ethylhexyl glycerin is very low, and above 120 ℃ is not economical. Also, the production of ethylhexylglycerin is very small because the ring oven reaction does not sufficiently proceed for 15 hours or less, and after 25 hours is not economical.
<단계 (C): 상기 합성 후, 에틸아세테이트(Ethylacetate)를 가하는 단계>≪ Step (C): After the synthesis, adding ethyl acetate (Ethylacetate)
본 단계는 상기 합성 후, 에틸아세테이트(Ethylacetate)를 가하는 단계로, 상기 합성 후, 남은 과량의 물, 유기 용매 및 잔류 촉매를 제거하고, 합성물을 추출하기 위한 단계이다.This step is a step for adding ethyl acetate after the above synthesis and for removing the excess water, the organic solvent and the residual catalyst after the synthesis and extracting the compound.
상기 단계 (B) 후, 에틸아세테이트를 가한 후, 상온에서 20~40분간 정체하면 물, 촉매는 하층으로 분리되고 에틸헥실글리세린은 상층(유기층)으로 분리되기 때문에 에틸헥실글리세린 함유 반응물(합성물)을 추출하기가 용이해진다.
After the step (B), when ethyl acetate is added and the mixture is stood at room temperature for 20 to 40 minutes, the water and the catalyst are separated into the lower layer and the ethylhexylglycerine is separated into the upper layer (organic layer), so the ethylhexylglycerin- It becomes easy to extract.
<단계 (D) 상기 단계 (C)에서, 분리된 물층을 제거한 후, 유기층을 수세하는 단계>≪ Step (D) In the step (C), after removing the separated water layer, washing the organic layer,
본 단계는 상기 단계 (C)에서, 분리된 물층을 제거한 후, 유기층을 수세하는 단계로, 고순도의 에틸헥실글리세린을 수득하기 위한 단계이다. 상기 유기층에 수세수로 증류수를 투입한 후, 수세수의 pH가 5.5~7.0이 될 때까지 수행하는 것이 좋다.This step is a step for washing the organic layer after removing the separated water layer in the step (C), and is a step for obtaining high purity ethylhexyl glycerin. It is preferable to add distilled water as wash water to the organic layer and then perform the treatment until the pH of the wash water becomes 5.5 to 7.0.
여기서, 유기층에 남아 있는 수분을 제거하기 위하여 탈수과정을 더욱 포함할 수 있다. 예를 들어 Na2SO4를 3~10중량% 투입한 후, 교반 및 여과하여 탈수하는 것이다.
Here, a dehydration process may be further included to remove moisture remaining in the organic layer. For example, 3 to 10% by weight of Na 2 SO 4 , followed by stirring and filtration for dehydration.
<단계 (E): 상기 수세된 유기층을 증류하여 에틸헥실글리세린을 수득하는 단계>≪ Step (E): distilling the washed organic layer to obtain ethylhexylglycerin >
본 단계는 상기 수세된 유기층을 증류하여 에틸헥실글리세린을 수득하는 단계로, 고순도의 에틸헥실글리세린을 수득하기 위한 단계이다. 상기 수세된 유기층을 25~35torr, 70~90℃의 조건에서 1차 증류한 후, 0.1~1torr, 140~160℃의 조건 2차 증류하는 것이 바람직하다. 1차 증류는 남아있는 에틸아세테이트를 증류하기 위함이고, 2차 증류는 에틸헥실글리세린을 증류하는 것이다. 이와 같이 2차 증류하여 수득된 에틸헥실글리세린은 99.56~99.63%의 순도를 가진다.
In this step, the washed organic phase is distilled to obtain ethylhexyl glycerin, which is a step for obtaining high purity ethylhexyl glycerin. The washed organic phase is firstly distilled at 25 to 35 torr and 70 to 90 ° C and then subjected to secondary distillation at 0.1 to 1 torr and 140 to 160 ° C. The primary distillation is to distill the remaining ethyl acetate, and the secondary distillation is to distill ethylhexyl glycerin. Thus obtained ethylhexylglycerin obtained by the second distillation has a purity of 99.56 to 99.63%.
본 발명에 의하면 낮은 임계온도, 임계압력의 조건에서 소량의 물을 이용하고, 공정이 간단하며, 정제가 쉬워 고순도의 에틸헥실글리세린을 고수율로 수득할 수 있다.
According to the present invention, it is possible to obtain high purity ethylhexyl glycerin at a high yield by using a small amount of water under the conditions of a low critical temperature and a critical pressure, a simple process, and easy purification.
도 1은 반응 온도에 따른 2-에틸헥실글리시딜 에테르의 합성 정도를 확인한 결과이다. 'ROH'은 2-에틸헥실 알코올(2-ethylhexyl alcohol), 'di-epi'은 3-클로로프로프-2-에닐글리시딜 에테르(3-chloroprop-2-enylglycidyl ether), 'EGHE'은 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 'di-EGHE'은 1,3-디(2-에틸헥실옥시)-2-프로필글리시딜 에테르(1,3-di(2-ethylhexyloxy)-2-propylglycidyl ether), 'di-ROH'은 1,3-디(2-에틸헥실옥시)-2-프로판올(1,3-di(2-ethylhexyloxy)-2-propanol)을 의미한다.
도 2는 반응 시간에 따른 2-에틸헥실글리시딜 에테르의 합성 정도를 확인한 결과이다. 'ROH'은 2-에틸헥실 알코올(2-ethylhexyl alcohol), 'di-epi'은 3-클로로프로프-2-에닐글리시딜 에테르(3-chloroprop-2-enylglycidyl ether), 'EGHE'은 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 'di-EGHE'은 1,3-디(2-에틸헥실옥시)-2-프로필글리시딜 에테르(1,3-di(2-ethylhexyloxy)-2-propylglycidyl ether), 'di-ROH'은 1,3-디(2-에틸헥실옥시)-2-프로판올(1,3-di(2-ethylhexyloxy)-2-propanol)을 의미한다.
도 3은 촉매의 종류에 따른 2-에틸헥실글리시딜 에테르의 합성 정도를 확인한 결과이다. 'ROH'은 2-에틸헥실 알코올(2-ethylhexyl alcohol), 'di-epi'은 3-클로로프로프-2-에닐글리시딜 에테르(3-chloroprop-2-enylglycidyl ether), 'EGHE'은 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 'di-EGHE'은 1,3-디(2-에틸헥실옥시)-2-프로필글리시딜 에테르(1,3-di(2-ethylhexyloxy)-2-propylglycidyl ether), 'di-ROH'은 1,3-디(2-에틸헥실옥시)-2-프로판올(1,3-di(2-ethylhexyloxy)-2-propanol)을 의미한다.
도 4는 NaOH의 몰비에 따른 2-에틸헥실글리시딜 에테르의 합성 정도를 확인한 결과이다. 'ROH'은 2-에틸헥실 알코올(2-ethylhexyl alcohol), 'di-epi'은 3-클로로프로프-2-에닐글리시딜 에테르(3-chloroprop-2-enylglycidyl ether), 'EGHE'은 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 'di-EGHE'은 1,3-디(2-에틸헥실옥시)-2-프로필글리시딜 에테르(1,3-di(2-ethylhexyloxy)-2-propylglycidyl ether), 'di-ROH'은 1,3-디(2-에틸헥실옥시)-2-프로판올(1,3-di(2-ethylhexyloxy)-2-propanol)을 의미한다.
도 5는 에피클로로하이드린의 몰비에 따른 2-에틸헥실글리시딜 에테르의 합성 정도를 확인한 결과이다. 'ROH'은 2-에틸헥실 알코올(2-ethylhexyl alcohol), 'di-epi'은 3-클로로프로프-2-에닐글리시딜 에테르(3-chloroprop-2-enylglycidyl ether), 'EGHE'은 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 'di-EGHE'은 1,3-디(2-에틸헥실옥시)-2-프로필글리시딜 에테르(1,3-di(2-ethylhexyloxy)-2-propylglycidyl ether), 'di-ROH'은 1,3-디(2-에틸헥실옥시)-2-프로판올(1,3-di(2-ethylhexyloxy)-2-propanol)을 의미한다.
도 6은 상전이촉매 양에 따른 2-에틸헥실글리시딜 에테르의 합성 정도를 확인한 결과이다. 'ROH'은 2-에틸헥실 알코올(2-ethylhexyl alcohol), 'di-epi'은 3-클로로프로프-2-에닐글리시딜 에테르(3-chloroprop-2-enylglycidyl ether), 'EGHE'은 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 'di-EGHE'은 1,3-디(2-에틸헥실옥시)-2-프로필글리시딜 에테르(1,3-di(2-ethylhexyloxy)-2-propylglycidyl ether), 'di-ROH'은 1,3-디(2-에틸헥실옥시)-2-프로판올(1,3-di(2-ethylhexyloxy)-2-propanol)을 의미한다.
도 7은 2-에틸헥실글리시딜 에테르의 제조 공정별 성분들이 분리되는 과정을 GC로 확인한 결과이다. 'ROH'은 2-에틸헥실 알코올(2-ethylhexyl alcohol), 'di-epi'은 3-클로로프로프-2-에닐글리시딜 에테르(3-chloroprop-2-enylglycidyl ether), 'EGHE'은 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether), 'di-EGHE'은 1,3-디(2-에틸헥실옥시)-2-프로필글리시딜 에테르(1,3-di(2-ethylhexyloxy)-2-propylglycidyl ether), 'di-ROH'은 1,3-디(2-에틸헥실옥시)-2-프로판올(1,3-di(2-ethylhexyloxy)-2-propanol)을 의미한다.
도 8은 수득된 2-에틸헥실글리시딜 에테르의 1H NMR 분석결과이다. (a)는 수득된 2-에틸헥실글리시딜 에테르의 구조이고, (b)는 1H NMR 스펙트럼이다.
도 9는 수득된 2-에틸헥실글리시딜 에테르의 13C NMR 분석결과이다. (a)는 수득된 2-에틸헥실글리시딜 에테르의 구조이고, (b)는 13C NMR 스펙트럼이다.
도 10은 수득된 2-에틸헥실글리시딜 에테르의 FT-IR 분석결과이다.
도 11은 반응 온도에 따른 에틸헥실글리세린의 합성 정도를 확인한 결과이다. 'EHG'는 에틸헥실글리세린(Ethylhexylglycerin)을 의미한다.
도 12는 물의 혼합비율에 따른 에틸헥실글리세린의 합성 정도를 확인한 결과이다. 'EHG'는 에틸헥실글리세린(Ethylhexylglycerin)을 의미한다.
도 13은 유기용매의 혼합비율에 따른 에틸헥실글리세린의 합성 정도를 확인한 결과이다. 'EHG'는 에틸헥실글리세린(Ethylhexylglycerin)을 의미한다.
도 14는 촉매의 종류에 따른 에틸헥실글리세린의 합성 정도를 확인한 결과이다. 'EHG'는 에틸헥실글리세린(Ethylhexylglycerin)을 의미한다.
도 15는 무용매 조건하에서 촉매의 종류에 따른 에틸헥실글리세린의 합성 정도를 확인한 결과이다. 'EHG'는 에틸헥실글리세린(Ethylhexylglycerin)을 의미한다.
도 16은 유기용매의 종류에 따른 에틸헥실글리세린의 합성 정도를 확인한 결과이다. 'EHG'는 에틸헥실글리세린(Ethylhexylglycerin)을 의미한다.
도 17은 에틸헥실글리세린의 제조 공정별 성분들이 분리되는 과정을 GC로 확인한 결과이다. 'EHG'는 에틸헥실글리세린(Ethylhexylglycerin)을 의미한다.
도 18은 수득된 에틸헥실글리세린의 GC/MS 분석 결과이다. 'EHG'는 에틸헥실글리세린(Ethylhexylglycerin)을 의미한다.
도 19는 수득된 에틸헥실글리세린의 1H NMR 분석결과이다. (a)는 수득된 에틸헥실글리세린의 구조이고, (b)는 1H NMR 스펙트럼이다.
도 20은 수득된 에틸헥실글리세린의 13C NMR 분석결과이다. (a)는 수득된 에틸헥실글리세린의 구조이고, (b)는 13C NMR 스펙트럼이다.
도 21은 수득된 에틸헥실글리세린의 FT-IR 분석결과이다. Fig. 1 shows the result of confirming the degree of synthesis of 2-ethylhexyl glycidyl ether according to the reaction temperature. 'ROH' refers to 2-ethylhexyl alcohol, 'di-epi' refers to 3-chloroprop-2-enylglycidyl ether, 'EGHE' 2-Ethylhexyl glycidyl ether, 'di-EGHE' is 1,3-di (2-ethylhexyloxy) -2-propyl glycidyl ether (1,3-di 2-ethylhexyloxy) -2-propylglycidyl ether and di-ROH is 1,3-di (2-ethylhexyloxy) -2-propanol it means.
Fig. 2 shows the result of confirming the degree of synthesis of 2-ethylhexyl glycidyl ether with respect to the reaction time. 'ROH' refers to 2-ethylhexyl alcohol, 'di-epi' refers to 3-chloroprop-2-enylglycidyl ether, 'EGHE' 2-Ethylhexyl glycidyl ether, 'di-EGHE' is 1,3-di (2-ethylhexyloxy) -2-propyl glycidyl ether (1,3-di 2-ethylhexyloxy) -2-propylglycidyl ether and di-ROH is 1,3-di (2-ethylhexyloxy) -2-propanol it means.
FIG. 3 shows the result of confirming the degree of synthesis of 2-ethylhexyl glycidyl ether according to the type of catalyst. 'ROH' refers to 2-ethylhexyl alcohol, 'di-epi' refers to 3-chloroprop-2-enylglycidyl ether, 'EGHE' 2-Ethylhexyl glycidyl ether, 'di-EGHE' is 1,3-di (2-ethylhexyloxy) -2-propyl glycidyl ether (1,3-di 2-ethylhexyloxy) -2-propylglycidyl ether and di-ROH is 1,3-di (2-ethylhexyloxy) -2-propanol it means.
4 shows the result of confirming the degree of synthesis of 2-ethylhexyl glycidyl ether according to the molar ratio of NaOH. 'ROH' refers to 2-ethylhexyl alcohol, 'di-epi' refers to 3-chloroprop-2-enylglycidyl ether, 'EGHE' 2-Ethylhexyl glycidyl ether, 'di-EGHE' is 1,3-di (2-ethylhexyloxy) -2-propyl glycidyl ether (1,3-di 2-ethylhexyloxy) -2-propylglycidyl ether and di-ROH is 1,3-di (2-ethylhexyloxy) -2-propanol it means.
5 shows the results of confirming the degree of synthesis of 2-ethylhexyl glycidyl ether according to the molar ratio of epichlorohydrin. 'ROH' refers to 2-ethylhexyl alcohol, 'di-epi' refers to 3-chloroprop-2-enylglycidyl ether, 'EGHE' 2-Ethylhexyl glycidyl ether, 'di-EGHE' is 1,3-di (2-ethylhexyloxy) -2-propyl glycidyl ether (1,3-di 2-ethylhexyloxy) -2-propylglycidyl ether and di-ROH is 1,3-di (2-ethylhexyloxy) -2-propanol it means.
FIG. 6 shows the result of confirming the degree of synthesis of 2-ethylhexyl glycidyl ether according to the amount of the phase transfer catalyst. 'ROH' refers to 2-ethylhexyl alcohol, 'di-epi' refers to 3-chloroprop-2-enylglycidyl ether, 'EGHE' 2-Ethylhexyl glycidyl ether, 'di-EGHE' is 1,3-di (2-ethylhexyloxy) -2-propyl glycidyl ether (1,3-di 2-ethylhexyloxy) -2-propylglycidyl ether and di-ROH is 1,3-di (2-ethylhexyloxy) -2-propanol it means.
FIG. 7 shows the result of GC analysis of the process of separating the components of 2-ethylhexyl glycidyl ether according to the production process. 'ROH' refers to 2-ethylhexyl alcohol, 'di-epi' refers to 3-chloroprop-2-enylglycidyl ether, 'EGHE' 2-Ethylhexyl glycidyl ether, 'di-EGHE' is 1,3-di (2-ethylhexyloxy) -2-propyl glycidyl ether (1,3-di 2-ethylhexyloxy) -2-propylglycidyl ether and di-ROH is 1,3-di (2-ethylhexyloxy) -2-propanol it means.
8 is a 1 H NMR analysis result of the obtained 2-ethylhexyl glycidyl ether. (a) is the structure of the obtained 2-ethylhexyl glycidyl ether, and (b) is the 1 H NMR spectrum.
9 shows the results of 13 C NMR analysis of the obtained 2-ethylhexyl glycidyl ether. (a) shows the structure of the obtained 2-ethylhexyl glycidyl ether, and (b) shows the 13 C NMR spectrum.
10 shows FT-IR analysis results of the obtained 2-ethylhexyl glycidyl ether.
11 shows the results of confirming the degree of synthesis of ethylhexyl glycerin according to the reaction temperature. 'EHG' means Ethylhexylglycerin.
12 shows the result of confirming the degree of synthesis of ethylhexyl glycerin according to the mixing ratio of water. 'EHG' means Ethylhexylglycerin.
FIG. 13 shows the result of confirming the degree of synthesis of ethylhexyl glycerin according to the mixing ratio of the organic solvent. 'EHG' means Ethylhexylglycerin.
FIG. 14 shows the results of confirming the degree of synthesis of ethylhexyl glycerin according to the type of the catalyst. 'EHG' means Ethylhexylglycerin.
Fig. 15 shows the results of confirming the degree of synthesis of ethylhexyl glycerin according to the kind of catalyst under solventless conditions. 'EHG' means Ethylhexylglycerin.
FIG. 16 shows the result of confirming the degree of synthesis of ethylhexyl glycerin according to the kind of the organic solvent. 'EHG' means Ethylhexylglycerin.
FIG. 17 shows the result of GC analysis of the process of separating the components of the ethylhexyl glycerin by the manufacturing process. 'EHG' means Ethylhexylglycerin.
18 shows the GC / MS analysis results of the obtained ethylhexyl glycerin. 'EHG' means Ethylhexylglycerin.
19 is a 1 H NMR analysis result of the obtained ethylhexyl glycerin. (a) shows the structure of the obtained ethylhexyl glycerin, and (b) shows 1 H NMR spectrum.
20 shows the results of 13 C NMR analysis of the obtained ethylhexyl glycerin. (a) shows the structure of the obtained ethylhexyl glycerin, and (b) shows the 13 C NMR spectrum.
21 shows FT-IR analysis results of the obtained ethylhexyl glycerin.
이하, 본 발명의 내용을 하기 실시예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following embodiments, and includes modifications of equivalent technical ideas.
[실험예 1: 2-에틸헥실글리시딜 에테르의 제조 공정 최적화][Experimental Example 1: Optimization of production process of 2-ethylhexyl glycidyl ether]
1. 합성 공정 최적화1. Optimization of synthesis process
1) 반응 온도에 따른 반응성 확인1) Determination of reactivity according to reaction temperature
2-에틸헥산올(2-Ethylhexanol) 1mol, NaOH 2mol, 테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB) 0.005mol을 투입하고 40℃, 질소 분위기 하에서 30분간 교반한 후, 에피클로로하이드린(Epichlorohydrin, ECH) 2mol을 40℃에서 30분간 정량 펌프를 이용하여 적가한 후, 반응 온도를 달리하여 12시간 동안 반응시켰다. 그 후, GC로 분석하여 반응 온도에 따른 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 1에 나타내었다.1 mol of 2-ethylhexanol, 2 mol of NaOH and 0.005 mol of tetra-n-butyl ammonium bromide (TBAB) were added and stirred for 30 minutes at 40 ° C under a nitrogen atmosphere. , And 2 mol of epichlorohydrin (ECH) were added dropwise at 40 ° C for 30 minutes using a metering pump, and reacted at different reaction temperatures for 12 hours. The reaction was then analyzed by GC to compare the reactivity with the reaction temperature. The experimental conditions and experimental results are shown in Table 1 below.
(m/r)ROH 1)
(m / r)
(m/r)ECH
(m / r)
(m/r)NaOH
(m / r)
(m/r)PTC
(m / r)
time
(hrs)Rxn.
time
(hrs)
(℃)Temp
(° C)
1) ROH : 2-에틸헥실 알코올(2-ethylhexyl alcohol)1) ROH: 2-ethylhexyl alcohol
2) di-epi : 3-클로로프로프-2-에닐글리시딜 에테르(3-chloroprop-2-enylglycidyl ether) 2) di-epi: 3-chloroprop-2-enylglycidyl ether
3) EGHE : 2-에틸헥실글리시딜 에테르(Ethylhexylglycidyl ether)3) EGHE: Ethylhexyl glycidyl ether
4) di-EGHE : 1,3-디(2-에틸헥실옥시)-2-프로필글리시딜 에테르(1,3-di(2-ethylhexyloxy)-2-propylglycidyl ether)4) di-EGHE: 1,3-di (2-ethylhexyloxy) -2-propylglycidyl ether)
5) di-ROH : 1,3-디(2-에틸헥실옥시)-2-프로판올(1,3-di(2-ethylhexyloxy)-2-propanol)
5) di-ROH: 1,3-di (2-ethylhexyloxy) -2-propanol
실험결과, 20~60℃의 온도에서 다량의 EHGE가 생성됨을 확인할 수 있었다. 특히, 40℃의 온도에서 91.4%로 가장 많은 EGHE가 생성됨을 확인할 수 있었다 (도 1).
As a result, it was confirmed that a large amount of EHGE was produced at a temperature of 20 to 60 ° C. In particular, it was confirmed that the highest EGHE was produced at 91.4% at a temperature of 40 ° C (FIG. 1).
2) 반응 시간에 따른 반응성 확인2) Determination of reactivity according to reaction time
2-에틸헥산올(2-Ethylhexanol) 1mol, NaOH 2mol, 테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB) 0.005mol을 투입하고 40℃, 질소 분위기 하에서 30분간 교반한 후, 에피클로로하이드린(Epichlorohydrin, ECH) 2mol을 40℃에서 30분간 정량 펌프를 이용하여 적가한 후, 40℃에서 반응 시간을 달리하여 반응시켰다. 그 후, GC로 분석하여 반응 시간에 따른 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 2에 나타내었다.1 mol of 2-ethylhexanol, 2 mol of NaOH and 0.005 mol of tetra-n-butyl ammonium bromide (TBAB) were added and stirred for 30 minutes at 40 ° C under a nitrogen atmosphere And 2 mol of epichlorohydrin (ECH) were added dropwise at 40 ° C for 30 minutes using a metering pump, and reacted at 40 ° C with different reaction times. The reaction was then analyzed by GC to compare the reactivity with the reaction time. The experimental conditions and experimental results are shown in Table 2 below.
(m/r)ROH
(m / r)
(m/r)ECH
(m / r)
(m/r)NaOH
(m / r)
(m/r)PTC
(m / r)
(℃)Temp
(° C)
Time
(Hrs)Rxn.
Time
(Hrs)
실험결과, 3~20시간 동안 반응시킬 경우 다량의 EHGE가 생성됨을 확인할 수 있었다. 특히, 12시간에서 91.4%로 가장 많은 EHGE가 생성됨을 확인할 수 있었다 (도 2).
As a result of the experiment, it was confirmed that a large amount of EHGE was produced when the reaction was carried out for 3 to 20 hours. In particular, it was confirmed that the highest EHGE was generated at 91.4% from 12 hours (FIG. 2).
3) 촉매의 종류에 따른 반응성 확인3) Determination of reactivity depending on the type of catalyst
2-에틸헥산올(2-Ethylhexanol) 1mol, NaOH 2mol 및 상전이촉매 0.005mol을 투입하고 40℃, 질소 분위기 하에서 30분간 교반한 후, 에피클로로하이드린(Epichlorohydrin, ECH) 2mol을 40℃에서 30분간 정량 펌프를 이용하여 적가한 후, 40℃에서 12시간 동안 반응시켰다. 이때, 상기 상전이촉매는 테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB), 테트라부틸암모니움 하이드록사이드(Tetrabutylammonium hydroxide, TBAH), 벤질트리메틸 암모니움 클로라이드(Benzyl trimethyl amminium chloride, BMAC), 벤질트리에틸 암모니움 클로라이드(Benzyltriethyl ammonium chloride, BEAC), 벤질 트리부틸 암모니움 클로라이드(Benzyl tributyl ammonium chloride, BBAC), 세틸트리메틸 트리메틸 암모니움 클로라이드(Cetyltrimethyl trimethyl ammonium chloride, CMAC)를 각각 이용하였다. 반응 후, GC로 분석하여 상전이촉매에 따른 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 3에 나타내었다.1 mol of 2-ethylhexanol, 2 mol of NaOH and 0.005 mol of a phase transfer catalyst were charged and stirred for 30 minutes under a nitrogen atmosphere at 40 DEG C. Then, 2 mol of epichlorohydrin (ECH) was stirred at 40 DEG C for 30 minutes The mixture was added dropwise using a metering pump, and then reacted at 40 ° C for 12 hours. At this time, the phase transfer catalyst may be selected from the group consisting of Tetra-n-butyl ammonium bromide (TBAB), tetrabutylammonium hydroxide (TBAH), benzyl trimethylammonium chloride , BMAC), benzyltriethyl ammonium chloride (BEAC), benzyl tributyl ammonium chloride (BBAC), and cetyltrimethyl trimethyl ammonium chloride (CMAC) Respectively. After the reaction, the reaction was analyzed by GC to compare the reactivity according to the phase transition catalyst. The experimental conditions and experimental results are shown in Table 3 below.
(m/r)ROH
(m / r)
(m/r)ECH
(m / r)
(℃)Temp
(° C)
(m/r)PTC
(m / r)
Time
(hrs)Rxn.
Time
(hrs)
실험결과, TBAB 촉매를 사용하였을 때, 91.4%로 가장 많은 EHGE이 생성됨을 확인할 수 있었다 (도 3).
As a result of the experiment, it was confirmed that the highest amount of EHGE was generated (91.4%) when TBAB catalyst was used (FIG. 3).
4) NaOH의 몰(mol)비에 따른 반응성 확인4) Determination of reactivity according to molar ratio of NaOH
2-에틸헥산올(2-Ethylhexanol) 1mol, NaOH 1, 1.5, 2, 2.5,3mol, 테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB) 0.005mol을 투입하고 40℃, 질소 분위기 하에서 30분간 교반한 후, 에피클로로하이드린(Epichlorohydrin, ECH) 2mol을 40℃에서 30분간 정량 펌프를 이용하여 적가한 후, 40℃에서 12시간 동안 반응시켰다. 그 후, GC로 분석하여 NaOH의 몰비에 따른 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 4에 나타내었다.1 mol of 2-ethylhexanol, 1, 1.5, 2, 2.5 and 3 mol of tetra-n-butyl ammonium bromide (TBAB) After stirring for 30 minutes in a nitrogen atmosphere, 2 mol of epichlorohydrin (ECH) was added dropwise at 40 째 C for 30 minutes using a metering pump, and then reacted at 40 째 C for 12 hours. The reaction was then analyzed by GC to compare the reactivity with the molar ratio of NaOH. The experimental conditions and experimental results are shown in Table 4 below.
(m/r)ROH
(m / r)
(m/r)ECH
(m / r)
(m/r)PTC
(m / r)
(℃)Temp
(° C)
Time
(hrs)Rxn.
Time
(hrs)
(m/r)NaOH
(m / r)
실험결과, NaOH 1.5~3mol을 투입한 경우 EHGE의 생성량이 다량 생성됨을 확인할 수 있었다. 특히, 2mol을 투입한 경우 91.4%로 가장 많은 EHGE가 생성됨을 확인할 수 있었다 (도 4).As a result of the experiment, it was confirmed that when 1.5 ~ 3 mol of NaOH was added, a large amount of EHGE was produced. In particular, when 2 mol was added, it was confirmed that the largest amount of EHGE was produced (91.4%) (FIG. 4).
5) 에피클로로하이드린(Epichlorohydrin, ECH)의 양에 따른 반응성 확인5) Determination of the reactivity according to the amount of epichlorohydrin (ECH)
2-에틸헥산올(2-Ethylhexanol) 1mol, NaOH 2mol, 테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB) 0.005mol을 투입하고 40℃, 질소 분위기 하에서 30분간 교반한 후, 에피클로로하이드린(Epichlorohydrin, ECH) 1, 1.2, 1.5, 2, 3mol을 40℃에서 30분간 정량 펌프를 이용하여 적가한 후, 40℃에서 12시간 동안 반응시켰다. 그 후, GC로 분석하여 ECH의 양에 따른 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 5에 나타내었다.1 mol of 2-ethylhexanol, 2 mol of NaOH and 0.005 mol of tetra-n-butyl ammonium bromide (TBAB) were added and stirred for 30 minutes at 40 ° C under a nitrogen atmosphere. , Epichlorohydrin (ECH) 1, 1.2, 1.5, 2 and 3 mol were added dropwise at 40 ° C for 30 minutes using a metering pump, and then reacted at 40 ° C for 12 hours. Then, they were analyzed by GC to compare the reactivity according to the amount of ECH. The experimental conditions and experimental results are shown in Table 5 below.
(m/r)ROH
(m / r)
(m/r)NaOH
(m / r)
(℃)Temp
(° C)
Time
(hrs)Rxn.
Time
(hrs)
(m/r)PTC
(m / r)
(m/r)ECH
(m / r)
실험결과, ECH의 몰비가 1.5~3mol일 경우 다량의 EHGE가 생성됨을 확인할 수 있었다. 특히, 2mol일 경우, 91.4%로 가장 많은 EHGE이 생성됨을 확인할 수 있었다 (도 5).
As a result, it was confirmed that a large amount of EHGE was produced when the molar ratio of ECH was 1.5-3 mol. Especially, in case of 2 mol, it was confirmed that the most EHGE was generated as 91.4% (FIG. 5).
6) 상전이촉매의 양에 따른 반응성 확인6) Determination of reactivity according to amount of phase transition catalyst
2-에틸헥산올(2-Ethylhexanol) 1mol, NaOH 2mol, 테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB) 0.0025, 0.005, 0.02mol을 투입하고 40℃, 질소 분위기 하에서 30분간 교반한 후, 에피클로로하이드린(Epichlorohydrin, ECH) 2mol을 40℃에서 30분간 정량 펌프를 이용하여 적가한 후, 40℃에서 12시간 동안 반응시켰다. 그 후, GC로 분석하여 상전이촉매의 양에 따른 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 6에 나타내었다.1 mol of 2-ethylhexanol, 2 mol of NaOH and 0.0025, 0.005 and 0.02 mol of tetra-n-butyl ammonium bromide (TBAB) After stirring for 2 minutes, 2 mol of epichlorohydrin (ECH) was added dropwise at 40 ° C for 30 minutes using a metering pump, and then reacted at 40 ° C for 12 hours. The reaction was then analyzed by GC to compare the reactivity with the amount of the phase transfer catalyst. The experimental conditions and experimental results are shown in Table 6 below.
(m/r)ROH
(m / r)
(m/r)NaOH
(m / r)
(℃)Temp
(° C)
(hrs)Rxn.Time
(hrs)
(m/r)ECH
(m / r)
(m/r)PTC
(m / r)
실험결과, 상전이촉매 0.0025~0.005mol을 투입할 경우 EHGE이 다량 생성됨을 확인할 수 있었다. 특히, 0.005mol을 투입할 경우 91%로 가장 많은 EHGE가 생성됨을 확인할 수 있었다 (도 6).
As a result, it was confirmed that EHGE was produced in a large amount when 0.0025 to 0.005 mol of the phase transition catalyst was added. In particular, it was confirmed that when 0.005 mol is added, 91% of EHGE is produced most (FIG. 6).
2. 정제 공정 최적화2. Purification process optimization
1) 여과지 구멍 사이즈에 따른 여과 효율 확인1) Confirm filtration efficiency according to filter paper hole size
2-에틸헥산올(Ethylhexanol)과 에피클로로하이드린(Epichlorhydrin, ECH)이 에틸헥실글리시딜 에테르(Ethylhexylglycidyl ether)화 되면 NaCl 결정이 생성되며, 과량 투입된 NaOH, ECH, 상전이촉매 등이 잔류하게 된다. 본 실험에서는 여과지 구멍의 사이즈에 따른 NaCl이 포함된 슬러지(sludge) 여과 효율을 확인하고자 하였다. 여과지 구멍 사이즈 및 실험 결과는 하기 표 7에 나타내었다.When 2-ethylhexanol and epichlorhydrin (ECH) are converted into ethylhexyl glycidyl ether, NaCl crystals are formed, and excess NaOH, ECH, phase transfer catalyst, etc. remain . In this experiment, sludge filtration efficiency including NaCl was investigated according to the size of the filter paper hole. The filter pore size and experimental results are shown in Table 7 below.
(Pore size)Filter paper
(Pore size)
실험결과, 상기 표 7에서 확인되는 바와 같이 1차 여과는 20 ㎛ 구멍 사이즈를 갖는 여과지를 사용하고, 2차 여과는 2.5 ㎛ 구멍 사이즈를 갖는 여과지를 사용할 경우 슬러지가 우수하게 제거됨을 확인할 수 있었다.
As a result of the experiment, it was confirmed that the filter paper having a pore size of 20 mu m was used for the primary filtration and the sludge was excellently removed when the filter paper having the pore size of 2.5 mu m was used for the secondary filtration.
2) 추출 및 수세 공정 최적화2) Optimization of extraction and washing process
여과 후에도 잔존하고 있는 과량의 NaOH와 NaCl을 제거하기 위해, 여과물의 50중량%의 증류수를 투입한 후, 10분간 교반하고 30분간 정체하여 층분리를 유도하였다. 그 후, 하층부의 NaOH가 용해된 물층을 제거하였다. 그 후, 수세수(증류수)의 pH가 7.5이하가 될 때까지 상기 과정을 반복하였다. 수세 횟수에 따른 수세수의 pH는 하기 표 8과 같았다.To remove excess NaOH and NaCl remaining after filtration, 50% by weight of distilled water in the filtrate was added, followed by stirring for 10 minutes and stagnating for 30 minutes to induce layer separation. Thereafter, the water layer in which the lower layer of NaOH was dissolved was removed. Thereafter, the above procedure was repeated until the pH of wash water (distilled water) became 7.5 or less. The pH of wash water according to the number of washings was as shown in Table 8 below.
상기 표 8에서 확인되는 바와 같이, 수세 4회를 진행할 경우 수세수의 pH가 7.5 이하가 됨을 확인할 수 있었다.
As can be seen in Table 8, it was confirmed that the pH of the wash water was reduced to 7.5 or less when the water was washed four times.
3) 탈수 조건 최적화3) Optimization of dehydration condition
상기 수세된 여과물(반응물)에 Na2SO4를 투입하고 교반한 후 여과하여 탈수하였다. 이때, 상기 Na2SO4를 1, 3, 5, 10% 투입하여 투입량에 따른 반응물의 투명도 및 수분함량을 확인하였다. 수분 분석 조건은 하기와 같았고, 결과는 하기 표 9와 같았다.Na 2 SO 4 was added to the washed filtrate (reactant), stirred, and then filtered to be dehydrated. At this time, 1, 3, 5, and 10% of Na 2 SO 4 was added to the reaction mixture to determine the transparency and moisture content of the reactant according to the amount of the input. The moisture analysis conditions were as follows, and the results are shown in Table 9 below.
<수분 분석 조건><Moisture Analysis Conditions>
① 시험 규격 : KS M ISO 10336① Test specification: KS M ISO 10336
② 측정방법 : Karl-Fischer 법② Measurement method: Karl-Fischer method
③ 분석기기 : Metrohm 사 831 KF Coulometer③ Analytical instrument: Metrohm 831 KF Coulometer
④ 표준물질 : Sigma-aldrich사 Hydranal-water standard 1.0 (수분함량 0.1%)④ Standard material: Sigma-aldrich Hydranal-water standard 1.0 (moisture content 0.1%)
(wt%)Na 2 SO 4 input
(wt%)
실험결과, Na2SO4 5%를 첨가할 경우, 투명하면서도 우수하게 탈수되었다.
As a result of the experiment, the addition of 5% Na 2 SO 4 resulted in dehydration in a transparent and excellent manner.
3. 증류 공정 최적화3. Distillation process optimization
상기 정제 공정 이후, 고순도의 2-에틸헥실글리시딜 에테르를 수득하기 위하여 증류 공정을 최적화하고자 하였다.After the purification process, the distillation process was optimized to obtain high purity 2-ethylhexyl glycidyl ether.
증류는 2단계로 수행하였고, 1차 증류는 0.5torr, 50℃의 조건으로, 2차 증류는 0.5torr, 80℃의 조건으로 수행하였다. 증류 후, 2-에틸헥실글리시딜 에테르의 수득률은 하기 표 10에 나타내었다.The distillation was carried out in two stages. The primary distillation was carried out under the conditions of 0.5 torr and 50 ° C, and the secondary distillation was carried out under the conditions of 0.5 torr and 80 ° C. The yields of 2-ethylhexyl glycidyl ether after distillation are shown in Table 10 below.
또한, 증류 후의 2-에틸헥실글리시딜 에테르의 색상을 비교하고자 하였다. 색상 분석은 하기와 같이 수행하였으며, 그 결과는 하기 표 10에 나타내었다.Also, the color of 2-ethylhexyl glycidyl ether after distillation was compared. Color analysis was performed as follows, and the results are shown in Table 10 below.
<색상 분석 조건><Color analysis condition>
① 시험방법: ASTM D1003 (Standard Test Method for Haz and Luminous Transmittance of Transparent Plastics)Test Method: ASTM D1003 (Standard Test Method for Haz and Luminous Transmittance of Transparent Plastics)
② 시험기기: CM-5 (KONICA MINOLTA, Japan)② Test equipment: CM-5 (KONICA MINOLTA, Japan)
③ 광원: C③ Light source: C
④ 파장간격: 10 nm④ Wavelength interval: 10 nm
⑤ 파장범위: 360nm 740 nm⑤ Wavelength range: 360nm 740 nm
⑥ Reference: D-I water⑥ Reference: D-I water
실험결과, 2차 증류 후, 1차 증류 후보다 EHGE의 순도가 높게 나타났다. 또한, 2차 증류 후 색상이 좋은 EHGE를 수득할 수 있었다.
As a result, the purity of EHGE was higher than that of the first distillation after the second distillation. In addition, EHGE with good color could be obtained after the second distillation.
4. 수득된 2-에틸헥실글리시딜 에테르 확인4. Identification of the obtained 2-ethylhexyl glycidyl ether
1) GC(Gas chromatograph) 분석1) Gas chromatograph (GC) analysis
각 단계별(합성, 1,2차 증류, 증류 잔류물) 성분들의 분리되는 과정을 GC 크로마토그램(GC chromatogram)을 이용하여 확인하였다.Separation of the components of each step (synthesis, primary distillation, distillation residue) was confirmed by GC chromatogram.
<시료 전처리><Sample preparation>
시료에 메탄올을 가해 무게 비 10배가 되도록 희석한 후 0.45 ㎛ 나일론 필터(nylon filter)로 필터 한 것을 검액으로 한다.Add methanol to the sample, dilute it to a weight ratio of 10 times, and filter it with a 0.45 μm nylon filter. Use this solution as the sample solution.
<GC-FID 분석 조건> ≪ GC-FID analysis condition >
① 분석기기: Agilent 6890 GC-FID① Analytical instrument: Agilent 6890 GC-FID
② 컬럼: Agilent DB-5ms(UI) (30 meter * 0.25 mm * 0.25 ㎛)Column: Agilent DB-5ms (UI) (30 m * 0.25 mm * 0.25 m)
③ 주입량: Split 150:1 @280℃, 1㎕③ Injection amount: Split 150: 1 @ 280 ℃, 1 ㎕
④ 캐리어 가스 : Helium, 1 ㎖/min④ Carrier gas: Helium, 1 ml / min
⑤ 온도 조건 : Isothermal for 5min at 40℃⑤ Temperature condition: Isothermal for 5min at 40 ℃
Then 5℃/min from 40℃ to 280℃ Then 5 ° C / min from 40 ° C to 280 ° C
Then Isothermal for 5min at 280℃ Then Isothermal for 5 min at 280 ° C
⑥ 검출기 : FID @280℃⑥ Detector: FID @ 280 ℃
분석결과, 도 7에서 확인되는 바와 같이, EHGE가 다량 합성되었고, 2차 증류까지 거친 2차 증류물(반응물)은 부반응물이 거의 존재하지 않는 것을 확인할 수 있었다.As a result of the analysis, it was confirmed that EHGE was synthesized to a large extent and that the secondary distillate (reactant) was roughly free from the side reaction until the secondary distillation as shown in FIG.
상기와 같은 결과로부터 본 발명은 고순도의 2-에틸헥실글리시딜 에테르를 생산할 수 있음을 확인할 수 있었다.
From the above results, it was confirmed that the present invention can produce high purity 2-ethylhexyl glycidyl ether.
2) HR-MS 분석2) HR-MS analysis
JEOL JMS-700 High-Resolution Mass Spectrometer(HR-MS)를 이용하여 고분해능 분석기법을 통한 화합물의 원소 조성 및 분자량을 확인하였다. 그 결과는 하기 표 11과 같았다.The elemental composition and molecular weight of the compounds were confirmed by high resolution analysis using JEOL JMS-700 High-Resolution Mass Spectrometer (HR-MS). The results are shown in Table 11 below.
3) 1H NMR (500MHz, CDCl3) 3) 1 H NMR (500MHz, CDCl 3)
Bruker Advance 500MHz Nuclear Magnetic Resonance Spectrometer(NMR)를 사용하여 1H NMR 스펙트럼을 분석하였다. 1 H NMR spectra were analyzed using a
분석결과, 도 8(a)과 같은 구조를 가지는 것을 확인할 수 있었다. 또한, 1H NMR 스펙트럼은 δH 0.86-0.89 (6H, m), 1.24-1.32 (8H, m), 1.48-1.52 (1H, m), 2.58(1H, m), 2.77 (1H, q), 3.11-3.13 (1H, m) 3.31-3.40 (3H, m), 3.66-3.69(1H, m) 등을 확인할 수 있었다 (도 8(b)).
As a result of the analysis, it was confirmed that it has the structure as shown in FIG. 8 (a). Also, 1 H NMR spectrum δ H 0.86-0.89 (6H, m) , 1.24-1.32 (8H, m), 1.48-1.52 (1H, m), 2.58 (1H, m), 2.77 (1H, q), 3.11-3.13 (1H, m) 3.31-3.40 (3H, m), 3.66-3.69 (1H, m).
4) 13C NMR (500MHz, CDCl3) 4) 13 C NMR (500MHz, CDCl 3)
Bruker Advance 500MHz Nuclear Magnetic Resonance Spectrometer(NMR)를 사용하여 13C NMR 스펙트럼을 분석하였다.The 13 C NMR spectrum was analyzed using a
분석결과, 도 9(a)와 같은 구조를 가지는 것을 확인할 수 있었다. 또한, 13C NMR 스펙트럼은 2-에틸(2-Ethyl)기는 δc 23.64 (C-7), 10.91 (C-8), 헥실(hexyl)기는 δc 74.31 (C-6), 39.57 (C-5), 30.38 (C-4), 28.97 (C-3), 22.97 (C-2), 13.39 (C-1), 에테르(ether)기는 δc 74.31 (C-6), 71.52 (C-1'), 옥시란(Oxirane)기는 δc 50.86 (C-2'), 44.1 (C-3') 등의 11개의 카본 시그널(carbon signals)로 나타남을 확인할 수 있었다 (도 9(b)).
As a result of the analysis, it was confirmed that it had the structure as shown in FIG. 9 (a). The 13 C NMR spectrum shows that the 2-ethyl group has δ c 23.64 (C-7), 10.91 (C-8), the hexyl group has δ c 74.31 (C-6), 39.57 5), 30.38 (C-4), 28.97 (C-3), 22.97 (C-2), 13.39 (C-1), the ether group is δ c 74.31 ) And the oxirane group is represented by 11 carbon signals such as δ c 50.86 (C-2 ') and 44.1 (C-3') (Fig. 9 (b)).
5) FT-IR 분석5) FT-IR analysis
Bruker ALPHA-T FT-IR Spectrometer를 사용하여 FT-IR 분석을 하였다.FT-IR analysis was performed using a Bruker ALPHA-T FT-IR Spectrometer.
분석결과, 2959cm-1 CH3 stretching, 2929cm-1 methylene, 2884cm-1 methine, 1462cm-1 CH2 bending, 1380cm-1 CH3 bending, 1104cm-1 C-O asym streching를 확인할 수 있었다 (도 10).
Analysis showed 2959 cm -1 CH 3 stretching, 2929 cm -1 methylene, 2884 cm -1 methine, 1462 cm -1 CH 2 bending, 1380 cm -1 CH 3 bending and 1104 cm -1 CO asym streching (FIG. 10).
[실시예 1: 2-에틸헥실글리시딜 에테르의 제조][Example 1: Preparation of 2-ethylhexyl glycidyl ether]
본 실시예에서는 상기 실험예 1에서 최적화된 합성, 정제 및 증류 조건을 이용하여 2-에틸헥실글리시딜 에테르를 제조하였다.In this example, 2-ethylhexyl glycidyl ether was prepared using the synthesis, purification and distillation conditions optimized in Experimental Example 1 above.
2-에틸헥산올(2-Ethylhexanol) 1mol, NaOH 2mol, 테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB) 0.005mol을 투입하고 40℃, 질소 분위기 하에서 30분간 교반한 후, 에피클로로하이드린(Epichlorohydrin, ECH) 2mol을 40℃에서 30분간 정량 펌프를 이용하여 적가한 후, 40℃에서 12시간 동안 반응시켜 2-에틸헥실글리시딜 에테르를 합성하였다.1 mol of 2-ethylhexanol, 2 mol of NaOH and 0.005 mol of tetra-n-butyl ammonium bromide (TBAB) were added and stirred for 30 minutes at 40 ° C under a nitrogen atmosphere. And 2 mol of epichlorohydrin (ECH) were added dropwise at 40 ° C for 30 minutes using a metering pump, and then reacted at 40 ° C for 12 hours to synthesize 2-ethylhexyl glycidyl ether.
상기 합성된 합성물을 20 ㎛ 구멍 사이즈를 갖는 여과지와 2.5 ㎛ 구멍 사이즈를 갖는 여과지를 이용하여 2차 여과하였다. 상기 여과된 여과물에 증류수를 가한 후, 10분간 교반하고 30분간 정체하여 층분리를 유도하였다. 정체 후, 하층부의 NaOH가 용해된 물층을 제거하였다. 그 후, 수세수(증류수)를 첨가하고 수세수의 pH가 7.5이하가 되도록 수세를 4회 수행하였다. 그 후, 수세된 여과물을 0.5torr, 50℃의 조건으로 1차 증류한 후, 0.5torr, 80℃의 조건으로 2차 증류함으로써 고순도의 2-에틸헥실글리시딜 에테르를 수득하였다.
The synthesized compound was subjected to secondary filtration using a filter paper having a pore size of 20 mu m and a filter paper having a pore size of 2.5 mu m. Distilled water was added to the filtrate, and the mixture was stirred for 10 minutes and stood for 30 minutes to induce layer separation. After stagnation, the water layer in which the lower layer of NaOH was dissolved was removed. Thereafter, washing water (distilled water) was added and the washing with water was carried out four times so that the pH of washing water was 7.5 or less. Thereafter, the washed filtrate was subjected to primary distillation under the conditions of 0.5 torr and 50 캜, and then subjected to secondary distillation under the conditions of 0.5 torr and 80 캜 to obtain high-purity 2-ethylhexyl glycidyl ether.
[실험예 2: 에틸헥실글리세린 제조 공적 최적화][Experimental Example 2: Official optimization of ethylhexyl glycerin production]
1. 합성 공정 최적화1. Optimization of synthesis process
1) 반응 온도에 따른 반응성 확인1) Determination of reactivity according to reaction temperature
반응 온도를 달리하여 온도에 따른 에틸헥실글리세린(Ethylhexylglycerin, EHG)의 전환율을 확인하고자 하였다.The conversion of Ethylhexylglycerin (EHG) was investigated by varying the reaction temperature.
상기 실시예 1에서 수득된 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether, EHGE) 1mol과 물 80배(EHGE 기준), 다이옥세인(Dioxane) 80배(EHGE 기준), 무촉매, 질소 분위기 하에서 30분간 교반 후, 20, 40, 70, 90℃의 반응 온도에서 20시간 동안 반응시킨 후 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 12와 같았다.1 mol of 2-ethylhexyl glycidyl ether (EHGE) obtained in Example 1, 80 times of water (based on EHGE), 80 times of Dioxane (based on EHGE), no catalyst, And reacted for 20 hours at reaction temperatures of 20, 40, 70 and 90 ° C. The experimental conditions and experimental results are shown in Table 12 below.
(m/r)EHGE
(m / r)
(배)water
(ship)
(배)Dioxane
(ship)
(℃)Temperature
(° C)
(%)EHG
(%)
실험 결과, 90℃ 이상의 온도에서 EHG의 생성량이 가장 높았음을 확인할 수 있었다. 또한, 70℃ 이하의 온도에서는 EHG의 전환율이 20% 이하로 매우 낮음을 확인할 수 있었다 (도 11).
As a result, it was confirmed that the amount of EHG was the highest at 90 ° C or higher. Further, it was confirmed that the conversion of EHG was as low as 20% or less at a temperature of 70 ° C or lower (FIG. 11).
2) 용매(혼합용매) 비율에 따른 반응성 확인2) Determination of reactivity by solvent (mixed solvent) ratio
용매(혼합용매) 비율에 따른 에틸헥실글리세린(Ethylhexylglycerin, EHG)의 전환율을 확인하고자 하였다.The conversion of Ethylhexylglycerin (EHG) to solvent (mixed solvent) ratio was investigated.
상기 실시예 1에서 수득된 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether, EHGE) 1mol과 물 10, 20, 30, 40, 80, 160배(EHGE 기준), 무촉매, 질소 분위기 하에서 30분간 교반 후, 90℃에서 20시간 동안 반응시킨 후 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 13과 같았다.1 mol of 2-ethylhexyl glycidyl ether (EHGE) obtained in Example 1 and 10, 20, 30, 40, 80 and 160 times of water (EHGE standard) After stirring for several minutes, they were reacted at 90 ° C for 20 hours and then their reactivity was compared. The experimental conditions and experimental results are shown in Table 13 below.
(m/r)EHGE
(m / r)
(℃)Temperature
(° C)
(배수)Mixed solvent
(Drainage)
(%)EHG
(%)
실험 결과, 80~160배의 용매 혼합비율에서 EHG 전환율이 높음을 확인할 수 있었다. 또한, 용매 40배 이하에서는 EHG 전환율이 20% 이하로 생성량이 매우 낮음을 확인할 수 있었다 (도 12).
As a result of the experiment, it was confirmed that EHG conversion ratio was high at the solvent mixing ratio of 80 to 160 times. Further, it was confirmed that the EHG conversion rate was 20% or less at a solvent of 40 times or less, and the production amount was very low (FIG. 12).
3) 용매(유기용매) 비율에 따른 반응성 확인3) Determination of the reactivity according to the ratio of solvent (organic solvent)
용매(유기용매) 비율에 따른 에틸헥실글리세린(Ethylhexylglycerin, EHG)의 전환율을 확인하고자 하였다.The conversion of Ethylhexylglycerin (EHG) to solvent (organic solvent) ratio was investigated.
상기 실시예 1에서 수득된 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether, EHGE) 1mol과 물 80배(EHGE 기준), 다이옥세인 0, 25, 33, 50, 80배(EHGE 기준), 무촉매, 질소 분위기 하에서 30분간 교반 후, 승온하고 20시간 동안 숙성한 후 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 14와 같았다.1 mol of 2-ethylhexyl glycidyl ether (EHGE) obtained in Example 1 and 80 times of water (based on EHGE), 0, 25, 33, 50 and 80 times of EHGE After stirring for 30 minutes under an uncatalyzed, nitrogen atmosphere, the temperature was raised and aged for 20 hours, and the reactivity was compared. The experimental conditions and experimental results are shown in Table 14 below.
(m/r)EHGE
(m / r)
(℃)Temperature
(° C)
(배)water
(ship)
(배수)Dioxane
(Drainage)
(%)EHG
(%)
실험결과, 0~33배의 용매를 혼합할 경우 EHG 전환율이 높음을 확인할 수 있었다. 특히, 25배의 용매를 혼합할 경우 86.7%의 높은 EHG 전환율을 나타내었다 (도 13).As a result of the experiment, it was confirmed that the EHG conversion rate was high when 0 to 33 times of the solvent was mixed. Particularly, when 25 times of the solvent was mixed, a high EHG conversion rate of 86.7% was shown (FIG. 13).
상기와 같은 결과로부터, 반응 최적 용매 혼합비율은 25배임을 확인할 수 있었다.
From the above results, it was confirmed that the optimum reaction solvent mixing ratio was 25 times.
4) 촉매의 종류에 따른 반응성 확인4) Determination of reactivity according to the kind of catalyst
촉매의 종류에 따른 에틸헥실글리세린(Ethylhexylglycerin, EHG) 전환율을 확인하고자 하였다.The conversion of ethylhexylglycerin (EHG) was investigated according to the type of catalyst.
상기 실시예 1에서 수득된 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether, EHGE) 1mol과 물 80배(EHGE 기준), 다이옥세인 25배(EHGE 기준), 촉매 H2SO4, H3PO4, BF3, p-TSA, K2CO3, Na2CO3를 투입한 후, 질소 분위기 하에서 30분간 교반 후, 95℃에서 20시간 동안 반응시킨 후 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 15와 같았다.1 mol of 2-ethylhexylglycidyl ether (EHGE) obtained in Example 1 and 80 times of water (based on EHGE), 25 times of dioxane (based on EHGE), catalyst H 2 SO 4 , H 3 PO 4 , BF 3 , p-TSA, K 2 CO 3 and Na 2 CO 3 were added to the reaction mixture, and the mixture was reacted at 95 ° C. for 20 hours under nitrogen atmosphere for 30 minutes. The experimental conditions and experimental results are shown in Table 15 below.
(m/r)EHGE
(m / r)
(배)water
(ship)
(배)Dioxane
(ship)
(℃)Reflux temperature
(° C)
(%)EHG
(%)
실험결과, BF3 촉매 존재하에서 EHG 전환율이 가장 높음을 확인할 수 있었다 (도 14).
As a result, it was confirmed that EHG conversion was the highest in the presence of BF 3 catalyst (FIG. 14).
5) 무용매에 조건에서 촉매의 종류에 따른 반응성 확인5) Determination of reactivity according to the type of catalyst in the absence of solvent
무용매 조건에서 촉매의 종류에 따른 에틸헥실글리세린(Ethylhexylglycerin, EHG) 전환율을 확인하고자 하였다.The conversion of ethylhexylglycerin (EHG) was investigated according to the kind of catalyst in the absence of solvent.
상기 실시예 1에서 수득된 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether, EHGE) 1mol과 물 80배(EHGE 기준), 촉매 H2SO4, H3PO4, BF3, p-TSA, K2CO3, Na2CO3를 투입한 후, 질소 분위기 하에서 30분간 교반 후, 95℃에서 20시간 동안 반응시킨 후 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 16과 같았다.1 mol of 2-ethylhexyl glycidyl ether (EHGE) obtained in Example 1 and 80 times of water (based on EHGE), catalyst H 2 SO 4 , H 3 PO 4 , BF 3 , p-TSA , K 2 CO 3 and Na 2 CO 3 were added. After stirring for 30 minutes under nitrogen atmosphere, the reaction was carried out at 95 ° C for 20 hours, and then the reactivity was compared. The experimental conditions and experimental results are shown in Table 16 below.
(m/r)EHGE
(m / r)
(배)water
(ship)
(℃)Temperature
(° C)
(%)EHG
(%)
실험결과, 무용매 조건에서도 BF3 촉매 존재하에서 EHG 전환율이 91.5%로 가장 높게 나타났다. 상기와 같은 결과로부터, 반응 최적 촉매는 BF3임을 확인할 수 있었다 (도 15).
Experimental results showed that the EHG conversion rate was 91.5% in the presence of BF 3 catalyst even under no solvent conditions. From the above results, it was confirmed that the optimum reaction catalyst was BF 3 (FIG. 15).
6) 용매 종류에 따른 반응성 확인6) Determination of reactivity according to solvent type
촉매의 종류에 따른 에틸헥실글리세린(Ethylhexylglycerin, EHG) 전환율을 확인하고자 하였다.The conversion of ethylhexylglycerin (EHG) was investigated according to the type of catalyst.
상기 실시예 1에서 수득된 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether, EHGE) 1mol과 물 80배(EHGE 기준), 유기용매로 다이옥세인(Dioxane), DMF, DMSO, IPA, EtOH, MeOH 25배(EHGE 기준), 촉매 BF3를 투입한 후, 질소 분위기 하에서 30분간 교반 후, 승온하고 20시간 동안 반응시킨 후 반응성을 비교하였다. 실험 조건 및 실험 결과는 하기 표 17과 같았다.1 mol of 2-ethylhexyl glycidyl ether (EHGE) obtained in Example 1 and 80 times of water (based on EHGE), dioxane, DMF, DMSO, IPA, EtOH,
(m/r)EHGE
(m / r)
(배)water
(ship)
(배)Organic solvent
(ship)
(℃)Temperature
(° C)
조류Organic solvent
Birds
(%)EHG
(%)
실험결과, 유기용매로 DMSO를 투입할 경우 EHG 생성량이 99.1%로 가장 높게 나타났다. 상기와 같은 결과로부터, 반응 최적 용매는 DMSO임을 확인할 수 있었다 (도 16).
Experimental results showed that EHG production was 99.1% when DMSO was added as an organic solvent. From the above results, it was confirmed that the optimal reaction solvent was DMSO (FIG. 16).
2. 정제 공정 최적화2. Purification process optimization
1) 추출 및 수세 공정 최적화1) Optimization of extraction and washing process
상기 에틸헥실글리세린 합성 후, 과량의 물, 용매, 촉매를 제거하고, 합성물을 추출하기 위하여 합성된 에틸헥실글리세린 함유 반응물에 에틸아세테이트(Ethylacetate)를 가한 후, 상온에서 10분간 교반한 후, 30분 동안 정체하여 층분리를 유도하였다. 하층부의 물층을 제거한 후, 상층의 유기층에 증류수를 첨가하여 수세하였다. 수세수의 pH가 5.5 이상이 될 때 까지 수세를 수행하였다. 수세 후 수세수의 pH 변화는 하기 표 18과 같았다. After the ethylhexylglycerin synthesis, excess water, a solvent and a catalyst were removed. Ethyl acetate was added to the synthesized ethylhexylglycerin-containing reaction product to extract the compound, and the mixture was stirred at room temperature for 10 minutes, Lt; / RTI > to induce layer separation. After removing the water layer in the lower layer portion, distilled water was added to the organic layer in the upper layer and was washed with water. Washing was carried out until the pH of washing water became 5.5 or more. The pH change of the washing water after the washing was as shown in Table 18 below.
실험결과, 상기 표 18에서 확인되는 바와 같이, 수세 4회를 진행할 경우 수세수의 pH가 5.5 이상이 됨을 확인할 수 있었다.
As a result of the experiment, it was confirmed that the pH of the washing water was 5.5 or more when the washing was carried out 4 times as shown in Table 18 above.
2) 탈수 조건 최적화2) Optimization of dehydration condition
상기 수세된 유기층에 Na2SO4를 투입하고 교반한 후 여과하여 탈수하였다. 이때, 상기 Na2SO4를 1, 3, 5, 10중량% 투입하여 투입량에 따른 반응물의 투명도 및 수분함량을 확인하였다. 수분 분석은 상기 실험예 1에 기재된 수분 분석 조건과 동일하였으며, 결과는 하기 표 19와 같았다.Na 2 SO 4 was added to the washed organic layer, stirred, and then filtered to be dehydrated. At this time, 1, 3, 5, and 10 wt% of Na 2 SO 4 was added to the reaction mixture to determine the transparency and moisture content of the reactant according to the amount of the input. The moisture analysis was the same as the moisture analysis conditions described in Experimental Example 1, and the results are shown in Table 19 below.
(wt%)Na 2 SO 4 input
(wt%)
실험결과, Na2SO4를 3% 첨가할 경우, 투명하면서도 우수하게 탈수됨을 확인할 수 있었다.
As a result of the experiment, it was confirmed that when 3% Na 2 SO 4 was added, dehydration was transparent and excellent.
3. 증류 공정 최적화3. Distillation process optimization
상기 정제 공정 이후, 고순도의 에틸헥실글리세린을 수득하기 위하여 증류 공정을 최적화하고자 하였다.After the purification process, the distillation process was optimized to obtain high purity ethylhexyl glycerin.
증류는 2단계로 수행하였고, 1단계는 3torr, 80℃의 조건으로, 2단계는 0.5torr, 150℃의 조건으로 수행하였다. 증류 후, 반응물의 수득률은 하기 표 20에 나타내었다.The distillation was carried out in two stages, the first stage was carried out under the conditions of 3 torr and 80 ° C, the second stage was carried out under the conditions of 0.5 torr and 150 ° C. After distillation, the yields of the reactants are shown in Table 20 below.
또한, 증류 후의 반응물의 색상을 비교하고자 하였다. 색상 분석은 상기 실험예 1에 기재된 색상 분석 조건과 동일하게 수행하였으며, 그 결과는 하기 표 20에 나타내었다.Also, the color of the reactants after distillation was compared. Color analysis was carried out in the same manner as the color analysis conditions described in Experimental Example 1, and the results are shown in Table 20 below.
(취)Odor
(Drill)
실험결과, 2차 증류 후, 1차 증류 후보다 EHG의 순도가 높게 나타났다. 또한, 2차 증류 후 색상이 좋은 EHG를 수득할 수 있었다.
As a result, the purity of EHG was higher than that of the first distillation after the second distillation. Further, EHG having good color could be obtained after the second distillation.
4. 수득된 에틸헥실글리시딜 에테르 확인4. Identification of the obtained ethylhexyl glycidyl ether
1) GC(Gas chromatograph) 분석1) Gas chromatograph (GC) analysis
각 단계별(합성, 증류) 성분들의 분리되는 과정을 GC 크로마토그램(chromatogram)을 이용하여 확인하였다. GC 분석 조건은 상기 실험예 1과 동일하였다.Separation of each step (synthesis, distillation) components was confirmed by GC chromatogram. GC analysis conditions were the same as in Experimental Example 1 above.
분석 결과, 도 17에서 확인되는 바와 같이, EHGE가 다량 합성되었고, 2차 증류까지 거친 2차 증류물(반응물)은 부반응물이 거의 존재하지 않는 것을 확인할 수 있었다 (도 17). As a result of the analysis, as shown in FIG. 17, it was confirmed that EHGE was synthesized to a large extent, and the secondary distillate (reactant) roughly to the secondary distillation had almost no byproducts (FIG. 17).
상기와 같은 결과로부터, 본 발명은 고순도의 에틸헥실글리세린을 생산할 수 있음이 확인할 수 있었다.
From the above results, it was confirmed that the present invention can produce high purity ethylhexyl glycerin.
2) GC/MS(Gas chromatograph/Mass spectrometer) 분석2) GC / MS (Gas chromatograph / mass spectrometer) analysis
GC/MS를 이용하여 에틸헥실글리세린을 확인하고자 하였다. 분석 조건은 하기와 같았다.GC / MS was used to identify ethylhexyl glycerin. The analysis conditions were as follows.
<시료 전처리><Sample preparation>
시료에 메탄올을 가해 무게 비 10배가 되도록 희석한 후 0.45 ㎛ nylon filter로 필터 한 것을 검액으로 한다.Methanol is added to the sample, diluted to a weight ratio of 10, and filtered with a 0.45 ㎛ nylon filter.
<GC/MS 분석 조건> ≪ GC / MS analysis conditions >
① 분석기기: Agilent 7890 GC System with 5975 MSD (MS)Analytical instrument: Agilent 7890 GC System with 5975 MSD (MS)
② 컬럼: Agilent DB-5ms(UI) (30 meter * 0.25 mm * 0.25 ㎛)Column: Agilent DB-5ms (UI) (30 m * 0.25 mm * 0.25 m)
③ 주입량 : Split 150:1 @280℃, 1 ㎕③ Injection volume: Split 150: 1 @ 280 ℃, 1 ㎕
④ 캐리어 가스 : Helium, 1 ㎖/min④ Carrier gas: Helium, 1 ml / min
⑤ 온도 조건 : Isothermal for 5min at 40℃⑤ Temperature condition: Isothermal for 5min at 40 ℃
Then 5/min from 40 to 280℃ Then 5 / min from 40 to 280 DEG C
Then Isothermal for 5min at 280℃ Then Isothermal for 5 min at 280 ° C
⑥ 검출기 : MS @250℃⑥ Detector: MS @ 250 ℃
분석결과, 도 18에서 확인되는 바와 같이, EHG가 다량 합성되었고, 2차 증류까지 거친 2차 증류물(반응물)은 부반응물이 거의 존재하지 않는 것을 확인할 수 있었다.As a result of the analysis, it was confirmed that EHG was synthesized in a large amount as shown in FIG. 18, and the secondary distillate (reactant) which had been roughly distilled until the secondary distillation was almost free from the side reaction.
상기와 같은 결과로부터, 본 발명은 고순도의 에틸헥실글리세린을 생산할 수 있음이 확인할 수 있었다. From the above results, it was confirmed that the present invention can produce high purity ethylhexyl glycerin.
3) HR-MS 분석3) HR-MS analysis
JEOL JMS-700 High-Resolution Mass Spectrometer(HR-MS)를 이용하여 고분해능 분석기법을 통한 화합물의 원소 조성 및 분자량을 확인하였다. 그 결과는 하기 표 21과 같았다.The elemental composition and molecular weight of the compounds were confirmed by high resolution analysis using JEOL JMS-700 High-Resolution Mass Spectrometer (HR-MS). The results are shown in Table 21 below.
4) 1H NMR (500MHz, CDCl3) 4) 1 H NMR (500MHz, CDCl 3)
Bruker Advance 500MHz Nuclear Magnetic Resonance Spectrometer(NMR)를 사용하여 1H NMR 스펙트럼을 분석하였다. 1 H NMR spectra were analyzed using a
분석결과, 도 19(a)과 같은 구조를 가지는 것을 확인할 수 있었다. 또한, δH 0.84-0.88 (6H, m), 1.21-1.36 (8H, m), 1.47-1.51 (1H, m), 2.84(2H, s), 3.31-3.35 (2H, m) 3.44-3.49 (2H, m), 3.59-3.62(1H, m), 3.67-3.69(1H, m), 3.82-3.85(1H, m) 등을 확인할 수 있었다 (도 19(b)).
As a result of the analysis, it was confirmed that the structure shown in FIG. 19 (a) was obtained. In addition, δ H 0.84-0.88 (6H, m ), 1.21-1.36 (8H, m), 1.47-1.51 (1H, m), 2.84 (2H, s), 3.31-3.35 (2H, m) 3.44-3.49 ( 2H, m), 3.59-3.62 (1H, m), 3.67-3.69 (1H, m), 3.82-3.85 (1H, m).
5) 13C NMR (500MHz, CDCl3) 5) 13 C NMR (500MHz, CDCl 3)
Bruker Advance 500MHz Nuclear Magnetic Resonance Spectrometer(NMR)를 사용하여 13C NMR 스펙트럼을 분석하였다.The 13 C NMR spectrum was analyzed using a
분석결과, 도 20(a)와 같은 구조를 가지는 것을 확인할 수 있었다. 또한, 13C NMR 스펙트럼은 2-에틸(2-Ethyl)기는 δ 23.64 (C-7), 10.89 (C-8), 헥실(hexyl)기는 74.41 (C-6), 39.35 (C-5), 30.33 (C-4), 28.94 (C-3), 22.95 (C-2), 13.98 (C-1), 에테르(ether)기는 74.41 (C-6), 72.39 (C-1'), 두 하이드록시( Hydroxyl)기는 70.61 (C-2'), 64.11 (C-3')등의 11개의 카본 시그널(carbon signals)로 나타남을 확인할 수 있었다 (도 20(b)).
As a result of the analysis, it was confirmed that it has the structure as shown in FIG. 20 (a). The 13 C NMR spectrum shows that the 2-ethyl (2-ethyl) group has δ 23.64 (C-7), 10.89 (C-8), hexyl groups of 74.41 (C-6), 39.35 The ether group was 74.41 (C-6), 72.39 (C-1 '), and the ether group was the same as the ether group. It is confirmed that the hydroxyl group is represented by 11 carbon signals such as 70.61 (C-2 ') and 64.11 (C-3') (Fig. 20 (b)).
6) FT-IR 분석6) FT-IR analysis
Bruker ALPHA-T FT-IR Spectrometer를 사용하여 FT-IR 분석을 하였다.FT-IR analysis was performed using a Bruker ALPHA-T FT-IR Spectrometer.
분석결과, 에틸헥실글리세린의 흡수피크는 3385cm-1 OH stretching, 2959cm-1 CH3 stretching, 2929cm-1 methylene, 1462cm-1 CH2 bending , 1380cm-1 CH3 bending, 1113cm-1 C-O asym streching, 1047cm-1 C-O stretching (primar alcoho)를 확인할 수 있었다 (도 21).
As a result, the absorption peak of ethylhexyl glycerin was found to be 3385 cm -1 OH stretching, 2959 cm -1 CH 3 stretching, 2929 cm -1 methylene, 1462 cm -1 CH 2 bending, 1380 cm -1 CH 3 bending, 1113 cm -1 CO asym streching, -1 CO stretching (primar alcoho) (Fig. 21).
[실시예 2: 에틸헥실글리세린의 제조][Example 2: Preparation of ethylhexyl glycerin]
본 실시예에서는 상기 실험예 2에서 최적화된 합성, 정제 및 증류 조건을 이용하여 에틸헥실글리세린을 제조하였다.In this Example, ethylhexylglycerin was prepared using the conditions of synthesis, purification and distillation optimized in Experimental Example 2.
상기 실시예 1에서 제조된 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether, EHGE) 1mol, 물 80배(EHGE 기준), DMSO 80배(EHGE 기준), BF3, 질소 분위기 하에서 30분 간 교반 후, 90℃에서 20시간 동안 반응시켰다.1 mol of 2-ethylhexyl glycidyl ether (EHGE) prepared in Example 1, 80 times of water (EHGE standard), 80 times of DMSO (EHGE standard), BF 3 , After stirring, the mixture was reacted at 90 DEG C for 20 hours.
그 후, 상기 반응물에 에틸아세테이트(Ethylacetate)를 가한 후, 상온에서 10분간 교반한 후, 30분 정체하여 층분리를 유도하였다. 하층부의 물층을 제거한 후, 상층부의 유기층에 증류수를 첨가하여 수세하였다. 수세수의 pH가 5.5 이상이 될 때 까지 수세를 4회 수행하였다. 그 후, 상기 수세된 유기층에 Na2SO4를 3% 투입하고 교반한 후 여과하여 탈수하였다. 탈수된 유기층을 3torr, 80℃의 조건에서 1차 증류하고, 0.5torr, 150℃의 조건에서 2차 증류하여 고순도의 에틸헥실글리세린을 수득하였다.
Then, ethyl acetate (Ethylacetate) was added to the reaction mixture, and the mixture was stirred at room temperature for 10 minutes and then allowed to stand for 30 minutes to induce layer separation. After removing the water layer in the lower layer portion, distilled water was added to the organic layer in the upper layer portion, followed by washing with water. Washing was carried out four times until the pH of the washing water became 5.5 or more. Then, 3% of Na 2 SO 4 was added to the washed organic layer, stirred, and then filtered to be dehydrated. The dehydrated organic layer was subjected to first distillation under the conditions of 3 torr and 80 deg. C and secondary distillation at 0.5 torr and 150 deg. C to obtain high purity ethylhexyl glycerin.
[실험예 3: 수율 확인][Experimental Example 3: yield confirmation]
상기 실험예 1에 의해 최적화된 2-에틸헥실글리시딜 에테르의 제조 공정으로 수득된 2-에틸헥실글리시딜 에테르(EHGE)와 상기 실험예 2에 의해 최적화된 에틸헥실글리세린의 제조 공정으로 수득된 에틸헥실글리세린(EHG)의 수율을 확인하고자 하였다.Ethylhexyl glycidyl ether (EHGE) obtained by the process for producing 2-ethylhexyl glycidyl ether optimized by Experimental Example 1 and ethylhexylglycerin optimized by Experimental Example 2 The yield of ethylhexyl glycerin (EHG) was investigated.
2-에틸헥실글리시딜 에테르의 경우, 에틸헥산올과 에피클로로하이드린의 당량비를 이론 수율로 하고, 2차 증류물을 최종 생성물로 하여 수율을 확인하였다. 또한, 에틸헥실글리세린의 경우, 2-에틸헥실글리시딜 에테르에서 링 오픈된 에틸헥실글리세린의 이론 분자량을 환산하여 이론 수율로 하고, 2차 증류물을 최종 생성물로 하여 수율을 확인하였다. 각 5회씩 제조하였으며, 그 결과는 하기 표 22에 나타내었다.In the case of 2-ethylhexyl glycidyl ether, the yield of the final product was determined by taking the equivalent ratio between ethylhexanol and epichlorohydrin as the theoretical yield and the secondary distillate as the final product. In the case of ethylhexylglycerin, the theoretical yield was calculated on the basis of the theoretical molecular weight of the ring-opened ethylhexyl glycerin in 2-ethylhexyl glycidyl ether, and the yield was confirmed using the second distillate as the final product. The results are shown in Table 22 below.
실험결과, EHGE의 평균 수율은 80.44%, EHG의 평균 수율은 97.70%로 나타났다. 상기와 같은 결과로부터, 본 발명의 에틸헥실글리세린의 제조방법을 이용하면 에틸헥실글리세린을 고수율로 생산할 수 있음을 확인할 수 있었다.
As a result, the average yield of EHGE was 80.44% and the average yield of EHG was 97.70%. From the above results, it was confirmed that ethylhexyl glycerin can be produced at a high yield by using the method of producing ethylhexyl glycerin of the present invention.
[실험예 4: 순도 분석][Experimental Example 4: Purity Analysis]
본 실험예에서는 상기 실험예 2 및 실시예 2에 의하여 제조된 에틸헥실글리세린 시료 1~5의 순도를 분석하고자 한국고분자시험연구소에 의뢰하였다.In this experimental example, the purity of the
하기 표 23은 순도 분석 결과이고, 표 24는 시료 내 잔류 2-에틸헥산올 함량 분석 결과이며, 표 25는 시료 내 납(Pb) 함량 분석 결과이다.Table 23 shows the results of the purity analysis, Table 24 shows the analysis results of residual 2-ethylhexanol content in the sample, and Table 25 shows the results of analysis of the lead (Pb) content in the sample.
분석 결과, 시료 1~5는 99.56~99.63%의 순도를 나타내었다. 또한, 시료 내 잔류 2-에틸헥산올, 납은 불검출 되었음을 확인할 수 있었다. 상기와 같은 결과로부터, 본 발명은 고순도의 에틸헥실글리세린을 생산할 수 있음을 확인할 수 있었다. As a result of analysis,
Claims (14)
상기 교반 후, 80~120℃에서 15~25시간 동안 반응시켜 에틸헥실글리세린을 합성하는 단계 (B);
상기 합성 후, 에틸아세테이트(Ethylacetate)를 가하는 단계 (C);
상기 단계 (C)에서, 분리된 물층을 제거한 후, 유기층을 수세하는 단계 (D); 및
상기 수세된 유기층을 증류하여 에틸헥실글리세린을 수득하는 단계 (E);를 포함하고,
상기 촉매는 삼불화붕소(BF3)인 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
(A) stirring 2-ethylhexyl glycidyl ether, water, organic solvent and catalyst;
(B) reacting the resulting mixture with stirring at 80 to 120 ° C for 15 to 25 hours to synthesize ethylhexyl glycerin;
After the synthesis, step (C) of adding ethyl acetate (Ethylacetate) is carried out;
(D) removing the separated water layer and washing the organic layer in the step (C); And
(E) distilling the washed organic layer to obtain ethylhexyl glycerin,
Wherein the catalyst is boron trifluoride (BF 3 ).
상기 유기 용매는,
다이메틸설폭사이드(dimethyl sulfoxide, DMSO)인 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
The method according to claim 1,
The organic solvent may include,
Characterized in that it is dimethyl sulfoxide (DMSO).
상기 단계 (A)의 교반 조건은,
질소 분위기 하에서 20~40분 동안 수행되는 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
The method according to claim 1,
The stirring conditions of the step (A)
Wherein the reaction is carried out in a nitrogen atmosphere for 20 to 40 minutes.
상기 단계 (D)의 수세는,
수세수의 pH가 5.5~7.0이 될 때까지 수행되는 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
The method according to claim 1,
The flushing of the step (D)
And the pH of the water washing water is from 5.5 to 7.0.
상기 단계 (E)의 증류는,
25~35torr, 70~90℃의 조건에서 1차 증류한 후, 0.1~1torr, 140~160℃의 조건에서 2차 증류하는 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
The method according to claim 1,
The distillation of step (E)
Wherein the first distillation is conducted at a temperature of 25 to 35 torr and at a temperature of 70 to 90 ° C and then a second distillation is conducted at a temperature of 0.1 to 1 torr and a temperature of 140 to 160 ° C.
상기 2-에틸헥실글리시딜 에테르, 물 및 유기 용매의 첨가비는,
2-에틸헥실글리시딜 에테르 1중량부 대비 물 60~160중량부, 유기 용매 10~33중량부인 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
The method according to claim 1,
The addition ratios of the 2-ethylhexyl glycidyl ether, water and the organic solvent,
Wherein 60 to 160 parts by weight of water and 10 to 33 parts by weight of an organic solvent are added to 1 part by weight of 2-ethylhexyl glycidyl ether.
상기 2-에틸헥실글리시딜 에테르(2-Ethylhexylglycidyl ether)는,
2-에틸헥산올(2-Ethylhexanol), 수산화나트륨(NaOH), 상전이촉매를 교반하는 단계 (가);
상기 교반 후, 에피클로로하이드린(Epichlorohydrin)을 적가하는 단계 (나);
상기 적가 후, 20~60℃에서 3~20시간 동안 반응시켜 2-에틸헥실글리시딜 에테르를 합성하는 단계 (다);
상기 합성 후, 여과하여 2-에틸헥실글리시딜 에테르를 포함하는 여과물을 수득하고, 수세하는 단계 (라); 및
상기 수세된 여과물을 증류하여 2-에틸헥실글리시딜 에테르를 수득하는 단계 (마);로부터 제조되는 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
The method of claim 1,
The 2-ethylhexyl glycidyl ether may be, for example,
Step (a) of stirring 2-ethylhexanol, sodium hydroxide (NaOH) and phase transfer catalyst;
After the stirring, a step (b) of adding epichlorohydrin dropwise is carried out;
After the dropwise addition, the reaction is carried out at 20 to 60 ° C for 3 to 20 hours to synthesize 2-ethylhexylglycidyl ether (c);
After the above synthesis, the reaction product is filtered to obtain a filtrate containing 2-ethylhexyl glycidyl ether, followed by washing with water (step (d)); And
Distilling off the washed filtrate to obtain 2-ethylhexyl glycidyl ether; (e) distilling off the washed filtrate to obtain 2-ethylhexyl glycidyl ether.
상기 상전이촉매는,
테트라-n-부틸 암모니움 브로마이드(Tetra-n-butyl ammonium bromide, TBAB)인 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
9. The method of claim 8,
The phase-
Characterized in that it is tetra-n-butyl ammonium bromide (TBAB).
상기 단계 (가)의 교반은,
질소 분위기 하에서 30~50℃에서 20~60분 동안 수행되는 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
9. The method of claim 8,
The stirring of step (A)
Wherein the reaction is carried out at 30 to 50 DEG C for 20 to 60 minutes in a nitrogen atmosphere.
상기 단계 (나)의 적가 조건은,
30~50℃에서 20~120분 동안 수행되는 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
9. The method of claim 8,
The dropping conditions of step (b)
And the reaction is carried out at 30 to 50 DEG C for 20 to 120 minutes.
상기 단계 (라)의 수세는,
수세수의 pH가 7.5 이하가 될 때 까지 수행되는 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
9. The method of claim 8,
The washing of the step (d)
And the pH of the washing water is reduced to 7.5 or less.
상기 단계 (마)의 증류는,
0.1~1torr, 40~60℃의 조건에서 1차 증류한 후,0.1~1torr, 70~90℃의 조건에서 2차 증류하는 것을 특징으로 하는 에틸헥실글리세린의 제조방법.
9. The method of claim 8,
The distillation of step (e)
0.1 to 1 torr and 40 to 60 ° C, and then subjected to secondary distillation under the conditions of 0.1 to 1 torr and 70 to 90 ° C.
상기 2-에틸헥산올, 수산화나트륨(NaOH), 상전이촉매, 에피클로로하이드린의 몰비는,
2-에틸헥산올 1mo1 대비 수산화나트륨 1.5~3mol, 상전이촉매 0.0025~0.005mol, 에피클로로하이드린 1.5~3mol인 것을 특징으로 하는 에틸헥실글리세린의 제조방법. 9. The method of claim 8,
The molar ratio of 2-ethylhexanol, sodium hydroxide (NaOH), phase transfer catalyst and epichlorohydrin,
1.5 to 3 mol of sodium hydroxide per mol of 2-ethylhexanol, 0.0025 to 0.005 mol of a phase transfer catalyst, and 1.5 to 3 mol of epichlorohydrin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140152999A KR101528751B1 (en) | 2014-11-05 | 2014-11-05 | Method for producing ethylhexylglycerin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140152999A KR101528751B1 (en) | 2014-11-05 | 2014-11-05 | Method for producing ethylhexylglycerin |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101528751B1 true KR101528751B1 (en) | 2015-06-16 |
Family
ID=53519031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140152999A Active KR101528751B1 (en) | 2014-11-05 | 2014-11-05 | Method for producing ethylhexylglycerin |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101528751B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101769847B1 (en) | 2016-01-21 | 2017-08-21 | 한국화학연구원 | The Preparation method of 2-ethylhexylglycerolether from 2-ethylhexylglycidylether by gas phase hydrolysis |
KR101878433B1 (en) * | 2018-01-23 | 2018-07-13 | 대달산업주식회사 | Methods for preparing alkylglyceryl ethers |
KR101924027B1 (en) | 2017-04-20 | 2018-11-30 | 주식회사 케미랜드 | High Purity 2-Ethylhexylglycerolether, Preparation Method for High Purity 2-Ethylhexylglycerolether and Use thereof |
CN116410069A (en) * | 2023-04-14 | 2023-07-11 | 陕西化工研究院有限公司 | A kind of ethylhexylglycerin substitute 2-propylheptylglycerin without adding preservative and its synthetic method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0543501A (en) * | 1991-08-09 | 1993-02-23 | Yotsukaichi Gosei Kk | Production of alkyl glyceryl ether |
JP2001011002A (en) * | 1999-06-25 | 2001-01-16 | Kao Corp | Production method of glyceryl ether |
JP2002114727A (en) * | 2000-10-03 | 2002-04-16 | Kao Corp | Method for producing glyceryl ether |
KR100458793B1 (en) * | 2000-05-01 | 2004-12-03 | 주식회사 아이씨켐 | The synthetic method of glycidylether without solvent and water |
-
2014
- 2014-11-05 KR KR1020140152999A patent/KR101528751B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0543501A (en) * | 1991-08-09 | 1993-02-23 | Yotsukaichi Gosei Kk | Production of alkyl glyceryl ether |
JP2001011002A (en) * | 1999-06-25 | 2001-01-16 | Kao Corp | Production method of glyceryl ether |
KR100458793B1 (en) * | 2000-05-01 | 2004-12-03 | 주식회사 아이씨켐 | The synthetic method of glycidylether without solvent and water |
JP2002114727A (en) * | 2000-10-03 | 2002-04-16 | Kao Corp | Method for producing glyceryl ether |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101769847B1 (en) | 2016-01-21 | 2017-08-21 | 한국화학연구원 | The Preparation method of 2-ethylhexylglycerolether from 2-ethylhexylglycidylether by gas phase hydrolysis |
KR101924027B1 (en) | 2017-04-20 | 2018-11-30 | 주식회사 케미랜드 | High Purity 2-Ethylhexylglycerolether, Preparation Method for High Purity 2-Ethylhexylglycerolether and Use thereof |
KR101878433B1 (en) * | 2018-01-23 | 2018-07-13 | 대달산업주식회사 | Methods for preparing alkylglyceryl ethers |
CN116410069A (en) * | 2023-04-14 | 2023-07-11 | 陕西化工研究院有限公司 | A kind of ethylhexylglycerin substitute 2-propylheptylglycerin without adding preservative and its synthetic method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101528751B1 (en) | Method for producing ethylhexylglycerin | |
Ochoa-Gómez et al. | Synthesis of glycerol 1, 2-carbonate by transesterification of glycerol with dimethyl carbonate using triethylamine as a facile separable homogeneous catalyst | |
US9346727B2 (en) | Process for the production of pure methylal | |
CN115028606A (en) | A kind of preparation method of benzyl glycidyl ether | |
CN112661639A (en) | Synthesis method of 4-acetylbutyrate compound | |
CN105418421A (en) | Synthesizing method for 3-methoxyacrylate | |
CN102010293A (en) | Method for catalyzing and synthesizing 1, 2-pentanediol by using titanium silicalite | |
WO2009120703A2 (en) | Method for preparation of anhydrosugar ethers | |
CN109096212B (en) | A kind of method for synthesizing 5-I-1,2,3-triazole compounds by one-pot method in aqueous phase | |
KR101610557B1 (en) | Method for producing alkyldiol monoglycidyl ether | |
CN106631991B (en) | Simple synthesis method of N-butyl-2, 2,6, 6-tetramethyl-4-piperidylamine | |
CN102050943A (en) | Compounding method for glycidyl ether polyether | |
CN104277027A (en) | Preparation method of (R)-propylene carbonate | |
CN107216240B (en) | Synthesis method of octoxy glycerol | |
CN117384058B (en) | Synthesis method of cetyl-PG hydroxyethyl palmitoamide | |
US9452971B2 (en) | Manufacturing process for memantine | |
KR101878433B1 (en) | Methods for preparing alkylglyceryl ethers | |
IES20090900A2 (en) | Manufacture of beta blockers | |
KR20170112515A (en) | Preparation method of glycidylester compound | |
KR100921944B1 (en) | Method for preparing epichlorohydrin | |
KR101617230B1 (en) | Method and Catalyst of Preparing High Pure Glycerol Carbonate | |
Annunziata et al. | The effect of Lewis acids on the pinacol homocoupling reaction of aldehydes promoted by samarium diiodide | |
KR20190056764A (en) | anufacturing Method of High Purity 1,2-Octanediol | |
US20210040029A1 (en) | Synthesis of 2-(2-aminoethoxy) ethanol | |
KR100449317B1 (en) | Process for the preparation of arbutin derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20141105 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20141118 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20141105 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20150217 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20150520 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20150609 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20150610 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20180604 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20180604 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190605 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20190605 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20200506 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20210706 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20220323 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20230906 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20240625 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20250609 Start annual number: 11 End annual number: 11 |