KR101518703B1 - Concrete composition improving insulated performance - Google Patents

Concrete composition improving insulated performance Download PDF

Info

Publication number
KR101518703B1
KR101518703B1 KR1020140023089A KR20140023089A KR101518703B1 KR 101518703 B1 KR101518703 B1 KR 101518703B1 KR 1020140023089 A KR1020140023089 A KR 1020140023089A KR 20140023089 A KR20140023089 A KR 20140023089A KR 101518703 B1 KR101518703 B1 KR 101518703B1
Authority
KR
South Korea
Prior art keywords
concrete
concrete composition
present
fine powder
lightweight aggregate
Prior art date
Application number
KR1020140023089A
Other languages
Korean (ko)
Inventor
박영신
Original Assignee
한라엔컴 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한라엔컴 주식회사 filed Critical 한라엔컴 주식회사
Priority to KR1020140023089A priority Critical patent/KR101518703B1/en
Application granted granted Critical
Publication of KR101518703B1 publication Critical patent/KR101518703B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/08Diatomaceous earth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

The present invention relates to a concrete composition having improved insulated performance, and more specifically, to a concrete composition having improved insulated performance, which comprises cement, diatomite pulverized powder, and lightweight aggregate. The concrete composition having improved insulated performance comprising the above compositions maintains a slump value for a predetermined time after mixing to provide superior workability and reduces thermal conductivity to provide superior workability and thermal insulation performance.

Description

단열성능이 향상된 콘크리트 조성물{Concrete composition improving insulated performance}[0001] Concrete composition improving insulated performance [0002]

본 발명은 단열성능이 향상된 콘크리트 조성물에 관한 것으로, 더욱 상세하게는 배합 후에 일정시간 동안 슬럼프 값이 유지되어 작업성이 우수하며, 열전도율이 낮아 우수한 작업성 및 단열성을 나타내는 단열성능이 향상된 콘크리트 조성물에 관한 것이다.
The present invention relates to a concrete composition having improved heat insulation performance, and more particularly, to a concrete composition having improved heat insulation performance that exhibits excellent workability and thermal insulation due to a low slump value during a certain period of time after being blended, .

현대의 건설재료 중 가장 많이 사용되는 재료 중 하나인 콘크리트는 구조재료로서, 시공성 및 경제성이 뛰어나고 중장기적으로 사용이 가능함으로 인해 건설 생산의 많은 부분을 담당하고 있으며, 과거부터 현재까지 건설 기술의 발전과 더불어 콘크리트 기술 또한 무한한 발전을 거듭하여 왔다.Concrete, which is one of the most used materials among modern construction materials, is a structural material, and it has excellent workability and economical efficiency and can be used in the mid and long term. Therefore, it is responsible for many parts of construction and production. Concrete technology has also been developed infinitely.

특히, 국내외 건축물이 고층화, 대형화됨에 따라 콘크리트의 고강도, 고유동 및 고내구성 등의 연구개발이 활발히 이루어지고 있는데, 콘크리트에 관한 연구는 대부분 초고층 건축물을 위한 콘크리트 강도증진에 관한 연구가 주를 이루고 있었다.In particular, as domestic and foreign buildings have become larger and larger, research and development of high strength, high dynamic strength, and high durability of concrete have been actively carried out. Most of studies on concrete have been focused on the improvement of concrete strength for skyscraper buildings .

그러나 최근에는 기후조건과 환경의 급격한 변화에 의해 냉난방 에너지 사용 증가에 의한 온실가스 배출 및 에너지 소비 감소에 대한 필요성이 부각되어 범세계적으로 에너지 사용량과 이산화탄소의 배출량을 줄이는 연구가 활발히 진행되고 있으며, 이에 따라, 콘크리트에 관한 연구도 에너지 절감과 이산화탄소 저감에 관한 방향으로 진행되고 있다.In recent years, however, the need to reduce greenhouse gas emissions and energy consumption due to increased use of cooling and heating energy has been emphasized due to rapid changes in climate conditions and environment, and researches to reduce energy consumption and carbon dioxide emissions have been actively conducted worldwide. Therefore, research on concrete is proceeding in the direction of energy saving and carbon dioxide reduction.

최근 건축물에서의 에너지 소비를 줄이기 위한 연구가 중요하게 부각되고 있는 가운데 저에너지 친환경 공동주택 연구, 고기밀성 단열창호 연구 및 고단열재 연구 등 단열성능 향상을 통한 건물에서 소비되는 에너지를 절감하는 연구가 활발히 진행되고 있다.Recently, studies to reduce energy consumption in buildings have been emphasized, and studies have been actively carried out to reduce the energy consumed in buildings through improvement of insulation performance, such as research on low-energy eco-friendly apartment houses, studies on high- .

그러나 건물 외피 중 약 70%를 차지하는 구조용 콘크리트의 단열성능 및 열전도율 개선에 관한 연구는 미진한 실정이다. 즉, 기존에 진행된 콘크리트의 단열 성능 개선에 관한 연구는 경량골재콘크리트, 경량기포콘크리트, 바닥 슬래브의 채움 몰탈, 콘크리트 건식벽체, 비구조용 벽체 등의 열전도율 특성에 관한 실험결과물이 대부분을 이루고 있다. 따라서 건물의 외벽을 이루고 있는 콘크리트에 단열성능을 부여함과 동시에 구조용으로 사용이 가능한 구조용 단열콘크리트에 관한 개발이 요구되고 있다.
However, there is little research on the improvement of thermal insulation performance and thermal conductivity of structural concrete, which accounts for about 70% of the building envelope. In other words, the study on the improvement of the heat insulation performance of the existing concrete is mostly composed of the experimental results on the properties of the thermal conductivity of the lightweight aggregate concrete, lightweight foamed concrete, filled mortar of the bottom slab, concrete drywall and nonstructural wall. Therefore, it is required to develop a thermal insulation concrete which can be used for structural purposes, while at the same time providing insulation performance to the concrete constituting the outer wall of the building.

본 발명의 목적은 열전도율이 낮아 우수한 단열성을 나타내는 단열성능이 향상된 콘크리트 조성물을 제공하는 것이다.An object of the present invention is to provide a concrete composition with improved heat insulating performance, which exhibits excellent thermal insulation due to low thermal conductivity.

본 발명의 다른 목적은 배합 후에 일정시간 동안 슬럼프 값이 유지되어 작업성이 우수하며, 구조용으로도 사용할 수 있는 압축강도를 나타내는 단열성능이 향상된 콘크리트 조성물을 제공하는 것이다.
Another object of the present invention is to provide a concrete composition with improved heat insulation performance, which exhibits excellent workability by maintaining a slump value for a certain period of time after compounding, and exhibits compressive strength that can be used for structural purposes.

본 발명의 목적은 시멘트, 규조토 미분말 및 경량골재로 이루어지는 것을 특징으로 하는 단열성능이 향상된 콘크리트 조성물을 제공함에 의해 달성된다.The object of the present invention is achieved by providing a concrete composition with improved heat insulation property, which is characterized by comprising cement, a diatomite fine powder and a lightweight aggregate.

본 발명의 바람직한 특징에 따르면, 상기 단열성능이 향상된 콘크리트 조성물은 시멘트 100 중량부, 규조토 미분말 12 내지 13 중량부 및 경량골재 90 내지 92 중량부로 이루어지는 것으로 한다.According to a preferred aspect of the present invention, the concrete composition having improved heat insulation performance comprises 100 parts by weight of cement, 12 to 13 parts by weight of diatomaceous earth fine powder, and 90 to 92 parts by weight of lightweight aggregate.

본 발명의 더 바람직한 특징에 따르면, 상기 규조토 미분말은 입자크기가 140 내지 160 메시인 것으로 한다.According to a further preferred feature of the present invention, the diatomite fine powder has a particle size of 140 to 160 meshes.

본 발명의 더욱 바람직한 특징에 따르면, 상기 경량골재는 점판암을 1150 내지 1250℃의 온도로 소성하여 제조되는 것으로 한다.
According to a further preferred feature of the present invention, the lightweight aggregate is manufactured by firing slate rock at a temperature of 1150 to 1250 ° C.

본 발명에 따른 단열성능이 향상된 콘크리트 조성물은 열전도율이 낮아 우수한 단열성을 나타내는 콘크리트를 제공하는 탁월한 효과를 나타낸다.The concrete composition having improved heat insulation performance according to the present invention exhibits an excellent effect of providing a concrete exhibiting excellent thermal insulation due to low thermal conductivity.

또한, 배합 후에 일정시간 동안 슬럼프 값이 유지되어 작업성이 우수하며, 구조용으로도 사용할 수 있는 압축강도를 나타내는 콘크리트를 제공하는 탁월한 효과를 나타낸다.
또한, 본 발명은 콘크리트의 단열성능을 향상시키면서 구조용으로도 사용이 가능한 것으로, 자체 공극을 가지고 있는 규조토 미분말과 경량 골재를 사용하여 콘크리트의 물리, 역학 및 열전도 특성을 향상시킬 수 있는 효과를 나타낸다.
또한, 본 발명은 구조용(24MPa 이상)으로 사용가능하며, 열전도율이 일반 콘크리트에 비해 2배이상 개선되고, 직접적으로 건설 현장에 적용할 수 있는 효과가 있다.
In addition, the slump value is maintained for a certain period of time after the compounding, so that the concrete is excellent in workability and provides concrete showing compressive strength which can be used for structural purposes.
In addition, the present invention can be used for structural purposes while improving the heat insulation performance of concrete. The present invention can improve the physical, dynamics and thermal conductivity properties of concrete using diatomaceous earth fine powder having self-pores and lightweight aggregate.
In addition, the present invention can be used for structural use (24 MPa or more), and its thermal conductivity is improved by two times or more as compared with that of ordinary concrete, and can be directly applied to a construction site.

도 1은 본 발명에 사용되는 규조토 미분말을 전자현미경(SEM)으로 촬영하여 나타낸 사진이다.
도 2는 본 발명에 사용되는 규조토 미분말을 성분분석기(EDX)로 분석하여 나타낸 사진 및 그래프이다.
도 3은 본 발명에 사용되는 경량골재를 전자현미경으로 촬영하여 나타낸 사진이다.
Fig. 1 is a photograph showing the diatomite fine powder used in the present invention photographed by an electron microscope (SEM).
Fig. 2 is a photograph and a graph showing the analysis of the diatomite fine powder used in the present invention by a component analyzer (EDX).
3 is a photograph showing the lightweight aggregate used in the present invention by photographing with an electron microscope.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.
Hereinafter, preferred embodiments of the present invention and physical properties of the respective components will be described in detail with reference to the accompanying drawings. However, the present invention is not limited thereto, And this does not mean that the technical idea and scope of the present invention are limited.

본 발명에 따른 단열성능이 향상된 콘크리트 조성물은 시멘트, 규조토 미분말 및 경량골재로 이루어지며, 시멘트 100 중량부, 규조토 미분말 12 내지 13 중량부 및 경량골재 90 내지 92 중량부로 이루어지는 것이 바람직하다.
The concrete composition having improved heat insulation performance according to the present invention is made of cement, fine powder of diatomite and lightweight aggregate, and is preferably composed of 100 parts by weight of cement, 12 to 13 parts by weight of diatomaceous earth fine powder and 90 to 92 parts by weight of lightweight aggregate.

상기 시멘트는 본 발명에 따른 단열성능이 향상된 콘크리트 조성물에 주재료가 되는 성분으로, 일반적으로 콘크리트 제조에 사용되는 성분이면 특별히 한정되지 않고 어떠한 것이든 사용가능하나, 포틀랜드 시멘트로 이루어지는 것이 바람직하다.
The cement is a main component of the concrete composition having improved heat insulation performance according to the present invention. The cement is not particularly limited as long as it is a component generally used in concrete production. Any material can be used, but is preferably made of Portland cement.

상기 규조토 미분말은 12 내지 13 중량부가 함유되며, 입자크기가 140 내지 160 메시인 것이 사용되는데, 본 발명에 따른 단열성능이 향상된 콘크리트 조성물에 단열성능을 부여하며, 콘트리트 조성물의 압축강도를 향상시키는 역할도 하다.The diatomite fine powder is contained in an amount of 12 to 13 parts by weight and has a particle size of 140 to 160 meshes. The concrete composition having improved heat insulation performance according to the present invention imparts heat insulation performance and improves compressive strength of the concrete composition Also.

규조토는 플랑크톤이 해저나 호수바닥에 쌓여 규산 부분만이 화석화된 퇴적암으로서 규조 자체의 복잡한 구조와 껍데기의 공극 때문에 매우 낮은 밀도를 갖고 있으며, 목탄보다 수천 배나 작고 무수한 기공이 형성되어 있다.Diatomaceous earth is a sedimentary rock in which plankton is deposited on the bottom of the ocean floor or lake and is only fossilized with silicic acid. It has a very low density due to the complex structure of the diatomaceous earth itself and the porosity of the shell. It is thousands of times smaller than charcoal and has numerous pores.

또한, 규조토는 높은 기공성으로써 낮은 비중뿐만 아니라 고흡수성 및 화학적 안정성 등의 특성을 나타내고 있으며 대표적인 포졸란에 속한다.In addition, diatomite has high porosity, low specific gravity, high absorptivity and chemical stability, and is a typical pozzolan.

본 발명에 사용되는 규조토 미분말은 입자크기가 140 내지 160 메시이며, 아래 표 1에 나타낸 바와 같은 물성을 나타낸다.The diatomite fine powder used in the present invention has a particle size of 140 to 160 mesh and exhibits physical properties as shown in Table 1 below.

<표 1><Table 1>

Figure 112014019309955-pat00001
Figure 112014019309955-pat00001

또한, 본 발명에 사용되는 규조토 미분말의 전자현미경(SEM)으로 촬영하여 아래 도 1에 나타내었다.Further, the diatomite fine powder used in the present invention is photographed by an electron microscope (SEM) and is shown in FIG. 1 below.

아래 도 1에 나타낸 것처럼, 본 발명에 사용되는 규조토 미분말은 저밀도, 고분말의 특성으로 인해 분체의 고결현상이 비교적 적게 일어나 입자와 입자 사이에 수많은 공극을 포함하게 된다.As shown in FIG. 1, the diatomite fine powder used in the present invention has a relatively low degree of solidification of the powder due to the characteristics of a low density and high powder, and includes many voids between the particles and the particles.

또한, 일반적으로 규조토 미분말의 입자 크기는 50 내지 100㎛의 범위를 가지고 있으나, 본 발명에서 사용되는 규조토 미분말은 10㎛ 내외의 크기이며 한 개의 입자에는 미세하고 무수히 많은 기공을 포함하고 있는 것으로 관찰되었다. 규조토 미분말 내부에 형성된 미세공극으로 인해 공극 내에서 공기분자의 흐름이 원활하지 못하여 열의 이동을 억제할 수 있다.In general, the particle size of the diatomite fine powder is in the range of 50 to 100 탆, but the diatomite fine powder used in the present invention has a size of about 10 탆 or so, and one particle contains minute and numerous pores . Due to the microvoids formed inside the diatomite fine powder, the flow of air molecules in the pores is not smooth and the movement of heat can be suppressed.

또한, 본 발명에 사용되는 규조토 미분말을 성분분석기(EDX)로 분석하여 그 결과를 아래 표 2와 도 2에 나타내었다.Further, the diatomite fine powder used in the present invention was analyzed by a component analyzer (EDX), and the results are shown in Table 2 and FIG. 2 below.

<표 2><Table 2>

Figure 112014019309955-pat00002
Figure 112014019309955-pat00002

위에 표 2에 아래 도 2에 나타낸 것처럼, 본 발명에 사용되는 규조토 미분말은 이산화규소의 함량이 약 91%로 분석되었으며, 상기의 이산화규소는 시멘트에 함유된 수산화칼륨과 결합하여 모세관 기공에 충전되어 우수한 압축강도로 발현하도록 하는 역할을 한다.As shown in Table 2 below, the diatomite fine powder used in the present invention had a silicon dioxide content of about 91%, and the silicon dioxide was bonded to potassium hydroxide contained in the cement to fill the capillary pores So that it can be expressed with excellent compressive strength.

또한, 규조토는 공극 구조를 형성하고 있기 때문에, 열전도율, 열팽창률 및 열충격 저항성이 낮고, 규조토 자체 무게의 약 3배 정도 되는 액체를 흡수할 수 있어 습도가 높을 때는 습기를 빨아들이며 건조할 때는 습기를 서서히 방출해 주고 주변의 유해물질을 흡수하여 분해하는 성능이 뛰어나 실내공기오염물질의 방출량을 저감할 수 있다.In addition, since diatomaceous earth forms a pore structure, it can absorb liquid having a low thermal conductivity, thermal expansion rate and thermal shock resistance and about three times the weight of diatomaceous earth itself, and absorbs moisture when humidity is high. It emits slowly and absorbs and decomposes the harmful substances in the surrounding area, so that it is possible to reduce the amount of indoor air pollutants emitted.

상기 규조토의 함량이 12 중량부 미만이면, 본 발명에 따른 콘크리트 조성물의 단열성능이나 압축강도가 저하되며, 상기 규조토의 함량이 13 중량부를 초과하게 되면, 본 발명에 따른 콘크리트 조성물의 압축강도가 저하된다.
If the content of the diatomaceous earth is less than 12 parts by weight, the heat insulating performance and the compressive strength of the concrete composition according to the present invention are lowered. If the content of the diatomaceous earth exceeds 13 parts by weight, do.

상기 경량골재는 90 내지 92 중량부가 함유되며, 본 발명에 따른 단열성능이 향상된 콘크리트 조성물에 압축강도를 향상시키는 역할을 하는데, 또한, 상기 경량골재는 점판암을 1150 내지 1250℃의 온도로 소성하여 제조된다.The lightweight aggregate contains 90 to 92 parts by weight of the lightweight aggregate. The lightweight aggregate serves to improve the compressive strength of the concrete composition having improved heat insulation performance according to the present invention. The lightweight aggregate is produced by firing slate rock at a temperature of 1150 to 1250 캜 do.

상기와 같은 과정을 통해 제조되는 경량골재는 절건밀도가 1.46g/cm3이며, 표건밀도는 1.54g/cm3이고 24시간 흡수율은 5.6%이며, 장기흡수율은 약 8.0%를 나타낸다. 또한, 내부 공극률은 45.5%이고, 실적률은 58.6%이며, 조립률은 6.4를 나타낸다.The lightweight aggregate produced through the above process has a haze density of 1.46 g / cm 3 , a density of 1.54 g / cm 3 , a 24-hour absorption rate of 5.6%, and a long-term absorption rate of about 8.0%. Also, the internal porosity is 45.5%, the performance ratio is 58.6%, and the assembly ratio is 6.4.

본 발명에 사용되는 경량골재를 전자현미경으로 촬영하여 아래 도 3에 나타내었다. 아래 도 3에 나타낸 것처럼, 본 발명에 사용되는 경량골재의 표면은 밀실한 형상을 나타내었으며, 내부의 형상은 폐쇄형 공극구조를 나타내었다.
The lightweight aggregate used in the present invention is photographed by an electron microscope and is shown in FIG. 3 below. As shown in FIG. 3, the surface of the lightweight aggregate used in the present invention exhibited a closed shape, and the inside had a closed void structure.

이하에서는, 본 발명에 따른 단열성능이 향상된 콘크리트 조성물의 제조방법 및 물성을 실시예를 들어 설명하기로 한다.
Hereinafter, a method for producing a concrete composition with improved heat insulation performance and physical properties according to the present invention will be described with reference to examples.

<실시예><Examples>

콘크리트 교반기에 경량골재(점판암을 1200℃의 온도로 소성하여 제조) 435kg을 투입하고 10초 동안 교반한 후에, 포틀랜드 시멘트 479kg, 입자크기가 150 메시인 규조토 61kg 및 물 192L를 투입하고 50초 동안 교반하여 단열성능이 향상된 콘크리트 조성물을 제조하였다.
435 kg of lightweight aggregate (manufactured by baking slate at a temperature of 1200 캜) was added to a concrete mixer and agitated for 10 seconds. Then, 479 kg of Portland cement, 61 kg of diatomaceous earth having a particle size of 150 mesh and 192 L of water were added and stirred for 50 seconds To prepare a concrete composition with improved heat insulation performance.

<비교예><Comparative Example>

콘크리트 교반기에 시멘트 479kg, 잔골재 714kg, 굵은골재 880kg 및 물 192L를 투입하고, 50초 동안 교반하여 콘크리트 조성물을 제조하였다.
479 kg of cement, 714 kg of fine aggregate, 880 kg of coarse aggregate and 192 L of water were charged into a concrete mixer and stirred for 50 seconds to prepare a concrete composition.

상기 실시예 및 비교예를 통해 제조된 콘크리트 조성물의 슬럼프, 공기량, 단위용적질량, 압축강도 및 열전도율을 측정하여 아래 표 3에 나타내었다.The slump, the air content, the unit volume mass, the compressive strength and the thermal conductivity of the concrete composition prepared through the above Examples and Comparative Examples were measured and shown in Table 3 below.

{단, - 슬럼프 시험은 KS F 2402를 이용하여 실시하였으며, 목표 슬럼프는 210±25로 설정하였고 시간경과에 따른 특성을 평가하기 위하여 콘크리트 제조 직후, 30분, 60분 경과 시점에서 슬럼프 시험을 진행하였다.(However, the slump test was conducted using KS F 2402, the target slump was set at 210 ± 25, and the slump test was performed immediately after the concrete production, 30 minutes, and 60 minutes to evaluate the characteristics over time Respectively.

- 공기량 시험은 KS F 2421을 이용하여 실시하였으며, 측정범위가 10%인 워싱턴형 디지털 공기량 시험기를 이용하여 시간경과에 따른 특성을 평가하기 위해 콘크리트 제조 직후, 30분, 60분 경과 시점에서 공기량 시험을 진행하였다.- The air quantity test was carried out using KS F 2421 and a DC type air mass tester with a measuring range of 10% was used to evaluate the characteristics over time. The air quantity test was performed immediately after the concrete production, 30 minutes and 60 minutes .

- 단위용적질량 시험은 KS F 2409을 이용하여 실시하였으며, - 압축강도 시험은 KS F 2403을 이용하여 실시하였으며, 100*200 ㎜의 시험체를 재령별 3개씩 제작하여 20±2℃의 수중에서 양생한 다음 KS F 2505의 실험방법에 의해 진행하였다.- The compressive strength test was carried out using KS F 2403. Three specimens of 100 * 200 ㎜ were prepared for each age and cured in water at 20 ± 2 ℃. And then proceeded by the experimental method of KS F 2505.

- 열전도율 측정은 실내 콘크리트 실험에서의 열전도율 측정한 방법과 동일한 비정상 열선법과 정상 평판 열류계법의 두 가지 방법으로 진행하였으며, 정상 평판 열류계법은 ISO 8302『Thermal insulation -- Determination of steady-state thermal resistance and related properties -- Guarded hot plate apparatus』에 따라 아래와 같은 독일 T사의 TLP 300 장비를 사용하여 진행하였다.)
- Thermal conductivity measurements were carried out by two methods, unsteady hot line method and normal plate heat flow method, which are the same as the method of measuring the thermal conductivity in the indoor concrete test. The normal plate heat flow method is ISO 8302 "Thermal insulation - Determination of steady-state thermal resistance related properties - Guarded hot plate apparatus ") using the following TLP 300 equipment from Germany.

<표 3><Table 3>

Figure 112014019309955-pat00003
Figure 112014019309955-pat00003

위에 표 3에 나타낸 것처럼, 본 발명의 실시예 1을 통해 제조된 단열성능이 향상된 콘크리트 조성물은 교반 직후에 슬럼프가 전체 배합에서 205∼210mm로 목표슬럼프를 만족하였으며, 30, 60분 경과 후의 슬럼프 경시변화는 미미하게 나타났다.As shown in Table 3 above, the concrete composition improved in heat insulation performance prepared through Example 1 of the present invention satisfied the target slump of 205 to 210 mm in the whole composition immediately after the agitation, and the slump of 30 minutes and 60 minutes after the aging Changes were minimal.

또한, 공기량은 전체 배합에서 목표공기량을 만족하였고, 공기량 경시변화도 미미하게 나타났다. 단위용적질량은 비교예가 2.34t/m3로 나타났으며, 실시예에서는 1.83t/m3로 측정되어 낮은 값을 나타내었다.Also, the amount of air satisfies the target air amount in the total composition, and the change in the air amount over time is also insignificant. Unit volume weight were comparison example appeared to 2.34t / m 3, the embodiment is measured by 1.83t / m 3 exhibited a low value.

또한, 압축강도는 구조물로 사용가능한 범위인 14.2 내지 27.8 MPa을 나타내었으며, 열전도율은 0.91 W/mk를 나타내어 비교예를 통해 제조된 콘크리트 조성물에 비해 우수하였다.
In addition, the compressive strength was in the range of 14.2 to 27.8 MPa, which is a usable range of the structure, and the thermal conductivity was 0.91 W / mk, which was superior to the concrete composition prepared by the comparative example.

따라서, 본 발명에 따른 단열성능이 향상된 콘크리트 조성물은 열전도율이 낮아 우수한 단열성을 나타내며, 배합 후에 일정시간 동안 슬럼프 값이 유지되어 작업성이 우수하며, 구조용으로도 사용할 수 있는 압축강도를 나타내는 콘크리트를 제공한다.Accordingly, the concrete composition having improved heat insulation performance according to the present invention exhibits excellent thermal insulation due to low thermal conductivity, maintains a slump value for a certain period of time after mixing, provides excellent concrete workability, and exhibits a compressive strength that can be used for structural purposes do.

Claims (4)

시멘트, 규조토 미분말 및 경량골재로 이루어지되,
상기 시멘트는 100 중량부, 규조토 미분말은 12 내지 13 중량부 및 경량골재는 90 내지 92 중량부로 이루어지고,
상기 규조토 미분말은 입자크기가 140 내지 160 메시이며, 상기 시멘트에 함유된 수산화칼륨과 결합하여 모세관 기공에 충전되도록 하기 위하여 이산화규소가 93.8 중량% 포함되며,
상기 경량골재는 점판암을 1150 내지 1250℃의 온도로 소성하여 제조되고, 절건밀도가 1.46g/cm3이며, 표건밀도는 1.54g/cm3이고, 24시간 흡수율은 5.6%이며, 장기흡수율은 8.0%이고, 내부 공극률은 45.5%이며, 실적률은 58.6%이고, 조립률은 6.4를 나타내는 것을 특징으로 하는 단열성능이 향상된 콘크리트 조성물.
Cement, diatomite fine powder and lightweight aggregate,
The cement is 100 parts by weight, the diatomite fine powder is 12-13 parts by weight and the lightweight aggregate is 90-92 parts by weight,
The diatomite fine powder has a particle size of 140 to 160 meshes and contains 93.8% by weight of silicon dioxide in order to fill the capillary pores with the potassium hydroxide contained in the cement,
The lightweight aggregate was produced by firing slate rock at a temperature of 1150 to 1250 캜, a desert density of 1.46 g / cm 3 , a dense density of 1.54 g / cm 3 , a 24 hour water absorption rate of 5.6% %, An internal porosity of 45.5%, a yield ratio of 58.6%, and an assembly ratio of 6.4.
삭제delete 삭제delete 삭제delete
KR1020140023089A 2014-02-27 2014-02-27 Concrete composition improving insulated performance KR101518703B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140023089A KR101518703B1 (en) 2014-02-27 2014-02-27 Concrete composition improving insulated performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140023089A KR101518703B1 (en) 2014-02-27 2014-02-27 Concrete composition improving insulated performance

Publications (1)

Publication Number Publication Date
KR101518703B1 true KR101518703B1 (en) 2015-05-07

Family

ID=53394224

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140023089A KR101518703B1 (en) 2014-02-27 2014-02-27 Concrete composition improving insulated performance

Country Status (1)

Country Link
KR (1) KR101518703B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210086894A (en) * 2019-12-31 2021-07-09 한국세라믹기술원 Cement-based composition for ultra-light, non-flammable 3d printing for material extrusion method additive manufacturing of architectural finishing panels and sculptures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000049433A (en) * 2000-03-14 2000-08-05 김만식 a feldspar and work method the floor of a room
JP2004339058A (en) * 2004-07-02 2004-12-02 Tokyo Energy & Systems Inc Concrete composition for heat insulation and concrete for heat insulation
JP2006143501A (en) * 2004-11-17 2006-06-08 Taiheiyo Material Kk Aggregate, method of manufacturing the same, and mortar/concrete for spraying
KR20060118073A (en) * 2005-05-16 2006-11-23 원종필 Refractory and adiabatic cement mortar composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000049433A (en) * 2000-03-14 2000-08-05 김만식 a feldspar and work method the floor of a room
JP2004339058A (en) * 2004-07-02 2004-12-02 Tokyo Energy & Systems Inc Concrete composition for heat insulation and concrete for heat insulation
JP2006143501A (en) * 2004-11-17 2006-06-08 Taiheiyo Material Kk Aggregate, method of manufacturing the same, and mortar/concrete for spraying
KR20060118073A (en) * 2005-05-16 2006-11-23 원종필 Refractory and adiabatic cement mortar composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210086894A (en) * 2019-12-31 2021-07-09 한국세라믹기술원 Cement-based composition for ultra-light, non-flammable 3d printing for material extrusion method additive manufacturing of architectural finishing panels and sculptures
KR102286044B1 (en) * 2019-12-31 2021-08-05 한국세라믹기술원 Cement-based composition for ultra-light, non-flammable 3d printing for material extrusion method additive manufacturing of architectural finishing panels and sculptures

Similar Documents

Publication Publication Date Title
Cuthbertson et al. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties
Memon et al. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete
Park et al. Analysis of walls of functional gypsum board added with porous material and phase change material to improve hygrothermal performance
Oyekan et al. A study on the engineering properties of sandcrete blocks produced with rice husk ash blended cement
Park et al. Analysis of biochar-mortar composite as a humidity control material to improve the building energy and hygrothermal performance
Matalkah et al. Characterization of alkali-activated nonwood biomass ash–based geopolymer concrete
CN105295496B (en) A kind of insulation putty and preparation method thereof
Prud’homme et al. Use of silicon carbide sludge to form porous alkali-activated materials for insulating application
Ramakrishnan et al. Synthesis and properties of thermally enhanced aerated geopolymer concrete using form-stable phase change composite
Remesar et al. Assessing and understanding the interaction between mechanical and thermal properties in concrete for developing a structural and insulating material
Gencel et al. Development, characterization and thermo-regulative performance of microencapsulated phase change material included-glass fiber reinforced foam concrete as novel thermal energy effective-building material
Kim et al. Evaluation of thermal properties of phase change material-integrated artificial stone according to biochar loading content
Remesar et al. Improved balance between compressive strength and thermal conductivity of insulating and structural lightweight concretes for low rise construction
Utodio et al. Investigation of the effect of bamboo leaf ash blended cement on engineering properties of lateritic blocks
KR101518703B1 (en) Concrete composition improving insulated performance
Cunha et al. Impact of gypsum mortars functionalized with phase change materials in buildings
Gunasekaran et al. Development of light weight concrete by using autoclaved aerated concrete
RU2653164C1 (en) Building mixture
Rashid Thermal and structural characterization of macro-encapsulated phase change material integrated into concrete cubes
KR101236168B1 (en) Composite Insulation material using Porous Ceramic Ball and Natural Cellulose as a Core material and manufacturing method therof
Thaib et al. Utilization of Beeswax/Bentonite as energy storage material on building wall composite
Farouq et al. Development and thermal characteristic study of an integrated phase change material earthbag unit for temporary housings
Ayadi et al. Elaboration and characterization of foam glass based on cullet with addition of soluble silicates
KR20160114376A (en) Composition for foam concrete with high insulation for reducing of floor impact sound, manufacturing method of foam concrete using the same and foam concrete with high insulation for reducing of floor impact sound manufactured using the same
Park et al. The thermal conduction property of structural concrete using insulation performance improvement materials

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190227

Year of fee payment: 5