KR101515677B1 - Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles - Google Patents

Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles Download PDF

Info

Publication number
KR101515677B1
KR101515677B1 KR1020110113195A KR20110113195A KR101515677B1 KR 101515677 B1 KR101515677 B1 KR 101515677B1 KR 1020110113195 A KR1020110113195 A KR 1020110113195A KR 20110113195 A KR20110113195 A KR 20110113195A KR 101515677 B1 KR101515677 B1 KR 101515677B1
Authority
KR
South Korea
Prior art keywords
hydrogen peroxide
palladium
carbon
selectivity
nanoparticles
Prior art date
Application number
KR1020110113195A
Other languages
Korean (ko)
Other versions
KR20130048375A (en
Inventor
이진우
예영진
천진녕
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020110113195A priority Critical patent/KR101515677B1/en
Publication of KR20130048375A publication Critical patent/KR20130048375A/en
Application granted granted Critical
Publication of KR101515677B1 publication Critical patent/KR101515677B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 균일한 팔라듐 나노 입자를 촉매로 한 수소와 산소를 이용한 과산화수소 직접 생산에 관한 것으로, 상세하게는 과산화수소 직접 생산을 위한 균일한 팔라듐 나노 입자-탄소 촉매, 그 제조방법, 상기 촉매를 이용한 과산화수소 직접 생산방법에 관한 것이다
본 발명은 또한, 팔라듐 나노 입자의 크기에 따라 직접 과산화수소 선택성 및 수율에 변화를 보이는 팔라듐 나노 입자-탄소 복합체의 제조 방법을 제공한다.
본 발명의 팔라듐 나노 입자-탄소 복합체 촉매는 과산화수소 직접 생산 반응 활성 및 선택성의 뚜렷한 변화를 보임으로써, 팔라듐 나노 입자의 크기를 조절하여 선택성을 최적화하려는 목적을 달성할 수 있다.
More particularly, the present invention relates to a uniform palladium nanoparticle-carbon catalyst for direct production of hydrogen peroxide, a method for producing the same, a method for producing the same, a method for producing hydrogen peroxide using the catalyst, Direct production method
The present invention also provides a method for producing a palladium nanoparticle-carbon composite that exhibits a direct change in hydrogen peroxide selectivity and yield depending on the size of the palladium nanoparticles.
The palladium nanoparticle-carbon composite catalyst of the present invention exhibits a marked change in the activity and selectivity of the direct hydrogen peroxide production reaction, thereby achieving the object of optimizing the selectivity by controlling the size of the palladium nanoparticles.

Description

균일한 팔라듐 나노 입자-탄소 복합체를 촉매로 한 수소와 산소를 이용한 과산화수소 직접 생산 {Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles}[Background of the Invention] [0002] The present invention relates to a process for producing hydrogen peroxide using hydrogen and oxygen using a uniform palladium nanoparticle-

본 발명은 균일한 팔라듐 나노 입자를 촉매로 한 수소와 산소를 이용한 과산화수소 직접 생산에 관한 것으로, 상세하게는 과산화수소 직접 생산을 위한 균일한 팔라듐 나노 입자-탄소 촉매, 그 제조방법, 상기 촉매를 이용한 과산화수소 직접 생산방법에 관한 것이다.More particularly, the present invention relates to a uniform palladium nanoparticle-carbon catalyst for direct production of hydrogen peroxide, a method for producing the same, a method for producing the same, a method for producing hydrogen peroxide using the catalyst, The present invention relates to a direct production method.

과산화수소는 펄프 표백, 화학 반응, 섬유 표백, 소독 및 살균제, 프로필렌 옥사이드(propylen oxide) 생산 등 다양한 분야에 활용 가능성을 가진 중요한 화합물이다. 산업적인 관점에서, 연간 약 220만 메트릭 톤의 과산화수소가 주로 펄프 표백의 용도로 현재 생산되고 있으며, 프로필렌 옥사이드 생산 등의 수요가 급증함으로 인하여 2012년에는 400만 메트릭 톤의 과산화수소의 수요가 있을 것으로 예상된다(Chemical Week, June 27, 25, 2007).Hydrogen peroxide is an important compound with potential for various applications such as pulp bleaching, chemical reaction, fiber bleaching, disinfection and sterilizing, propylene oxide production. From an industrial point of view, about 2.2 million metric tons of hydrogen peroxide per year is currently being produced mainly for use in pulp bleaching. Demand for propylene oxide production is soaring that demand for hydrogen peroxide is expected to reach 4 million metric tons in 2012 (Chemical Week, June 27, 25, 2007).

이처럼 과산화수소의 산업적인 중요성이 급증하고 있음에도 불구하고, 현재 과산화수소는 안트라퀴논 (anthroquinone) 공정으로 불리는 과정에 의해서 생산되고 있는데, 이 공정은 환경적으로 유해한 부산물이 많이 배출되기 때문에 새롭고 더욱 친환경적인 공정의 필요성이 계속해서 대두되고 있는 실정이다.Despite the increasing industrial importance of hydrogen peroxide, hydrogen peroxide is now produced by a process called the anthroquinone process, which produces a lot of environmentally harmful byproducts, so that new, more environmentally friendly processes There is a growing need for this.

상기 문제점을 해결하기 위하여, 수소와 산소를 이용하여 직접 과산화수소를 생산하는 공정(이하 “과산화수소 직접 생산”이라 칭한다)이 지난 30년간 활발히 이루어져 왔다. 수소와 산소로부터 직접 과산화수소가 발생되는 반응은 열역학적으로 가능성이 있으며, 팔라듐 촉매가 가장 널리 사용되어 왔다. 그러나 팔라듐 촉매는 수소와 산소로부터 생산된 과산화수소를 다시 수소화(hydrogen)하여 물로 변환시키는 반응에도 높은 활성을 보이기 때문에 선택성이 낮은 문제점을 지닌다 (J.K.Edwards, G.J.Hutchings, Angew. Chem. Int. Ed. 47, 9192, 2008).In order to solve the above problem, a process for directly producing hydrogen peroxide using hydrogen and oxygen (hereinafter referred to as "direct hydrogen peroxide production") has been actively conducted for 30 years. The reaction of hydrogen peroxide directly from hydrogen and oxygen is thermodynamically feasible, and palladium catalysts have been the most widely used. However, the palladium catalyst has a problem of low selectivity because it shows high activity even in the reaction of converting hydrogen peroxide produced from hydrogen and oxygen into water (JKEdwards, GJ Hutchings, Angew. Chem. Int. , 2008).

한편, 나노 입자는 크기에 따라 드러난 면, 표면적-부피 비율 등이 다르기 때문에 나노 입자의 크기는 촉매 반응에 큰 영향을 미친다. 과산화수소 직접 생산이 가지는 중요성에도 불구하고, 팔라듐 나노 입자의 크기에 따른 촉매의 활성 및 선택성에 관한 연구는 거의 이루어지고 있지 않으며, 이루어진 연구 또한 불균일한 나노 입자를 사용하였다 (S. Melada et al., J. Catal. 235, 241, 2005). 이는 그동안 나노 입자를 균일하게 제조하는 것이 매우 어렵게 여겨져 왔기 때문이다. 일 예로 아토피나가 출원한 국제특허공개 WO1994/41190호에서는 촉매를 함유하는 산성 매질에 미립 기포 형태의 수소 및 산소를 투입하여 과산화수소를 제조하는 방법을 공지하고 있다. 유럽특허 2380057.6출원에서는 할로겐 비함유 산 수지에 지지된 귀금속 또는 반귀금속 촉매와 용매의 존재하에서 수소와 산소를 반응시키는 것을 특징으로 하는 과산화수소 용액 제조 방법을 공지하고 있다. On the other hand, the size of the nanoparticles greatly affects the catalytic reaction because the nanoparticles differ in surface area-volume ratio, etc., depending on their size. Despite the importance of direct production of hydrogen peroxide, little research has been done on the activity and selectivity of the catalysts depending on the size of the palladium nanoparticles, and studies have also used heterogeneous nanoparticles (S. Melada et al. J. Catal. 235, 241, 2005). This is because it has been considered very difficult to uniformly prepare nanoparticles in the meantime. For example, in International Patent Publication No. WO1994 / 41190 filed by Atopyina, a method of producing hydrogen peroxide by injecting hydrogen and oxygen in the form of fine bubbles into an acidic medium containing a catalyst is known. European patent application no. 2380057.6 discloses a process for the preparation of hydrogen peroxide solutions characterized in that hydrogen and oxygen are reacted in the presence of a noble or semi-noble metal catalyst supported on a halogen-free acid resin and a solvent.

데구사 아게에서는 WO2005/0108285호에서 할로겐화물 및 강산을 함유하는 반응 매질을 사용하여, 귀금속 촉매의 존재하에, 수소 및 산소를 함유하는 비폭발성 기체 혼합물로부터 직접 합성에 의한 유기 또는 수성-유기 과산화수소 용액의 제조에서, 스테인레스강 반응기에서 반응하는 동안 스테인레스강의 표면이 반응기를 통과하는 기체 혼합물과 영구 접촉되는 지점이 없다면 반응기 소재에 부식을 일으키지 않는 방법을 개시하고 있다.In Degussaue, a reaction medium containing a halide and a strong acid is used in WO2005 / 0108285 to prepare an organic or aqueous-organic hydrogen peroxide solution by direct synthesis from a non-explosive gas mixture containing hydrogen and oxygen in the presence of a precious metal catalyst Discloses a process which does not cause corrosion in the reactor material unless there is a point where the surface of the stainless steel during the reaction in the stainless steel reactor is in permanent contact with the gas mixture passing through the reactor.

또한, 최근에는 3.6 나노미터의 팔라듐을 매우 균일하게 합성하여 최대 80%의 선택성을 얻은 연구 결과가 보고된 바 있다(Q. Liu et al., Angew. Chem. 120, 6317). 그러나 선택성을 높이기 위해 염산을 사용하였기 때문에, 부식 저항성이 있는 반응기를 사용해야 하므로 실용적인 사용에 문제가 있었다. In recent years, research has been reported that palladium of 3.6 nanometers is synthesized very uniformly to obtain selectivity of up to 80% (Q. Liu et al., Angew. Chem. 120, 6317). However, since hydrochloric acid was used to increase the selectivity, there was a problem in practical use because a corrosion resistant reactor had to be used.

이에 따라, 부식의 염려가 없으며 선택성이 높은 새로운 과산화수소 직접 제조 방법에 대한 요구가 계속되고 있다. Accordingly, there is a continuing need for a novel process for producing hydrogen peroxide which is free from corrosion and has high selectivity.

본 발명에서 해결하고자 하는 과제는 팔라듐 나노입자를 이용하여 부식의 염려가 없는 새로운 과산화수소 직접 제조 방법을 개발하는 것이다. A problem to be solved by the present invention is to develop a new method of producing hydrogen peroxide without the concern of corrosion by using palladium nanoparticles.

본 발명에서 해결하고자 하는 다른 과제는 수소와 산소로부터 과산화수소를 직접 제조할 수 있는 높은 선택성을 가지는 새로운 팔라듐계 촉매를 제조하는 것이다. Another problem to be solved in the present invention is to prepare a new palladium-based catalyst having high selectivity for directly producing hydrogen peroxide from hydrogen and oxygen.

본 발명에서 해결하고자 하는 다른 과제는 수소와 산소로부터 과산화수로를 직접 제조할 수 있는 높은 선택성을 가지는 촉매를 제조하는 방법을 개발하는 것이다. Another problem to be solved in the present invention is to develop a method for producing a catalyst having high selectivity capable of directly producing a peroxide channel from hydrogen and oxygen.

상기와 같은 과제를 해결하기 위해서, 본 발명에 따른 과산화수소 직접 생산 방법은 팔라듐 나노 입자-탄소 복합체를 이용하여 수소와 산소를 반응시키는 것을 특징으로 한다. In order to solve the above problems, the method for producing hydrogen peroxide directly according to the present invention is characterized in that hydrogen and oxygen are reacted using a palladium nanoparticle-carbon composite.

본 발명에 있어서, 상기 팔라듐 나노입자-탄소 복합체는 팔라듐 나노 입자가 탄소체에 지지 또는 담지된 것이다. In the present invention, the palladium nanoparticle-carbon composite is a palladium nanoparticle supported or supported on a carbon body.

본 발명에 있어서, 상기 팔라듐 나노 입자는 선택성을 향상시킬 수 있도록 0.1-10 nm 크기, 보다 바람직하게는 0.5-5 nm 크기, 가장 바람직하게는 1-3.5 nm 범위인 것이 바람직하다. 상기 팔라듐 나노 입자의 크기가 커질 경우 선택성이 저하될 우려가 있으며, 지나치게 작아질 경우 공업상 벌크 단위에서 제조에 어려움이 있을 수 있다. In the present invention, the palladium nanoparticles are preferably 0.1-10 nm in size, more preferably 0.5-5 nm in size, and most preferably 1-3.5 nm in order to improve selectivity. If the size of the palladium nanoparticles is increased, the selectivity may be deteriorated. If the size of the palladium nanoparticles is too small, it may be difficult to manufacture the palladium nanoparticles industrially.

본 발명에 있어서, 탄소에 담지되는 팔라듐 나노 입자의 함량은 탄소의 0.1-10 중량%, 보다 바람직하게는 0.5-5 중량%, 가장 바람직하게는 1 중량% 정도이다. In the present invention, the content of palladium nanoparticles to be supported on carbon is 0.1-10% by weight, more preferably 0.5-5% by weight, and most preferably 1% by weight of carbon.

본 발명에 있어서, 상기 팔라듐 나노 입자가 지지 내지 담지되는 탄소체는 벌칸 XC-72(Vulcan XC-72), 아세틸렌 블랙(acetylene black), 케첸 블랙(ketchen black), 탄소 나노 튜브, 메조포러스 탄소인 것이 바람직하다.In the present invention, the carbon body supporting or supporting the palladium nanoparticles may be selected from the group consisting of Vulcan XC-72 (Vulcan XC-72), acetylene black, ketchen black, carbon nanotubes, mesoporous carbon .

본 발명에 있어서, 상기 팔라듐 나노 입자-탄소 복합체는 팔라듐 나노 입자를 탄소에 담지하여 제조된다. 본 발명에 있어서, 팔라듐 나노 입자는 공지된 방법(S.-W. Kim et al., Nano. Lett. 3, 1289, 2003)에 따라 균일하게 제조될 수 있으며, 팔라듐 나노 입자의 담지는 균일한 나노 입자를 탄소와 함께 헥산(hexane)에서 교반한 후, 건조하여 제조한다. 그리고, 교반 용액은 헥산, 톨루엔, 클로로포름이 바람직하다. 이후, 상기 촉매는 용액을 증발 및 건조시켜 수득된다. 상기 증발 및 건조 과정은 용액을 증발시켜 직접 건조하거나 원심 분리하여 건조하는 것, 진공펌프로 필터링하여 건조하는 것이 바람직하다.In the present invention, the palladium nanoparticle-carbon composite is prepared by supporting palladium nanoparticles on carbon. In the present invention, the palladium nanoparticles can be uniformly prepared according to a known method (S.-W. Kim et al., Nano. Lett. 3, 1289, 2003), and the loading of the palladium nanoparticles is uniform The nanoparticles are stirred with hexane in the presence of carbon and then dried. The stirring solution is preferably hexane, toluene or chloroform. Then, the catalyst is obtained by evaporating and drying the solution. The evaporation and drying process is preferably performed by directly drying the solution by evaporating the solution or by centrifuging, or by filtering with a vacuum pump.

본 발명에 의해서 새로운 팔라듐 나노 입자-탄소 복합체 촉매와 이를 이용하여 과산화수소를 직접 생산할 수 있는 새로운 방법이 제공되었다. 본 발명에 따른 생산 공정은 선택성 및 수율이 높고, 부식성 물질을 사용하지 않아 경제적인 공정의 구현이 가능하게 된다. The present invention provides a novel palladium nanoparticle-carbon composite catalyst and a new method for directly producing hydrogen peroxide using the same. The production process according to the present invention has high selectivity and yield, and it is possible to realize an economical process because no corrosive substance is used.

도 1은 본 발명의 일실시예에 따라 제조된 3.5 nm 팔라듐 나노 입자-탄소 복합체 촉매의 투과전자현미경(Transmission Electron Microscope : TEM, Hitachi, H-7600) 사진이다.
도 2는 본 발명의 일실시예에 따라 제조된 6 nm 팔라듐 나노 입자-탄소 복합체 촉매의 TEM 사진이다.
도 3은 본 발명의 일실시예에 따라 제조된 6 nm 팔라듐 나노 입자-탄소 복합체 촉매의 TEM 사진이다.
FIG. 1 is a transmission electron microscope (TEM) image of a 3.5 nm palladium nanoparticle-carbon composite catalyst prepared according to an embodiment of the present invention.
2 is a TEM photograph of a 6 nm palladium nanoparticle-carbon composite catalyst prepared according to an embodiment of the present invention.
3 is a TEM photograph of a 6 nm palladium nanoparticle-carbon composite catalyst prepared according to an embodiment of the present invention.

이하, 바람직한 실시예를 통하여 본 발명을 상세하게 설명한다. 그러나 이는 단지 당업계의 통상의 지식을 가진 자에게 발명의 실시를 명확히 하는 목적을 지니며, 본 발명이 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to preferred embodiments. However, it should be apparent to those skilled in the art that the present invention is not limited to these embodiments.

[실시예 1][Example 1]

3.5 nm 팔라듐 나노 입자-탄소 복합체의 제조Preparation of 3.5 nm Palladium Nanoparticle-Carbon Composite

3.5 nm 팔라듐 나노 입자는 팔라듐 아세틸 아세토네이트 (Pd(acac)2) 0.1 g을 트리옥틸포스파인(trioctylphosphine, TOP) 10 ml에 섞은 후 300℃에서 30분 동안, 불활성 분위기에서 반응시켜 합성하였다. 3.5 nm Palladium nanoparticles were prepared by mixing 0.1 g of palladium acetylacetonate (Pd (acac) 2 ) in 10 ml of trioctylphosphine (TOP) and reacting at 300 ° C for 30 minutes in an inert atmosphere.

제조된 팔라듐 나노 입자를 벌칸-XC72, 헥산 용액과 잘 교반한 후 진공 펌프로 필터링한 후, 건조하여 팔라듐 나노 입자-탄소 복합체를 제조하였다. Pd가 탄소에 1wt%가 되게 담지를 하였다. 도 1에서 보는 바와 같이, 매우 균일한 팔라듐 나노 입자가 탄소에 잘 분산되어 제조되었음을 알 수 있다.The prepared palladium nanoparticles were well mixed with Vulcan-XC72 and hexane solution, filtered with a vacuum pump, and dried to prepare a palladium nanoparticle-carbon composite. Pd was supported to be 1 wt% of carbon. As shown in FIG. 1, it can be seen that highly uniform palladium nanoparticles were prepared by well dispersed in carbon.

[실시예 2] [Example 2]

6 nm 팔라듐 나노 입자-탄소 복합체의 제조Preparation of 6 nm Palladium Nanoparticle-Carbon Composite

6 nm 팔라듐 나노 입자는 팔라듐 아세틸 아세토네이트 (Pd(acac)2) 0.1 g을트리옥틸포스파인(trioctylphosphine, TOP) 1 ml에 섞어 완벽히 녹인 후, 올레일아민 (oleylamine) 9ml와 섞어 250℃에서 30분 동안, 불활성 분위기에서 반응시켜 합성하였다. 6 nm Palladium nanoparticles were prepared by dissolving 0.1 g of palladium acetylacetonate (Pd (acac) 2 ) in 1 ml of trioctylphosphine (TOP) and completely dissolving it. After mixing with 9 ml of oleylamine, Min in an inert atmosphere.

제조된 팔라듐 나노 입자를 실시예1과 같은 방법으로 탄소에 담지하였다.The prepared palladium nanoparticles were supported on carbon in the same manner as in Example 1.

도2에서 보는 바와 같이, 매우 균일한 팔라듐 나노 입자가 탄소에 잘 분산되어 제조되었음을 알 수 있다.As shown in FIG. 2, it can be seen that highly uniform palladium nanoparticles are prepared by well dispersing on carbon.

[실시예 3][Example 3]

7.5 nm 팔라듐 나노 입자-탄소 복합체의 제조Preparation of 7.5 nm Palladium Nanoparticle-Carbon Composite

7.5 nm 팔라듐 나노 입자는 팔라듐 아세틸 아세토네이트 (Pd(acac)2) 0.1 g을 트리옥틸포스파인(trioctylphosphine, TOP) 0.15 ml에 섞어 완벽히 녹인 후, 올레일아민 (oleylamine) 10 ml와 섞어 250℃에서 30분 동안, 불활성 분위기에서 반응시켜 합성하였다. 제조된 팔라듐 나노 입자를 실시예1과 같은 방법으로 탄소에 담지하였다. 도2에서 보는 바와 같이, 매우 균일한 팔라듐 나노 입자가 탄소에 잘 분산되어 제조되었음을 알 수 있다.7.5 nm Palladium nanoparticles were prepared by dissolving 0.1 g of palladium acetylacetonate (Pd (acac) 2 ) in 0.15 ml of trioctylphosphine (TOP) and completely dissolving it. The mixture was mixed with 10 ml of oleylamine, For 30 minutes in an inert atmosphere. The prepared palladium nanoparticles were supported on carbon in the same manner as in Example 1. As shown in FIG. 2, it can be seen that highly uniform palladium nanoparticles are prepared by well dispersing on carbon.

[실시예 4][Example 4]

팔라듐 나노 입자-탄소 복합체의 제조 및 수소와 산소를 이용한 직접 과산화수소 생산 반응 촉매로의 이용Preparation of Palladium Nanoparticle-Carbon Composite and Use of Hydrogen and Oxygen as Direct Catalyst for Hydrogen Peroxide Production

실시예 1 ~ 3에서 제조한 촉매를 수소와 산소를 이용한 직접 과산화수소 생산 반응 촉매로 이용하여 활성과 선택성을 알아보았다. 오토클레이브(autoclave) 반응기에서 0.5 g의 촉매, 500ppm의 황산, 100 ppm의 NaBr 농도를 가지는 메탄올 용매 80 ml 를 사용하여 반응하였다.The activity and selectivity of the catalyst prepared in Examples 1 to 3 were investigated by using hydrogen and oxygen as a catalyst for direct hydrogen peroxide production. In an autoclave reactor, 0.5 g of catalyst, 500 ppm of sulfuric acid, and 80 ml of a methanol solvent having a NaBr concentration of 100 ppm were reacted.

반응 가스인 H2/N2(25/75) 가스는 분당 20.4 ml의 유량으로, O2/N2(50/50) 가스는 분당 23.3 ml의 유량으로 반응기에 공급하였다. 반응 온도는 28℃, 반응 압력은 10기압에서 6시간 동안 반응하였다.The reaction gas, H 2 / N 2 (25/75), was fed to the reactor at a flow rate of 20.4 ml per minute and O 2 / N 2 (50/50) gas at a flow rate of 23.3 ml per minute. Reaction temperature was 28 ℃, reaction pressure was 10 atm for 6 hours.

수소 변환율은 반응한 수소량와 공급된 수소량의 비율로 계산하였다. 과산화수소 선택성은 과산화수소로 전환된 수소량과 반응한 수소량의 비율로 계산하였다. 반응하지 않은 수소는 가스 크로마토그래피(Youngjin, ACME 6000)로 분석하였다. 과산화수소 농도는 요오드 적정법(iodometric titration method)를 이용하여 분석하였다 (R.M. Hanson and K.B.Sharpless, J. Org. Chem. 51, 1922, 1986). 과산화수소 수율은 수소 변환율과 과산화수소 선택성을 곱하여 계산하였다. The hydrogen conversion rate was calculated as the ratio of the amount of hydrogen reacted to the amount of hydrogen supplied. Hydrogen peroxide selectivity was calculated as the ratio of hydrogen to hydrogen peroxide converted to hydrogen peroxide. Unreacted hydrogen was analyzed by gas chromatography (Youngjin, ACME 6000). The concentration of hydrogen peroxide was analyzed using the iodometric titration method (RM Hanson and KBSharpless, J. Org. Chem. 51, 1922, 1986). The hydrogen peroxide yield was calculated by multiplying the hydrogen conversion by the hydrogen peroxide selectivity.

실시예 1 ~ 3에서 합성한 촉매를 상기 조건에서 반응한 과산화수소 직접 생산 수소 변환율(H2 conversion), 과산화수소 선택성(H2 selectivity), 과산화수소 수율, 과산화수소 농도를 하기 표1에 정리하였다.Hydrogen peroxide-direct hydrogen conversion (H 2 conversion), hydrogen peroxide selectivity (H 2 selectivity), hydrogen peroxide yield and hydrogen peroxide concentration of the catalysts synthesized in Examples 1 to 3 were summarized in Table 1 below.

촉매catalyst 수소 전환율 (%)Hydrogen conversion (%) 과산화수소 선택성 (%)Hydrogen Peroxide Selectivity (%) 과산화수소 수율 (%)Hydrogen peroxide yield (%) 과산화수소 농도 (wt%)Hydrogen peroxide concentration (wt%) 실시예 1Example 1 62.662.6 25.925.9 16.216.2 0.670.67 실시예 2Example 2 51.151.1 21.621.6 11.011.0 0.440.44 실시예 3Example 3 11.711.7 15.415.4 1.81.8 0.200.20

상기 표1에서 보는 바와 같이 본 발명의 실시예1에 따라 제조된 팔라듐-탄소 복합체 촉매에서, 팔라듐 나노 입자의 크기가 작아질수록 수소 전환율, 과산화수소 선택성, 과산화수소 수율 및 과산화수소 농도가 상승하는 것을 알 수 있다.As shown in Table 1, in the palladium-carbon composite catalyst prepared according to Example 1 of the present invention, the hydrogen conversion, the hydrogen peroxide selectivity, the hydrogen peroxide yield, and the hydrogen peroxide concentration were increased as the size of the palladium nanoparticles was decreased have.

상기 결과를 통해, 크기가 다른 균일한 팔라듐 나노 입자-탄소 촉매를 제조하여 과산화수소 선택성 및 수율을 최적화할 수 있음을 확인하였다.From the above results, it was confirmed that hydrogen peroxide selectivity and yield could be optimized by preparing a uniform palladium nanoparticle-carbon catalyst having different sizes.

Claims (15)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 팔라듐 나노 입자와 탄소를 헥산, 톨루엔 또는 클로로포름에서 선택되는 액상 용액에 투입하여 탄소에 팔라듐 나노입자를 담지하고, 상기 액상 용액을 건조시켜 제거하는 것을 특징으로 하는 팔라듐 나노 입자-복합체의 제조 방법.Wherein the palladium nanoparticles and the carbon are put in a liquid solution selected from hexane, toluene or chloroform to carry the palladium nanoparticles on carbon, and the liquid solution is dried to remove the palladium nanoparticles. 삭제delete 제6항에 있어서,
상기 탄소는 벌칸 XC-72, 아세틸렌 블랙, 케첸 블랙, 탄소 나노 튜브, 메조포러스 탄소로 이루어진 그룹에서 1이상 선택되는 담지체인 것을 특징으로 하는 팔라듐 나노 입자-복합체의 제조 방법.
The method according to claim 6,
Wherein the carbon is one or more selected from the group consisting of Vulcan XC-72, acetylene black, Ketjenblack, carbon nanotubes, and mesoporous carbon.
삭제delete 제6항에 있어서,
상기 팔라듐 입자는 평균 크기가 1-3.5 nm인 것을 특징으로 하는 팔라듐 나노 입자-복합체의 제조 방법.
The method according to claim 6,
Wherein the palladium particles have an average size of 1-3.5 nm.
제6항에 있어서, 상기 팔라듐 나노입자는 탄소에 1중량% 담지되는 것을 특징으로 하는 입자-복합체의 제조 방법.
7. The method of claim 6, wherein the palladium nanoparticles are supported on carbon by 1 weight%.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020110113195A 2011-11-02 2011-11-02 Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles KR101515677B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110113195A KR101515677B1 (en) 2011-11-02 2011-11-02 Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110113195A KR101515677B1 (en) 2011-11-02 2011-11-02 Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles

Publications (2)

Publication Number Publication Date
KR20130048375A KR20130048375A (en) 2013-05-10
KR101515677B1 true KR101515677B1 (en) 2015-05-11

Family

ID=48659431

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110113195A KR101515677B1 (en) 2011-11-02 2011-11-02 Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles

Country Status (1)

Country Link
KR (1) KR101515677B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190011210A (en) 2017-07-24 2019-02-01 충남대학교산학협력단 Preparation Method for Gdot-Pd Hybrid with Nanosponge Structure and Gdot-Pd Hybrid Catalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359658B1 (en) * 2020-02-18 2022-02-09 한국과학기술연구원 Palladium hydride having a hcp crystal structure and preparation method thereof
CN115646484B (en) * 2022-08-18 2024-02-20 扬州博克莱生物医药科技有限公司 Supported palladium-carbon catalyst for liquid phase continuous hydrogenolysis dechlorination and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168775B1 (en) 1998-08-26 2001-01-02 Hydrocarbon Technologies, Inc. Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2)
KR100427725B1 (en) * 2001-03-22 2004-04-27 광주과학기술원 Manufacturing Process of Nanocomposites Using Nanoparticles And Copolymers
US20060002847A1 (en) 2003-03-28 2006-01-05 Michael Rueter Direct hydrogen peroxide production using staged hydrogen addition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168775B1 (en) 1998-08-26 2001-01-02 Hydrocarbon Technologies, Inc. Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2)
KR100427725B1 (en) * 2001-03-22 2004-04-27 광주과학기술원 Manufacturing Process of Nanocomposites Using Nanoparticles And Copolymers
US20060002847A1 (en) 2003-03-28 2006-01-05 Michael Rueter Direct hydrogen peroxide production using staged hydrogen addition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1;CATALYSIS TODAY,2010*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190011210A (en) 2017-07-24 2019-02-01 충남대학교산학협력단 Preparation Method for Gdot-Pd Hybrid with Nanosponge Structure and Gdot-Pd Hybrid Catalyst

Also Published As

Publication number Publication date
KR20130048375A (en) 2013-05-10

Similar Documents

Publication Publication Date Title
Villa et al. Selective oxidation of glycerol under acidic conditions using gold catalysts
KR101804659B1 (en) Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same
CN109647514B (en) High-dispersion palladium catalyst and preparation method and application thereof
Zhu et al. Fuel generation through photoreduction of CO2 on novel Cu/BiVO4
CN110420637B (en) Method for preparing composite catalyst by using W modified carrier loaded with metal Pd and application of composite catalyst
CN105585469B (en) A kind of method that phenol gas phase hydrogenation prepares cyclohexanone
Mai et al. Simple synthesis of WO3-Au composite and their improved photothermal synergistic catalytic performance for cyclohexane oxidation
KR101515677B1 (en) Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles
CN105837391B (en) A kind of application of no catalytic hydrogenation in catalytic benzene hydrogenation reaction
CN107999072B (en) Photo-thermal catalyst, preparation method thereof and method for catalyzing cyclohexane oxidation
CN108409692B (en) Method for preparing gamma-valerolactone by catalyzing levulinic acid hydrogenation with sulfur-doped carbon material-loaded ruthenium catalyst
CN109731573A (en) A kind of preparation method and application of benzyl alcohol oxidation producing benzaldehyde high activity Au/ nanocarbon catalyst
El-Shahat et al. Selective photo-oxidative coupling of amines to form C–N bonds using post synthetic modification of MIL-68-NH2 with metal acetylacetonate
WO2012085174A1 (en) Process for the electrochemical synthesis of hydrogen peroxide and use of a catalyst therefore
CN112125792B (en) Method for co-producing hydroxycitronellal and hydroxycitronellal
CN111545239B (en) Solid catalyst for glycerol oxidation and preparation method thereof
Li et al. Oxodiperoxo tungsten complex-catalyzed synthesis of adipic acid with hydrogen peroxide
You et al. Pd/CNT with controllable Pd particle size and hydrophilicity for improved direct synthesis efficiency of H 2 O 2
EP3321249B1 (en) Method for producing acrylic acid
Guo et al. Copper loaded nitrogen-rich mesoporous carbon nitride as a highly efficient photocatalyst for selective oxidative cleavage of C (sp 3)–C (sp 3) bonds at room temperature under visible light
CN106967019B (en) Method for preparing 2, 5-diformylfuran
CN109251126A (en) A kind of method of cyclohexane oxidation KA oil
KR20180072100A (en) Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts
EP2468398A1 (en) Process for the electrochemical synthesis of hydrogen peroxide and use of a catalyst therefore
Sun et al. Tandem photo-oxidation of methane to methanol at room temperature and pressure over Pt/TiO2

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee