KR101501134B1 - 항공기용 엔진 냉각 시스템 - Google Patents
항공기용 엔진 냉각 시스템 Download PDFInfo
- Publication number
- KR101501134B1 KR101501134B1 KR1020130034117A KR20130034117A KR101501134B1 KR 101501134 B1 KR101501134 B1 KR 101501134B1 KR 1020130034117 A KR1020130034117 A KR 1020130034117A KR 20130034117 A KR20130034117 A KR 20130034117A KR 101501134 B1 KR101501134 B1 KR 101501134B1
- Authority
- KR
- South Korea
- Prior art keywords
- area
- exhaust port
- cowl
- aircraft
- port
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D33/00—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
- B64D33/08—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D29/00—Power-plant nacelles, fairings, or cowlings
- B64D29/06—Attaching of nacelles, fairings or cowlings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P1/00—Air cooling
- F01P1/06—Arrangements for cooling other engine or machine parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
- B64D13/006—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being used to cool structural parts of the aircraft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2050/00—Applications
- F01P2050/20—Aircraft engines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Silencers (AREA)
Abstract
항공기용 엔진 냉각 시스템이 제공된다. 상기 항공기용 엔진 냉각 시스템은 일측에 흡입구를 구비하고 타측에 배기구를 구비하는 카울과 카울의 내부를 상부와 하부로 분리하는 배플을 포함하여 구성된다.
Description
본 발명은 항공기용 엔진 냉각 시스템에 관한 것으로, 보다 상세하게는 엔진의 냉각 요구도를 만족하면서 항력을 최소화할 수 있는 항공기용 엔진 냉각 시스템에 관한 것이다.
공랭식 피스톤 엔진을 장착한 항공기에서는 엔진의 성능 및 항공기 안전에 영향을 주는 엔진 냉각이 매우 중요하게 여겨지기 때문에 실린더 핀의 형상이나 냉각 공기의 유로와 같은 엔진 냉각 방식에 대한 많은 연구가 이루어지고 있다.
소형 항공기의 엔진 냉각은 압력냉각 방식이 대부분을 차지하는데 소형 항공기 개발에서 엔진 냉각설계는 항상 어려운 부분이며 개발과정 중에 많은 시행착오를 수반하게 되며 형식인증기준을 만족하는 결과를 얻기 까지 수많은 시제품 제작과 이에 대한 시험을 반복하여야 한다.
특히, 압력냉각 방식을 위한 흡/배기구 설계에 있어서 높은 압력차를 유지하기 위해서는 큰 흡입구와 큰 배기구가 필요하지만 입/출구에서 모멘텀 변화에 의한 항력이 증가하기 때문에 흡/배기구의 크기에 한계가 있는 문제점이 있었다.
본 발명이 이루고자 하는 기술적 과제는 엔진의 냉각 요구도를 만족하면서 항력을 최소화할 수 있는 항공기용 엔진 냉각 시스템을 제공하는데 있다.
본 발명의 목적은 이상에서 언급된 목적으로 제한되지 않으며, 언급되지 않은 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 이루기 위한 본 발명의 일 양태에 따르면, 항공기용 엔진을 감싸고, 일측에 흡입구를 구비하고, 타측에 배기구를 구비하는 카울 및 상기 카울의 내부에 형성되며, 상기 카울 내부를 상부와 하부로 분리하는 배플을 포함하고, 상기 흡입구는 항공기용 엔진과 연결되는 프로펠러 뒤에 위치하며, 상기 프로펠러의 회전에 의해 발생하는 공기를 흡입하며, 상기 흡입구의 면적은 하기 수학식 1에 의하여 결정되는 항공기용 엔진 냉각 시스템.
[수학식 1]
상기 수학식 1에서, 은 상기 흡입구의 면적이고, r은 면적비로서 소정의 비행조건에서 자유흐름일때의 흡입구 면적과 설계시 흡입구 면적의 비이고, QDemand 는 요구되는 엔진 냉각유량, Vspeed 는 항공기의 속도를 나타낸다.
상기 기술적 과제를 이루기 위한 본 발명의 다른 양태에 따르면, 상기 소정의 비행조건은 고도 0ft 에서 최대 순항 조건을 기준으로 한다.
상기 기술적 과제를 이루기 위한 본 발명의 다른 양태에 따르면, 상기 배기구 면적은 하기 수학식 2에 의하여 결정된다.
[수학식 2]
상기 기술적 과제를 이루기 위한 본 발명의 다른 양태에 따르면, 상기 흡입구는 상기 카울 내부로 갈수록 단면적이 증가하는 디퓨저(diffuser)형태를 갖는다.
상기 기술적 과제를 이루기 위한 본 발명의 다른 양태에 따르면, 상기 배플은 상기 흡입구와 인접한 부분에서 상기 카울의 내부로 갈수록 상방 경사진 형태를 갖는다.
상기 기술적 과제를 이루기 위한 본 발명의 다른 양태에 따르면, 상기 카울과 상기 배플 사이에 배플씰을 더 포함한다.
상기 기술적 과제를 이루기 위한 본 발명의 다른 양태에 따르면, 상기 카울의 하부 측면에 적어도 하나의 루버 배기구를 더 포함한다.
상기 기술적 과제를 이루기 위한 본 발명의 다른 양태에 따르면, 상기 루버 배기구는 상기 배기구의 상부에 위치되며, 상기 루버 배기구의 미늘판은 세로 방향으로 형성된다.
본 발명에 따른 항공기용 엔진 냉각 시스템은 엔진의 냉각 요구도를 만족하면서 항력을 최소화할 수 있는 효과가 있다.
도 1은 본 발명의 일실시 예에 따른 항공기용 엔진 냉각 시스템의 개략적인 구성을 나타내는 도면.
도 2는 본 발명의 일실시 예에 따른 항공기용 엔진 냉각 시스템의 사시도.
도 3는 배플 및 배플씰을 나타내는 도면.
도 4은 루버 배기구를 나타내는 도면.
도 2는 본 발명의 일실시 예에 따른 항공기용 엔진 냉각 시스템의 사시도.
도 3는 배플 및 배플씰을 나타내는 도면.
도 4은 루버 배기구를 나타내는 도면.
이하, 첨부한 도면들 및 후술되어 있는 내용을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 한편, 본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급되지 않는 한 복수형도 포함된다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자가 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
이하, 도 1 내지 도 4를 참조하여, 본 발명의 일실시예에 따른 항공기용 엔진 냉각 시스템에 대하여 상세히 설명하기로 한다.
도 1은 본 발명의 일실시 예에 따른 항공기용 엔진 냉각 시스템의 개략적인 구성을 나타내는 도면이다.
도 1을 참조하면 본 발명에 의한 항공기용 엔진 냉각 시스템(100)은 항공기용 엔진(60)을 감싸면서 일측에 흡입구(10)를 구비하고 타측에 배기구(20)를 구비하는 카울(30)과, 카울(30)의 내부를 상부와 하부로 분리하는 배플(40)을 포함하여 구성된다.
흡입구(10)는 항공기용 엔진(60)과 연결되는 프로펠러(70) 뒤에 위치하며, 상기 프로펠러(70)의 회전에 의해 발생하는 공기를 흡입한다. 도 1에서는 공기의 흐름을 명확하게 나타내기 위하여 엔진(60)과 프로펠러(70)의 연결관계는 생략하고 도시하였다.
배플(40)의 중간 부분에 엔진(60)이 위치하는 구조를 가지며, 엔진(60)에 형성되어 있는 엔진 실린더 핀(미도시), 인터쿨러(미도시), 오일 냉각기(미도시)등 엔진(60) 냉각에 필요한 부분들은 흡입구(10)로 유입된 공기에 의해서 냉각된다. 이하에서 엔진(60)의 냉각이라 함은 엔진 실린더 핀, 인터쿨러, 오일 냉각기 등 엔진(60) 냉각에 필요한 모든 구성요소들의 냉각을 포함하는 것을 의미한다.
흡입구(10)로 유입된 공기는 배플(40)의 상부로 유도되어 배플(40)의 상부에서는 항공기 속도에 의한 높은 압력이 발생하고, 배플(40)의 하부에서는 배기구(20)에 의한 배기현상으로 낮은 압력이 작용할 수 있다. 이에 따라, 배플(40)의 상, 하부간의 높은 압력 차를 이용하여 엔진(60)을 냉각시키는 것이다.
따라서, 높은 압력차를 유지하기 위해서는 큰 흡입구(10)와 큰 배기구(20)가 필요하지만, 이에 따른 모멘텀 변화에 의한 항력 증가로 흡입구(10)와 배기구(20)를 무작정 크게 설계할 수도 없다.
따라서 본 발명에 의한 항공기용 엔진 냉각 시스템은 엔진의 냉각 요구도를 만족하면서 항력이 최소화 되는 시스템을 제공하고자 한다.
이를 위해 흡입구(10)의 면적은 하기 수학식1에 의해 결정된다.
[수학식 1]
상기 수학식 1에서, 은 상기 흡입구의 면적이고, r은 면적비로서 소정의 비행조건에서 자유흐름일때의 흡입구 면적과 설계시 흡입구 면적의 비이고, QDemand 는 요구되는 엔진 냉각유량, Vspeed 는 항공기의 속도를 나타낸다.
이 경우에, 상기 소정의 비행조건은 고도 0ft 에서 최대 순항 조건을 기준으로하여 정해질 수 있다. 항공기의 고도가 높으면 대기 온도가 낮아지기 때문에 흡입구(10) 설계시 가장 큰 흡입구(10)면적이 나오기 위해서는 고도 조건은 0ft 이어야 하며, 순항 조건과 상승 조건에서는 순항 조건에서 더 큰 흡입구(10)면적이 요구된다.
예컨대, 순항 조건에서는 면적비 r을 0.4, 상승 조건에서는 면적비 r을 0.8로 정의하여 흡입구(10) 면적을 결정할 수 있는데 상기한 r 값을 고려하게 되면 상승 조건보다는 순항 조건일 때 필요한 흡입구(10)의 면적이 더 크다는 것을 상기 수학식 1을 통해서 알 수 있다. 상승 조건에서는 항공기 상승을 위해 속도를 증가 시켜야 하는데 실제 항공기의 속도가 증가할수록 흡입구의 면적이 크지 않더라도 속도에 의한 압력 상승이 크기 때문에 면적비 r값이 순항 조건에서보다 큰 값으로 설정될 수 있는 것이다. 더욱이 이러한 순항조건에서도 냉각 효율과 항력간의 관계를 고려하면, 최대 순항 조건에서의 면적비 r을 이용하여 흡입구(10)의 면적이 결정되어야 한다.
상기 배기구(20)의 면적은 하기 수학식 2에 의해 결정될 수 있다.
[수학식 2]
상기 수학식 2에서, 는 상기 배기구(20)의 면적이고, 은 상기 흡입구(10)의 공기 밀도, 은 상기 배기구(20)의 공기 밀도, 는 상기 배기구(20)의 공기 온도, 는 대기온도이다.
배기구(20)의 면적은 공기가 엔진(60)의 실린더 핀을 통과하면서 발생하는 온도 상승에 의한 열팽창을 고려해야 한다. 이는 카울(30) 내에서 밀도 변화로 인해 공기의 부피가 증가하여 냉각 유량이 감소하는데 배기구(20)의 면적이 작으면 카울(30)내의 압력이 상승하여 냉각 유량 감소를 가속화시키기 때문이다. 따라서 배기구(20)는 흡입구(10)의 면적보다 크게 설계되어야 한다.
배기구(20)의 면적은 상기 수학식 2와 같이 흡입구(10)와 배기구(20)에서의 밀도의 함수로 나타낼 수 있는데, 저속으로 비행하는 항공기에서는 밀도는 압력보다는 온도에 민감하게 변하므로 온도의 함수로 표현될 수 있다. 또한, 저속으로 비행하는 항공기에서는 압축성 효과가 거의 없기 때문에 흡입구(10)의 온도와 대기온도가 동일하다고 가정할 수 있고 상기 수학식 2와 같이 대기온도와 배기구(20)의 공기 온도의 함수로 표현될 수 있다.
상기 수학식 2에 따라 배기구(20)의 면적을 흡입구(10)의 면적보다 1.2배 크게 결정하면, 표준 대기 온도 기준으로 배기구(20)의 공기 온도가 대략 73도 상승한 조건이 된다.
도 2는 본 발명의 일실시 예에 따른 흡입구 및 배기구를 나타내는 도면이다.
다시 도 1 및 도 2를 참조하면 흡입구(10)는 프로펠러의 에너지를 이용하기 위하여 프로펠러 뒤에 위치하고 있으며, 효율적인 엔진 냉각을 위해서는 흡입구(10)의 위치도 중요하다. 흡입구(10) 위치는 가능한 카울(30) 바깥측으로 배치함이 유리하다.
또한, 흡입구(10)의 형상도 중요한 요소가 될 수 있다. 흡입구(10)의 형상도 압력손실을 최소화 하여 냉각 효율을 높이기 위해서 디퓨저 형태를 가짐이 바람직하다. 즉, 도 1에서 보는 바와 같이 흡입구(10)의 형상이 상기 카울(30)의 내부로 갈수록 단면적이 증가하도록 함으로서 압력손실을 줄일 수 있다.
도 3은 본 발명의 일실시 예에 따른 배플(40) 및 배플씰(41)을 나타낸 도면이다.
도 3을 참조하면, 배플(40)이 카울(30) 내부를 상부와 하부로 나누어 압력 차이를 높게 유지하는 역할을 한다. 이때 흡입공기의 압력회복에 도움을 주고자 흡입구(10)와 인접한 부분에서 상기 카울(30)의 내부로 갈수록 상방 경사진 형태를 갖게 할 수 있다. 도 1에서 보는 바와 같이 흡입구(10)로 흡입된 공기는 배플(40)의 경사에 의해 카울(30)의 상부로 상승하고, 그 결과 카울(30)의 상부와 하부와의 압력차를 더 크게 할 수 있다.
도 3을 참조하면, 카울(30)과 배플(40)사이의 틈을 통해 공기의 유출을 막기위해서 배플씰(41)을 더 포함하여 구성될 수 있다.
도 4는 본 발명의 일실시 예에 따른 루버 배기구(50)를 나타내는 도면이다. 도 4를 참조하면, 본 발명의 일실시 예에 따른 항공기용 엔진 냉각 시스템은 카울(30)의 하부 측면에 적어도 하나의 루버 배기구(50)를 더 포함할 수 있다.
흡입구(10)와 배기구(20)의 면적비율을 조절함으로서 효과적인 엔진 냉각 성능을 발휘할 수 있지만, 보다 나은 냉각을 위해서 루버 배기구(50)를 추가하여 배기되는 공기의 유량이 많아지도록 하기 위함이다.
또한, 카울(30) 외부의 공기는 내부로 들어오지 않으면서 카울(30)내부의 공기가 외부로 빠져나갈 수 있도록 루버 배기구(50)의 미늘판들(51)은 세로 방향으로 형성될 수 있으며, 상기 루버 배기구(50)는 상기 배기구(20)의 상부에 위치될 수 있다.
이상에서 대표적인 실시 예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 상술한 실시 예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태에 의하여 정해져야 한다.
10 : 흡입구 20 : 배기구
30 : 카울 40 : 배플
41 : 배플씰 50 : 루버 배기구
51 : 미늘판 60 : 엔진
70 : 프로펠러
100 : 항공기용 엔진 냉각 시스템
30 : 카울 40 : 배플
41 : 배플씰 50 : 루버 배기구
51 : 미늘판 60 : 엔진
70 : 프로펠러
100 : 항공기용 엔진 냉각 시스템
Claims (8)
- 항공기용 엔진을 감싸고, 일측에 흡입구를 구비하고, 타측에 배기구를 구비하는 카울 및
상기 카울의 내부에 형성되며, 상기 카울 내부를 상부와 하부로 분리하는 배플을 포함하고,
상기 흡입구는 항공기용 엔진과 연결되는 프로펠러 뒤에 위치하며, 상기 프로펠러의 회전에 의해 발생하는 공기를 흡입하며,
상기 흡입구의 면적은 하기 수학식 1에 의하여 결정되고, 상기 배기구의 면적은 하기 수학식 2에 의하여 결정되되,
상기 배기구의 면적은 상기 흡입구의 면적보다 크게 설계되는 항공기용 엔진 냉각 시스템.
[수학식 1]
상기 수학식 1에서, 은 상기 흡입구의 면적이고, r은 면적비로서 소정의 비행조건에서 자유흐름일때의 흡입구 면적과 설계시 흡입구 면적의 비이고, QDemand 는 요구되는 엔진 냉각유량, Vspeed 는 항공기의 속도를 나타낸다.
[수학식 2]
상기 수학식 2에서, 는 상기 배기구의 면적이고, 은 상기 흡입구의 공기 밀도, 은 상기 배기구의 공기 밀도, 는 상기 배기구의 공기 온도, 는 대기온도이다. - 제 1항에 있어서,
상기 소정의 비행조건은 고도 0ft 에서 최대 순항 조건을 기준으로 하는 항공기용 엔진 냉각 시스템. - 삭제
- 제 1항 또는 제 2항에 있어서,
상기 흡입구는 상기 카울 내부로 갈수록 단면적이 증가하는 디퓨저(diffuser)형태를 갖는 항공기용 엔진 냉각 시스템. - 제 1항에 있어서,
상기 배플은 상기 흡입구와 인접한 부분에서 상기 카울의 내부로 갈수록 상방 경사진 형태를 갖는 항공기용 엔진 냉각 시스템. - 제 1항에 있어서,
상기 카울과 상기 배플 사이에 배플씰을 더 포함하는 항공기용 엔진 냉각 시스템. - 제 1항에 있어서,
상기 카울의 하부 측면에 적어도 하나의 루버 배기구를 더 포함하는 항공기용 엔진 냉각 시스템. - 제 7항에 있어서,
상기 루버 배기구는 상기 배기구의 상부에 위치되며, 상기 루버 배기구의 미늘판은 세로 방향으로 형성되는 항공기용 엔진 냉각 시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130034117A KR101501134B1 (ko) | 2013-03-29 | 2013-03-29 | 항공기용 엔진 냉각 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130034117A KR101501134B1 (ko) | 2013-03-29 | 2013-03-29 | 항공기용 엔진 냉각 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140118367A KR20140118367A (ko) | 2014-10-08 |
KR101501134B1 true KR101501134B1 (ko) | 2015-03-11 |
Family
ID=51991234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130034117A KR101501134B1 (ko) | 2013-03-29 | 2013-03-29 | 항공기용 엔진 냉각 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101501134B1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020045931A1 (ko) * | 2018-08-31 | 2020-03-05 | (주)두산 모빌리티 이노베이션 | 연료전지 파워팩의 공기 순환 구조 |
WO2020046012A1 (ko) * | 2018-08-31 | 2020-03-05 | (주)두산 모빌리티 이노베이션 | 연료전지 파워팩 일체형 드론의 공기 순환 조절 구조 |
KR20220153400A (ko) | 2021-05-11 | 2022-11-18 | 현대자동차주식회사 | 프로펠러용 구동기를 이용한 오일 분산 시스템 |
KR20230050964A (ko) | 2021-10-08 | 2023-04-17 | 현대자동차주식회사 | 전력 및 열 관리 시스템 |
US11760228B2 (en) | 2021-05-11 | 2023-09-19 | Hyundai Motor Company | Electric power and thermal management system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115571350B (zh) * | 2022-11-09 | 2024-08-20 | 中国航空发动机研究院 | 一种飞行器换热装置及航空发动机 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235541A (ja) * | 2001-02-08 | 2002-08-23 | Yanmar Diesel Engine Co Ltd | エンジンの排気装置 |
KR20120054235A (ko) * | 2010-11-19 | 2012-05-30 | 한국항공우주산업 주식회사 | 헬리콥터 적외선 억제장치 |
KR101329201B1 (ko) * | 2012-04-10 | 2013-11-14 | 한국항공우주산업 주식회사 | 항공기용 공랭식 피스톤 엔진 냉각용 시스템 |
-
2013
- 2013-03-29 KR KR1020130034117A patent/KR101501134B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235541A (ja) * | 2001-02-08 | 2002-08-23 | Yanmar Diesel Engine Co Ltd | エンジンの排気装置 |
KR20120054235A (ko) * | 2010-11-19 | 2012-05-30 | 한국항공우주산업 주식회사 | 헬리콥터 적외선 억제장치 |
KR101329201B1 (ko) * | 2012-04-10 | 2013-11-14 | 한국항공우주산업 주식회사 | 항공기용 공랭식 피스톤 엔진 냉각용 시스템 |
Non-Patent Citations (2)
Title |
---|
EAA Sport Aviation, pp.106-111 (2007.12.31) * |
EAA Sport Aviation, pp.106-111 (2007.12.31)* |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020045931A1 (ko) * | 2018-08-31 | 2020-03-05 | (주)두산 모빌리티 이노베이션 | 연료전지 파워팩의 공기 순환 구조 |
WO2020046012A1 (ko) * | 2018-08-31 | 2020-03-05 | (주)두산 모빌리티 이노베이션 | 연료전지 파워팩 일체형 드론의 공기 순환 조절 구조 |
KR20200025859A (ko) * | 2018-08-31 | 2020-03-10 | (주)두산 모빌리티 이노베이션 | 연료전지 파워팩의 공기 순환 구조 |
KR20200025864A (ko) * | 2018-08-31 | 2020-03-10 | (주)두산 모빌리티 이노베이션 | 연료전지 파워팩 일체형 드론의 공기 순환 조절 구조 |
KR102121663B1 (ko) * | 2018-08-31 | 2020-06-10 | (주)두산 모빌리티 이노베이션 | 연료전지 파워팩 일체형 드론의 공기 순환 조절 구조 |
KR102121662B1 (ko) * | 2018-08-31 | 2020-06-10 | (주)두산 모빌리티 이노베이션 | 연료전지 파워팩의 공기 순환 구조 |
KR20220153400A (ko) | 2021-05-11 | 2022-11-18 | 현대자동차주식회사 | 프로펠러용 구동기를 이용한 오일 분산 시스템 |
US11754087B2 (en) | 2021-05-11 | 2023-09-12 | Hyundai Motor Company | Oil dispersion system using actuator for propellers |
US11760228B2 (en) | 2021-05-11 | 2023-09-19 | Hyundai Motor Company | Electric power and thermal management system |
KR20230050964A (ko) | 2021-10-08 | 2023-04-17 | 현대자동차주식회사 | 전력 및 열 관리 시스템 |
Also Published As
Publication number | Publication date |
---|---|
KR20140118367A (ko) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101501134B1 (ko) | 항공기용 엔진 냉각 시스템 | |
US7611093B2 (en) | Dual flow APU inlet and associated systems and methods | |
US10006813B2 (en) | Temperature sensors | |
US10100733B2 (en) | Turbine engine with anti-ice valve assembly, bleed air valve, and method of operating | |
EP2913492B1 (en) | Blowby gas processing device of internal combustion engine | |
US20180127089A1 (en) | Turboelectric Aircraft with Aft Propulsion | |
US7690595B2 (en) | System, method, and apparatus for throat corner scoop offtake for mixed compression inlets on aircraft engines | |
US10989071B2 (en) | High efficiency ducted heat exchanger systems | |
CN101687552B (zh) | 用于交通工具特别是飞行器的空气吸入设备 | |
CN101730791A (zh) | 用于飞行器的涡轮喷气发动机 | |
BRPI0818699B1 (pt) | Entrada de baixa força de choque | |
CN105651419A (zh) | 用于诊断中间冷却器的恶化的方法 | |
JP2016531032A (ja) | 航空機用共形表面熱交換器 | |
US9611744B2 (en) | Intercooled compressor for a gas turbine engine | |
US9267419B2 (en) | Convex fan shroud | |
JP2020006948A (ja) | 防除氷システム及び防除氷システムを用いて着氷を防ぐ方法 | |
CA2861175A1 (en) | Internally cooled airfoil | |
EP2116468A2 (en) | Systems and methods for a passive, forced convection cooling system | |
US20090217643A1 (en) | Gas discharge device for a vehicle engine | |
CN105593533B (zh) | 双喇叭口护罩 | |
KR101329201B1 (ko) | 항공기용 공랭식 피스톤 엔진 냉각용 시스템 | |
US9435210B2 (en) | Cooled turbine blade for gas turbine engine | |
US11326515B2 (en) | Arrangements for drawing in air and trapping foreign bodies in an aircraft propulsion assembly | |
US10837706B2 (en) | Heat exchanger fitted with upstream cover to reduce disturbance to fluid flow in a turbomachine | |
US20160280388A1 (en) | Intake structure of aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180205 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190219 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20200226 Year of fee payment: 6 |