KR101500644B1 - Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode - Google Patents

Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode Download PDF

Info

Publication number
KR101500644B1
KR101500644B1 KR1020120151310A KR20120151310A KR101500644B1 KR 101500644 B1 KR101500644 B1 KR 101500644B1 KR 1020120151310 A KR1020120151310 A KR 1020120151310A KR 20120151310 A KR20120151310 A KR 20120151310A KR 101500644 B1 KR101500644 B1 KR 101500644B1
Authority
KR
South Korea
Prior art keywords
pitch
graphite
secondary battery
anode material
anode
Prior art date
Application number
KR1020120151310A
Other languages
Korean (ko)
Other versions
KR20140091088A (en
Inventor
김병주
김용중
박세민
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020120151310A priority Critical patent/KR101500644B1/en
Publication of KR20140091088A publication Critical patent/KR20140091088A/en
Application granted granted Critical
Publication of KR101500644B1 publication Critical patent/KR101500644B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 의한 2차 전지용 음극재의 제조방법은 분말형태의 구상흑연을 용기 내에 충진한 후 진공상태로 유지하는 단계, 상기 용기 내에 핏치 용액을 주입하여 교반하여 핏치-흑연 페이스트를 제조하는 단계, 상기 핏치-흑연 페이스트를 진공상태로 가열하여 용매를 휘발시켜 구상흑연에 핏치를 코팅하는 단계 및 상기 핏치가 코팅된 구상흑연을 열처리하여 탄화처리하는 단계를 포함한다.The method for manufacturing an anode material for a secondary battery according to the present invention comprises the steps of filling spherical graphite powder in a vessel and keeping the spherical graphite in a vacuum state; injecting a pitch solution into the vessel and stirring to prepare a pitch-graphite paste; Heating the pitch-graphite paste to a vacuum to volatilize the solvent to coat the spherical graphite with the pitch; and heat treating and carbonizing the spherical graphite coated with the pitch.

Description

2차 전지용 음극재 및 그의 제조방법{Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode}[0001] The present invention relates to an anode active material for a secondary battery, and an anode active material for a secondary battery,

본 발명은 2차 전지용 음극재 및 그 제조방법에 관한 것으로, 보다 상세하게는 흑연입자 내외부에 핏치에 의해 균일하게 탄소코팅층을 형성함으로써 충전 대비 방전효율이 우수하고 수명이 향상된 음극재 및 그 제조방법에 관한 것이다.The present invention relates to an anode material for a secondary battery and a manufacturing method thereof, and more particularly, to an anode material having an excellent charging and discharging efficiency and an improved life span by uniformly forming a carbon coating layer on the inside and outside of the graphite particle by a pitch, .

최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 2차 전지의 수요가 급속히 증대되고 있다. 특히 리튬 2차 전지는 경량이고 고 에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 2차 전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.2. Description of the Related Art In recent years, with the rapid spread of electronic devices using batteries such as mobile phones, notebook computers, and electric vehicles, demand for secondary batteries that are small and lightweight and relatively high in capacity has been rapidly increasing. Particularly, the lithium secondary battery is light in weight and has a high energy density, and is attracting attention as a driving power source for portable devices. Accordingly, research and development efforts have been actively made to improve the performance of the lithium secondary battery.

리튬이차전지의 음극재로는 현재 천연흑연, 인조흑연 등이 상업화에 성공하여 주로 적용되고 있다. 특히 천연흑연계 음극재는 인조흑연에 비해서 높은 용량을 발현하고 있는 것으로 알려져 있다. 이러한 고용량의 장점에도 불구하고 천연흑연은 인조흑연에 열등한 수명특성을 가지는 것으로 알려져 있다. 특히 천연흑연은 대부분 판상형태를 가지기 때문에 전극제조공정의 용이성 및 충진밀도의 증가, 출력특성의 개선 등을 위해 구상화된 형태의 천연흑연이 주로 사용되고 있다. At present, natural graphite and artificial graphite have been commercialized and applied mainly to an anode material of a lithium secondary battery. In particular, natural graphite anode materials are known to exhibit higher capacity than artificial graphite. Despite the advantages of such high capacity, natural graphite is known to have poor lifetime characteristics in artificial graphite. In particular, since natural graphite has mostly a plate shape, spheroidized natural graphite is mainly used for easiness of electrode manufacturing process, increase of packing density, and improvement of output characteristics.

그러나 천연흑연의 구상화 공정에 의해 생성되는 흑연구조의 결함 및 내부응력 등으로 인해 반복되는 충방전과정에 천연흑연의 수명특성이 열화되는 것으로 알려져 있다. 이러한 수명특성의 열화는 특히, 흑연과 전해질의 반응에 의해 발생되는 전해질의 분해와 그로 인한 흑연과 전해질 계면의 SEI(solid electrolyte interface)층의 형성과 깊은 관계가 있다. 형성된 SEI층은 전해질의 분해반응이 더 진행되지 않도록 하는 보호막의 역할을 수행하기 때문에 안정적인 SEI의 형성이 매우 중요하다.However, it is known that the lifetime characteristics of natural graphite deteriorate during repeated charging and discharging due to defects of graphite structure and internal stress generated by the spheroidization process of natural graphite. This deterioration in the lifetime characteristics is particularly related to the decomposition of the electrolyte generated by the reaction of graphite and electrolyte and the formation of SEI (solid electrolyte interface) layer at the interface between graphite and electrolyte. The formation of a stable SEI is very important because the formed SEI layer serves as a protective film to prevent the degradation reaction of the electrolyte from progressing further.

종래에는 천연흑연의 수명특성의 개선을 위해서 흑연입자 표면에 핏치 또는 고분자 수지를 코팅한 후, 열처리를 통해 탄소층을 형성시킨 구조의 음극재가 주로 적용되고 있다. 이렇게 형성된 탄소코팅층은 천연흑연 입자의 표면의 엣지(edge) 및 결합부위에 코팅하여 흑연표면의 전해질과의 반응성을 제어하고 안정적인 SEI층을 형성시키도록 하는 기능을 제공하고 있다.Conventionally, a negative electrode material having a structure in which a pitch or a polymer resin is coated on the surface of graphite particles and a carbon layer is formed through heat treatment is applied to improve the lifetime characteristics of natural graphite. The carbon coating layer thus formed functions to coat the edges and joints of the surface of the natural graphite particles to control the reactivity of the graphite surface with the electrolyte and form a stable SEI layer.

일본 특개평 2002-348109는 결정질계 탄소재료의 엣지 부분에서 전해액의 분해 반응이 유발되는 것을 방지하기 위해 탄화물층을 코팅한 탄소재료계 음극 활물질을 개시하고 있다.Japanese Patent Application Laid-Open No. 2002-348109 discloses a carbon material-based negative electrode active material in which a carbide layer is coated in order to prevent the decomposition reaction of an electrolytic solution from being caused at an edge portion of a crystalline carbon material.

한국 특허공개 2009-34589는 심재 탄소재료의 엣지 부분에 탄화물층을 형성하고 XRD 측정데이터를 기초로 물성 파라미터를 정의하여 압착 공정을 진행하더라도 전기화학적 특성이 열화되지 않는 물성값을 가지는 탄소재료계 음극 활물질을 개시하고 있다.Korean Patent Laid-Open Publication No. 2009-34589 discloses a carbon material-based anode active material having a property value in which electrochemical characteristics are not deteriorated even if a carbide layer is formed at the edge portion of the core carbon material and the compression process is performed by defining physical parameters based on XRD measurement data .

그러나, 구상흑연 내부에는 도1과 같이 천연흑연의 구상화 공정 중에 형성된 기공이 포함되어 있다. 이렇게 형성되어 있는 입자내부의 기공으로 인해 전해질과 흑연간의 새로운 흑연-전해질간 계면이 형성될 가능성이 있다. 특히 고밀도의 전극을 형성하는 과정에서 전극에 압착하는 과정에서 그 구조의 변형이 발생하게 되며, 이로 인해 탄화물층이 코팅되지 않은 흑연구조가 외부로 노출되게 된다. 이러한 내부 흑연의 노출은 제어되지 않은 흑연-전해질간의 부반응을 초래하여 비가역반응이 증가하게 된다.However, as shown in Fig. 1, pore formed in the nodularization process of natural graphite is contained in the nodular graphite. There is a possibility that a new graphite-electrolyte interface is formed between the electrolyte and the graphite due to the pores inside the particles thus formed. Especially, in the process of forming the high density electrode, the structure is deformed in the process of pressing to the electrode, so that the graphite structure in which the carbide layer is not coated is exposed to the outside. This exposure of the internal graphite causes a side reaction between the uncontrolled graphite and the electrolyte, thereby increasing the irreversible reaction.

따라서, 고밀도 전극제조 조건에서 장수명 특성을 확보하기 위해서 구상 천연흑연 내부까지 흑연표면에 균일한 탄소코팅층의 형성이 필요한 상황이다.Therefore, it is necessary to form a uniform carbon coating layer on the graphite surface to the inside of the spherical natural graphite in order to secure the long-life characteristics under the conditions of high-density electrode production.

본 발명은 이러한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 구상화된 천연흑연 내부 및 외부에 균일한 탄소코팅층을 형성시켜 장수명 안정성을 가지는 고밀도 전극을 성형할 수 있는 2차 전지용 음극재 및 그 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a negative electrode material for a secondary battery capable of forming a high density electrode having long life stability by forming a uniform carbon coating layer inside and outside the spheroidized natural graphite, And a manufacturing method thereof.

위 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 2차 전지용 음극재의 제조방법은 분말형태의 구상흑연을 용기 내에 충진한 후 진공상태로 유지하는 단계, 상기 용기 내에 핏치 용액을 주입하여 교반하여 핏치-흑연 페이스트를 제조하는 단계, 상기 핏치-흑연 페이스트를 진공상태로 가열하여 용매를 휘발시켜 구상흑연에 핏치를 코팅하는 단계 및 상기 핏치가 코팅된 구상흑연을 열처리하여 탄화처리하는 단계를 포함한다.In order to accomplish the above object, a method of manufacturing an anode material for a secondary battery according to an embodiment of the present invention includes the steps of filling powdery spheroidal graphite in a container and then maintaining the powder in a vacuum state, injecting a pitch solution into the container, Graphite paste by heating the pitch-graphite paste in a vacuum state to volatilize the solvent to coat the pitch with spherical graphite, and carbonizing the spherical graphite coated with the pitch by heat treatment .

상기 핏치 용액에 사용되는 용매는 테트라하이드로푸란(tetrahydrofuran, THF) 또는 테트라하이드로퍼퍼릴알콜, 쿼놀린, 피리딘 중에서 선택된 어느 하나일 수 있다.The solvent used in the pitch solution may be any one selected from tetrahydrofuran (THF) or tetrahydroperfuryl alcohol, quinoline, and pyridine.

상기 핏치-흑연 페이스트의 진공 가열온도는 70~100℃일 수 있다.The vacuum heating temperature of the pitch-graphite paste may be 70 to 100 ° C.

상기 탄화처리하는 단계에서의 열처리 온도는 1000~2000℃일 수 있다.The heat treatment temperature in the carbonization step may be 1000 to 2000 ° C.

또한, 본 발명의 일 실시예에 따른 2차 전지용 음극재는 구상화된 천연 흑연의 내부 및 외부에 균일한 탄소코팅층이 형성된 것을 특징으로 한다.Also, the negative electrode material for a secondary battery according to an embodiment of the present invention is characterized in that a uniform carbon coating layer is formed on the inside and outside of the spheroidized natural graphite.

상기 탄소코팅층은 핏치의 탄화공정으로 형성된 것일 수 있다.The carbon coating layer may be formed by a carbonization process of the pitch.

상기 탄소코팅층은 2㎛ 이하의 입자 내부의 기공이 0.1ml/g이하일 수 있다.The carbon coating layer may have a pore size of 0.1 m < 2 > / g or less within 2 mu m or less.

본 발명에 의한 2차 전지용 음극재의 제조방법에 따르면 구상흑연의 내, 외부에 균일한 탄소코팅층을 형성시켜서 고밀도의 전극제조시의 압착공정에 의하여도 내외부에 안정적인 SEI를 형성시키며 전해액과의 부반응을 방지해주는 음극재의 제조방법을 제공한다. 또한, 이를 통하여 고에너지 밀도, 장수명의 2차 전지를 제조할 수 있다.According to the method for producing an anode material for a secondary battery according to the present invention, a uniform carbon coating layer is formed on the inside and the outside of the spheroidal graphite so that a stable SEI is formed both inside and outside by a compression process at the time of manufacturing a high density electrode. The present invention also provides a method of manufacturing an anode material. In addition, it is possible to manufacture a secondary battery having a high energy density and a long life.

도 1은 구상화된 천연흑연의 단면사진이다.
도2는 실시예1에 따른 음극재 단면의 투과전자현미경(TEM) 사진이다.
도3은 비교예1 에 따른 음극재 단면의 투과전자현미경(TEM) 사진이다.
도4는 비교예 2에 따른 음극재 단면의 투과전자현미경(TEM) 사진이다.
도3은 실시예1, 비교예1 및 비교예2의 반복충방전 테스트를 통한 수명특성 평가 결과를 나타낸 그래프이다.
1 is a cross-sectional photograph of naturally graphitized natural graphite.
2 is a transmission electron microscope (TEM) photograph of the anode material cross section according to Example 1. Fig.
3 is a transmission electron microscope (TEM) photograph of the anode material cross section according to Comparative Example 1. Fig.
4 is a transmission electron microscope (TEM) photograph of the anode material cross section according to Comparative Example 2. Fig.
Fig. 3 is a graph showing the results of evaluation of lifetime characteristics by repeated charging / discharging tests of Example 1, Comparative Example 1 and Comparative Example 2. Fig.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings. However, it is to be understood that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It is intended that the disclosure of the present invention be limited only by the terms of the appended claims. Like reference numerals refer to like elements throughout the specification.

이하, 본 발명의 일 실시예에 의한 2차 전지용 음극재 및 그의 제조방법에 대하여 설명하기로 한다.Hereinafter, an anode material for a secondary battery according to an embodiment of the present invention and a method of manufacturing the same will be described.

본 발명의 일 실시예에 따른 2차 전지용 음극재의 제조방법은 분말형태의 구상흑연을 용기내 충진한 후 진공상태로 유지하는 단계, 상기 용기 내에 핏치 용액을 주입하여 교반하여 핏치-흑연 페이스트를 제조하는 단계, 상기 핏치-흑연 페이스트를 진공상태로 가열하여 용매를 휘발시켜 구상흑연에 핏치를 코팅하는 단계 및 상기 핏치가 코팅된 구상흑연을 열처리하여 탄화처리하는 단계를 포함한다.A method for manufacturing an anode material for a secondary battery according to an embodiment of the present invention includes the steps of filling a spherical graphite powder in a vessel and keeping it in a vacuum state, injecting a pitch solution into the vessel, stirring the mixture to form a pitch- Coating the spheroidal graphite with the pitch by heating the pitch-graphite paste in a vacuum to volatilize the solvent, and heat treating and carbonizing the spheroidal graphite coated with the pitch.

우선 구상화된 천연흑연을 분말상태로 용기내에 충전한 후, 용기를 밀폐하고 진공상태로 유지시킨다. 구상화된 천연흑연의 경우 도1에 도시한 바와 같이 내부에 기공을 포함할 수 있다. 이러한 기공에 탄소코팅층을 형성시키는 것이 본 발명의 핵심이라고 할 수 있다. 상기 용기를 진공상태로 유지시키는 이유는 추후 공정에서 핏치에 의해 천연흑연의 내부에도 코팅층이 형성될 수 있도록 기공에 존재할 수 있는 공기가 제거된 상태를 형성하기 위함이다.First, the spheroidized natural graphite is filled in a container in a powder state, and then the container is closed and kept in a vacuum state. In the case of spheroidized natural graphite, as shown in FIG. 1, it may include pores therein. It is the core of the present invention to form a carbon coating layer on such pores. The reason why the container is maintained in a vacuum state is to form a state in which air that may be present in the pores is removed so that a coating layer can be formed in the interior of natural graphite by a pitch in a subsequent process.

진공상태의 용기에 석유계/석탄계 핏치가 용매에 용해된 핏치용액을 주입한다. 여기서 사용되는 용매는 핏치를 잘 분산시킬 수 있는 유기용매를 사용할 수 있으며, 용매는 테트라하이드로푸란(tetrahydrofuran, THF) 또는 테트라하이드로퍼퍼릴알콜, 쿼놀린, 피리딘 중에서 선택된 어느 하나일 수 있다.In a vacuum vessel, inject the pitch solution in which the petroleum / coal pitch is dissolved in the solvent. As the solvent used herein, an organic solvent capable of well dispersing the pitch can be used, and the solvent can be any one selected from tetrahydrofuran (THF), tetrahydroperfuryl alcohol, quinoline, and pyridine.

이 때 사용되는 핏치의 연화점은 70~100℃ 인 것이 바람직하다. 핏치의 연화점이 너무 높은 경우, 핏치의 점성이 너무 높아서 유동성이 저하되어 흑연 내부의 기공으로 빨려 들어가기 어려워질 수 있으며, 핏치의 연화점이 너무 낮은 경우 균일한 탄소코팅층을 형성시키기 어려울 수 있다.The softening point of the pitch used at this time is preferably 70 to 100 ° C. If the softening point of the pitch is too high, the viscosity of the pitch may be too high to reduce fluidity and become difficult to suck into the pores of the graphite. If the softening point of the pitch is too low, it may be difficult to form a uniform carbon coating layer.

이렇게 주입된 핏치 용액은 구상화된 천연흑연의 내부 기공을 채우게 되고, 표면까지 핏치용액으로 함침된 핏치-흑연 페이스트를 형성하게 된다.The injected pitch solution fills the inner pores of the spheroidized natural graphite and forms a pitch-graphite paste impregnated with the pitch solution to the surface.

상기 핏치-흑연 페이스는 진공가열을 통하여 포함된 용매성분을 휘발시킨다. 이 때 진공가열온도는 약 70~100℃일 수 있으며 용매가 모두 휘발될 수 있도록 충분히 가열해주어야 한다. 약 1~4시간 동안 가열될 수 있으며, 이때 교반을 지속하면서 가열하는 것이 바람직하다. The pitch-graphite face is subjected to vacuum heating to volatilize the contained solvent components. At this time, the vacuum heating temperature may be about 70-100 ° C. and sufficient heating is required so that all of the solvent can be volatilized. It may be heated for about 1 to 4 hours, and it is preferable to heat while continuing the stirring.

가열온도가 70℃ 미만의 경우 핏치 연화점 이하로 가열에 의한 핏치의 유동성 확보가 어려 균일한 핏치의 입자내부 코팅이 어려워지며, 가열온도가 100℃ 초과인 경우 진공상태에서 급격한 용매 및 핏치 성분의 기화로 인한 기공의 형성이 되는 문제가 발생할 수 있다.When the heating temperature is lower than 70 캜, it is difficult to secure the fluidity of the pitch due to heating below the softening point of the pitch. When the heating temperature exceeds 100 캜, it is difficult to uniformly coat the inner part of the pitch. There is a problem that the pores are formed due to the presence of the catalyst.

진공가열을 통하여 용매가 제거된 구상화된 천연흑연은 입자 내외부에 핏치가 코팅된 형태의 구조를 가지게 된다.The spheroidized natural graphite in which the solvent is removed through vacuum heating has a structure in which the pitch is coated on the inside and the outside of the particle.

상기 핏치가 코팅된 구상흑연을 열처리하여 탄화처리한다. 상기 열처리는 1000~2000℃에서 불활성 분위기에서 이루어지는 것이 바람직하다. The pitch-coated spheroidal graphite is heat-treated and carbonized. The heat treatment is preferably performed in an inert atmosphere at 1000 to 2000 ° C.

열처리 온도가 1000℃ 보다 작은 경우 열처리된 탄소재료 미세기공들이 형성될 수 있어 전기화학적으로 비가역 반응을 일으킬 수 있으며, 2000℃ 보다 큰 경우에는 흑연화가 진행되기 때문에 공정상의 열처리비용이 상승된다. 따라서 상기 범위로 한정한다.When the heat treatment temperature is lower than 1000 ° C, heat-treated carbon material micropores may be formed and electrochemically irreversible reaction may be caused. When the heat treatment temperature is higher than 2000 ° C, graphitization proceeds, which increases the heat treatment cost in the process. Therefore, it is limited to the above range.

이상의 방법으로 제조된 2차 전지용 음극재는 구상화된 천연흑연의 내부 및 외부에 탄소코팅층이 균일하게 형성되어 있어 압착공정에 의한 고밀도의 전극 제조시에도 노출되는 흑연층이 존재하지 않아 충방전에 의한 수명특성이 향상될 수 있다.The anode material for a secondary battery manufactured by the above method has a carbon coating layer formed uniformly on the inside and outside of the spheroidized natural graphite, so that there is no graphite layer exposed during the production of a high density electrode by a compression process, The characteristics can be improved.

또한 상술한 방법에 의해 제조된 2차 전지용 음극재는 도전재, 바인더 및 유기 용매와 혼합하여 활물질 페이스트로 제조할 수 있다. 그런 다음 활물질 페이스트를 구리 포일과 같은 금속 집전체에 도포한 후 건조, 열처리 및 압착하여 2차 전지용 전극(음극)으로 제조할 수 있다.The negative electrode material for a secondary battery manufactured by the above-described method may be mixed with a conductive material, a binder, and an organic solvent to prepare an active material paste. Then, the active material paste may be applied to a metal current collector such as a copper foil, followed by drying, heat treatment and pressing to form an electrode (cathode) for a secondary battery.

또한 이와 같이 제조된 2차 전지용 전극은 리튬 2차 전지의 제조를 위해 사용할 수 있다. 즉, 본 발명에 따른 음극 활물질이 소정 두께로 결착된 금속 집전체와 Li계 전이금속 화합물이 소정 두께로 결착된 금속 집전체를 세퍼레이터를 사이에 두고 대향시킨 후 세퍼레이터에 리튬 2차 전지용 전해액을 함침시키면 반복적인 충방전이 가능한 리튬 2차 전지의 제조도 가능하다.The electrode for a secondary battery thus manufactured can be used for the production of a lithium secondary battery. That is, the metal current collector having the negative electrode active material according to the present invention bound to a predetermined thickness and the metal current collector having the Li-based transition metal compound bound to the predetermined thickness are opposed to each other with the separator interposed therebetween, and then the electrolyte for lithium secondary battery is impregnated into the separator. It is possible to manufacture a lithium secondary battery capable of repetitive charging and discharging.

한편 본 발명은 2차 전지용 음극재에 관한 것으로 본 발명에 따른 음극재를 이용하여 2차 전지용 전극과 이를 포함하는 2차 전지를 제조할 때에는 본 발명이 속한 기술분야에서 공지된 다양한 방식을 적용할 수 있다. 또한, 본 발명에 따른 음극재가 활용될 수 있는 2차 전지의 종류는 리튬 2차 전지에만 국한되지 않음은 자명하다.The present invention relates to an anode material for a secondary battery, and when manufacturing an electrode for a secondary battery and a secondary battery including the same using the anode material according to the present invention, various methods known in the art to which the present invention pertains are applied . It is apparent that the kind of the secondary battery in which the anode material according to the present invention can be utilized is not limited to the lithium secondary battery.

이하 실시예를 통하여 보다 자세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

연화점이 70℃인 핏치 100g을 THF 100ml에 넣고 30분간 교반하여 핏치용액을 준비하였다. 구상화된 천연 흑연 분말 1kg을 반응용기에 넣고 진공상태로 유지한 상태에서 제조된 핏치 용액을 주입한 후 30분간 교반을 유지하였다. 혼합된 핏치-흑연 페이스트를 진공상태에서 70℃로 2시간 동안 유지하여 용매성분을 휘발시켰다. 그 후 건조된 핏치가 코팅된 흑연분말을 Ar 가스분위기에서 1100℃로 1시간 열처리하여 탄화시켜 음극재를 제조하였다.100 g of pitch having a softening point of 70 캜 was added to 100 ml of THF and stirred for 30 minutes to prepare a pitch solution. 1 kg of spheroidized natural graphite powder was placed in a reaction vessel and maintained in a vacuum state, and the prepared pitch solution was injected, followed by stirring for 30 minutes. The mixed pitch-graphite paste was held in a vacuum at 70 캜 for 2 hours to volatilize the solvent components. The graphite powder coated with dried pitch was then carbonized by heat treatment at 1100 ° C for 1 hour in an Ar gas atmosphere to produce an anode material.

<비교예1>&Lt; Comparative Example 1 &

상기 실시예1과 동일한 공정으로 제조하되, 핏치의 연화점이 230℃인 것을 사용하여 음극재를 제조하였다.The anode material was manufactured using the same process as in Example 1, except that the softening point of the pitch was 230 ° C.

<비교예2>&Lt; Comparative Example 2 &

일반적인 건식 코팅공정으로서, 연화점이 230℃인 핏치와 구상천연흑연을 건식혼합한 후 기계적인 혼합방법을 통하여 10분간 고속 교반을 하여 핏치 코팅후, 실시예1과 동일하게 Ar 가스 분위기에서 1100℃에서 1시간 동안 열처리하여 탄화시켜 음극재를 제조하였다.As a general dry coating process, a pitch having a softening point of 230 ° C and a spherical natural graphite were dry-mixed and then mechanically mixed at a high speed for 10 minutes. After the pitch coating, And then carbonized by heat treatment for 1 hour to prepare an anode material.

하기 표1에 실시예 및 비교예의 제조조건을 나타내었다. The production conditions of the examples and comparative examples are shown in Table 1 below.

핏치 연화점
(℃)
Pitch softening point
(° C)
코팅방식Coating method 흑연대비 핏치 중량비(wt%)Pitch weight ratio (wt%) to graphite 흑연 대비 핏치 탄화물 중량비(wt%)Weight ratio of pitch carbide to graphite (wt%)
실시예1Example 1 7070 진공상태
용액주입
Vacuum condition
Solution injection
10%10% 2%2%
비교예1Comparative Example 1 230230 진공상태
용액주입
Vacuum condition
Solution injection
10%10% 4%4%
비교예2Comparative Example 2 230230 건식코팅
(Mechanofusion)
Dry coating
(Mechanofusion)
6%6% 2%2%

구상화된 천연흑연의 내부에 탄소코팅층이 형성되었는지를 확인하기 위하여 실시예1, 비교예1 및 비교예2를 내부 단면을 투과전자현미경(TEM)으로 관찰하였다. In order to confirm whether or not a carbon coating layer was formed inside the spheroidized natural graphite, the inner cross section of Example 1, Comparative Example 1 and Comparative Example 2 was observed with a transmission electron microscope (TEM).

도2는 실시예1에 따른 음극재 단면의 투과전자현미경(TEM) 사진이다. 도2에 도시된 바와 같이, 흑연 입자 내부의 기공들이 사라지고 탄소코팅층이 형성된 것을 알 수 있었다.2 is a transmission electron microscope (TEM) photograph of the anode material cross section according to Example 1. Fig. As shown in FIG. 2, it was found that the pores inside the graphite particles disappeared and the carbon coating layer was formed.

도3 및 도4는 각각 비교예1 및 2에 따른 음극재 단면의 투과전자현미경(TEM) 사진이다. 비교예1의 경우 흑연 내부의 기공이 감소되는 것을 확인되나, 실시예1에 비해 코팅되지 않은 부분이 관찰되었다. 비교예2의 경우 건식코팅공정에 의해서 입자 표면에만 탄소코팅층이 형성되어 있으며 내부의 기공에는 코팅층이 존재하지 않는 것을 알 수 있었다.3 and 4 are transmission electron microscope (TEM) photographs of negative electrode material cross sections according to Comparative Examples 1 and 2, respectively. In Comparative Example 1, it was confirmed that pores inside the graphite were reduced, but an uncoated portion was observed as compared with Example 1. In the case of Comparative Example 2, it was found that a carbon coating layer was formed only on the surface of the particles by the dry coating process and no coating layer was present in the pores inside.

각 시편의 내부에 핏치가 코팅된 지 여부를 간접적으로 확인하기 위하여 기공체적 및 비표면적을 측정하여 하기 표2에 나타내었다. 수은을 이용한 mercury porosimeter를 활용하여 음극재의 분말입자의 내부 기공체적을 측정하였다. 입자간의 공극에 대한 오차를 막기 위해 기공체적은 크기가 2㎛이하인 기공들의 체적을 측정하였다.The pore volume and the specific surface area were measured in order to indirectly confirm whether or not the pitch was coated inside the respective specimens, and the results are shown in Table 2 below. The mercury porosimeter was used to measure the internal pore volume of the powder of the anode material. In order to prevent the error between the particles, the volume of the pores having a size of 2 μm or less was measured.

기공체적(ml/g)Pore volume (ml / g) 비표면적(㎡/g)Specific surface area (m &lt; 2 &gt; / g) 탭밀도(g/cc)Tap density (g / cc) 실시예1Example 1 0.080.08 1.91.9 1.11.1 비교예1Comparative Example 1 0.130.13 4.04.0 1.01.0 비교예2Comparative Example 2 0.130.13 2.52.5 1.01.0

실시예1의 경우 입자 내부 코팅 효과로 인해 2㎛ 이하의 기공체적 및 비표면적이 비교예1 및 2에 비해 낮은 수준임을 알 수 있었다. 한 편 탭(tap) 밀도의 경우 입자 내부에 핏치 탄화물이 존재하기 때문에 상대적으로 높은 수치를 나타냄을 알 수 있었다.It was found that the pore volume and the specific surface area of 2 탆 or less were lower than those of Comparative Examples 1 and 2 due to the effect of coating inside the particles in Example 1. In the case of one tap density, it was found that the pitch density was relatively high because of the presence of pitch carbide inside the particles.

비교예1의 경우 입자 내부로 핏치가 침투되지 못함에 따라서 기공체적은 입자표면만 코팅된 비교예2와 유사하게 나타났다. 반면에 입자표면에 불균일하게 코팅된 탄소의 함량이 많기 때문에 비교예2에 비해서도 높은 비표면적을 나타냈다.In Comparative Example 1, the pore volume was similar to that of Comparative Example 2 in which only the particle surface was coated as the pitch could not penetrate into the particle. On the other hand, since the content of unevenly coated carbon was large on the particle surface, the specific surface area was higher than that of Comparative Example 2.

각 시편에 대한 전기화학적 특성 평가를 위하여 반복 충방전 테스트를 통한 수명특성 평가를 아래와 같은 조건으로 실시하였다.In order to evaluate the electrochemical properties of each specimen, life characteristics were evaluated by repeated charging and discharging tests under the following conditions.

- 전극 밀도 : 1.8g/cc - Electrode density: 1.8 g / cc

- 활물질 Loading양 : 9mg/㎠- Loading amount of active material: 9mg / ㎠

- 반복 충방전 조건 : 2032 coin half cell test- Repeated charge / discharge condition: 2032 coin half cell test

·Charge : CC-CV , 0.5C , 0.01V , 1/10mA Cut-off @ 25℃±2℃· Charge: CC-CV, 0.5C, 0.01V, 1 / 10mA Cut-off @ 25 ℃ ± 2 ℃

·Discharge : CC, 0.5C, 1.5V Cut-off @ 25℃±2℃· Discharge: CC, 0.5C, 1.5V Cut-off @ 25 ℃ ± 2 ℃

도3은 실시예1, 비교예1 및 비교예2의 반복충방전 테스트를 통한 수명특성 평가 결과를 나타낸 그래프이다.Fig. 3 is a graph showing the results of evaluation of lifetime characteristics by repeated charging / discharging tests of Example 1, Comparative Example 1 and Comparative Example 2. Fig.

실시예1의 경우 수명특성이 비교예1 및 비교예2에 비해 월들이 높은 것을 확인할 수 있었다. 또한 비교예1의 경우에는 불균일한 탄소코팅층의 형성과 함께 탄소함량이 증가함으로 인해 건식코팅공정을 통하여 제조된 비교예2에 비해서 수명특성이 열위한 것으로 나타났다.It can be confirmed that the life characteristics of Example 1 are higher than those of Comparative Example 1 and Comparative Example 2. Also, in the case of Comparative Example 1, since the carbon content was increased with the formation of the uneven carbon coating layer, the lifetime characteristics were improved as compared with Comparative Example 2 produced through the dry coating process.

이상 첨부된 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the exemplary embodiments or constructions. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. will be.

그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention .

Claims (7)

분말형태의 구상흑연을 용기 내에 충진한 후 진공상태로 유지하는 단계;
상기 용기 내에 핏치 용액을 주입하여 교반하여 핏치-흑연 페이스트를 제조하는 단계;
상기 핏치-흑연 페이스트를 진공상태로 가열하여 용매를 휘발시켜 구상흑연에 핏치를 코팅하는 단계; 및
상기 핏치가 코팅된 구상흑연을 열처리하여 탄화처리하는 단계;
를 포함하는 2차 전지용 음극재의 제조방법
Filling spheroidal graphite powder in a vessel and keeping it in a vacuum state;
Injecting a pitch solution into the vessel and stirring the mixture to produce a pitch-graphite paste;
Heating the pitch-graphite paste in a vacuum to volatilize the solvent to coat the spheroid graphite with the pitch; And
Heat treating the pitch-coated spheroidal graphite to carbonize it;
A method for manufacturing an anode material for a secondary battery comprising
제1항에서,
상기 핏치 용액에 사용되는 용매는 테트라하이드로푸란(tetrahydrofuran, THF) 또는 테트라하이드로퍼퍼릴알콜, 쿼놀린, 피리딘 중에서 선택된 어느 하나인 2차 전지용 음극재의 제조방법.
The method of claim 1,
Wherein the solvent used in the pitch solution is any one selected from the group consisting of tetrahydrofuran (THF), tetrahydrofurfuryl alcohol, quinoline, and pyridine.
제1항에서,
상기 핏치-흑연 페이스트의 진공 가열온도는 70~100℃인 2차 전지용 음극재의 제조방법.
The method of claim 1,
And the vacuum heating temperature of the pitch-graphite paste is 70 to 100 占 폚.
제3항에서
상기 탄화처리하는 단계에서의 열처리 온도는 1000~2000℃인 2차 전지용 음극재의 제조방법.
In paragraph 3
Wherein the heat treatment temperature in the carbonization step is 1000 to 2000 占 폚.
제1항 내지 제4항 중 어느 한 항에 따라 제조된 2차 전지용 음극재로서,
구상화된 천연 흑연의 내부 및 외부에 균일한 탄소코팅층이 형성되고,
음극재 내, 크기가 2㎛ 이하인 기공의 체적이 0.1ml/g이하인 2차 전지용 음극재.
An anode material for a secondary battery produced according to any one of claims 1 to 4,
A uniform carbon coating layer is formed inside and outside the spheroidized natural graphite,
An anode material for a secondary battery, wherein the volume of pores having a size of 2 m or less in the anode material is 0.1 ml / g or less.
제5항에서,
상기 탄소코팅층은 핏치의 탄화공정으로 형성된 것을 특징으로 하는 2차 전지용 음극재.
The method of claim 5,
Wherein the carbon coating layer is formed by a carbonization process of the pitch.
삭제delete
KR1020120151310A 2012-12-21 2012-12-21 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode KR101500644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120151310A KR101500644B1 (en) 2012-12-21 2012-12-21 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120151310A KR101500644B1 (en) 2012-12-21 2012-12-21 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode

Publications (2)

Publication Number Publication Date
KR20140091088A KR20140091088A (en) 2014-07-21
KR101500644B1 true KR101500644B1 (en) 2015-03-10

Family

ID=51738361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120151310A KR101500644B1 (en) 2012-12-21 2012-12-21 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode

Country Status (1)

Country Link
KR (1) KR101500644B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210273223A1 (en) * 2019-02-01 2021-09-02 Lg Chem, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051375A (en) * 2000-12-22 2002-06-29 신현준 Method of preparing negative active material for lithium secondary battery
KR100383095B1 (en) * 1999-08-12 2003-05-12 재단법인 포항산업과학연구원 Negative active material for lithium secondary battery and method of preparing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383095B1 (en) * 1999-08-12 2003-05-12 재단법인 포항산업과학연구원 Negative active material for lithium secondary battery and method of preparing same
KR20020051375A (en) * 2000-12-22 2002-06-29 신현준 Method of preparing negative active material for lithium secondary battery

Also Published As

Publication number Publication date
KR20140091088A (en) 2014-07-21

Similar Documents

Publication Publication Date Title
Zhang et al. A conductive molecular framework derived Li2S/N, P‐codoped carbon cathode for advanced lithium–sulfur batteries
Huang et al. Dextran sulfate lithium as versatile binder to stabilize high‐voltage LiCoO2 to 4.6 V
Yao et al. Densified metallic MoS2/graphene enabling fast potassium‐ion storage with superior gravimetric and volumetric capacities
Zheng et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene‐like nanosheets for Li‐S batteries
Balach et al. Functional mesoporous carbon‐coated separator for long‐life, high‐energy lithium–sulfur batteries
JP5563578B2 (en) Composite graphite particles and lithium secondary battery using the same
EP2128086A1 (en) Carbon material and process for producing the carbon material
KR20140140323A (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
KR101972187B1 (en) Structurally stable active material for battery electrodes
KR101445692B1 (en) Anode active material for lithium secondary battery and Lithium secondary battery containing the same for anode
Akkinepally et al. Temperature effect and kinetics, LiZr2 (PO4) 3 and Li1. 2Al0. 2Zr1. 8 (PO4) 3 and electrochemical properties for rechargeable ion batteries
Yang et al. A Robust Hybrid of SnO2 Nanoparticles Sheathed by N‐Doped Carbon Derived from ZIF‐8 as Anodes for Li‐Ion Batteries
CN111354925A (en) Synthesis of carbon-bound lithium ion conductor-carbon composite negative electrode material with carbon fiber structure
Shi et al. Fabrication of ultrafine Gd2O3 nanoparticles/carbon aerogel composite as immobilization host for cathode for lithium‐sulfur batteries
Gautam et al. Direct-contact prelithiation of Si–C anode study as a function of time, pressure, temperature, and the cell ideal time
KR20160085998A (en) Method for synthesis of Silicon/Carbon/CNT as the lithium secondary battery anode material
KR100978422B1 (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR101459729B1 (en) Carbon composite materials and method of manufacturing the same
KR101790699B1 (en) Method for synthesis of anode material using active carbon and pitch prepared by chemical activation
EP2266157A1 (en) Negative active material for secondary battery, and electrode and secondary battery including the same
Do et al. Aqueous Quaternary Polymer Binder Enabling Long-Life Lithium–Sulfur Batteries by Multifunctional Physicochemical Properties
Salimi et al. Lithium‐Metal Free Sulfur Battery Based on Waste Biomass Anode and Nano‐Sized Li2S Cathode
KR20200057468A (en) Composite material for anode active material of lithium secondary battery, and manufacturing method of the composite material
KR101500644B1 (en) Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180223

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190124

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 6