KR101492169B1 - Electrospining nanofibers reinforced by mussel coating protein and their application - Google Patents

Electrospining nanofibers reinforced by mussel coating protein and their application Download PDF

Info

Publication number
KR101492169B1
KR101492169B1 KR20130106599A KR20130106599A KR101492169B1 KR 101492169 B1 KR101492169 B1 KR 101492169B1 KR 20130106599 A KR20130106599 A KR 20130106599A KR 20130106599 A KR20130106599 A KR 20130106599A KR 101492169 B1 KR101492169 B1 KR 101492169B1
Authority
KR
South Korea
Prior art keywords
tyr
lys
pro
gly
ser
Prior art date
Application number
KR20130106599A
Other languages
Korean (ko)
Other versions
KR20140035251A (en
Inventor
황동수
차형준
오동엽
김상식
김범진
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of KR20140035251A publication Critical patent/KR20140035251A/en
Application granted granted Critical
Publication of KR101492169B1 publication Critical patent/KR101492169B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4266Natural fibres not provided for in group D04H1/425
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3637Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the origin of the biological material other than human or animal, e.g. plant extracts, algae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Abstract

본 발명은 홍합 접착 단백질 및 Fe3 + 이온을 포함하는 나노 섬유 조직공학용 지지체(scaffold) 및 이의 제조방법에 관한 것이다.The present invention relates to a scaffold for nanofiber tissue engineering comprising a mussel adhesive protein and an Fe & lt ; 3 + & gt ; ion and a process for their preparation.

Description

홍합 코팅 단백질을 이용한 나노섬유 제작 및 활용{Electrospining nanofibers reinforced by mussel coating protein and their application}TECHNICAL FIELD The present invention relates to a nanofiber reinforced by mussel coating protein,

본 발명은 홍합 접착 단백질 및 Fe3 + 이온을 포함하는 나노 섬유 조직공학용 지지체(scaffold) 및 이의 제조방법에 관한 것이다.The present invention relates to a scaffold for nanofiber tissue engineering comprising a mussel adhesive protein and an Fe & lt ; 3 + & gt ; ion and a process for their preparation.

조직공학(Tissue engineering) 기술이란 세포를 지지체에 배양하여 세포-지지체 복합체를 제조하고 이를 이용하여 생체조직 및 장기를 재생하는 기술을 말한다. 조직공학 기술은 인공피부, 인공뼈, 인공연골, 인공각막, 인공혈관, 인공근육 등 인체의 거의 모든 장기의 재생에 적용되고 있다. 이와 같은 조직공학 기술에서 생체조직 및 장기의 재생을 최적화하기 위해서는 기본적으로 생체조직과 유사한 조직공학용 지지체를 제조하는 것이 중요하다. 조직공학용 지지체의 기본적인 요건으로는 조직 세포가 지지체에 유착하여 증식이 잘 되어야 하고, 분화된 세포의 기능이 보전되어야 하며, 체내에 이식된 후에도 주위 조직과 융화가 잘되고, 염증 반응이나 혈액 응고가 일어나지 않는 무독성의 생체적합성이 있어야 한다. 또한, 이식된 세포가 새로운 체내 조직으로서 기능과 역할을 하게 되면 원하는 시간 안에 생체 내에서 완전히 분해되어 없어질 수 있는 생분해성을 지녀야 한다.Tissue engineering technology refers to a technique of culturing cells on a support to prepare a cell-support complex and regenerating living tissues and organs using the same. Tissue engineering techniques are applied to the regeneration of almost all organs of human body such as artificial skin, artificial bone, artificial cartilage, artificial cornea, artificial blood vessel, artificial muscle. In order to optimize the regeneration of living tissues and organs in such tissue engineering techniques, it is important to prepare a tissue engineering support similar to a living tissue. The basic requirement of the tissue engineering support is that the tissue cells must adhere to the supporter and proliferate well, the function of the differentiated cells must be preserved, and even after transplantation into the body, they are compatible with surrounding tissues and become inflamed or clotted There must be non-toxic biocompatibility. In addition, when the transplanted cells function and function as new internal tissues, they should have biodegradability that can be completely decomposed and eliminated in a desired period of time.

현재 통상적으로 사용되는 조직공학용 지지체는 천연 또는 합성 고분자 지지체로서, 자연에서 유래한 콜라젠 (collagen), 키토산 (chitosan), 젤라틴 (gellatin), 히아루론산 (hyaluronic acid), 알진산 (alginic acid) 등의 천연 고분자와, 폴리락트산 (PLA), 폴리글리콜산 (PGA), 폴리카프로락산 (PCL) 및 이들의 공중합체인 합성 고분자가 그 대표적이다. 이러한 지지체는 세포나 조직의 배양과 이식을 목적으로 하는 지지체와 화장품, 상처피복재, 치과용 매트릭스 등의 의료용 재료로 소개되었다. 그러나, 이들은 제한된 물성을 지니고 있어 다양한 물성이 요구되는 인체 조직 장기의 재생용 재료로서는 많은 한계점이 있다. 또한, 지지체의 표면에 세포 등 생리활성물질을 충분하게 부착, 유지 및 증식시키는 것은 예전부터 큰 어려움을 겪어 왔다. 따라서, 기존의 재료를 대체할 수 있는 조직공학용 지지체의 개발이 필요한 실정이다.Currently commonly used tissue engineering scaffolds are natural or synthetic polymer scaffolds which are natural and natural such as collagen, chitosan, gellatin, hyaluronic acid, alginic acid, Polymers, and synthetic polymers such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactic acid (PCL), and copolymer thereof. Such supports have been introduced as medical materials for supporters and cosmetics, wound dressings, and dental matrices for cell and tissue culture and implantation purposes. However, these materials have limited physical properties and thus have many limitations as materials for regeneration of human tissue organs that require various physical properties. In addition, it has been difficult from the past to sufficiently adhere, maintain and propagate physiologically active substances such as cells on the surface of a support. Therefore, it is necessary to develop a support for tissue engineering that can replace existing materials.

한편, 해양 생명체인 홍합(mussel)은 섬유소재인 족사 (byssus 또는 byssal thread)를 생산 및 분비함으로써 홍합 자신을 바다 속의 바위와 같은 젖은 고체표면에 단단히 부착할 수 있어, 파도의 충격이나 바닷물의 부력 효과에 영향을 받지 않는다. 홍합의 족사는 아주 얇은 코팅물질로 코팅되어 있으며, 족사의 끝에는 접착제가 분비되어, 홍합이 물속에 잘 고정화 될 수 있도록 도와준다. 특히, 미틸리스류 (Mytilus specis) 홍합의 족사의 코팅은 기계적 성질 (강도 및 경도)들이 단단한 에폭시 수지와 비슷하지만 연신률이 ~70% 이상이기 때문에 다양한 소재의 물성을 강화하는 코팅 물질으로 사용이 가능하다. On the other hand, mussel, a marine creature, produces and secretes a byssus or byssal thread as a fiber material, so that the mussel itself can be firmly attached to a wet solid surface such as a rock in the sea, It is not affected by the effect. The mussel's footpath is coated with a very thin coating material, and the adhesive is released at the tip of the buttocks, helping to immobilize the mussel in the water. Especially, Mytilus specis mussel 's coating is similar to hard epoxy resin in mechanical properties (strength and hardness), but it can be used as a coating material to enhance the physical properties of various materials because the elongation is ~ 70% or more. Do.

특히, 홍합의 족사를 구성하고 있는 미틸러스 에둘리스 foot protein 1 (Mefp-1) 단백질의 경우, 단백질 내에 존재하는 dihydroxy-phenylalanine (DOPA) 잔기가 Fe3 + 이온과 결합하면서 표면에 큐티클 층을 구성하고, 이러한 결합에 의한 단단한 코팅층은 족사가 외부 충격에도 견딜 수 있도록 하는데 중요한 역할을 하는 것으로 알려져 있다. 또한, DOPA 잔기가 DOPA-quinone 으로 산화되면서 주변 DOPA 잔기 및 아미노산과 결합하면서 가교작용을 일으키고 이것이 물 속에서도 강력한 결합을 유지할 수 있도록 도와주는 것으로 알려져 있다. 최근에는 이러한 DOPA와 metal의 결합 및 DOPA의 산화반응을 이용하여 젤을 만들거나 생체접착제로 응용하려는 시도 및 연구가 일어나고 있다. 하지만, 대부분 합성 고분자를 기반으로 한 방법이 주를 이루고, 실제 홍합 접착 단백질과 Fe3 + 이온을 이용한 젤 또는 나노섬유에 대한 시도는 없었다.In particular, in the case of the Meutilus edulis foot protein 1 (Mefp-1) protein, which constitutes the family of the mussel, dihydroxy-phenylalanine (DOPA) residues present in the protein bind to Fe 3 + It is known that the hard coating layer formed by such bonding plays an important role in allowing the footbath to withstand external impacts. It is also known that DOPA residues are oxidized to DOPA-quinone, which binds to the surrounding DOPA residues and amino acids to cause crosslinking, which helps maintain strong binding even in water. In recent years, attempts have been made to apply gels or bioadhesives using DOPA-metal bonding and DOPA oxidation reaction. However, most of them are based on synthetic polymers, and there is no attempt to use gel or nanofibers using mussel adhesive protein and Fe 3 + ions.

본 발명자들은 이전의 연구에서, Mefp-1에서 80번 정도 반복되는 데카펩타이드를 6번 반복하여 Mgfp-5의 양쪽 말단에 융합한 새로운 형태의 홍합 접착 단백질인 fp-151을 개발하였으며, 상기 재조합 홍합 접착 단백질이 대장균에서 대량생산이 가능하고, 정제과정 또한 매우 단순하여 산업적 이용 가능성이 매우 높음을 확인한 바 있다 (국제특허공개 WO2006/107183 또는 WO2005/092920).In a previous study, we developed a new type of mussel adhesive protein, fp-151, which was fused to both ends of Mgfp-5 by repeating the decapeptide repeated 80 times in Mefp-1 six times. The recombinant mussel It has been confirmed that the adhesive protein can be mass-produced in E. coli, and the purification process is also very simple, which is highly industrially applicable (WO2006 / 107183 or WO2005 / 092920).

이러한 대량생산 기술을 바탕으로, 본 발명자들은 대장균 시스템에서 대량생산한 홍합 접착 단백질의 티로신 잔기를 높은 효율로 DOPA로 전환시키고, DOPA 잔기에 Fe3 + 이온을 결합시켜 기계적 성질이 증대된 나노섬유를 제조하였다. 이와 같이 제조된 나노섬유는 그 제조과정이 매우 단순하여 산업적 이용 가능성이 매우 높으며 생체적합성이 우수하기 때문에 조직공학용 지지체 및 의료용 소재로 적합하다.Based on such mass production technology, the present inventors have succeeded in converting a tyrosine residue of a mussel adhesive protein mass-produced in an Escherichia coli system into DOPA with high efficiency and binding Fe 3 + ions to a DOPA residue to produce nanofibers having enhanced mechanical properties . The nanofiber thus produced is very simple in its manufacturing process, and is highly industrially applicable and has excellent biocompatibility, which is suitable as a support for tissue engineering and a medical material.

본 발명의 하나의 목적은 홍합 접착 단백질 및 Fe3 + 이온을 포함하는 나노섬유 조직공학용 지지체를 제공하는 것이다.One object of the present invention is to provide a nanofiber tissue engineering support comprising a mussel adhesive protein and Fe & lt ; 3 + & gt ; ions.

본 발명의 또 하나의 목적은 상기 나노섬유 조직공학용 지지체의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing the support for nanofiber tissue engineering.

상기 과제를 해결하기 위한 하나의 양태로서, 본 발명은 홍합 접착 단백질 및 Fe3 + 이온을 포함하는 나노섬유 조직공학용 지지체에 관한 것이다.In one aspect, the present invention relates to a nanofiber tissue engineering support comprising a mussel adhesive protein and an Fe & lt ; 3 + & gt ; ion.

본 발명에서 "홍합 접착 단백질" 또는 "홍합 코팅 단백질"은 홍합에서 유래한 접착 단백질로, 바람직하게는 미틸러스 에둘리스(Mytilus edulis), 미틸러스 갈로프로빈시얼리스(Mytilus galloprovincialis) 또는 미틸러스 코루스커스(Mytilus coruscus) 에서 유래한 홍합 접착 단백질 또는 이의 변이체를 포함하나, 이에 제한되지 않는다. In the present invention, "mussel adhesive protein" or "mussel coating protein" is an adhesive protein derived from mussel, preferably Mytilus edulis , Mytilus < RTI ID = 0.0 > galloprovincialis , or Mytilus coruscus , or a variant thereof.

예를 들어, 본 발명의 홍합 접착 단백질은 상기 홍합 종에서 각각 유래한 Mefp(Mytilus edulis foot protein)-1, Mgfp(Mytilus galloprovincialis foot protein)-1, Mcfp(Mytilus coruscus foot protein)-1, Mefp-2, Mefp-3, Mgfp-3 및 Mgfp-5 또는 이의 변이체를 포함할 수 있으며, 바람직하게는 fp(foot protein)-1 (서열번호 1), fp-2 (서열번호 6), fp-3 (서열번호 7), fp-4 (서열번호 8), fp-5 (서열번호 9), 및 fp-6 (서열번호 10)로 이루어진 군에서 선택된 단백질, 또는 2종 이상의 단백질이 연결되어 있는 융합 단백질, 또는 상기 단백질의 변이체를 포함하나, 이에 제한되지 않는다.For example, the mussel adhesive protein of the present invention is Mefp respectively derived from the species of mussel (Mytilus edulis foot protein) -1, Mgfp (Mytilus galloprovincialis foot protein) -1, Mcfp ( Mytilus coruscus foot protein) -1, 2-Mefp, Mefp-3, 3-Mgfp and Mgfp-5, or may comprise a variant thereof, preferably fp (foot protein) -1 (SEQ ID NO: 1), fp-2 (SEQ ID NO: 6), fp-3 (SEQ ID NO: 7), fp-4 (SEQ ID NO: 8), fp-5 (SEQ ID NO: 9), and fp- A fusion protein in which two or more kinds of proteins are linked, or a variant of the protein.

또한, 본 발명의 홍합 접착 단백질은 국제공개번호 제WO2006/107183호 또는 제WO2005/092920호에 기재된 모든 홍합 접착 단백질을 포함한다. 바람직하게, 상기 홍합 접착 단백질은 fp-151(서열번호 11), fp-131(서열번호 13), fp-353(서열번호 14), fp-153(서열번호 15), fp-351(서열번호 16) 등의 융합 단백질을 포함할 수 있으나, 이에 제한되지 않는다.In addition, the mussel adhesive proteins of the present invention include all of the mussel adhesive proteins described in WO2006 / 107183 or WO2005 / 092920. Preferably, the mussel adhesive protein is selected from the group consisting of fp-151, fp-131, fp-353, fp-153, fp-351, 16). ≪ / RTI >

또한, 본 발명의 홍합 접착 단백질은 fp-1 에서 80번 정도 반복되는 데카펩타이드(서열번호 2)가 1 내지 12회 또는 그 이상으로 연속하여 연결된 폴리펩타이드를 포함할 수 있다. 바람직하게, 상기 서열번호 2의 데카펩타이드가 12회 연속하여 연결된 fp-1 variant 폴리펩타이드(서열번호 4)일 수 있으나, 이에 제한되지 않는다.In addition, the mussel adhesive protein of the present invention may include a polypeptide in which the decapeptide (SEQ ID NO: 2) repeated about 80 times in fp-1 is continuously linked 1 to 12 times or more. Preferably, the decapeptide of SEQ ID NO: 2 is but is not limited to the fp-1 variant polypeptide (SEQ ID NO: 4) linked in 12 consecutive times.

또한, 본 발명에서 홍합 접착 단백질은 홍합 접착 단백질의 접착력을 유지하는 전제 하에 상기 홍합 접착 단백질의 카르복실 말단이나 아미노 말단에 추가적인 서열을 포함하거나 일부 아미노산이 다른 아미노산으로 치환된 것일 수 있다. 보다 바람직하게는 상기 홍합 접착 단백질의 카르복실 말단 또는 아미노 말단에 RGD(Arg Gly Asp)를 포함하는 3 내지 25개의 아미노산으로 이루어진 폴리펩타이드가 연결된 것이거나 홍합 접착 단백질을 이루는 타이로신 잔기 총수의 1 내지 100%, 바람직하게는 5 내지 100%가 3,4-디하이드록시페닐-L-알라닌(DOPA)로 치환된 것일 수 있으나, 이에 제한되지 않는다. In addition, in the present invention, the mussel adhesive protein may include an additional sequence at the carboxyl terminal or amino terminal of the mussel adhesive protein or some amino acid substituted with another amino acid under the premise of maintaining the adhesive property of the mussel adhesive protein. More preferably, a polypeptide consisting of 3 to 25 amino acids including RGD (Arg Gly Asp) is linked to the carboxyl terminal or amino terminal of the mussel adhesive protein, or a polypeptide consisting of 1 to 100 of the total number of tyrosine residues constituting the mussel adhesive protein %, Preferably 5 to 100% of which is substituted with 3,4-dihydroxyphenyl-L-alanine (DOPA).

상기 RGD를 포함하는 3 내지 25개의 아미노산은, 이에 한정되지 않지만 바람직하게는, RGD(Arg Gly Asp, 서열번호 17), RGDS(Arg Gly Asp Ser, 서열번호 18), RGDC(Arg Gly Asp Cys, 서열번호 19), RGDV(Arg Gly Asp Val, 서열번호 20), RGDSPASSKP(Arg Gly Asp Ser Pro Ala Ser Ser Lys Pro, 서열번호 21), GRGDS(Gly Arg Gly Asp Ser, 서열번호 22), GRGDTP(Gly Arg Gly Asp Thr Pro, 서열번호 23), GRGDSP(Gly Arg Gly Asp Ser Pro, 서열번호 24), GRGDSPC(Gly Arg Gly Asp Ser Pro Cys, 서열번호 25) 및 YRGDS(Tyr Arg Gly Asp Ser, 서열번호 26)로 이루어진 군에서 선택된 1종 이상일 수 있다.RGD (Arg Gly Asp, SEQ ID NO: 17), RGDS (Arg Gly Asp Ser, SEQ ID NO: 18), RGDC (Arg Gly Asp Cys, SEQ ID NO: 19), RGDV (Arg Gly Asp Val, SEQ ID NO: 20), RGDSPASSKP (Arg Gly Asp Ser Pro Ala Ser Ser Lys Pro, SEQ ID NO: 21), GRGDS (Gly Arg Gly Asp Ser, SEQ ID NO: SEQ ID NO: 23), GRGDSP (Gly Arg Gly Asp Ser Pro, SEQ ID NO: 24), GRGDSPC (Gly Arg Gly Asp Ser Pro Cys, SEQ ID NO: 25) and YRGDS (Tyr Arg Gly Asp Ser, No. 26) may be used.

상기 홍합 접착 단백질의 카르복실 말단 또는 아미노 말단에 RGD를 포함하는 3 내지 25개의 아미노산으로 이루어진 폴리펩타이드가 연결된 홍합 접착 단백질의 변이체의 예로는, 이에 한정되지 않지만 바람직하게는, 서열번호 3의 아미노산 서열로 이루어진 fp-1 fragment-RGD 폴리펩타이드(AKPSTPPTYKGRGDSP), 서열번호 5의 아미노산 서열로 이루어진 fp-1 variant-RGD 폴리펩타이드 또는 서열번호 12의 아미노산 서열로 이루어진 fp-151-RGD 폴리펩타이드일 수 있으나, 이에 제한되지 않는다.Examples of mutants of the mussel adhesive protein to which the polypeptide consisting of 3 to 25 amino acids including RGD are linked at the carboxyl terminal or amino terminal of the mussel adhesive protein include, but are not limited to, the amino acid sequence of SEQ ID NO: 3 1 variant-RGD polypeptide consisting of the amino acid sequence of SEQ ID NO: 5 or the fp-151-RGD polypeptide consisting of the amino acid sequence of SEQ ID NO: 12, But is not limited thereto.

바람직하게, 본 발명의 홍합 접착 단백질은 전체 티로신 잔기의 20% 이상이 DOPA 로 수정된 것이 바람직하다. 또한, 수용액 상에서 20wt% 이상의 우수한 용해도로 녹을 수 있는 홍합 접착 단백질을 이용하는 것이 바람직하다. 대부분의 홍합 접착 단백질의 전체 아미노산 서열에서 티로신이 차지하는 비중은 약 20-30 %이다. 천연 홍합 접착 단백질 내의 티로신은 수화과정을 통하여 OH기가 첨가되어 DOPA 로 변화된다. 그러나 대장균에서 생산된 홍합 접착 단백질은 티로신 잔기들이 변형되어 있지 않으므로, 별도의 효소 및 화학적 처리 방법에 의하여 티로신을 DOPA 로 변형시키는 수정 반응을 수행하는 것이 바람직하다.Preferably, the mussel adhesive protein of the present invention is modified such that at least 20% of all tyrosine residues are modified with DOPA. In addition, it is preferable to use a mussel adhesive protein which can be dissolved in an aqueous solution at an excellent solubility of 20 wt% or more. Tyrosine accounts for about 20-30% of the total amino acid sequence of most mussel adhesive proteins. Tyrosine in natural mussel adhesive proteins is converted to DOPA by the addition of OH groups through the hydration process. However, since the tyrosine residues of the mussel adhesive protein produced in Escherichia coli are not modified, it is desirable to carry out a modification reaction in which tyrosine is converted into DOPA by a separate enzyme and a chemical treatment method.

홍합 접착 단백질에 포함된 티로신 잔기를 DOPA 로 수정하는 방법은 당업계에 알려진 방법을 사용할 수 있으며 특별히 제한되지 않는다. 바람직한 예시로, 티로시나제를 사용하여 티로신 잔기를 DOPA 잔기로 수정할 수 있다. 본 발명의 구체적인 실시예에서는, in vitro에서 티로시나제를 이용한 수정반응을 통해서 상기의 DOPA 전환율과 용해도 조건을 만족시키는 홍합 접착 단백질을 생산할 수 있음을 보였다 (도 2).Methods for modifying the tyrosine residue contained in the mussel adhesive protein with DOPA can be used, and there is no particular limitation. As a preferred example, tyrosinase can be used to modify tyrosine residues to DOPA residues. In a specific example of the present invention, it has been shown that a mussel adhesive protein can be produced which satisfies the DOPA conversion and solubility conditions through a modification reaction using tyrosinase in vitro (FIG. 2).

본 발명은 홍합 접착 단백질 기반의 나노섬유 조직공학용 지지체를 제공한다.The present invention provides a support for nanofiber tissue engineering based on mussel adhesive protein.

천연의 세포외 기질은 나노 수준의 크기를 지니는 단백질 섬유가 얽혀 있는 3차원 구조로 이루어져 있다. 이에, 본 발명은 천연의 세포외 기질과 유사한 구조를 구현하기 위해서 나노 섬유를 지지체 제조에 이용하였다. 나노 섬유는 비표면적이 커서 세포의 부착 면적이 크기 때문에 나노 섬유로 이루어진 지지체에 세포를 배양할 경우 세포 부착능이 우수하게 된다.The natural extracellular matrix consists of a three-dimensional structure in which protein fibers with nanoscale dimensions are intertwined. Accordingly, the present invention uses nanofibers for preparing supports in order to realize a structure similar to natural extracellular matrix. Since the nanofibers have a large specific surface area and a large cell attachment area, when the cells are cultured on a support made of nanofibers, the cell adhesion is excellent.

또한, 홍합 접착 단백질은 대장균에서 대량생산이 가능하고, 정제과정 또한 매우 단순하여 산업적 이용 가능성이 매우 높다. 또한, 종래에는 나노섬유를 제조할 때 물 속에서의 안정성을 높여주기 위해서 가교제로 포름알데히드나 글루타알데히드를 사용하였는데, 이러한 가교제는 인체에 독성을 가지고 있기 때문에 조직공학용 지지체로서 부적합하였다. 본 발명에서는 홍합 접착 단백질에 존재하는 DOPA를 Fe3 + 이온과 반응시켜 가교를 형성하는데, DOPA와 Fe3 + 은 우리 몸 속에 이미 존재하는 물질이기 때문에 생체적합성(Biocompatibility)이 우수한 장점이 있다.In addition, the mussel adhesive protein can be mass-produced in E. coli, and the purification process is also very simple and highly industrially applicable. Further, conventionally, formaldehyde or glutaraldehyde was used as a crosslinking agent in order to enhance stability in water when producing nanofibers. Such crosslinking agents are unsuitable as supports for tissue engineering because they have toxicity to humans. In the present invention, DOPA existing in the mussel adhesive protein reacts with Fe 3 + ions to form a bridge. DOPA and Fe 3 + are advantageous in biocompatibility since they are substances already existing in the body.

본 발명에서 홍합 접착 단백질과 Fe3 + 을 이용하여 제조된 나노섬유의 표면에는 홍합 접착 단백질의 접착력을 이용하여 다양한 종류의 기능성 생리활성물질들을 물리화학적 처리 방식 없이 간편하게 코팅될 수 있다.In the present invention, various types of functional physiologically active substances can be easily coated on the surface of nanofibers prepared using mussel adhesive protein and Fe 3 + , without physicochemical treatment, by using the adhesive force of mussel adhesive protein.

본 발명에서, 상기 나노섬유에 부착가능한 생리활성물질은 인체의 세포나 조직과 상호작용을 통하여 세포의 성장과 분화를 촉진시키고 아울러 조직의 재생과 회복을 도와주는 작용에 관여하는 물질들을 총칭한다. 또한, 상기 생리활성물질은 천연 세포외 기질과 유사하게 유사한 구조의 인공 세포외 기질을 구현하기 위하여 포함될 수 있는 각종 생체분자들을 총칭한다.In the present invention, physiologically active substances that can be adhered to the nanofibers are collectively referred to as materials that promote the growth and differentiation of cells through interaction with cells or tissues of the human body, and also contribute to the regeneration and recovery of tissues. The physiologically active substance is collectively referred to as various biomolecules that can be included to realize an artificial extracellular matrix having a structure similar to a natural extracellular matrix.

구체적으로, 상기 생리활성물질은 세포, 단백질, 핵산, 당, 효소 등을 포함하며, 일 예로 세포, 단백질, 폴리펩타이드, 다당류, 단당류, 올리고당류, 지방산, 핵산 등을 들 수 있으며, 바람직하게는 세포를 들 수 있다. 상기 세포는 원핵세포 및 진핵세포를 포함한 모든 세포일 수 있고, 일 예로 조골세포(osteoblast), 섬유세포(fibroblast), 간세포(hepatocyte), 신경세포(neurons), 암세포(cancer cell), B cell, 백혈구세포(white blood cell) 등을 포함한 면역세포 및 배아세포 등일 수 있다. 이 외에도, 생리활성물질은 녹색형광단백질, 핵산 물질로서 플라스미드 핵산, 당 물질로서 히아루론산, 헤파린 황산염, 콘드로이틴 황산염, 알진염, 효소 물질로서 알칼라인 포스파타아제를 포함하나, 이에 제한되지는 않는다.Specifically, the physiologically active substance includes cells, proteins, nucleic acids, sugars, enzymes and the like, and examples thereof include cells, proteins, polypeptides, polysaccharides, monosaccharides, oligosaccharides, fatty acids and nucleic acids. Cells. The cells may be all cells including prokaryotes and eukaryotes. Examples of the cells include osteoblasts, fibroblasts, hepatocytes, neurons, cancer cells, B cells, An immune cell including a white blood cell, an embryo cell, and the like. In addition, the physiologically active substance includes, but is not limited to, a green fluorescent protein, a plasmid nucleic acid as a nucleic acid material, a hyaluronic acid, a heparin sulfate, a chondroitin sulfate, an alkaline salt as a sugar material, and an alkaline phosphatase as an enzymatic substance.

본 발명의 나노섬유 조직공학용 지지체는 조직공학 기술에서 생체조직 및 장기의 재생을 최적화하기 위하여 생체조직과 유사한 지지체를 제공할 수 있다. 또한 본 발명의 지지체를 이용하여 간편하게 인공 세포외 기질을 구현할 수 있으며, 화장품, 상처피복재, 치과용 매트릭스 등의 의료용 소재로도 활용될 수 있다.The nanofiber tissue engineering support of the present invention can provide a biomaterial-like support to optimize the regeneration of biological tissue and organs in tissue engineering techniques. In addition, the supporter of the present invention can be used to easily embody an extracellular matrix, and can also be used as a medical material for cosmetics, wound dressings, and dental matrix.

또한, 상기 나노 섬유 조직공학용 지지체를 제공하기 위한 하나의 양태로서, 본 발명은,In addition, as one embodiment for providing the support for nanofiber tissue engineering,

(a) 홍합 접착 단백질 및 Fe3 + 이온을 반응시키는 단계; 및 (a) reacting mussel adhesive protein and Fe < 3 + & gt ; ions; And

(b) 생분해성 고분자를 혼합하여 전기방사하는 단계를 포함하는,(b) electrospun mixing the biodegradable polymer.

나노섬유 조직공학용 지지체를 제조하는 방법에 관한 것이다.To a method for producing a nanofiber tissue engineering support.

상기 단계 (a)은 홍합 접착 단백질에 포함된 DOPA와 Fe3 + 이온을 결합시키는 단계이다. DOPA는 Fe3 +을 포함하는 metal과 결합하면서 pH에 따라서 mono-, bis-, tris- 결합을 하는 것으로 알려져 있다. 또한 각각의 결합 양상에 따라서 DOPA-metal 결합 고유의 색깔을 나타내는 것으로 알려져 있으며, 기존의 연구에 의해서 DOPA-metal의 결합 수에 의한 색깔 변화는 잘 밝혀져 있다.The step (a) is a step of binding DOPA and Fe 3 + ions contained in the mussel adhesive protein. DOPA is known to the mono-, bis-, tris- combination according to the pH and combined with a metal containing Fe + 3. In addition, it is known that DOPA-metal bond has unique color depending on the bonding pattern. The color change due to the bonding number of DOPA-metal is well known by the existing studies.

상기 방법에서, Fe3 + 이온을 제공하기 위하여 Fe3 + 이온을 포함하는 시약을 사용할 수 있으며, 예를 들어 FeCl3를 이용하는 것이 바람직하나 이에 제한되지는 않는다. 보다 바람직하게, 상기 홍합 접착 단백질이 30~50wt%로 용해되어 있는 용액에 DOPA:Fe3 + 분자의 비율이 바람직하게는 3:1 혹은 Fe3 +의 비율이 더 적게 되도록 FeCl3 용액을 첨가시키고, NaOH를 이용하여 pH를 11 이상으로 올리면서 DOPA와 Fe3 + 이온의 결합을 형성시킬 수 있다.In this method, Fe 3 + can be used a reagent containing Fe 3 + ions to ions and to provide, for example, but are not limited to, preferably one using the FeCl 3. More preferably, the mussel adhesive protein, DOPA in the solution is dissolved in 30 ~ 50wt%: the ratio of the Fe 3 + molecule preferably 3: 1 or the addition of FeCl 3 solution to reduce further the proportion of Fe 3 + and , And the combination of DOPA and Fe 3 + ions can be formed by raising the pH to 11 or more using NaOH.

상기 단계 (b)는 3차원 나노 섬유 지지체를 제조하는 단계로, 전기방사공정을 사용하는 것이 바람직하다.The step (b) is a step of producing a three-dimensional nanofiber support, and it is preferable to use an electrospinning process.

전기방사공정은 고분자 용액이나 용융된 고분자를 소정 전압으로 하전시킬 때 발생하는 전기적 인력 및 척력을 이용하여 섬유를 형성시키는 기술이다. 전기방사공정은 수 nm~수천 nm 크기의 다양한 직경을 갖는 섬유를 제조할 수 있으며, 장비 구조가 간단하고, 광범위한 재료에 적용이 가능하고, 기존의 섬유에 비하여 공극률이 증가되어 부피 대비 표면적이 큰 섬유 제조가 가능하다.The electrospinning process is a technique of forming fibers by utilizing the electrical attraction and the repulsive force generated when the polymer solution or molten polymer is charged to a predetermined voltage. The electrospinning process is capable of producing fibers with various diameters of several nanometers to several thousands of nanometers in size, has a simple equipment structure, can be applied to a wide range of materials, has a porosity higher than that of conventional fibers, Fiber fabrication is possible.

구체적으로, 상기 전기방사공정을 수행하기 위하여, 먼저 홍합 접착 단백질을 유기용매 단독 또는 유기용매와 산성용매의 혼합용매에 용해시킬 수 있다. 상기 유기용매는 HFIP(hexafluoroisopropanol), HFP (hexafluoropropanol), TFA(trifluoroacetic acid) 등을 포함하나, 이에 제한되지 않고, 본 발명에서는 HFIP가 바람직하다. 본 발명에서는 HFIP를 100%으로 혼합하는 것이 바람직하다. 이 때, 상기 용매에 용해된 홍합 접착 단백질의 농도는 10% (w/v) 이상, 바람직하게는 30% (w/v)일 수 있다. 방사 공정은 적절한 전압을 인가하면서 적절한 방사 장치를 이용하여 수행할 수 있다. 방사 공정 시 인가되는 전압은 10 내지 20kV의 범위 내로 설정하는 것이 안정적인 방사공정을 수행할 수 있어 바람직하다. 10 내지 20kV의 전압 범위 내에서 전압이 커질 경우 방사속도가 증가된다.Specifically, in order to perform the electrospinning process, the mussel adhesive protein may be dissolved in an organic solvent alone or in a mixed solvent of an organic solvent and an acidic solvent. The organic solvent includes HFIP (hexafluoroisopropanol), HFP (hexafluoropropanol), TFA (trifluoroacetic acid) and the like, but is not limited thereto. In the present invention, it is preferable to mix HFIP at 100%. At this time, the concentration of the mussel adhesive protein dissolved in the solvent may be 10% (w / v) or more, preferably 30% (w / v). The spinning process can be carried out using the appropriate spinning device while applying the appropriate voltage. It is preferable to set the voltage applied during the spinning process within a range of 10 to 20 kV because a stable spinning process can be performed. When the voltage is increased within the voltage range of 10 to 20 kV, the spinning speed is increased.

바람직하게, 홍합 접착 단백질-Fe3 + 을 생분해성 고분자와 함께 블렌딩(혼합)하여 합성고분자 용액을 제조한 후 전기방사를 통하여 나노 섬유를 제조할 수 있다.Preferably, the mussel adhesive protein-Fe 3 + is blended with the biodegradable polymer to prepare a synthetic polymer solution, and then nanofibers can be prepared through electrospinning.

상기 고분자는 일반적으로 조직공학 재료로 사용되는 대부분의 생분해성 고분자들을 포함한다. 예를 들어, HFIP 용매에 용해되면서 전기 방사가 잘 이루어진다고 알려진 PCL (polycaprolactone), PDO (polydioxanone), PLLA (poly(L-lactide)) 및 PLGA (poly(DL-lactide-co-glycolide))와, 물에 용해될 수 있다고 알려진 PEO (polyethylene oxide) 및 PVA (polyvinyl alcohol) 등을 예시할 수 있다. PCL, PDO, PLLA 및 PLGA 고분자는 HFIP 유기용매에 각각 용해시킨 후, 상기에 언급한대로 용해된 홍합 접착 단백질-Fe3 + 용액을 블렌딩하여 전기방사를 수행할 수 있고, PEO 및 PVA 고분자의 경우는 물에 각각 용해시킨 후, 물에 용해된 홍합 접착 단백질-Fe3 +용액과 블렌딩하여 전기방사를 수행할 수 있다. The polymer generally includes most biodegradable polymers used as tissue engineering materials. For example, polycaprolactone (PCL), polydioxanone (PDO), poly (L-lactide) and PLLA (poly-DL-lactide-co-glycolide), which are known to dissolve in HFIP solvents, , Polyethylene oxide (PVA) and polyvinyl alcohol (PVA), which are known to be soluble in water, and the like. The PCL, PDO, PLLA and PLGA polymers may be respectively dissolved in an HFIP organic solvent, and then electrospun can be performed by blending dissolved mussel adhesive protein-Fe 3 + solution as described above. In the case of PEO and PVA polymers, After dissolving each in water, it is possible to perform electrospinning by blending with a solution of mussel adhesive protein-Fe 3 + dissolved in water.

또한, 홍합 접착 단백질-Fe3 + 과 생분해성 고분자를 다양한 비율로 혼합하여 전기방사를 통하여 나노 섬유를 제조할 수 있다. 예를 들어, 생분해성 고분자와 홍합 접착 단백질을 90:10 내지 10:90, 바람직하게는 70:30 또는 50:50 (w/w) 등의 비율로 혼합한 후 전기방사를 통하여 나노 섬유를 제조할 수 있다.In addition, nanofibers can be prepared by electrospinning by mixing the mussel adhesive protein-Fe 3 + and the biodegradable polymer in various ratios. For example, the biodegradable polymer and the mussel adhesive protein are mixed at a ratio of 90: 10 to 10: 90, preferably 70: 30 or 50: 50 (w / w) can do.

상기와 같이 홍합 접착 단백질-Fe3 + 와 생분해성 고분자의 블렌딩을 통해 제조된 나노 섬유의 표면에는 홍합 접착 단백질이 자연스럽게 노출될 수 있다. 또한, 상기 홍합 접착 단백질-Fe3 + 와 생분해성 고분자로 제조한 나노 섬유는 우수한 인장 강도 및 인장 탄성 계수를 보인다. 지지체에서 세포를 배양할 때 지지체를 통한 기계적인 자극이 부여될 경우 세포를 더욱 강건하게 만들어 조직 재생에 매우 유리하다고 보고된 바 있다 (Kim et al., Nature Biotechnology, 17:979-983, 1999). 본 발명의 구체적으로 실시예에서, 본 발명에 따라 제조된 나노 섬유의 pH가 염기로 갈수록 Dopa-Fe3 + complex 의 양(라만 스펙트럼 400~600)이 많아지며 (도 5), 기계적 물성을 측정하였을 때 pH가 염기로 갈수록 즉 단백질 내에 존재하는 DOPA 잔기가 Fe3 + 이온과 결합하는 수가 2개, 3개로 갈수록 인장 강도(Tensile strength) 및 인장 탄성 계수 (Young's modulus)가 증가하는 것을 확인하였다(도 6 및 도 7). 따라서 Dopa-Fe3 + complex 가 증가함에 따라 기계적 성질이 선형적으로 비례하여 증가하게 됨을 알 수 있다. As described above, the mussel adhesive protein can be naturally exposed on the surface of the nanofiber prepared by blending the mussel adhesive protein-Fe 3 + and the biodegradable polymer. In addition, the nanofiber prepared from the mussel adhesive protein-Fe 3 + and the biodegradable polymer show excellent tensile strength and tensile elastic modulus. It has been reported that when a cell is cultured on a support, mechanical stimulation through a support is given, the cell becomes more robust and is very advantageous for tissue regeneration (Kim et al., Nature Biotechnology, 17: 979-983, 1999) . Specifically, in an embodiment of the present invention, an amount of going into the pH of the base of the nanofiber produced according to the present invention Dopa-Fe 3 + complex (Raman spectrum 400-600) becomes a large (FIG. 5), measuring the mechanical properties the pH was confirmed that toward the base that is present DOPA residue is Fe 3 + the number of combining the ions of two, three gradually increase the tensile strength (tensile strength) and tensile modulus (Young's modulus) that in the protein when ( 6 and 7). Thus it can be seen that the mechanical properties increase in proportion linearly as Dopa-Fe 3 + complex is increased.

나아가, 상기 홍합 접착 단백질-Fe3 + 와 생분해성 고분자로 제조한 나노 섬유에 비전환형 골 형성 세포인 MC3T3-El 세포를 접종한 후 1시간 및 3일 후에 Live/Dead staining image를 통하여 세포들의 거동을 살펴본 결과, 생분해성 고분자로만 제조한 나노 섬유보다 살아있는 세포의 수가 더 많이 관찰되었으며 (도 8), CCK-8 을 이용한 세포 생존 실험에서도 더 우수한 생존 능력을 확인할 수 있었다 (도 9). Furthermore, the behavior of mussel adhesive protein -Fe 3 + and biodegradable after inoculation at a castle nanofibers produced by a non-cyclic polymer bone formation cells such as MC3T3-El cells, 1 hour and 3 days after the cells through the Live / Dead staining image , The number of living cells was observed more than that of nanofibers prepared only with biodegradable polymer (FIG. 8), and more excellent survival ability was confirmed in the cell survival experiment using CCK-8 (FIG. 9).

따라서, 본 발명의 나노 섬유 지지체는 유연성 및 탄성을 갖는 생분해성 지지체로서 조직의 재생에 우수한 효과를 나타낼 것으로 기대될 뿐만 아니라, 간편하게 인공 세포외 기질을 구현할 수 있으며, 화장품, 상처피복재 또는 치과용 매트릭스 등의 의료용 소재로도 활용할 수 있다.Therefore, the nanofiber support of the present invention is a biodegradable support having flexibility and elasticity and is expected not only to exert an excellent effect on the regeneration of tissues, but also can easily realize an extracellular matrix, and can be used as a cosmetic, wound dressing or dental matrix And the like.

본 발명은 홍합 접착 단백질과 Fe3 + 이온을 이용하여 기계적 성질이 증대된 나노섬유를 제공하며, 상기 나노섬유는 표면에 복잡한 물리화학적 전처리 과정을 거치지 않고도 홍합 코팅 단백질의 접착력을 이용하여 다양한 기능성 생리활성 물질을 코팅할 수 있고, 그 제조과정이 매우 단순하여 산업적 이용 가능성이 매우 높으며, 생체적합성이 우수하기 때문에, 조직공학용 지지체 및 의료용 소재로 적합하다.The present invention using the mussel adhesive protein with the Fe 3 + ions and provide the mechanical properties the increase nanofibers, the nanofibers are various functional physiology using the adhesive force of the mussels coating protein without the need for complex physical and chemical pretreatment on the surface Can be coated with an active material and is very simple in its manufacturing process, is highly industrially applicable, and is excellent in biocompatibility, so that it is suitable as a support for tissue engineering and a medical material.

도 1은 PCL과 홍합 접착 단백질의 다양한 비율에서 블렌딩을 통해 제조한 나노섬유의 전자현미경 이미지를 나타낸 것이다.
도 2는 홍합 접착 단백질에서의 DOPA 전환율을 아미노산 분석기를 통해서 분석한 결과를 나타낸 것이다. DOPA 및 tyrosine 잔기의 peak intensity를 통해 약 37%의 전환율을 보임을 나타낸 것이다.
도 3은 수정된 홍합 접착 단백질과 Fe3 +의 결합을 형성시킨 후 PCL과의 다양한 블렌딩을 통해 제조한 나노섬유의 전자현미경 이미지를 나타낸 것이다.
도 4는 홍합 접착 단백질 및 Fe3 + 이 함유된 나노섬유의 pH에 따른 색깔 변화를 나타낸 이미지이다.
도 5는 홍합 접착 단백질 및 Fe3 + 이 함유된 나노섬유의 raman spectroscopy를 나타낸 이미지이다. 보라색선은 pH 3.0, 파란선은 pH 5.5 with EDTA, 녹색선은 pH 5.5 without EDTA, , 빨간색선은 pH 8.2의 라만 스펙트럼을 의미한다.
도 6은 홍합 접착 단백질 및 Fe3 + 이 함유된 나노섬유의 pH에 따른 기계적 물성 수치를 나타낸 표이다.
도 7은 홍합 접착 단백질 및 Fe3 + 이 함유된 나노섬유의 pH에 따른 strain-stress 커브를 나타낸 것이다.
도 8은 PCL로만 제조한 나노 섬유, PCL과 fp-1 variant 을 90:10(w/w)로 혼합하여 제조한 나노 섬유, 그리고 홍합 접착 단백질 및 Fe3 +이 함유된 나노섬유에 각각 MC3T3-E1 cell을 배양하여 유독성 실험을 한 결과를 나타낸 것이다.
도 9는 PCL로만 제조한 나노 섬유, PCL과 fp-1 variant 을 90:10(w/w)로 혼합하여 제조한 나노 섬유, 그리고 홍합 접착 단백질-Fe3 + 와 생분해성 고분자로 제조한 나노섬유에 각각 MC3T3-E1 cell을 배양하여 세포의 생존능력 실험을 한 결과를 나타낸 것이다.
Figure 1 shows an electron microscope image of nanofibers prepared by blending at various ratios of PCL and mussel adhesive proteins.
Figure 2 shows the results of analysis of DOPA conversion in mussel adhesive proteins through an amino acid analyzer. The peak intensity of DOPA and tyrosine residues indicates a conversion rate of about 37%.
FIG. 3 shows an electron microscope image of nanofibers prepared through various blending with PCL after forming a bond of modified mussel adhesive protein with Fe 3 + .
4 is an image showing changes in color of nanofibers containing mussel adhesive protein and Fe 3 + according to pH.
5 is an image showing raman spectroscopy of a nanofiber containing mussel adhesive protein and Fe 3 + . Purple line means pH 3.0, blue line means pH 5.5 with EDTA, green line means pH 5.5 without EDTA, and red line means Raman spectrum of pH 8.2.
FIG. 6 is a table showing mechanical properties of nanofiber containing mussel adhesive protein and Fe 3 + according to pH. FIG.
FIG. 7 shows strain-stress curves of pH of nanofibers containing mussel adhesive protein and Fe 3 + . FIG.
FIG. 8 is a graph showing the relationship between the nanofibers prepared by mixing PCL-only nanofibers, PCL and fp-1 variant at 90:10 (w / w), and the nanofibers containing mussel adhesive protein and Fe 3 + E1 cells were cultured for toxicity test.
Figure 9 is a nanofiber prepared in the nanofibers, and PCL nanofibers, and mussel adhesive protein -Fe 3 + and biodegradable polymer to fp-1 variant which was prepared by mixing a 90:10 (w / w) produced only PCL . The results of the cell viability test are shown in FIG.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

실시예Example 1. 홍합 접착 단백질 기반의 나노섬유의 제조 1. Production of nanofiber based on mussel adhesive protein

1-1. 재조합 홍합 접착 단백질 1-1. Recombinant mussel adhesive protein fpfp -1 -One variantvariant 의 생산 및 나노섬유 제조Production and production of nanofibers

본 발명에서 사용한 홍합 접착 단백질 fp-1 variant (서열번호 3)는 자연에 존재하는 홍합 접착 단백질 fp-1 (Genbank No. Q27409; 서열번호 1)의 아미노산 서열에서 AKPSYPPTYK (서열번호 2)로 이루어진 펩타이드가 12회 반복 연결된 fp-1 변이체를 대장균에서 생산한 것이다. 상기 홍합 접착 단백질 fp-1 variant의 제조는 국제특허공개 WO2005/092920 에 나타낸 바와 동일하며, 상기 특허문헌은 전체로서 참고문헌으로 본 발명에 포함된다.The mussel adhesive protein fp-1 variant (SEQ ID NO: 3) used in the present invention is a peptide consisting of AKPSYPPTYK (SEQ ID NO: 2) in the amino acid sequence of the mussel adhesive protein fp-1 (Genbank No. Q27409; Was produced in Escherichia coli by the fp-1 mutant that was repeated 12 times. The preparation of the mussel adhesive protein fp-1 variant is the same as that described in International Patent Publication No. WO 2005/092920, which is incorporated herein by reference in its entirety.

홍합 접착 단백질 기반의 나노섬유를 제조하기 위하여 합성 고분자인 PCL (polycaprolactone)과 홍합 접착 단백질 fp-1 variant 용액을 블렌딩하여 전기방사 기술을 이용하여 나노 섬유를 제조하였다. 구체적으로, 홍합 접착 단백질 fp-1 variant와 PCL을 각각 6wt%로 HFIP(1,1,1,3,3,3-hexafluoroisopropanol)에 녹인 후, PCL과 fp-1 variant 의 비율이 90:10(w/w), 70:30(w/w), 그리고 50:50(w/w)이 되도록 섞어 준 후, 이 혼합 용액을 이용해 전기방사를 수행하였다. 전기방사는 혼합 용액을 시린지 펌프를 이용해 1 ml/h의 속도로 내보내면서 0.4 mm의 지름을 가진 바늘을 통과할 때 15 kV의 고전압을 걸어주면서 나노섬유를 생성시키는 방식으로 진행되었고, 생성된 나노섬유는 바늘과 15 cm 떨어진 알루미늄 호일 위에 받았다. 그 결과, 각각의 모든 혼합 비율에서 성공적으로 곧은 섬유 형태를 가진 나노섬유가 생성되는 것을 확인할 수 있었고 이를 도 1에 기재하였다.
Nanofibers were prepared by blending polycaprolactone (PCL) and mussel adhesive protein fp-1 variant solutions to produce nanofibers based on mussel adhesive proteins. Specifically, the mussel adhesive protein fp-1 variant and PCL were dissolved in HFIP (1,1,1,3,3,3-hexafluoroisopropanol) in a concentration of 6 wt%, respectively. The ratio of PCL to fp-1 variant was 90:10 w / w), 70:30 (w / w), and 50:50 (w / w), and electrospinning was performed using this mixed solution. The electrospinning was carried out by passing the mixed solution through a needle having a diameter of 0.4 mm at a rate of 1 ml / h using a syringe pump and generating nanofibers while applying a high voltage of 15 kV, The fibers were placed on an aluminum foil 15 cm away from the needle. As a result, it was confirmed that nanofibers having a straight fiber shape were successfully formed at all the mixing ratios, and these are shown in FIG.

1-2. 재조합 홍합 접착 단백질 1-2. Recombinant mussel adhesive protein fpfp -1 -One variantvariant 의 수정반응 수행Carry out the correction reaction of

상기 <실시예 1-1>에 따라 제조된 홍합 접착 단백질 fp-1 variant를 구성하는 tyrosine 아미노산을 DOPA로 전환시키기 위하여 tyrosinase 효소(mushroom tyrosinase, SIGMA)를 이용하여 in vitro에서 수정 반응을 시켰다. 구체적으로, 동결건조된 홍합 접착 단백질 fp-1 variant 150mg과 tyrosinase 5mg을 수정반응을 위한 버퍼 용액 (0.1M Sodium phosphate, 20mM Boric acid, 25mM Ascorbic acid, pH 6.8) 100ml에 녹여서 1시간 동안 반응시켰다. 이 후 1~5% 아세트산 용액 3L를 이용하여 4시간 이상씩 3번 갈아주면서 투석을 시킨 후, 동결건조 시켰다. 홍합 접착 단백질 fp-1 variant의 수정 효율 분석하기 위해 아미노산 조성 분석을 수행한 결과, 전체 tyrosine 잔기 중 약 37%가 DOPA로 전환되었음을 확인하였고 그 결과를 도 2에 나타내었다.
The tyrosinase enzyme (mushroom tyrosinase, SIGMA) was used to modify the tyrosine amino acid in the mussel adhesive protein fp-1 variant prepared in Example 1-1 to DOPA in vitro. Specifically, 150 mg of the lyophilized mussel adhesive protein fp-1 variant and 5 mg of tyrosinase were dissolved in 100 ml of a buffer solution (0.1 M sodium phosphate, 20 mM boric acid, 25 mM Ascorbic acid, pH 6.8) for reaction for 1 hour. After that, dialysis was carried out using 3 L of 1 to 5% acetic acid solution for 3 hours at least for 4 hours, followed by lyophilization. Amino acid composition analysis was performed to analyze the modification efficiency of the mussel adhesive protein fp-1 variant. As a result, it was confirmed that about 37% of all tyrosine residues were converted to DOPA, and the results are shown in FIG.

1-3. 재조합 홍합 접착 단백질 1-3. Recombinant mussel adhesive protein fpfp -1 -One variantvariant Wow FeFe 33 ++ 이 포함된 나노섬유 제조Manufacture of nanofibers containing

상기 <실시예 1-1>을 통해 홍합 접착 단백질 fp-1을 이용한 나노섬유를 제조하는 것이 가능함을 확인하였기 때문에, 이 나노섬유에 금속 이온을 포함시키기 위한 실험을 수행하였다. 구체적으로 <실시예 1-2>에서 DOPA로 수정된 홍합 접착 단백질 mfp-1 variant를 6wt%로 HFIP에 녹인 다음, DOPA와 Fe3 +의 분자 비율이 3:1이 되도록 FeCl3 용액을 섞어주었다. 이렇게 되면 Fe3 +와 DOPA가 결합하면서 용액의 색깔이 짙은 남색으로 바뀌게 되는데, 이 용액과 PCL 용액을 블렌딩하여 전기방사를 수행하였다. 그 결과, 나노섬유가 성공적으로 제조됨을 확인하였고, 전자현미경을 이용해 얻은 이미지를 도 3에 나타내었다. Since it was confirmed that it is possible to produce nanofibers using the mussel adhesive protein fp-1 through the above <Example 1-1>, experiments for incorporating metal ions into the nanofibers were conducted. Specifically, in Example 1-2, a mussel adhesive protein mfp-1 variant modified with DOPA was dissolved in HFIP at 6 wt%, and a FeCl 3 solution was mixed so that the molar ratio of DOPA to Fe 3 + was 3: 1 . In this case, Fe 3 + and DOPA are combined and the color of the solution turns dark blue. Electrospinning is performed by blending the solution with PCL solution. As a result, it was confirmed that the nanofibers were successfully produced, and an image obtained using an electron microscope is shown in FIG.

또한, 제조된 나노섬유가 pH에 따라서 어떻게 색깔이 변하는지 확인한 결과, pH 8.2(tris 버퍼용액)에서는 tris 결합을 나타내는 핑크색으로, pH 5.5(acetate 버퍼용액)에서는 bis 결합을 나타내는 보라색으로 변하는 것을 확인하였고, DOPA-metal의 상호작용을 막기 위해 EDTA 용액을 처리한 결과 색깔이 없어지는 것을 확인하였다. 이러한 색깔 변화를 각각 도 4에 나타내었다.
In addition, it was confirmed that the prepared nanofibers changed color depending on the pH. As a result, it was confirmed that the color changes to pink which shows tris bond in pH 8.2 (tris buffer solution) and purple which shows bis bond in pH 5.5 (acetate buffer solution) And treated with EDTA solution to prevent DOPA-metal interactions. These color changes are shown in FIG. 4, respectively.

실시예Example 2. 재조합 홍합 접착 단백질  2. Recombinant mussel adhesive protein fpfp -1 -One variantvariant Wow FeFe 33 ++ 이 포함된 나노섬유의 Of nanofiber ramanraman spectroscopyspectroscopy 분석 analysis

홍합 접착 단백질 fp-1과 Fe3 +이 포함된 나노섬유에서 DOPA와 Fe3 + 의 결합양상을 화학적으로 확인하기 위하여 raman spectroscopy를 이용하여 분석하여 도 5에 나타내었다. 도 5에서 보라색선은 pH 3.0, 파란선은 pH 5.5 with EDTA, 녹색선은 pH 5.5 without EDTA, 빨간색선은 pH 8.2의 라만 스펙트럼을 의미한다. DOPA는 Fe3 +을 포함하는 metal과 결합하면서 pH에 따라서 mono-, bis-, tris- 결합을 하는 것으로 알려져 있으며, 라만 스펙트럼 상의 400~600은 DOPA-Fe complex 몰농도 양과 비례한다. 도 5의 라만 스펙트럼 상의 400~600을 보면 pH가 염기로 갈수록 Dopa-Fe3+ complex 의 양이 많아짐을 알 수 있으며 이는 홍합 접착 단백질 내에 존재하는 DOPA 잔기가 Fe3 + 이온과 결합하는 수가 2개, 3개로 증가함을 나타낸다. 또한, 라만 스펙트럼 상의 2800~3000 사이는 CH stretching을 나타내며, 이는 존재하는 유기물의 몰농도양, 즉 나노섬유 몰농도와 비례한다. 따라서 [Raman 400~600 intensity]/[Raman 2800-3200 intensity]은 나노섬유 몰당 DOPA-Fe complex 양을 의미하며, pH가 염기로 갈수록 나노섬유 몰당 DOPA-Fe complex 양이 증가하게 됨을 알 수 있다.Figure 5 shows the analysis of the binding behavior of DOPA and Fe 3 + in nanofibers containing mussel adhesive proteins fp-1 and Fe 3 + using chemically confirmed raman spectroscopy. In FIG. 5, the purple line indicates pH 3.0, the blue line indicates pH 5.5 with EDTA, the green line indicates pH 5.5 without EDTA, and the red line indicates Raman spectrum of pH 8.2. DOPA is combined with the metal containing Fe 3 + is known to the mono-, bis-, tris- combination according to the pH, the Raman spectrum 400 to 600 is in proportion to the amount DOPA-Fe complex on the molar concentration. As shown in FIG. 5, the amount of Dopa-Fe 3+ complex increases as the pH increases from 400 to 600 on the Raman spectrum. This indicates that the number of DOPA residues present in the mussel adhesive protein binds to Fe 3 + , And 3, respectively. Also, between 2800 and 3000 on the Raman spectrum shows CH stretching, which is proportional to the molarity of the organic matter present, that is, the molar concentration of nanofibers. Therefore, [Raman 400 ~ 600 intensity] / [Raman 2800-3200 intensity] indicates the amount of DOPA-Fe complex per mole of nanofibers, and the amount of DOPA-Fe complex per mole of nanofibers increases with increasing pH.

Figure 112013081349946-pat00001

Figure 112013081349946-pat00001

실시예Example 3. 재조합 홍합 접착 단백질  3. Recombinant mussel adhesive protein fpfp -1 -One variantvariant Wow FeFe 33 ++ 이 포함된 나노섬유의 기계적 물성 분석Analysis of Mechanical Properties of Nanofibers Contained

재조합 홍합 접착 단백질 fp-1과 Fe3 +이 포함된 나노섬유의 기계적 물성을 알아보기 위하여, 상기 <실시예 1-3>에서 제조된 나노섬유를 각각 pH 8.2용액, pH 5.5용액, EDTA 용액에 담군 후, 마르지 않은 상태에서 각각의 나노섬유를 10 mm X 25 mm 크기로 자른 다음, universal testing machine (INSTRON) 2kN load cell을 이용하여 5 mm/min의 속도로 당기면서 측정하였다. To investigate the mechanical properties of the nanofibers containing the recombinant mussel adhesion proteins fp-1 and Fe 3 + , the nanofibers prepared in Example 1-3 were dissolved in a pH 8.2 solution, a pH 5.5 solution and an EDTA solution, respectively After dipping, each of the nanofibers was cut into 10 mm x 25 mm size without drying, and then pulled at a rate of 5 mm / min using a universal testing machine (INSTRON) 2 kN load cell.

도 6은 홍합 접착 단백질 및 Fe3 + 이 함유된 나노섬유의 pH에 따른 기계적 물성 수치를 나타내고, 도 7은 홍합 접착 단백질 및 Fe3 + 이 함유된 나노섬유의 pH에 따른 strain-stress 커브를 나타낸다. 이에 따르면, 나노섬유의 pH에 따라 변형률 (extension)은 큰 변화가 없었지만, 인장 강도 (tensile strength)와 인장 탄성 계수 (Young's modulus)는 EDTA, pH 5.5, pH 8.2 순으로 점차 증가하는 양상을 보여, pH 8.2 용액에서 인장 강도와 인장 탄성 계수가 최대값을 나타내었다. 따라서, pH가 염기로 갈수록 Dopa-Fe3 + complex (Raman 400~600)가 증가함에 따라 기계적 성질이 선형적으로 비례하여 증가하게 됨을 알 수 있다.
FIG. 6 shows the mechanical properties of nanofibers containing mussel adhesive protein and Fe 3 + according to pH, and FIG. 7 shows strain-stress curves according to pH of nanofibers containing mussel adhesive protein and Fe 3 + . The tensile strength and Young's modulus of EDTA, pH 5.5, and pH 8.2 were gradually increased in the order of pH and pH, Tensile strength and tensile elastic modulus were the maximum values in pH 8.2 solution. Therefore, it can be seen that the pH of the mechanical properties, as increasingly Dopa-Fe 3 + complex (Raman 400 ~ 600) is increased to a base proportional increase linearly.

실시예Example 4. 재조합 홍합 접착 단백질  4. Recombinant mussel adhesive protein fpfp -1 -One variantvariant Wow FeFe 33 ++ 이 포함된 나노섬유의 세포 실험 분석Analysis of Cellular Experiments of Nanofibers Containing

재조합 홍합 접착 단백질 fp-1과 Fe3 +이 포함된 본 발명의 지지체를 이용하여 간편하게 인공 세포외 기질을 구현할 수 있으며, 화장품, 상처피복재, 치과용 매트릭스 등의 의료용 소재로도 활용할 수 있음을 확인하기 위하여, 비전환형 골 형성 세포인 MC3T3-El 세포를 이용하여 세포 실험을 수행하였다. 세포 실험에 사용한 나노 섬유는 홍합 접착 단백질 fp-1 variant와 PCL을 각각 6wt%로 HFIP(1,1,1,3,3,3-hexafluoroisopropanol)에 녹인 후, PCL과 fp-1 variant 의 비율이 90:10(w/w) 섞어 준 후, 이 혼합 용액을 이용해 전기방사를 수행하여 만들었다. 그리고 Fe3 +이 들어간 나노 섬유는 상기 <실시예 1-3>을 통해 언급한 방법으로 나노 섬유를 만들었다.It is possible to easily realize the extracellular matrix using the supporter of the present invention including the recombinant mussel adhesion protein fp-1 and Fe 3 + , and it can be utilized as a medical material such as cosmetics, wound covering materials and dental matrix , Cell experiments were performed using MC3T3-El cells, which are non-transformed osteogenic cells. The nanofibers used in the cell experiments were prepared by dissolving the mussel adhesive protein fp-1 variant and PCL in 6 wt% of HFIP (1,1,1,3,3,3-hexafluoroisopropanol), respectively. The ratio of PCL to fp-1 variant 90:10 (w / w), followed by electrospinning using this mixed solution. Then, the nanofibers containing Fe 3 + were produced by the method described in the above <Example 1-3>.

생분해성 고분자인 PCL로만 만든 나노 섬유, PCL과 fp-1 variant 의 비율이 90:10(w/w)로 섞어 준 나노 섬유, 그리고 Fe3 +이 포함된 나노섬유에 각각 MC3T3-El 세포를 접종 후, 1시간 및 3일 후에 Live/Dead staining image를 통하여 세포들의 거동을 살펴보았다. 그 결과 PCL로만 만든 나노 섬유보다, PCL과 fp-1 variant 의 비율이 90:10(w/w)로 섞어 준 나노 섬유 및 Fe3 +이 포함된 나노섬유에서, 살아있는 세포가 더 많이 관찰되었다(녹색은 살아있는 세포, 빨간색은 죽은 세포를 나타냄). 또한 CCK-8(Dojindo) reagent를 이용하여 세포의 생존능력을 측정한 결과, PCL로만 만든 나노 섬유보다, PCL과 fp-1 variant 의 비율이 90:10(w/w)로 섞어 준 나노 섬유 및 Fe3 +이 포함된 나노섬유에서 각각 3일 후에 세포들이 더 많이 생존한 모습을 관찰할 수 있었다. 따라서, 조골세포인 MC3T3-El 세포의 세포 실험을 통하여 본 발명으로 만든 지지체는 다양한 의료 소재로의 이용 가능성을 확인하였다.The biodegradable polymer is PCL only made of nanofibers, and fp PCL-1 variant a ratio of 90:10 (w / w) to the mixture gave nanofibers, and Fe + 3, respectively MC3T3-El cells at nanofibers containing the dose of After 1, 3, and 3 days, we observed the behavior of cells through Live / Dead staining image. As a result, more viable cells were observed in nanofibers and Fe 3 + -containing nanofibers mixed with PCL and fp-1 variants at a ratio of 90:10 (w / w), compared with nanofibers made only with PCL Green represents living cells, red represents dead cells). The cell viability was measured using a CCK-8 (Dojindo) reagent. As a result, the nanofibers mixed with PCL and fp-1 variants at a ratio of 90:10 (w / w) We could observe more survival of the cells after 3 days in Fe 3 + containing nanofibers. Therefore, through the cell experiments of MC3T3-El cells, osteoblasts, the supports of the present invention were confirmed to be applicable to various medical materials.

<110> POSTECH ACADEMY-INDUSTRY FOUNDATION <120> Electrospining nanofibers reinforced by mussel coating protein and their application <130> DPP20134401KR <160> 26 <170> KopatentIn 1.71 <210> 1 <211> 565 <212> PRT <213> Artificial Sequence <220> <223> fp-1 <400> 1 Met Glu Gly Ile Lys Leu Asn Leu Cys Leu Leu Cys Ile Phe Thr Phe 1 5 10 15 Asp Val Leu Gly Phe Ser Asn Gly Asn Ile Tyr Asn Ala His Val Ser 20 25 30 Ser Tyr Ala Gly Ala Ser Ala Gly Ala Tyr Lys Lys Leu Pro Asn Ala 35 40 45 Tyr Pro Tyr Gly Thr Lys Pro Glu Pro Val Tyr Lys Pro Val Lys Thr 50 55 60 Ser Tyr Ser Ala Pro Tyr Lys Pro Pro Thr Tyr Gln Gln Leu Lys Lys 65 70 75 80 Lys Val Asp Tyr Arg Pro Thr Lys Ser Tyr Pro Pro Thr Tyr Gly Ser 85 90 95 Lys Thr Asn Tyr Leu Pro Leu Ala Lys Lys Leu Ser Ser Tyr Lys Pro 100 105 110 Ile Lys Thr Thr Tyr Asn Ala Lys Thr Asn Tyr Pro Pro Val Tyr Lys 115 120 125 Pro Lys Met Thr Tyr Pro Pro Thr Tyr Lys Pro Lys Pro Ser Tyr Pro 130 135 140 Pro Thr Tyr Lys Ser Lys Pro Thr Tyr Lys Pro Lys Ile Thr Cys Pro 145 150 155 160 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Pro Lys 165 170 175 Lys Thr Tyr Pro Pro Thr Tyr Lys Pro Lys Val Thr Tyr Pro Pro Thr 180 185 190 Tyr Lys Pro Lys Pro Ser Tyr Pro Pro Ile Tyr Lys Ser Lys Pro Thr 195 200 205 Tyr Lys Pro Lys Ile Thr Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser 210 215 220 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys 225 230 235 240 Ala Lys Pro Thr Tyr Lys Ala Lys Pro Thr Tyr Pro Ser Thr Tyr Lys 245 250 255 Ala Lys Pro Thr Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro 260 265 270 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys 275 280 285 Pro Thr Tyr Ile Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys 290 295 300 Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr 305 310 315 320 Tyr Lys Ala Lys Ser Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Thr 325 330 335 Tyr Lys Ala Lys Pro Thr Tyr Pro Ser Thr Tyr Lys Ala Lys Pro Ser 340 345 350 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Thr Tyr Lys Ala Lys Pro Thr 355 360 365 Tyr Pro Ser Thr Tyr Lys Ala Lys Pro Thr Tyr Pro Ser Thr Tyr Lys 370 375 380 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Pro Lys Ile Ser Tyr Pro 385 390 395 400 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Ser Thr Tyr Lys Ala Lys 405 410 415 Ser Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr 420 425 430 Tyr Lys Ala Lys Pro Thr Tyr Lys Ala Lys Pro Thr Tyr Pro Ser Thr 435 440 445 Tyr Lys Ala Lys Pro Thr Tyr Lys Ala Lys Pro Thr Tyr Pro Pro Thr 450 455 460 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Pro Lys Pro Ser 465 470 475 480 Tyr Pro Pro Thr Tyr Lys Ser Lys Ser Ser Tyr Pro Ser Ser Tyr Lys 485 490 495 Pro Lys Lys Thr Tyr Pro Pro Thr Tyr Lys Pro Lys Leu Thr Tyr Pro 500 505 510 Pro Thr Tyr Lys Pro Lys Pro Ser Tyr Pro Pro Ser Tyr Lys Pro Lys 515 520 525 Ile Thr Tyr Pro Ser Thr Tyr Lys Leu Lys Pro Ser Tyr Pro Pro Thr 530 535 540 Tyr Lys Ser Lys Thr Ser Tyr Pro Pro Thr Tyr Asn Lys Lys Ile Ser 545 550 555 560 Tyr Pro Ser Gln Tyr 565 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> fragment sequence derived from fp-1 <400> 2 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys 1 5 10 <210> 3 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> fragment sequence derived from fp-1-RGD <400> 3 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Gly Arg Gly Asp Ser Pro 1 5 10 15 <210> 4 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> fp-1 variant <400> 4 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro 1 5 10 15 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys 20 25 30 Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr 35 40 45 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser 50 55 60 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys 65 70 75 80 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro 85 90 95 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys 100 105 110 Pro Ser Tyr Pro Pro Thr Tyr Lys 115 120 <210> 5 <211> 126 <212> PRT <213> Artificial Sequence <220> <223> fp-1 variant-RGD <400> 5 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro 1 5 10 15 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys 20 25 30 Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr 35 40 45 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser 50 55 60 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys 65 70 75 80 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro 85 90 95 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys 100 105 110 Pro Ser Tyr Pro Pro Thr Tyr Lys Gly Arg Gly Asp Ser Pro 115 120 125 <210> 6 <211> 456 <212> PRT <213> Artificial Sequence <220> <223> fp-2 <400> 6 Thr Asn Arg Pro Asp Tyr Asn Asp Asp Glu Glu Asp Asp Tyr Lys Pro 1 5 10 15 Pro Val Tyr Lys Pro Ser Pro Ser Lys Tyr Arg Pro Val Asn Pro Cys 20 25 30 Leu Lys Lys Pro Cys Lys Tyr Asn Gly Val Cys Lys Pro Arg Gly Gly 35 40 45 Ser Tyr Lys Cys Phe Cys Lys Gly Gly Tyr Tyr Gly Tyr Asn Cys Asn 50 55 60 Leu Lys Asn Ala Cys Lys Pro Asn Gln Cys Lys Asn Lys Ser Arg Cys 65 70 75 80 Val Pro Val Gly Lys Thr Phe Lys Cys Val Cys Arg Asn Gly Asn Phe 85 90 95 Gly Arg Leu Cys Glu Lys Asn Val Cys Ser Pro Asn Pro Cys Lys Asn 100 105 110 Asn Gly Lys Cys Ser Pro Leu Gly Lys Thr Gly Tyr Lys Cys Thr Cys 115 120 125 Ser Gly Gly Tyr Thr Gly Pro Arg Cys Glu Val His Ala Cys Lys Pro 130 135 140 Asn Pro Cys Lys Asn Lys Gly Arg Cys Phe Pro Asp Gly Lys Thr Gly 145 150 155 160 Tyr Lys Cys Arg Cys Val Asp Gly Tyr Ser Gly Pro Thr Cys Gln Glu 165 170 175 Asn Ala Cys Lys Pro Asn Pro Cys Ser Asn Gly Gly Thr Cys Ser Ala 180 185 190 Asp Lys Phe Gly Asp Tyr Ser Cys Glu Cys Arg Pro Gly Tyr Phe Gly 195 200 205 Pro Glu Cys Glu Arg Tyr Val Cys Ala Pro Asn Pro Cys Lys Asn Gly 210 215 220 Gly Ile Cys Ser Ser Asp Gly Ser Gly Gly Tyr Arg Cys Arg Cys Lys 225 230 235 240 Gly Gly Tyr Ser Gly Pro Thr Cys Lys Val Asn Val Cys Lys Pro Thr 245 250 255 Pro Cys Lys Asn Ser Gly Arg Cys Val Asn Lys Gly Ser Ser Tyr Asn 260 265 270 Cys Ile Cys Lys Gly Gly Tyr Ser Gly Pro Thr Cys Gly Glu Asn Val 275 280 285 Cys Lys Pro Asn Pro Cys Gln Asn Arg Gly Arg Cys Tyr Pro Asp Asn 290 295 300 Ser Asp Asp Gly Phe Lys Cys Arg Cys Val Gly Gly Tyr Lys Gly Pro 305 310 315 320 Thr Cys Glu Asp Lys Pro Asn Pro Cys Asn Thr Lys Pro Cys Lys Asn 325 330 335 Gly Gly Lys Cys Asn Tyr Asn Gly Lys Ile Tyr Thr Cys Lys Cys Ala 340 345 350 Tyr Gly Trp Arg Gly Arg His Cys Thr Asp Lys Ala Tyr Lys Pro Asn 355 360 365 Pro Cys Val Val Ser Lys Pro Cys Lys Asn Arg Gly Lys Cys Ile Trp 370 375 380 Asn Gly Lys Ala Tyr Arg Cys Lys Cys Ala Tyr Gly Tyr Gly Gly Arg 385 390 395 400 His Cys Thr Lys Lys Ser Tyr Lys Lys Asn Pro Cys Ala Ser Arg Pro 405 410 415 Cys Lys Asn Arg Gly Lys Cys Thr Asp Lys Gly Asn Gly Tyr Val Cys 420 425 430 Lys Cys Ala Arg Gly Tyr Ser Gly Arg Tyr Cys Ser Leu Lys Ser Pro 435 440 445 Pro Ser Tyr Asp Asp Asp Glu Tyr 450 455 <210> 7 <211> 46 <212> PRT <213> Artificial Sequence <220> <223> fp-3 <400> 7 Ala Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly Gly 1 5 10 15 Gly Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly Trp 20 25 30 Asn Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr 35 40 45 <210> 8 <211> 787 <212> PRT <213> Artificial Sequence <220> <223> fp-4 <400> 8 Tyr Gly Arg Arg Tyr Gly Glu Pro Ser Gly Tyr Ala Asn Ile Gly His 1 5 10 15 Arg Arg Tyr Tyr Glu Arg Ala Ile Ser Phe His Arg His Ser His Val 20 25 30 His Gly His His Leu Leu His Arg His Val His Arg His Ser Val Leu 35 40 45 His Gly His Val His Met His Arg Val Ser His Arg Ile Met His Arg 50 55 60 His Arg Val Leu His Gly His Val His Arg His Arg Val Leu His Arg 65 70 75 80 His Val His Arg His Arg Val Leu His Gly His Val His Arg His Arg 85 90 95 Val Leu His Arg His Leu His Arg His Arg Val Leu His Gly His Val 100 105 110 His Arg His Arg Val Leu His Asn His Val His Arg His Ser Val Leu 115 120 125 His Gly His Val His Arg His Arg Val Leu His Arg His Val His Arg 130 135 140 His Asn Val Leu His Gly His Val His Arg His Arg Val Leu His Lys 145 150 155 160 His Val His Asp His Arg Val Leu His Lys His Leu His Lys His Gln 165 170 175 Val Leu His Gly His Val His Arg His Gln Val Leu His Lys His Val 180 185 190 His Asn His Arg Val Leu His Lys His Leu His Lys His Gln Val Leu 195 200 205 His Gly His Val His Thr His Arg Val Leu His Lys His Val His Lys 210 215 220 His Arg Val Leu His Lys His Leu His Lys His Gln Val Leu His Gly 225 230 235 240 His Ile His Thr His Arg Val Leu His Lys His Leu His Lys His Gln 245 250 255 Val Leu His Gly His Val His Thr His Arg Val Leu His Lys His Val 260 265 270 His Lys His Arg Val Leu His Lys His Leu His Lys His Gln Val Leu 275 280 285 His Gly His Val His Met His Arg Val Leu His Lys His Val His Lys 290 295 300 His Arg Val Leu His Lys His Val His Lys His His Val Val His Lys 305 310 315 320 His Val His Ser His Arg Val Leu His Lys His Val His Lys His Arg 325 330 335 Val Glu His Gln His Val His Lys His His Val Leu His Arg His Val 340 345 350 His Ser His His Val Val His Ser His Val His Lys His Arg Val Val 355 360 365 His Ser His Val His Lys His Asn Val Val His Ser His Val His Arg 370 375 380 His Gln Ile Leu His Arg His Val His Arg His Gln Val Val His Arg 385 390 395 400 His Val His Arg His Leu Ile Ala His Arg His Ile His Ser His Gln 405 410 415 Ala Ala Val His Arg His Val His Thr His Val Phe Glu Gly Asn Phe 420 425 430 Asn Asp Asp Gly Thr Asp Val Asn Leu Arg Ile Arg His Gly Ile Ile 435 440 445 Tyr Gly Gly Asn Thr Tyr Arg Leu Ser Gly Gly Arg Arg Arg Phe Met 450 455 460 Thr Leu Trp Gln Glu Cys Leu Glu Ser Tyr Gly Asp Ser Asp Glu Cys 465 470 475 480 Phe Val Gln Leu Gly Asn Gln His Leu Phe Thr Val Val Gln Gly His 485 490 495 His Ser Thr Ser Phe Arg Ser Asp Leu Ser Asn Asp Leu His Pro Asp 500 505 510 Asn Asn Ile Glu Gln Ile Ala Asn Asp His Val Asn Asp Ile Ala Gln 515 520 525 Ser Thr Asp Gly Asp Ile Asn Asp Phe Ala Asp Thr His Tyr Asn Asp 530 535 540 Val Ala Pro Ile Ala Asp Val His Val Asp Asn Ile Ala Gln Thr Ala 545 550 555 560 Asp Asn His Val Lys Asn Ile Ala Gln Thr Ala His His His Val Asn 565 570 575 Asp Val Ala Gln Ile Ala Asp Asp His Val Asn Asp Ile Gly Gln Thr 580 585 590 Ala Tyr Asp His Val Asn Asn Ile Gly Gln Thr Ala Asp Asp His Val 595 600 605 Asn Asp Ile Ala Gln Thr Ala Asp Asp His Val Asn Ala Ile Ala Gln 610 615 620 Thr Ala Asp Asp His Val Asn Ala Ile Ala Gln Thr Ala Asp His Val 625 630 635 640 Asn Asp Ile Gly Asp Thr Ala Asn Ser His Ile Val Arg Val Gln Gly 645 650 655 Val Ala Lys Asn His Leu Tyr Gly Ile Asn Lys Ala Ile Gly Lys His 660 665 670 Ile Gln His Leu Lys Asp Val Ser Asn Arg His Ile Glu Lys Leu Asn 675 680 685 Asn His Ala Thr Lys Asn Leu Leu Gln Ser Ala Leu Gln His Lys Gln 690 695 700 Gln Thr Ile Glu Arg Glu Ile Gln His Lys Arg His Leu Ser Glu Lys 705 710 715 720 Glu Asp Ile Asn Leu Gln His Glu Asn Ala Met Lys Ser Lys Val Ser 725 730 735 Tyr Asp Gly Pro Val Phe Asn Glu Lys Val Ser Val Val Ser Asn Gln 740 745 750 Gly Ser Tyr Asn Glu Lys Val Pro Val Leu Ser Asn Gly Gly Gly Tyr 755 760 765 Asn Gly Lys Val Ser Ala Leu Ser Asp Gln Gly Ser Tyr Asn Glu Gly 770 775 780 Tyr Ala Tyr 785 <210> 9 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> fp-5 <400> 9 Ser Ser Glu Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Thr Tyr His 1 5 10 15 Tyr His Ser Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly Tyr 20 25 30 Lys Gly Lys Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr Lys 35 40 45 Asn Ser Gly Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His Arg 50 55 60 Lys Gly Tyr Lys Lys Tyr Tyr Gly Gly Gly Ser Ser 65 70 75 <210> 10 <211> 99 <212> PRT <213> Artificial Sequence <220> <223> fp-6 <400> 10 Gly Gly Gly Asn Tyr Arg Gly Tyr Cys Ser Asn Lys Gly Cys Arg Ser 1 5 10 15 Gly Tyr Ile Phe Tyr Asp Asn Arg Gly Phe Cys Lys Tyr Gly Ser Ser 20 25 30 Ser Tyr Lys Tyr Asp Cys Gly Asn Tyr Ala Gly Cys Cys Leu Pro Arg 35 40 45 Asn Pro Tyr Gly Arg Val Lys Tyr Tyr Cys Thr Lys Lys Tyr Ser Cys 50 55 60 Pro Asp Asp Phe Tyr Tyr Tyr Asn Asn Lys Gly Tyr Tyr Tyr Tyr Asn 65 70 75 80 Asp Lys Asp Tyr Phe Asn Cys Gly Ser Tyr Asn Gly Cys Cys Leu Arg 85 90 95 Ser Gly Tyr <210> 11 <211> 196 <212> PRT <213> Artificial Sequence <220> <223> fp-151 <400> 11 Met Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr 1 5 10 15 Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala 20 25 30 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro 35 40 45 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ser Ser Glu 50 55 60 Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Thr Tyr His Tyr His Ser 65 70 75 80 Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly Tyr Lys Gly Lys 85 90 95 Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr Lys Asn Ser Gly 100 105 110 Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His Arg Lys Gly Tyr 115 120 125 Lys Lys Tyr Tyr Gly Gly Ser Ser Ala Lys Pro Ser Tyr Pro Pro Thr 130 135 140 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser 145 150 155 160 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys 165 170 175 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro 180 185 190 Pro Thr Tyr Lys 195 <210> 12 <211> 202 <212> PRT <213> Artificial Sequence <220> <223> fp-151-RGD <400> 12 Met Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr 1 5 10 15 Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala 20 25 30 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro 35 40 45 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ser Ser Glu 50 55 60 Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Thr Tyr His Tyr His Ser 65 70 75 80 Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly Tyr Lys Gly Lys 85 90 95 Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr Lys Asn Ser Gly 100 105 110 Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His Arg Lys Gly Tyr 115 120 125 Lys Lys Tyr Tyr Gly Gly Ser Ser Ala Lys Pro Ser Tyr Pro Pro Thr 130 135 140 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser 145 150 155 160 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys 165 170 175 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro 180 185 190 Pro Thr Tyr Lys Gly Arg Gly Asp Ser Pro 195 200 <210> 13 <211> 172 <212> PRT <213> Artificial Sequence <220> <223> fp-131 <400> 13 Met Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr 1 5 10 15 Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala 20 25 30 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro 35 40 45 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Pro Trp Ala 50 55 60 Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly Gly Gly 65 70 75 80 Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly Trp Asn 85 90 95 Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Gly Ser Ala 100 105 110 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro 115 120 125 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro 130 135 140 Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr 145 150 155 160 Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Leu 165 170 <210> 14 <211> 175 <212> PRT <213> Artificial Sequence <220> <223> fp-353 <400> 14 Met Ala Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly 1 5 10 15 Gly Gly Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly 20 25 30 Trp Asn Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Glu 35 40 45 Phe Ser Ser Glu Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Ser Asn 50 55 60 His Tyr His Ser Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly 65 70 75 80 Tyr Lys Gly Lys Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr 85 90 95 Lys Asn Ser Gly Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His 100 105 110 Arg Lys Gly Tyr Lys Lys Tyr Tyr Gly Gly Gly Ser Ser Lys Leu Ala 115 120 125 Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly Gly Gly 130 135 140 Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly Trp Asn 145 150 155 160 Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Leu Glu 165 170 175 <210> 15 <211> 189 <212> PRT <213> Artificial Sequence <220> <223> fp-153 <400> 15 Met Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr 1 5 10 15 Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala 20 25 30 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro 35 40 45 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Glu Phe Ser 50 55 60 Ser Glu Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Ser Asn His Tyr 65 70 75 80 His Ser Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly Tyr Lys 85 90 95 Gly Lys Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr Lys Asn 100 105 110 Ser Gly Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His Arg Lys 115 120 125 Gly Tyr Lys Lys Tyr Tyr Gly Gly Gly Ser Ser Lys Leu Ala Asp Tyr 130 135 140 Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly Gly Gly Asn Tyr 145 150 155 160 Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly Trp Asn Asn Gly 165 170 175 Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Leu Glu 180 185 <210> 16 <211> 189 <212> PRT <213> Artificial Sequence <220> <223> fp-351 <400> 16 Met Ala Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly 1 5 10 15 Gly Gly Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly 20 25 30 Trp Asn Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Glu 35 40 45 Phe Ser Ser Glu Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Ser Asn 50 55 60 His Tyr His Ser Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly 65 70 75 80 Tyr Lys Gly Lys Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr 85 90 95 Lys Asn Ser Gly Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His 100 105 110 Arg Lys Gly Tyr Lys Lys Tyr Tyr Gly Gly Gly Ser Ser Lys Leu Ala 115 120 125 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro 130 135 140 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro 145 150 155 160 Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr 165 170 175 Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Leu Glu 180 185 <210> 17 <211> 3 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 1 <400> 17 Arg Gly Asp 1 <210> 18 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 2 <400> 18 Arg Gly Asp Ser 1 <210> 19 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 3 <400> 19 Arg Gly Asp Cys 1 <210> 20 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 4 <400> 20 Arg Gly Asp Val 1 <210> 21 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 5 <400> 21 Arg Gly Asp Ser Pro Ala Ser Ser Lys Pro 1 5 10 <210> 22 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 6 <400> 22 Gly Arg Gly Asp Ser 1 5 <210> 23 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 7 <400> 23 Gly Arg Gly Asp Thr Pro 1 5 <210> 24 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 8 <400> 24 Gly Arg Gly Asp Ser Pro 1 5 <210> 25 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 9 <400> 25 Gly Arg Gly Asp Ser Pro Cys 1 5 <210> 26 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 10 <400> 26 Tyr Arg Gly Asp Ser 1 5 <110> POSTECH ACADEMY-INDUSTRY FOUNDATION <120> Electrospinning nanofibers reinforced by mussel coating protein          and their application <130> DPP20134401KR <160> 26 <170> Kopatentin 1.71 <210> 1 <211> 565 <212> PRT <213> Artificial Sequence <220> <223> fp-1 <400> 1 Met Glu Gly Ile Lys Leu Asn Leu Cys Leu Leu Cys Ile Phe Thr Phe   1 5 10 15 Asp Val Leu Gly Phe Ser Asn Gly Asn Ile Tyr Asn Ala His Val Ser              20 25 30 Ser Tyr Ala Gly Ala Ser Ala Gly Ala Tyr Lys Lys Leu Pro Asn Ala          35 40 45 Tyr Pro Tyr Gly Thr Lys Pro Glu Pro Val Tyr Lys Pro Val Lys Thr      50 55 60 Ser Tyr Ser Ala Pro Tyr Lys Pro Pro Thr Tyr Gln Gln Leu Lys Lys  65 70 75 80 Lys Val Asp Tyr Arg Pro Thr Lys Ser Tyr Pro Pro Thr Tyr Gly Ser                  85 90 95 Lys Thr Asn Tyr Leu Pro Leu Ala Lys Lys Leu Ser Ser Tyr Lys Pro             100 105 110 Ile Lys Thr Thr Tyr Asn Ala Lys Thr Asn Tyr Pro Pro Val Tyr Lys         115 120 125 Pro Lys Met Thr Tyr Pro Pro Thr Tyr Lys Pro Lys Pro Ser Tyr Pro     130 135 140 Pro Thr Tyr Lys Ser Lys Pro Thr Tyr Lys Pro Lys Ile Thr Cys Pro 145 150 155 160 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Pro Lys                 165 170 175 Lys Thr Tyr Pro Pro Thr Tyr Lys Pro Lys Val Thr Tyr Pro Pro Thr             180 185 190 Tyr Lys Pro Lys Pro Ser Tyr Pro Pro Ile Tyr Lys Ser Lys Pro Thr         195 200 205 Tyr Lys Pro Lys Ile Thr Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser     210 215 220 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys 225 230 235 240 Ala Lys Pro Thr Tyr Lys Ala Lys Pro Thr Tyr Pro Ser Thr Tyr Lys                 245 250 255 Ala Lys Pro Thr Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro             260 265 270 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys         275 280 285 Pro Thr Tyr Ile Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys     290 295 300 Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr 305 310 315 320 Tyr Lys Ala Lys Ser Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Thr                 325 330 335 Tyr Lys Ala Lys Pro Thr Tyr Pro Ser Thr Tyr Lys Ala Lys Pro Ser             340 345 350 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Thr Tyr Lys Ala Lys Pro Thr         355 360 365 Tyr Pro Ser Thr Tyr Lys Ala Lys Pro Thr Tyr Pro Ser Thr Tyr Lys     370 375 380 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Pro Lys Ile Ser Tyr Pro 385 390 395 400 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Ser Thr Tyr Lys Ala Lys                 405 410 415 Ser Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Ser Ser Tyr Pro Pro Thr             420 425 430 Tyr Lys Ala Lys Pro Thr Tyr Lys Ala Lys Pro Thr Tyr Pro Ser Thr         435 440 445 Tyr Lys Ala Lys Pro Thr Tyr Lys Ala Lys Pro Thr Tyr Pro Pro Thr     450 455 460 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Pro Lys Pro Ser 465 470 475 480 Tyr Pro Pro Thr Tyr Lys Ser Lys Ser Ser Tyr Pro Ser Ser Tyr Lys                 485 490 495 Pro Lys Lys Thr Tyr Pro Pro Thr Tyr Lys Pro Lys Leu Thr Tyr Pro             500 505 510 Pro Thr Tyr Lys Pro Lys Pro Ser Tyr Pro Pro Ser Tyr Lys Pro Lys         515 520 525 Ile Thr Tyr Pro Ser Thr Tyr Lys Leu Lys Pro Ser Tyr Pro Pro Thr     530 535 540 Tyr Lys Ser Lys Thr Ser Tyr Pro Pro Thr Tyr Asn Lys Lys Ile Ser 545 550 555 560 Tyr Pro Ser Gln Tyr                 565 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> Fragment sequence derived from fp-1 <400> 2 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys   1 5 10 <210> 3 <211> 16 <212> PRT <213> Artificial Sequence <220> Fragment sequence derived from fp-1-RGD <400> 3 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Gly Arg Gly Asp Ser Pro   1 5 10 15 <210> 4 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> fp-1 variant <400> 4 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro   1 5 10 15 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys              20 25 30 Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr          35 40 45 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser      50 55 60 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys  65 70 75 80 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro                  85 90 95 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys             100 105 110 Pro Ser Tyr Pro Pro Thr Tyr Lys         115 120 <210> 5 <211> 126 <212> PRT <213> Artificial Sequence <220> <223> fp-1 variant-RGD <400> 5 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro   1 5 10 15 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys              20 25 30 Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr          35 40 45 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser      50 55 60 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys  65 70 75 80 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro                  85 90 95 Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys             100 105 110 Pro Ser Tyr Pro Pro Thr Tyr Lys Gly Arg Gly Asp Ser Pro         115 120 125 <210> 6 <211> 456 <212> PRT <213> Artificial Sequence <220> <223> fp-2 <400> 6 Thr Asn Arg Pro Asp Tyr Asn Asp Asp Glu Glu Asp Asp Tyr Lys Pro   1 5 10 15 Pro Val Tyr Lys Pro Ser Ser Ser Ser Tyr Arg Pro Val Asn Pro Cys              20 25 30 Leu Lys Lys Pro Cys Lys Tyr Asn Gly Val Cys Lys Pro Arg Gly Gly          35 40 45 Ser Tyr Lys Cys Phe Cys Lys Gly Gly Tyr Tyr Gly Tyr Asn Cys Asn      50 55 60 Leu Lys Asn Ala Cys Lys Pro Asn Gln Cys Lys Asn Lys Ser Arg Cys  65 70 75 80 Val Pro Val Gly Lys Thr Phe Lys Cys Val Cys Arg Asn Gly Asn Phe                  85 90 95 Gly Arg Leu Cys Glu Lys Asn Val Cys Ser Pro Asn Pro Cys Lys Asn             100 105 110 Asn Gly Lys Cys Ser Pro Leu Gly Lys Thr Gly Tyr Lys Cys Thr Cys         115 120 125 Ser Gly Gly Tyr Thr Gly Pro Arg Cys Glu Val His Ala Cys Lys Pro     130 135 140 Asn Pro Cys Lys Asn Lys Gly Arg Cys Phe Pro Asp Gly Lys Thr Gly 145 150 155 160 Tyr Lys Cys Arg Cys Val Asp Gly Tyr Ser Gly Pro Thr Cys Gln Glu                 165 170 175 Asn Ala Cys Lys Pro Asn Pro Cys Ser Asn Gly Gly Thr Cys Ser Ala             180 185 190 Asp Lys Phe Gly Asp Tyr Ser Cys Glu Cys Arg Pro Gly Tyr Phe Gly         195 200 205 Pro Glu Cys Glu Arg Tyr Val Cys Ala Pro Asn Pro Cys Lys Asn Gly     210 215 220 Gly Ile Cys Ser Ser Asp Gly Ser Gly Gly Tyr Arg Cys Arg Cys Lys 225 230 235 240 Gly Gly Tyr Ser Gly Pro Thr Cys Lys Val Asn Val Cys Lys Pro Thr                 245 250 255 Pro Cys Lys Asn Ser Gly Arg Cys Val Asn Lys Gly Ser Ser Tyr Asn             260 265 270 Cys Ile Cys Lys Gly Gly Tyr Ser Gly Pro Thr Cys Gly Glu Asn Val         275 280 285 Cys Lys Pro Asn Pro Cys Gln Asn Arg Gly Arg Cys Tyr Pro Asp Asn     290 295 300 Ser Asp Asp Gly Phe Lys Cys Arg Cys Val Gly Gly Tyr Lys Gly Pro 305 310 315 320 Thr Cys Glu Asp Lys Pro Asn Pro Cys Asn Thr Lys Pro Cys Lys Asn                 325 330 335 Gly Gly Lys Cys Asn Tyr Asn Gly Lys Ile Tyr Thr Cys Lys Cys Ala             340 345 350 Tyr Gly Trp Arg Gly Arg His Cys Thr Asp Lys Ala Tyr Lys Pro Asn         355 360 365 Pro Cys Val Val Ser Lys Pro Cys Lys Asn Arg Gly Lys Cys Ile Trp     370 375 380 Asn Gly Lys Ala Tyr Arg Cys Lys Cys Ala Tyr Gly Tyr Gly Gly Arg 385 390 395 400 His Cys Thr Lys Lys Ser Tyr Lys Lys Asn Pro Cys Ala Ser Arg Pro                 405 410 415 Cys Lys Asn Arg Gly Lys Cys Thr Asp Lys Gly Asn Gly Tyr Val Cys             420 425 430 Lys Cys Ala Arg Gly Tyr Ser Gly Arg Tyr Cys Ser Leu Lys Ser Pro         435 440 445 Pro Ser Tyr Asp Asp Asp Glu Tyr     450 455 <210> 7 <211> 46 <212> PRT <213> Artificial Sequence <220> <223> fp-3 <400> 7 Ala Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly Gly   1 5 10 15 Gly Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly Trp              20 25 30 Asn Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr          35 40 45 <210> 8 <211> 787 <212> PRT <213> Artificial Sequence <220> <223> fp-4 <400> 8 Tyr Gly Arg Arg Tyr Gly Glu Pro Ser Gly Tyr Ala Asn Ile Gly His   1 5 10 15 Arg Arg Tyr Tyr Glu Arg Ala Ser Ser Phe His Arg His His Val              20 25 30 His Gly His His Leu Leu His Arg His Val His Arg His Ser Val Leu          35 40 45 His Gly His Val His Met His Arg Val Ser His Arg Ile Met His Arg      50 55 60 His Arg Val Leu His Gly His Val His Arg His Arg Val Leu His Arg  65 70 75 80 His Val His Arg Arg His Val Leu His Gly His Val His Arg Arg His Arg                  85 90 95 Val Leu His Arg His Leu His Arg His Arg Val Leu His Gly His Val             100 105 110 His Arg His Arg Val Leu His Asn His Val His Arg His Ser Val Leu         115 120 125 His Gly His Val His Arg His Arg Val Leu His Arg His Val Val His Arg     130 135 140 His Asn Val Leu His Gly His Val His Arg Arg His Val Leu His Lys 145 150 155 160 His Val His Asp His Arg Val Leu His Lys His Leu His Lys His Gln                 165 170 175 Val Leu His Gly His Val His Arg His Gln Val Leu His Lys His Val             180 185 190 His Asn His Arg Val Leu His Lys His Leu His Lys His Gln Val Leu         195 200 205 His Gly His Val His Thr His Arg Val Leu His Lys His Val His Lys     210 215 220 His Arg Val Leu His Lys His Leu His Lys His Gln Val Leu His Gly 225 230 235 240 His Ile His Thr His Arg Val Leu His Lys His Leu His Lys His Gln                 245 250 255 Val Leu His Gly His Val His Thr His Arg Val Leu His Lys His Val             260 265 270 His Lys His Arg Val Leu His Lys His Leu His Lys His Gln Val Leu         275 280 285 His Gly His Val His Met His Arg Val Leu His Lys His Val His Lys     290 295 300 His Arg Val Leu His Lys His Val His Lys His His Val Val His Lys 305 310 315 320 His Val His Ser His Arg Val Leu His Lys His Val His Lys His Arg                 325 330 335 Val Glu His Gln His Val His Lys His His Val Leu His Arg His Val             340 345 350 His Ser His His Val Val His Ser Val Val His Lys His Arg Val Val         355 360 365 His Ser His Val His Lys His Asn Val Val His Ser His Val His Arg     370 375 380 His Gln Ile Leu His Arg His Val His Arg His Gln Val Val His Arg 385 390 395 400 His Val His Arg His Leu Ile Ala His Arg His Ile His Ser His Gln                 405 410 415 Ala Ala Val His Arg His Val His Thr His Val Phe Glu Gly Asn Phe             420 425 430 Asn Asp Asp Gly Thr Asp Val Asn Leu Arg Ile Arg His Gly Ile Ile         435 440 445 Tyr Gly Gly Asn Thr Tyr Arg Leu Ser Gly Gly Arg Arg Arg Phe Met     450 455 460 Thr Leu Trp Gln Glu Cys Leu Glu Ser Tyr Gly Asp Ser Asp Glu Cys 465 470 475 480 Phe Val Gln Leu Gly Asn Gln His Leu Phe Thr Val Val Gln Gly His                 485 490 495 His Ser Thr Ser Phe Arg Ser Asp Leu Ser Asn Asp Leu His Pro Asp             500 505 510 Asn Asn Ile Glu Gln Ile Ala Asn Asp His Val Asn Asp Ile Ala Gln         515 520 525 Ser Thr Asp Gly Asp Ile Asn Asp Phe Ala Asp Thr His Tyr Asn Asp     530 535 540 Val Ala Pro Ile Ala Asp Val His Val Asp Asn Ile Ala Gln Thr Ala 545 550 555 560 Asp Asn His Val Lys Asn Ile Ala Gln Thr Ala His His His Val Asn                 565 570 575 Asp Val Ala Gln Ile Ala Asp Asp His Val Asn Asp Ile Gly Gln Thr             580 585 590 Ala Tyr Asp His Val Asn Asn Ile Gly Gln Thr Ala Asp Asp His Val         595 600 605 Asn Asp Ile Ala Gln Thr Ala Asp Asp His Val Asn Ale Ile Ala Gln     610 615 620 Thr Ala Asp Asp His Val Asn Ala Ile Ala Gln Thr Ala Asp His Val 625 630 635 640 Asn Asp Ile Gly Asp Thr Ala Asn Ser Ile Val Val Arg Gl Gln Gly                 645 650 655 Val Ala Lys Asn His Leu Tyr Gly Ile Asn Lys Ala Ile Gly Lys His             660 665 670 Ile Gln His Leu Lys Asp Val Ser Asn Arg His Ile Glu Lys Leu Asn         675 680 685 Asn His Ala Thr Lys Asn Leu Leu Gln Ser Ala Leu Gln His Lys Gln     690 695 700 Gln Thr Ile Glu Arg Glu Ile Gln His Lys Arg His Leu Ser Glu Lys 705 710 715 720 Glu Asp Ile Asn Leu Gln His Glu Asn Ala Met Lys Ser Lys Val Ser                 725 730 735 Tyr Asp Gly Pro Val Phe Asn Glu Lys Val Ser Val Val Ser Asn Gln             740 745 750 Gly Ser Tyr Asn Gly Lys Val Pro Val Leu Ser Asn Gly Gly Gly Tyr         755 760 765 Asn Gly Lys Val Ser Ala Leu Ser Asp Gln Gly Ser Tyr Asn Glu Gly     770 775 780 Tyr Ala Tyr 785 <210> 9 <211> 76 <212> PRT <213> Artificial Sequence <220> <223> fp-5 <400> 9 Ser Ser Glu Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Thr Tyr His   1 5 10 15 Tyr His Ser Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly Tyr              20 25 30 Lys Gly Lys Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr Lys          35 40 45 Asn Ser Gly Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His Arg      50 55 60 Lys Gly Tyr Lys Lys Tyr Tyr Gly Gly Gly Ser Ser  65 70 75 <210> 10 <211> 99 <212> PRT <213> Artificial Sequence <220> <223> fp-6 <400> 10 Gly Gly Asn Tyr Arg Gly Tyr Cys Ser Asn Lys Gly Cys Arg Ser   1 5 10 15 Gly Tyr Ile Phe Tyr Asp Asn Arg Gly Phe Cys Lys Tyr Gly Ser Ser              20 25 30 Ser Tyr Lys Tyr Asp Cys Gly Asn Tyr Ala Gly Cys Cys Leu Pro Arg          35 40 45 Asn Pro Tyr Gly Arg Val Lys Tyr Tyr Cys Thr Lys Lys Tyr Ser Cys      50 55 60 Pro Asp Phe Tyr Tyr Tyr Asn Asn Lys Gly Tyr Tyr Tyr Tyr Asn  65 70 75 80 Asp Lys Asp Tyr Phe Asn Cys Gly Ser Tyr Asn Gly Cys Cys Leu Arg                  85 90 95 Ser Gly Tyr             <210> 11 <211> 196 <212> PRT <213> Artificial Sequence <220> <223> fp-151 <400> 11 Met Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr   1 5 10 15 Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala              20 25 30 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro          35 40 45 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ser Ser Glu      50 55 60 Gly Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Thr Tyr His Tyr His Ser  65 70 75 80 Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly Tyr Lys Gly Lys                  85 90 95 Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr Lys Asn Ser Gly             100 105 110 Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His Arg Lys Gly Tyr         115 120 125 Lys Lys Tyr Tyr Gly Gly Ser Ser Ala Lys Pro Ser Tyr Pro Pro Thr     130 135 140 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser 145 150 155 160 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys                 165 170 175 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro             180 185 190 Pro Thr Tyr Lys         195 <210> 12 <211> 202 <212> PRT <213> Artificial Sequence <220> <223> fp-151-RGD <400> 12 Met Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr   1 5 10 15 Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala              20 25 30 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro          35 40 45 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ser Ser Glu      50 55 60 Gly Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Thr Tyr His Tyr His Ser  65 70 75 80 Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly Tyr Lys Gly Lys                  85 90 95 Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr Lys Asn Ser Gly             100 105 110 Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His Arg Lys Gly Tyr         115 120 125 Lys Lys Tyr Tyr Gly Gly Ser Ser Ala Lys Pro Ser Tyr Pro Pro Thr     130 135 140 Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser 145 150 155 160 Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys                 165 170 175 Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro             180 185 190 Pro Thr Tyr Lys Gly Arg Gly Asp Ser Pro         195 200 <210> 13 <211> 172 <212> PRT <213> Artificial Sequence <220> <223> fp-131 <400> 13 Met Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr   1 5 10 15 Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala              20 25 30 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro          35 40 45 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Pro Trp Ala      50 55 60 Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly Gly Gly  65 70 75 80 Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly Trp Asn                  85 90 95 Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Gly Ser Ala             100 105 110 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro         115 120 125 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro     130 135 140 Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr 145 150 155 160 Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Leu                 165 170 <210> 14 <211> 175 <212> PRT <213> Artificial Sequence <220> <223> fp-353 <400> 14 Met Ala Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly   1 5 10 15 Gly Gly Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly              20 25 30 Trp Asn Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Glu          35 40 45 Phe Ser Ser Glu Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Ser Asn      50 55 60 His Tyr His Ser Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly  65 70 75 80 Tyr Lys Gly Lys Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr                  85 90 95 Lys Asn Ser Gly Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His             100 105 110 Arg Lys Gly Tyr Lys Lys Tyr Tyr Gly Gly Gly Ser Ser Lys Leu Ala         115 120 125 Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly Gly Gly     130 135 140 Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly Trp Asn 145 150 155 160 Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Leu Glu                 165 170 175 <210> 15 <211> 189 <212> PRT <213> Artificial Sequence <220> <223> fp-153 <400> 15 Met Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr   1 5 10 15 Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala              20 25 30 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro          35 40 45 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Glu Phe Ser      50 55 60 Ser Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Ser Asn His Tyr  65 70 75 80 His Ser Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly Tyr Lys                  85 90 95 Gly Lys Tyr Tyr Gys Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr Lys Asn             100 105 110 Ser Gly Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His Arg Lys         115 120 125 Gly Tyr Lys Lys Tyr Tyr Gly Gly Gly Ser Ser Lys Leu Ala Asp Tyr     130 135 140 Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly Gly Gly Asn Tyr 145 150 155 160 Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly Trp Asn Asn Gly                 165 170 175 Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Leu Glu             180 185 <210> 16 <211> 189 <212> PRT <213> Artificial Sequence <220> <223> fp-351 <400> 16 Met Ala Asp Tyr Tyr Gly Pro Lys Tyr Gly Pro Pro Arg Arg Tyr Gly   1 5 10 15 Gly Gly Asn Tyr Asn Arg Tyr Gly Arg Arg Tyr Gly Gly Tyr Lys Gly              20 25 30 Trp Asn Asn Gly Trp Lys Arg Gly Arg Trp Gly Arg Lys Tyr Tyr Glu          35 40 45 Phe Ser Ser Glu Glu Tyr Lys Gly Gly Tyr Tyr Pro Gly Asn Ser Asn      50 55 60 His Tyr His Ser Gly Gly Ser Tyr His Gly Ser Gly Tyr His Gly Gly  65 70 75 80 Tyr Lys Gly Lys Tyr Tyr Gly Lys Ala Lys Lys Tyr Tyr Tyr Lys Tyr                  85 90 95 Lys Asn Ser Gly Lys Tyr Lys Tyr Leu Lys Lys Ala Arg Lys Tyr His             100 105 110 Arg Lys Gly Tyr Lys Lys Tyr Tyr Gly Gly Gly Ser Ser Lys Leu Ala         115 120 125 Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro     130 135 140 Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro 145 150 155 160 Ser Tyr Pro Pro Thr Tyr Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr                 165 170 175 Lys Ala Lys Pro Ser Tyr Pro Pro Thr Tyr Lys Leu Glu             180 185 <210> 17 <211> 3 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 1 <400> 17 Arg Gly Asp   One <210> 18 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 2 <400> 18 Arg Gly Asp Ser   One <210> 19 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 3 <400> 19 Arg Gly Asp Cys   One <210> 20 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 4 <400> 20 Arg Gly Asp Val   One <210> 21 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 5 <400> 21 Arg Gly Asp Ser Pro Ala Ser Ser Lys Pro   1 5 10 <210> 22 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 6 <400> 22 Gly Arg Gly Asp Ser   1 5 <210> 23 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 7 <400> 23 Gly Arg Gly Asp Thr Pro   1 5 <210> 24 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 8 <400> 24 Gly Arg Gly Asp Ser Pro   1 5 <210> 25 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 9 <400> 25 Gly Arg Gly Asp Ser Pro Cys   1 5 <210> 26 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> RGD Group 10 <400> 26 Tyr Arg Gly Asp Ser   1 5

Claims (12)

홍합 접착 단백질에 결합된 3,4-디하이드록시페닐-L-알라닌(도파)와 Fe3+ 이온이 결합된 복합체(complex) 및 생분해성 고분자를 포함하는 나노섬유 조직공학용 지지체로서, 상기 홍합 접착 단백질은 그에 포함된 티로신 잔기 총수의 20% 이상이 도파로 수정된 것인,
pH 조건에 따라 색상 및 강도가 바뀌는,
나노섬유 조직공학용 지지체.
A support for nanofiber tissue engineering comprising a complex of 3,4-dihydroxyphenyl-L-alanine (dopa) bound to a mussel adhesive protein and Fe 3+ ions and a biodegradable polymer, Wherein the protein is at least 20% of the total number of tyrosine residues contained therein is a waveguide-
Depending on pH conditions, color and intensity change,
Support for nanofiber tissue engineering.
제1항에 있어서, 상기 나노섬유 표면에 세포, 단백질, 핵산, 당 또는 효소인 생리활성물질이 코팅된, 나노섬유 조직공학용 지지체.
The support for nanofiber tissue engineering according to claim 1, wherein the surface of the nanofibers is coated with a physiologically active substance such as a cell, a protein, a nucleic acid, a sugar or an enzyme.
제1항에 있어서, 상기 생분해성 고분자는 PCL (polycaprolactone), PDO (polydioxanone), PLLA (poly(L-lactide)), PLGA (poly(DL-lactide-co-glycolide)), PEO (polyethylene oxide) 또는 PVA (polyvinyl alcohol)인, 나노섬유 조직공학용 지지체.
The biodegradable polymer according to claim 1, wherein the biodegradable polymer is selected from the group consisting of polycaprolactone (PCL), polydioxanone (PDO), poly (L-lactide), PLGA (poly- Or polyvinyl alcohol (PVA).
제1항에 있어서, 상기 홍합 접착 단백질은 서열번호 1 의 아미노산 서열로 이루어진 단백질, 서열번호 2의 아미노산 서열이 1회 내지 12회 연속하여 연결된 단백질, 서열번호 6 의 아미노산 서열로 이루어진 단백질, 서열번호 7 의 아미노산 서열로 이루어진 단백질, 서열번호 8 의 아미노산 서열로 이루어진 단백질, 서열번호 9의 아미노산 서열로 이루어진 단백질, 및 서열번호 10의 아미노산 서열로 이루어진 단백질로 이루어진 군에서 선택되는 단백질 또는 상기에서 2종 이상의 단백질이 연결된 융합 단백질인, 나노섬유 조직공학용 지지체.
The mussel adhesive protein according to claim 1, wherein the mussel adhesive protein comprises a protein consisting of the amino acid sequence of SEQ ID NO: 1, a protein having an amino acid sequence of SEQ ID NO: 2 connected continuously one to 12 times, A protein consisting of the amino acid sequence of SEQ ID NO: 8, a protein consisting of the amino acid sequence of SEQ ID NO: 9, and a protein consisting of the amino acid sequence of SEQ ID NO: 10, Wherein said protein is a fusion protein linked to said protein.
제4항에 있어서, 상기 서열번호 2의 아미노산 서열이 1회 내지 12회 연속하여 연결된 단백질은 서열번호 4 의 아미노산 서열로 이루어진 단백질인, 나노섬유 조직공학용 지지체.
5. The nanofiber tissue engineering support according to claim 4, wherein the protein in which the amino acid sequence of SEQ ID NO: 2 is connected in a series of 12 to 12 consecutive amino acids is a protein consisting of the amino acid sequence of SEQ ID NO:
제4항에 있어서, 상기 융합 단백질은 서열번호 11의 아미노산 서열로 이루어진 융합 단백질, 서열번호 13의 아미노산 서열로 이루어진 융합 단백질, 서열번호 14의 아미노산 서열로 이루어진 융합 단백질, 서열번호 15의 아미노산 서열로 이루어진 융합 단백질, 및 서열번호 16의 아미노산 서열로 이루어진 융합 단백질로 이루어진 군에서 선택되는 융합 단백질인, 나노섬유 조직공학용 지지체.
The fusion protein according to claim 4, wherein the fusion protein comprises a fusion protein comprising the amino acid sequence of SEQ ID NO: 11, a fusion protein comprising the amino acid sequence of SEQ ID NO: 13, a fusion protein comprising the amino acid sequence of SEQ ID NO: And a fusion protein consisting of the amino acid sequence of SEQ ID NO: 16.
제1항에 있어서, 상기 홍합 접착 단백질은 카르복실 말단 또는 아미노 말단에 RGD(Arg Gly Asp)를 포함하는 3 내지 25개의 아미노산으로 이루어진 폴리펩타이드가 연결된 것인, 나노섬유 조직공학용 지지체.
2. The support for nanofiber tissue engineering according to claim 1, wherein the mussel adhesive protein is a polypeptide chain comprising 3 to 25 amino acids including RGD (Arg Gly Asp) at the carboxyl terminal or amino terminal thereof.
제7항에 있어서, 상기 RGD를 포함하는 폴리펩타이드는 서열번호 17 내지 서열번호 26로 이루어진 군에서 선택되는 아미노산 서열로 이루어진 것인, 나노섬유 조직공학용 지지체.
8. The nanofiber tissue engineering support according to claim 7, wherein the polypeptide comprising RGD is an amino acid sequence selected from the group consisting of SEQ ID NO: 17 to SEQ ID NO: 26.
제8항에 있어서, 상기 홍합 접착 단백질은 서열번호 3의 아미노산 서열로 이루어진 단백질, 서열번호 5의 아미노산 서열로 이루어진 단백질, 또는 서열번호 12의 아미노산 서열로 이루어진 단백질인, 나노섬유 조직공학용 지지체.
9. The nanofiber tissue engineering support according to claim 8, wherein the mussel adhesive protein is a protein consisting of the amino acid sequence of SEQ ID NO: 3, a protein consisting of the amino acid sequence of SEQ ID NO: 5, or a protein consisting of the amino acid sequence of SEQ ID NO:
제1항에 있어서, 상기 생분해성 고분자와 홍합 접착 단백질에 결합된 3,4-디하이드록시페닐-L-알라닌(도파) 및 Fe3+ 이온이 결합된 복합체의 비율은 90 내지 50 : 10 내지 50(w/w)인, 나노섬유 조직공학용 지지체.
[3] The method of claim 1, wherein the ratio of the biodegradable polymer and the conjugate of 3,4-dihydroxyphenyl-L-alanine (dopa) and Fe 3+ bonded to the mussel adhesive protein is 90 to 50: 50 (w / w). &Lt; / RTI &gt;
(a) 홍합 접착 단백질에 포함된 티로신 잔기 총수의 20% 이상이 3,4-디하이드록시페닐-L-알라닌(도파)으로 수정된 홍합 접착 단백질을 포함하는 pH 11 이상을 갖는 용액에, Fe3+ 이온을 제공하는 시약을 첨가하여 홍합 접착 단백질의 도파와 Fe3+ 이온을 결합하는 단계; 및
(b) 생분해성 고분자를 첨가하여 방사용액을 제조하고, 방사용액을 전기방사하는 단계를 포함하는,
제1항의 나노섬유 조직공학용 지지체를 제조하는 방법.
(a) adding to a solution having a pH of 11 or more containing a mussel adhesive protein in which 20% or more of the total number of tyrosine residues contained in the mussel adhesive protein is modified with 3,4-dihydroxyphenyl-L-alanine step by the addition of a reagent that provides 3+ ions to combine the wave director and the Fe 3+ ions in the mussel adhesive protein; And
(b) preparing a spinning solution by adding a biodegradable polymer and electrospinning the spinning solution,
A method of making the nanofiber tissue engineering support of claim 1.
제11항에 있어서, 상기 생분해성 고분자는 PCL (polycaprolactone), PDO (polydioxanone), PLLA (poly(L-lactide)), PLGA (poly(DL-lactide-co-glycolide)), PEO (polyethylene oxide) 또는 PVA (polyvinyl alcohol)인 방법.The biodegradable polymer according to claim 11, wherein the biodegradable polymer is selected from the group consisting of polycaprolactone (PCL), polydioxanone (PDO), poly (L-lactide), PLGA (poly- Or PVA (polyvinyl alcohol).
KR20130106599A 2012-09-13 2013-09-05 Electrospining nanofibers reinforced by mussel coating protein and their application KR101492169B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120101516 2012-09-13
KR20120101516 2012-09-13

Publications (2)

Publication Number Publication Date
KR20140035251A KR20140035251A (en) 2014-03-21
KR101492169B1 true KR101492169B1 (en) 2015-02-10

Family

ID=50645318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130106599A KR101492169B1 (en) 2012-09-13 2013-09-05 Electrospining nanofibers reinforced by mussel coating protein and their application

Country Status (1)

Country Link
KR (1) KR101492169B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652263B1 (en) * 2014-06-13 2016-08-30 (주)콜로디스 바이오사이언스 Adhesive Protein Comprising Antimicrobial Peptide and Antimicrobial Coating Composition Comprising the Same
KR102424889B1 (en) * 2015-06-08 2022-07-25 콜로디스 바이오사이언스, 인코포레이티드 Biofunctional Adhesive Composition
WO2018093161A1 (en) * 2016-11-16 2018-05-24 포항공과대학교 산학협력단 Novel hemostatic agent comprising mussel adhesive protein and method for preparing same
KR102450999B1 (en) 2017-07-18 2022-10-11 주식회사 포스코 Antibacterial adhesive protein, antibacterial nanoparticles, antibacterial composition comprising same, and method for preparing same
CN107998453B (en) * 2017-12-12 2020-09-25 中山大学附属第一医院 Surface-modified acellular matrix and modification method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110021650A (en) * 2009-08-25 2011-03-04 포항공과대학교 산학협력단 Agglomerate formed from mussel adhesive proteins or mutants thereof and anionic polymer
KR20110051778A (en) * 2009-11-11 2011-05-18 포항공과대학교 산학협력단 Novel immobilizing fusion protein for effective and oriented immobilization of antibody on surfaces
KR20130021951A (en) * 2011-08-24 2013-03-06 포항공과대학교 산학협력단 Surface immobilization of various functional biomolecules using mussel adhesive protein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110021650A (en) * 2009-08-25 2011-03-04 포항공과대학교 산학협력단 Agglomerate formed from mussel adhesive proteins or mutants thereof and anionic polymer
KR20110051778A (en) * 2009-11-11 2011-05-18 포항공과대학교 산학협력단 Novel immobilizing fusion protein for effective and oriented immobilization of antibody on surfaces
KR20130021951A (en) * 2011-08-24 2013-03-06 포항공과대학교 산학협력단 Surface immobilization of various functional biomolecules using mussel adhesive protein

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문 1: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES *
논문 1: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES*

Also Published As

Publication number Publication date
KR20140035251A (en) 2014-03-21

Similar Documents

Publication Publication Date Title
Chen et al. Self-assemble peptide biomaterials and their biomedical applications
KR101384746B1 (en) Surface immobilization of various functional biomolecules using mussel adhesive protein
KR101492169B1 (en) Electrospining nanofibers reinforced by mussel coating protein and their application
KR101578522B1 (en) Mussel adhesive protein-based bioadhesive hydrogel
CN106474560B (en) A kind of hydrogel material and the preparation method and application thereof for 3D biometric print
JP2021072890A (en) Scalable three-dimensional elastic construct manufacturing
CN109477252A (en) The composite material of a spider silk is dragged including synthesizing
WO2003084980A2 (en) Peptide amphiphile solutions and self assembled peptide nanofiber networks
CN105658252A (en) Implantable meshes for controlling the movement of fluids
AU2003299954A1 (en) Sealants for skin and other tissues
CN107213529B (en) Preparation method of degradable medical high-molecular three-dimensional material for improving adhesion and osteogenic performance of osteoblasts
CN106039401A (en) Scaffolds formed from polymer-protein conjugates, methods of generating same and uses thereof
Bakhshandeh et al. A review on advances in the applications of spider silk in biomedical issues
Sreerekha et al. Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications
Maher et al. Shaping collagen for engineering hard tissues: Towards a printomics approach
Debabov et al. Recombinant spidroins as the basis for new materials
Kim et al. Effect of RGDS and KRSR peptides immobilized on silk fibroin nanofibrous mats for cell adhesion and proliferation
KR20110021650A (en) Agglomerate formed from mussel adhesive proteins or mutants thereof and anionic polymer
Spadaccio et al. A G-CSF functionalized PLLA scaffold for wound repair: an in vitro preliminary study
KR20160129982A (en) Mussel adhesive protein-derived bone binder for preventing or treating periodontal disease and method for preparing the same
Xuan et al. Rational biological interface engineering: Amyloidal supramolecular microstructure-inspired hydrogel
AU2016431869A1 (en) Three-dimensional micro-environment structure for controlling cell behavior, three-dimensional surface for controlling cell behavior, and method for manufacturing array and three-dimensional micro-environment structure
KR101182417B1 (en) Artificial Nanofiber Amnion Membranes and Method of Making The Same
KR20130134447A (en) New nanofiber membrane and manufacturing method thereof
Cheng et al. Enhanced mineralization of the nanofibers-incorporated aerogels increases mechanical properties of scaffold and promotes bone formation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 6