KR101485686B1 - The dyeing method of ultra-high-strength-fiber with high dye fastness using electronic beam accelerator - Google Patents

The dyeing method of ultra-high-strength-fiber with high dye fastness using electronic beam accelerator Download PDF

Info

Publication number
KR101485686B1
KR101485686B1 KR1020130087296A KR20130087296A KR101485686B1 KR 101485686 B1 KR101485686 B1 KR 101485686B1 KR 1020130087296 A KR1020130087296 A KR 1020130087296A KR 20130087296 A KR20130087296 A KR 20130087296A KR 101485686 B1 KR101485686 B1 KR 101485686B1
Authority
KR
South Korea
Prior art keywords
fiber
electron beam
ultra
dyeing
beam accelerator
Prior art date
Application number
KR1020130087296A
Other languages
Korean (ko)
Inventor
박성민
손현식
권일준
심지현
이재호
김명순
김태경
염정현
Original Assignee
다이텍연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이텍연구원 filed Critical 다이텍연구원
Priority to KR1020130087296A priority Critical patent/KR101485686B1/en
Application granted granted Critical
Publication of KR101485686B1 publication Critical patent/KR101485686B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P7/00Dyeing or printing processes combined with mechanical treatment
    • D06P7/005Dyeing combined with texturising or drawing treatments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/16General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dispersed, e.g. acetate, dyestuffs
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability

Abstract

The present invention relates to a method for a high-fastness dyeing method of ultra high strength fiber by processing with an electron bean accelerator. According to the present invention, provided is a processing method for improving dyeing property of an existing ultra high strength fiber and fixation property of dyes through a surface modification effect and a technology of fixing a dye having at least one double bond or a ring system, which can be polymerized, on the fiber by processing the ultra high strength fiber with the electron beam accelerator.

Description

전자빔가속기처리에 의한 초고강도섬유직물의 고견뢰염색방법{The Dyeing Method Of Ultra―High―Strength―Fiber With High Dye Fastness Using Electronic Beam Accelerator}[0001] The present invention relates to a high-strength fiber fabric for use in an electronic beam accelerator,

본 발명은 전자빔가속기처리에 의한 초고강도섬유직물의 고견뢰염색방법에 관한 것으로서 전자빔가속기를 통해 초고강도섬유직물을 처리하여 중합이 일어날 수 있는 적어도 한 개 이상의 이중결합이나 고리계를 가지는 염료를 섬유상에 고정시키는 기술 및 표면개질효과를 통하여 기존의 초고강도섬유의 염색성을 개선하고, 염료의 고착성을 향상시키는 가공방법이다.The present invention relates to a high-strength dyeing method of an ultra-high-strength fiber fabric by an electron beam accelerator treatment, wherein a dye having at least one double bond or a ring system capable of polymerizing by treating an ultra- To improve the dyeability of the existing ultrahigh strength fiber and improve the fixability of the dye through the surface modification effect.

아라미드 섬유 또는 초고분자량폴리에틸렌(UHMWPE)과 같은 초고강도섬유의 수요량이 급증함에 따라 염료합성과 염색기술에 대한 연구도 활발히 이루어지고 있으나, 주로 아라미드 제조회사나 염료 및 조제를 개발하는 대기업에 진행되고 있으며, 주로 원착에 의한 염색, 아라미드 개질에 의한 염색, 용매에 의한 염색, 초임계법에 의한 염색 등 다양한 염색방법에 대한 연구를 진행 중에 있으나 P-aramid 및 초고분자량폴리에틸렌(UHMWPE)의 경우 상용화 수준에 도달하지 못한 상태이다.As demand for ultra-high-strength fibers such as aramid fibers or ultra high molecular weight polyethylene (UHMWPE) is rapidly increasing, researches on dye synthesis and dyeing techniques have been actively carried out, but they are mainly carried out in large companies developing aramid fabrics, dyes and formulations Dyestuffs such as dyed by original dyeing, aramid modification, dyeing by solvent, dyeing by supercritical method are under study. However, P-aramid and ultrahigh molecular weight polyethylene (UHMWPE) I have not been able to.

국내 아라미드 섬유의 염색가공 관련 연구동향을 살펴보면 대부분 m-아라미드 위주의 기술개발로 확인되었고, P-아라미드 염색과 관련된 국내 연구동향으로는 2011년도 한국염색가공학회 추계 학술대회 논문집에 실린 "Reactive dying of photografted para-aramid fabrics, vol. 23, No. 3 pp. 155~162이 유일함을 알 수 있었다. 초고분자량폴리에틸렌(UHMWPE)의 염색에 대한 관련 기술은 대부분 분산염료를 이용한 견뢰도 2-3급 수준의 제품개발에 대한 기술에 지나지 않고 있다.A study on the research trends related to dyeing processing of domestic aramid fiber has confirmed that most of m-aramid-based technology development has been conducted. The research trends related to P-aramid dyeing are "Reactive dying of photografted (UHMWPE), the most common technique for dyeing ultra-high-molecular-weight polyethylene (UHMWPE) It is nothing but a technology for product development.

원착법에 의한 초고강도섬유의 염색에 있어서는 견뢰도는 양호하나 섬유제조 시 안료를 polymer에 혼입해야 하므로 오염이 발생하여 색상교체가 어렵고, 한 번에 단일 색상을 대량으로 생산해야 하는 단점을 가진다. 또한 다양한 색상의 소량생산이 어렵고, 내열성이 있는 안료의 선정이 요구되며, 폴리머 사이의 안료 혼입에 의한 원사 물성 저하를 초래하는 단점을 가지고 있다.In dyeing of ultrahigh strength fibers by the circle method, the fastness is good, but since the pigment has to be incorporated into the polymer in producing the fiber, it is difficult to change the color due to contamination, and a single color must be produced at a time. In addition, it is difficult to produce a small amount of various colors, and it is required to select a pigment having heat resistance, and it has a disadvantage that the physical properties of the yarn are lowered due to pigment incorporation between the polymers.

캐리어 염색법에 의한 초고강도섬유 소재의 염색기술로는 폴리머를 개질하여 섬유를 이완구조로 만든 후 다량의 용제를 사용하여 섬유구조를 더 느슨하게 하여 염색성을 높이는 염법으로서, 색상구현성은 좋으나 공정 수행시 섬유의 강도저하가 발생하고, 다량의 용제 사용으로 회수장치가 요구되며, 일부, 제품화가 추진 중인 아라미드 복합소재 중 m-아라미드의 경우에는 다양한 색상구현 및 염색성이 확보되어 있으나, p-아라미드의 경우에는 다양한 색상구현 및 발색성을 확보하지 못해 p-아라미드섬유를 core 및 합연을 하여 아라미드 섬유의 표면노출을 최소화하는데 그치고 있는 실정이다.The dyeing technique of ultrahigh strength fiber material by carrier dyeing is a dyeing method which improves the dyeability by modifying the polymer to make the fiber relaxed structure by using a large amount of solvent to make the fiber structure more loosened. In the case of m-aramid among the aramid composite materials to be commercialized, a variety of colors and dyeability are secured. In the case of p-aramid, however, It is difficult to achieve various colors and coloring properties, and therefore, p-aramid fibers are core and mulled to minimize surface exposure of aramid fibers.

초고온고압 염색법에 의한 염색기술은 190 ℃ 이상의 초고온에서 처리하기 때문에 고내열성 염료가 요구되며, 초고온고압 염색을 위한 추가설비가 요구되며 에너지 소비가 큰 단점이 있다.The dyeing technique by ultra-high-temperature high-pressure dyeing requires high heat-resistant dye because it is treated at an ultra-high temperature of 190 ° C or more, requires additional equipment for ultrahigh-temperature high-pressure dyeing, and has a disadvantage of high energy consumption.

그러므로 본 발명에서는 초고강도 섬유소재의 염색 및 표면개질에 있어 기존의 습식 전처리 및 후처리 공정을 보완하여 염색 및 기능성 가공이 어려운 기존의 초고강도 섬유 소재를 연속공정이 가능한 전자빔가속기 처리를 이용하여 섬유 표면을 개질하여 기능성 복합 및 염색에 용이하도록 표면에너지를 감소시키고, 전자빔가속기 처리에 의해 초고강도 섬유의 염착율, 발색성, 견뢰도를 증진시키고, 보호, 안전용 및 복합재료용 소재를 개발하여 용도에 맞게 고성능 침염 및 날염, 융복합소재, 후가공이 가능하도록 할 수 있는 전자빔가속기 처리공정을 제공하는 것을 기술적과제로 한다. Therefore, in the present invention, an existing ultrahigh-strength fiber material, which is difficult to dye and functionalize by complementing the existing wet pretreatment and post-treatment processes in dyeing and surface modification of ultrahigh strength fiber materials, The surface is modified to reduce the surface energy to facilitate functional complexation and dyeing. The electron beam accelerator treatment improves the rate of coloring, color fastness and fastness of ultrahigh strength fibers, and develops materials for protection, safety and composite materials. It is a technical object of the present invention to provide an electron beam accelerator treatment process capable of high-performance salt-forming and printing, composite materials, and post-processing.

그러므로 본 발명에 의하면, 최대 가속 에너지 0.1~0.7 MeV, 빔파워 5~28KW, 빔전류 10~40㎃ 및 SF6 가스 공급 시스템을 갖춘 전자빔가속기로 초고강도섬유직물을 표면처리를 함에 있어서 광개시제 및 단량체를 사용하지 않고 표면처리한 후, 분산 염료를 사용하여 염색하는 것을 특징으로 하는 전자빔가속기처리에 의한 초고강도섬유직물의 고견뢰염색방법이 제공된다.
Therefore, according to the present invention, in the surface treatment of an ultrahigh strength fiber fabric with an electron beam accelerator having a maximum acceleration energy of 0.1 to 0.7 MeV, a beam power of 5 to 28 KW, a beam current of 10 to 40 mA, and an SF 6 gas supply system, A high-strength fiber fabric by an electron beam accelerator treatment is provided, which is characterized in that it is subjected to a surface treatment without using a disperse dye and then is dyed with a disperse dye.

이하 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 전자빔가속기처리에 의한 초고강도섬유직물의 고견뢰염색방법은 전자빔가속기를 통해 초고강도섬유직물을 처리하여 섬유표면에 마이크로핏(micro-pit) 또는 마이크로크레이터(micro-crator)와 같은 거시적인 에칭을 형성하여 나노요철이 증가하도록 하여 표면개질을 하고, 섬유 표면에 활성부분을 도입하고, 물에 대한 친화성도 증대시켜 염료와의 염착량을 증가시켜 심색성을 향상시키는 가공방법이다. The high-intensity dyeing method of an ultra-high strength fiber fabric by the electron beam accelerator treatment of the present invention is characterized in that an ultra-high strength fiber fabric is treated through an electron beam accelerator to form a macroscopic (micro-pit) The surface is modified by increasing the number of nano irregularities, the active part is introduced into the surface of the fiber, and the affinity with water is increased to increase the amount of the dye to be dyed, thereby improving the color saturation.

본 발명에서는 최대 가속 에너지 0.1~0.7 MeV, 빔파워 5~28KW, 빔전류 10~40㎃ 및 SF6(육불화황) 가스 공급 시스템을 갖춘 전자빔가속기로 초고강도섬유직물을 표면처리를 한 후, 분산 염료를 사용하여 염색하여 염료와의 염착량을 증가시켜 심색성을 향상시킨다.In the present invention, an ultra-high strength fiber fabric is surface-treated with an electron beam accelerator equipped with a maximum acceleration energy of 0.1 to 0.7 MeV, a beam power of 5 to 28 KW, a beam current of 10 to 40 mA, and an SF 6 (sulfur hexafluoride) Dyeing using disperse dyes to increase salt loading with dyes to improve the color saturation.

이렇게 초고강도섬유직물은 전자빔가속기에 공급되어 표면개질되는데, 상기 전자빔가속기는 대한민국등록특허제10-0687220호에 의해 공지된 전자빔가속기를 사용할 수 있다. 상기 초고강도섬유직물은 아라미드섬유, 초고분자량폴리에틸렌(UHMWPE) 섬유, 폴리에스테르 섬유, 탄소섬유, 유리섬유 중 어느 하나일 수 있다.The super high strength fiber fabric is supplied to an electron beam accelerator to be surface modified. The electron beam accelerator can use an electron beam accelerator known from Korean Patent No. 10-0687220. The super high strength fiber fabric may be any one of aramid fiber, ultra high molecular weight polyethylene (UHMWPE) fiber, polyester fiber, carbon fiber and glass fiber.

본 발명에서는 상기 동시조사법과 전조사법 중에 동시조사법을 사용하는 것으로서 최대 가속 에너지 0.1~0.7 MeV, 빔파워 5~28KW, 빔전류 10~40㎃ 및 SF6(육불화황) 가스 공급 시스템을 갖춘 전자빔가속기로 행하는 것이 바람직한데, 빔파워 5~28KW를 벗어나는 경우에는 전자빔의 세기가 강하여 섬유소재 고유의 물성이 저하되는 문제점이 있을 수 있으며, 빔전류 10~40mA를 벗어나는 경우에는 가속화된 전자에 의해 섬유소재가 타는 문제점이 있을 수 있으며, DSF6(육불화황) 가스 공급 시스템을 사용함으로써 안정화를 도모할 수 있다.In the present invention, an electron beam having a maximum acceleration energy of 0.1 to 0.7 MeV, a beam power of 5 to 28 KW, a beam current of 10 to 40 mA, and an SF 6 (sulfur hexafluoride) gas supply system using the simultaneous irradiation method and the co- However, when the beam power is out of the range of 5 to 28 KW, there is a problem that the intrinsic property of the fiber material is deteriorated due to strong electron beam intensity. When the beam current is out of 10 to 40 mA, There is a problem that the material burns, and stabilization can be achieved by using the DSF 6 (sulfur hexafluoride) gas supply system.

특히 본 발명에서는 상기 초고강도섬유직물의 표면처리시 광개시제 및 단량체를 사용하지 않고 염색성을 개선 시킬 수 있는데, 초고강도섬유직물표면에 조사되는 전자빔의 고효율성의 에너지로 인해 섬유가 열처리가 되어 나타난 변화일 수도 있다. In particular, the present invention can improve the dyeability without using a photoinitiator and a monomer at the time of surface treatment of the ultra high strength fiber fabric. In the present invention, since the energy of the electron beam irradiated on the super high strength fiber fabric surface is heat- It is possible.

본 발명에서는 상기 초고강도섬유직물의 표면을 전자빔가속기로 표면처리하기 전에 전처리공정을 하여 방사 및 제직공정 시 발생될 수 있는 오염을 제거함으로써 보다 효율적인 에칭공정을 행할 수 있다. 정련제(SS-30) 3~10g/ℓ, 호발제(SCLEAN 606) 2~6g/ℓ, NaOH 1~5g/ℓ를 함유하는 90~100℃의 호발ㆍ정련욕에 30~60분간 침지한 후 냉수세 및 열수세를 2회 반복하게 된다.In the present invention, the surface of the ultra-high-strength fiber cloth is pretreated before the surface treatment with the electron beam accelerator to remove contamination which may occur during the spinning and weaving process, thereby performing a more efficient etching process. After immersing in a hot-water refining bath containing 3 to 10 g / l of scouring agent (SS-30), 2 to 6 g / l of SCELAN 606 and 1 to 5 g / l of NaOH at 90 to 100 ° C for 30 to 60 minutes Cold water washing and hot water washing are repeated twice.

그러므로 본 발명에 의하면, 염색 및 기능성 가공이 어려운 기존의 초고강도 섬유 소재를 연속공정이 가능한 전자빔가속기 처리를 이용하여 섬유 표면을 개질하여 기능성 복합 및 염색에 용이하도록 표면에너지를 감소시키고, 전자빔가속기 처리에 의해 초고강도 섬유의 염착율, 발색성, 견뢰도를 증진시키고, 보호, 안전용 및 복합재료용 소재를 개발하여 용도에 맞게 고성능 침염 및 날염, 융복합소재, 후가공이 가능하도록 할 수 있는 전자빔가속기 처리공정을 제공할 수 있다. Therefore, according to the present invention, it is possible to modify the surface of a fiber by using an electron beam accelerator process capable of continuous processing of an existing ultrahigh strength fiber material, which is difficult to dye and functionalize, to reduce surface energy to facilitate functional complexing and dyeing, To improve the dyeing rate, coloring and fastness of ultrahigh strength fibers and to develop materials for protection, safety and composite materials, and to achieve high performance penetration, printing, fusing composite material and post processing. Process can be provided.

도 1은 실시예 1의 섬유표면 사진이며,
도 2는 실시예 2의 섬유표면사진이며,
도 3은 실시예 1의 전자빔 조사에 따른 섬유의 ESR분석결과이며,
도 4는 실시예 2의 전자빔 조사에 따른 섬유의 ESR분석결과이며,
도 5는 실시예 1의 CCM(computer color matching)측정 결과이며,
도 6은 실시예 2의 CCM(computer color matching)측정 결과이다.
1 is a photograph of a fiber surface of Example 1,
2 is a photograph of the fiber surface of Example 2,
3 is a result of ESR analysis of fibers according to the electron beam irradiation of Example 1,
Fig. 4 shows the results of ESR analysis of fibers according to the electron beam irradiation of Example 2,
FIG. 5 shows a result of CCM (computer color matching) measurement of the first embodiment,
FIG. 6 shows the results of computer color matching (CCM) measurement according to the second embodiment.

이하 다음의 실시 예에서는 본 발명의 전자빔가속기처리방법에 대한 비한정적인 예시를 하고 있다.The following embodiments are non-limiting examples of the electron beam accelerator processing method of the present invention.

[실시예 1~2, 비교예 1~2][Examples 1 to 2, Comparative Examples 1 to 2]

1. 전처리1. Preprocessing

음이온계 정련제(SS-30) 3g/ℓ, 아크릴계 호발제(SCLEAN 606) 6g/ℓ, NaOH 1g/ℓ를 함유하는 90℃의 호발ㆍ정련욕에 표 1에 표시된 직물을 30분간 침지한 후 냉수세 및 열수세를 2회 반복하였다.The fabric shown in Table 1 was immersed for 30 minutes in a hot water / refining bath at 90 占 폚 containing 3 g / l of an anionic scouring agent (SS-30), 6 g / l of an acryl-based foaming agent (SCLEAN 606) and 1 g / The three and the heat cycle were repeated twice.

2. 전자빔가속기처리2. Electron beam accelerator processing

전자빔가속기는 대한민국등록특허제10-0687220호에 의해 공지된 전자빔가속기를 단량체 및 첨가제를 사용하지 않고 사용하였으며 장비에 대한 제원 및 조건을 다음 표 1에 정리하였다. The electron beam accelerator was used in the electron beam accelerator disclosed in Korean Patent No. 10-0687220 without using monomers and additives. Specifications and conditions of the electron beam accelerator are summarized in Table 1 below.

구 분division 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 섬유종류Fiber type 파라아라미드필라멘트사
(Dupont사의 Kevlar®49, 600denier)직물
(경사:34, 위사:34, 평직)
Para-aramid filament yarn
(Kevlar ® 49, 600denier from Dupont) Fabrics
(Slope: 34, weft: 34, plain weave)
초고분자량폴리에틸렌필라멘트사(UHMWPE: DSM사의 Dyneema® SK65, 400denier)직물
(경사:29, 위사:29, 평직)
Ultra high molecular weight polyethylene filament yarn (UHMWPE: DSM's Dyneema ® SK65, 400denier) fabric
(Slope: 29, weft: 29, plain weave)
파라아라미드필라멘트사
(Dupont사의 Kevlar®49, 600denier)직물
(경사:34, 위사:34, 평직)
Para-aramid filament yarn
(Kevlar ® 49, 600denier from Dupont) Fabrics
(Slope: 34, weft: 34, plain weave)
초고분자량폴리에틸렌필라멘트사(UHMWPE: DSM사의 Dyneema® SK65, 400denier)직물
(경사:29, 위사:29, 평직)
Ultra high molecular weight polyethylene filament yarn (UHMWPE: DSM's Dyneema ® SK65, 400denier) fabric
(Slope: 29, weft: 29, plain weave)
Electron energyElectron energy 0.7MeV0.7 MeV 미처리Untreated Max. beam powerMax. beam power 40kW40kW Max. beam currentMax. 방사 전류 40㎃40mA Beam extraction windowBeam extraction window 980×75㎜980 x 75 mm Differential pressure of SF6Differential pressure of SF6 1.1 MPa1.1 MPa 흡습선량Moisture absorption dose 300 kGy300 kGy Volume of the insulation vesselVolume of the insulation vessel 2.43 ㎥2.43 ㎥ Consumption powerConsumption power 65 kVA 65 kVA

3. 물성분석3. Property Analysis

가. 분석장치 end. Analyzer

전자빔 조사에 의한 직물표면변화를 관찰하기 위해서 FE-SEM (Hitachi, SU-70)분석을 하였으며, 섬유의 원소 변화를 알아보기 위해 EA분석(ThermoFisher, Flash 2000)을 통하여 탄소 및 산소 원소의 변화를 정량적으로 분석하였다. 또한 직물표면에 형성되는 라디칼 세기의 변화를 측정하기 위해 ESR분석(JEOL, JES-TE300) 실시하였다. 또한, 전자빔 조사 전후의 직물의 물리적 성질변화를 알아보기 위해서 만능인장시험기(SHIMADZU, AUTOGRAPH AG-X series)를 사용하여 인장 특성을 측정하였다.
FE-SEM (Hitachi, SU-70) analysis was performed to observe the surface change of the fabric by electron beam irradiation. The changes of carbon and oxygen elements were analyzed by EA analysis (ThermoFisher, Flash 2000) And analyzed quantitatively. In addition, ESR analysis (JEOL, JES-TE300) was performed to measure the change of the radical intensity formed on the fabric surface. Also, tensile properties were measured using a universal tensile tester (SHIMADZU, AUTOGRAPH AG-X series) to examine the change in the physical properties of the fabric before and after electron beam irradiation.

나. 섬유의 표면 변화I. Surface change of fiber

1) 섬유소재의 SEM 분석을 통한 표면관찰1) Surface observation through SEM analysis of textile materials

전자빔 조사에 따른 구성섬유 표면변화를 관찰하기 위해 Field Emission Scanning Electron Microscope (FE-SEM, Hitachi, S-4800)분석을 하였다. 조사되는 전자빔의 세기, 에너지는 전자빔 조사실과 별로도 설치되어 있는 조정실의 Control system을 통하여 전류량을 변화시킴으로써 원하는 흡습선량을 50, 100, 200, 300 kGy로 조절하였다.Field Emission Scanning Electron Microscope (FE-SEM, Hitachi, S-4800) analysis was performed to observe the changes of the constituent fiber surface by electron beam irradiation. The intensity and the energy of the irradiated electron beam were adjusted to 50, 100, 200, and 300 kGy by varying the amount of current through the control system of the control room, which is installed separately from the electron beam irradiation room.

조건별 전자빔 조사결과 도 1 및 도 2에서 보는 바와 같이, 섬유가 받는 흡수선량에 따라 섬유표면의 형태가 경시적인 변화를 보이지 않았다.
As shown in FIGS. 1 and 2, the shape of the fiber surface did not change with time depending on the absorbed dose of the fiber.

2) 섬유소재의 ESR 분석을 통한 라디칼 생성 여부 확인2) Determination of radical generation through ESR analysis of textile materials

각 섬유의 원소 변화를 알아보기 위해 EA분석(ThermoFisher, Flash 2000)을 통하여 탄소 및 산소 원소의 변화를 정량적으로 분석한 결과를 아래 표 2에 나타내었다.Table 2 shows the results of quantitative analysis of changes in carbon and oxygen elements through EA analysis (ThermoFisher, Flash 2000) to examine the elemental changes of each fiber.

p-aramidp-aramid UHWMPEUHWMPE CarbonCarbon hydrogenhydrogen NitrogenNitrogen CarbonCarbon hydrogenhydrogen NitrogenNitrogen 비교예Comparative Example 65.95065.950 4.2094.209 10.90310.903 83.86383.863 14.33314.333 00 실시예Example 66.82066.820 4.2564.256 11.13011.130 80.65180.651 13.71313.713 00

p-aramid의 경우는 전자빔 처리에 따라 정량적인 원소 분석 결과는 차이를 나타내지 않았지만, UHMWPE섬유의 경우에는 탄소의 함량이 전자빔 흡수선량이 증가하면서 감소하는 경향을 나타내었다.
In the case of p-aramid, quantitative elemental analysis results were not different according to the electron beam treatment. However, in the case of UHMWPE fiber, the carbon content tended to decrease with increasing electron beam absorbed dose.

3) 섬유소재의 ESR 분석을 통한 라디칼 생성여부 확인3) ESR analysis of textile materials to determine whether they produce radicals

고주파 자기장 속에 놓여 있는 전자가 특정 주파수에서 공명하는 에너지를 흡수하는 현상을 분석하는 방법인 ESR(Electron Spin Resonance)분석으로 조사된 전자빔 흡수선량에 따라 섬유소재 표면에 형성되는 라디칼 세기의 변화를 측정하고자 하였다. 실험은 섬유소재를 최대한 분쇄하여 Tube에 넣고 ESR spectrometer (JEOL-TE300)를 사용하여 분석하였으며, 측정조건은 Magnetic center field 325mT, microwave frequency 9.13 GHz, modulation 100 kHz, Microwave power 1.9 mW, time constant 0.03sec, 그리고 sweep time 4min으로 측정하였다. To measure the change in the intensity of the radicals formed on the surface of the fiber material according to the electron beam absorbed dose measured by ESR (Electron Spin Resonance) analysis, which is a method of analyzing the phenomenon in which electrons lying in a high frequency magnetic field absorb energy resonated at a specific frequency Respectively. The experimental conditions were as follows: Magnetic center field: 325mT, microwave frequency: 9.13 GHz, modulation: 100 kHz, microwave power: 1.9 mW, time constant: 0.03 sec , And sweep time 4 min.

화학물질의 구조에 라디칼의 형성 유무를 확인하기 위해, 여러 가지 전자빔 세기가 각섬유소재의 ESR 스펙트럼의 변화에 미치는 영향을 측정한 결과, 도 3 및 도 4에서와 같이 전자빔 조사 전후의 모든 섬유에서 대칭적인 ESR signal을 나타내었다. 전자빔 조사에 의해 섬유에 라디칼이 생성되었다면, 대칭적인 ESR 그래프와 함께 트리플릿(triplet) 시그널이 확인되어야 하지만, 본 실험에서는 트리플릿이 확인되지 않았으며, 라디칼이 생성되었다 하더라도 라디칼이 시간이 지남에 따라 소멸되는 경시효과가 강하기 때문에 확인되지 않은 결과로 판단된다.
In order to confirm the formation of radicals in the structure of the chemical, the influence of various electron beam intensities on the change of the ESR spectrum of each fiber material was measured. As a result, as shown in FIGS. 3 and 4, And showed a symmetric ESR signal. If a radical is generated in the fiber by electron beam irradiation, a triplet signal should be identified along with a symmetrical ESR graph. In this experiment, however, the triplet was not confirmed, and even if the radical was generated, And thus, it is judged that the result is not confirmed.

다) 전자빔가속기 처리 후의 섬유소재 인장강도 변화C) Tensile strength change of fiber material after electron beam accelerator treatment

만능인장시험기(UTM)를 이용하여 아라미드 및 UHMWPE의 물성변화를 확인하기 위해, ISO 13934-1을 준용하여 인장강도 변화 여부에 대한 실험을 실시하였으며, 세부 조건으로는 로드셀(Load cell) 100kN, 정속인장속도(CRE cross-head speed) 20mm/min의 속도로 실시하였으며, 시험편의 공칭 게이지 길이(nominal gage length) 150mm로 시험편 및 미처리 시험편을 각각 5개씩 선정하여 평균값을 계산하였다. 또한, 실험 과정에서 지그(jig)와의 미끄러짐 현상(slip)을 억제하기 위해 캡스턴 타입(Capstan type) 지그를 사용하였다.In order to confirm the change of properties of aramid and UHMWPE using universal tensile tester (UTM), the change of tensile strength was applied according to ISO 13934-1. The detailed conditions were load cell 100kN, constant speed The CRE cross-head speed was 20 mm / min. The nominal gage length of the test specimen was 150 mm. Five test specimens and five untreated specimens were selected and the mean value was calculated. Also, a capstan type jig was used to suppress a slip with a jig during the experiment.

표 3에서와 같이 UHMWPE섬유의 경우 300kGy 부터는 미처리 시편에 비해 물성이 10%감소하는 경향이 나타났다. UHMWPE의 경우 전자빔 조사 시간이 길어지면서 발생되는 열에 의하여 물성이 저하된 것으로 판단이 되며, 앞의 원소분석의 결과와도 연관되는 경향이 나타났다.As shown in Table 3, the UHMWPE fiber tends to have a 10% decrease in properties from 300 kGy compared to untreated specimens. In the case of UHMWPE, it was judged that the physical properties were deteriorated due to the heat generated due to the long electron beam irradiation time, and the result was also related to the result of the above element analysis.

p-aramidp-aramid UHWMPEUHWMPE 탄성율
(N/tex)
Modulus of elasticity
(N / tex)
최대하중
(N)
Maximum load
(N)
최대변이
(mm)
Maximum variation
(mm)
탄성율
(N/tex)
Modulus of elasticity
(N / tex)
최대하중
(N)
Maximum load
(N)
최대변이
(mm)
Maximum variation
(mm)
비교예Comparative Example 6362.996362.99 69.7769.77 11.7011.70 6429.836429.83 59.5259.52 26.0326.03 실시예Example 6031.846031.84 65.7965.79 11.0811.08 5564.345564.34 51.1351.13 15.3215.32

라) 전자빔가속기를 이용한 염색성 실험D) Dyeing experiment using electron beam accelerator

전자빔가속기를 사용하였을 경우에는 섬유의 표면적인 처리효과를 관찰할 수 없었는데도 불구하고 염색성 실험에서는 전자빔가속기에 의해 도 5 및 도 6과 같이 각 섬유의 염색성이 향상되었음을 볼 수 있었다. 섬유표면에 거시적인 변화를 관찰할 수 없었는데도 불구하고 염색성이 향상된 이유로는 전자빔의 경우가 고효율성의 에너지로 인해 섬유가 열처리가 되어 나타난 변화일 수도 있다고 판단된다.Although the surface treatment effect of the fiber was not observed in the case of using the electron beam accelerator, the dyeability of each fiber was improved by the electron beam accelerator in the dyeing experiment as shown in FIGS. 5 and 6. In spite of the fact that macroscopic changes can not be observed on the surface of the fiber, it is considered that the reason why the dyeability is improved is that the electron beam is a change due to heat treatment of the fiber due to energy of high efficiency.

Claims (2)

최대 가속 에너지 0.1~0.7 MeV, 빔파워 5~28KW, 빔전류 10~40㎃ 및 SF6 가스 공급 시스템을 갖춘 전자빔가속기로 초고강도섬유직물을 표면처리를 함에 있어서 광개시제 및 단량체를 사용하지 않고 표면처리한 후, 분산 염료를 사용하여 염색하는 것을 특징으로 하는 전자빔가속기처리에 의한 초고강도섬유직물의 고견뢰염색방법.Surface treatment without using photoinitiators and monomers in surface treatment of ultra-high strength fiber fabrics with electron beam accelerators with maximum acceleration energy of 0.1 ~ 0.7 MeV, beam power of 5 ~ 28KW, beam current of 10 ~ 40mA and SF 6 gas supply system And then dyed with a disperse dye. The method according to claim 1, 삭제delete
KR1020130087296A 2013-07-24 2013-07-24 The dyeing method of ultra-high-strength-fiber with high dye fastness using electronic beam accelerator KR101485686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130087296A KR101485686B1 (en) 2013-07-24 2013-07-24 The dyeing method of ultra-high-strength-fiber with high dye fastness using electronic beam accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130087296A KR101485686B1 (en) 2013-07-24 2013-07-24 The dyeing method of ultra-high-strength-fiber with high dye fastness using electronic beam accelerator

Publications (1)

Publication Number Publication Date
KR101485686B1 true KR101485686B1 (en) 2015-01-22

Family

ID=52592394

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130087296A KR101485686B1 (en) 2013-07-24 2013-07-24 The dyeing method of ultra-high-strength-fiber with high dye fastness using electronic beam accelerator

Country Status (1)

Country Link
KR (1) KR101485686B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266246B1 (en) * 1992-06-04 2000-09-15 에프. 아. 프라저, 에른스트 알테르 (에. 알테르), 한스 페터 비틀린 (하. 페. 비틀린), 피. 랍 보프, 브이. 스펜글러, 페. 아에글러 Process for the fixation of dyes containing at least one polymerisable double bond by means of ionising radiation
JP2001303462A (en) * 2000-04-18 2001-10-31 Natl Inst Of Advanced Industrial Science & Technology Meti Method for dyeing polyester-based woven and/or knit goods or nonwoven fabric
KR100676182B1 (en) * 2006-03-17 2007-02-01 영남대학교 산학협력단 The coating of monomers onto textiles by means of electron-beam grafting reaction and the method for suppressing the homopolymerization which is included from the process
KR20090108598A (en) * 2007-01-16 2009-10-15 다우 글로벌 테크놀로지스 인크. Cone dyed yarns of olefin block compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266246B1 (en) * 1992-06-04 2000-09-15 에프. 아. 프라저, 에른스트 알테르 (에. 알테르), 한스 페터 비틀린 (하. 페. 비틀린), 피. 랍 보프, 브이. 스펜글러, 페. 아에글러 Process for the fixation of dyes containing at least one polymerisable double bond by means of ionising radiation
JP2001303462A (en) * 2000-04-18 2001-10-31 Natl Inst Of Advanced Industrial Science & Technology Meti Method for dyeing polyester-based woven and/or knit goods or nonwoven fabric
KR100676182B1 (en) * 2006-03-17 2007-02-01 영남대학교 산학협력단 The coating of monomers onto textiles by means of electron-beam grafting reaction and the method for suppressing the homopolymerization which is included from the process
KR20090108598A (en) * 2007-01-16 2009-10-15 다우 글로벌 테크놀로지스 인크. Cone dyed yarns of olefin block compositions

Similar Documents

Publication Publication Date Title
Morent et al. Non-thermal plasma treatment of textiles
Jazbec et al. Functionalization of cellulose fibres with oxygen plasma and ZnO nanoparticles for achieving UV protective properties
Yaman et al. Atmospheric plasma treatment of polypropylene fabric for improved dyeability with insoluble textile dyestuff
Panda et al. Effect of atmospheric pressure helium plasma on felting and low temperature dyeing of wool
Hashem et al. New prospects in pretreatment of cotton fabrics using microwave heating
Ghoranneviss et al. Flame retardant properties of plasma pretreated/metallic salt loaded cotton fabric before and after direct dyeing
CN105908499A (en) Anti-aging modifying method for polyester fabric
Chen Free radicals of fibers treated with low temerature plasma
KR101485686B1 (en) The dyeing method of ultra-high-strength-fiber with high dye fastness using electronic beam accelerator
Biniaś et al. Selected properties of wool treated by low-temperature plasma
KR101460446B1 (en) The dyeing method of ultra-high-strength-fiber with high dye fastness
WO2004009888A1 (en) Elastic fabric and method for production thereof
Yaman et al. Effect of surrounded air atmospheric plasma treatment on polypropylene dyeability using cationic dyestuffs
Abdelileh et al. Reviving of cotton dyeing by saxon blue: application of microwave irradiation to enhance dyeing performances
Mak et al. Low-temperature plasma treatment of Tencel
Siavashani et al. The influence of corona discharge treatment on the properties of cotton and polyester-cotton knitted fabrics
CN107620204A (en) A kind of pbo fiber of ultraviolet resistance and preparation method thereof
Zhao Research on microwave pad dyeing process for wool fabric
Kim et al. Modification of polypropylene fibers by electron beam irradiation. I. Evaluation of dyeing properties using cationic dyes
Shahidi et al. Effect of hexamethyldisiloxane (HMDSO)/nitrogen plasma polymerisation on the anti felting and dyeability of wool fabric
KR101025827B1 (en) Process Of Dyeing Meta Aramid Fibers Applying UV Irradiation Pretreatment
CN115110321B (en) Method for improving fluorescence Huang Ying luminosity of flame-retardant knitted fabric
Sodsangchan et al. Influence of monochlorotriazine-β-cyclodextrin treatment on dyeing and fastness properties of the hot-dyeing reactive dye on cotton
Allam et al. Synergistic effect of alkali treatment and microwave irradiation on the dyeing properties of polyester–wool blend fabrics
Zhou et al. Effect of mercerisation and crosslinking on the dyeing properties of ramie fabric

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171207

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190214

Year of fee payment: 5