KR101482999B1 - Anti-inflammatory therapeutic Agents containg (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine as an Suppressor of TRIF-dependent signaling pathway of Toll-like receptors - Google Patents

Anti-inflammatory therapeutic Agents containg (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine as an Suppressor of TRIF-dependent signaling pathway of Toll-like receptors Download PDF

Info

Publication number
KR101482999B1
KR101482999B1 KR20130069236A KR20130069236A KR101482999B1 KR 101482999 B1 KR101482999 B1 KR 101482999B1 KR 20130069236 A KR20130069236 A KR 20130069236A KR 20130069236 A KR20130069236 A KR 20130069236A KR 101482999 B1 KR101482999 B1 KR 101482999B1
Authority
KR
South Korea
Prior art keywords
trif
nvpp
pyrrolidine
tlrs
phenyl
Prior art date
Application number
KR20130069236A
Other languages
Korean (ko)
Other versions
KR20140146464A (en
Inventor
김대영
윤형선
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Priority to KR20130069236A priority Critical patent/KR101482999B1/en
Publication of KR20140146464A publication Critical patent/KR20140146464A/en
Application granted granted Critical
Publication of KR101482999B1 publication Critical patent/KR101482999B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril

Abstract

본 발명은 톨-유사 수용체(TLR)에 의해 유도되는 TRIF-의존성 신호전달 경로의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제에 관한 것이다.
톨-유사 수용체(TLRs)는 많은 병원성 분자 패턴을 인식에 중요한 역할을 하며, 선천성 면역반응을 유도한다. TLRs에 의한 세균성 요소의 인식은 MyD88 및 (TRIF)-의존성 다운스트림 신호전달 경로를 개시하도록 한다. 상술한 바와 같이, 발명자들은 니트로비닐-페닐 및 피롤리딘을 포함하는 (E)-1-(2-(2-니트로비닐)페닐)피롤리딘(NVPP)를 합성하였다. NVPP의 치료제로서의 잠재성을 평가하기 위해, 리포폴리사카라이드(LPS), 폴리리보이노시닉 폴리리보시티딜릭 에시드(Poly[I:C])에 의해 유도되는 TLRs의 TRIF-의존적 경로를 통한 신호전달 유도의 효과를 조사하였다. NVPP는 인터페론 유도 단백질-10과 같은 인터페론 유도 유전자의 활성화를 저해할 뿐만 아니라, LPS 또는 Poly[I:C]에 의해 유도되는 NF-kB, 인터페론 조절 인자 및 인터페론 조절 인자 3의 인산화의 활성화를 저해한다. 이러한 결과는 NVPP가 TLRs의 TRIF-의존적 신호전달 경로를 조절함으로써, 만성 염증 질환에 대한 효과적인 잠재적 치료제로 개발될 수 있음을 시사하는 것이다.
The present invention relates to the use of ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) as an active ingredient as an inhibitor of the TRIF-dependent signaling pathway induced by toll- Lt; / RTI >
Toll-like receptors (TLRs) play an important role in recognizing many pathogenic molecular patterns and induce congenital immune responses. Recognition of bacterial factors by TLRs allows MyD88 and (TRIF) -dependent downstream signaling pathways to be initiated. As described above, the inventors synthesized ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) containing nitrovinyl-phenyl and pyrrolidine. To evaluate the potential of NVPP as a therapeutic agent, a signal through the TRIF-dependent pathway of TLRs induced by lipopolysaccharide (LPS), polyriboinosinic polyribosytidylic acid (Poly [I: C]) The effects of induction of delivery were investigated. NVPP not only inhibits the activation of interferon inducible genes such as interferon inducible protein-10 but also inhibits the activation of NF-kB, interferon regulatory factor and interferon regulatory factor 3 phosphorylation induced by LPS or Poly [I: C] do. These results suggest that NVPP may modulate the TRIF-dependent signaling pathways of TLRs and thus may be developed as an effective potential treatment for chronic inflammatory diseases.

Description

톨-유사 수용체(TLR)에 의해 유도되는 TRIF-의존성 신호전달 경로의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제{Anti-inflammatory therapeutic Agents containg (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine as an Suppressor of TRIF-dependent signaling pathway of Toll-like receptors}An anti-inflammatory agent comprising (E) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) as an active ingredient as an inhibitor of TRIF-dependent signaling pathway induced by tol- {Anti-inflammatory therapeutic Agents Containing (E) -1- (2- (2-Nitrovinyl) Phenyl) Pyrrolidine as Suppressor of TRIF-dependent Signaling Pathway of Toll-

본 발명은 톨-유사 수용체(TLRs)에 의해 유도되는 TRIF-의존성 신호전달 경로의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제에 관한 것이다. The present invention relates to the use of ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) as an active ingredient as an inhibitor of the TRIF-dependent signaling pathway induced by toll- Lt; / RTI >

선천적 면역은 침입하는 세균성 병원균에 대한 호스트의 방어에 중요한 것으로서 인식되고 있다. 패턴 인식 수용체(Pattern recognition receptors,(PRRs))는 생식계열 암호화된 수용체(germ-line encoded receptors)로서, 팸스(pathogen-associated molecular patterns, PAMPs)을 인식함으로써, 선천적인 면역 반응 및 후천적 면역 반응에서 중요한 역할을 한다(Bjorkbacka et al., 2004; Medzhitov et al., 1997). Congenital immunity is recognized as important for host defense against invading bacterial pathogens. Pattern recognition receptors (PRRs) are germ-line encoded receptors that recognize pathogen-associated molecular patterns (PAMPs), resulting in innate and acquired immune responses (Bjorkbacka et al., 2004; Medzhitov et al., 1997).

잘 연구된 PRRs는 톨-유사 수용체(Toll-like receptors (TLRs))이다. PAMPs에 의한 TLR의 활성화는 다양한 세포간 신호전달 케스케이드를 유도하여, 사이토카인(cytokines), 케모카인(chemokines) 및 호스트의 방어에 중요한 다른 유전자의 전사를 야기한다. Well-studied PRRs are Toll-like receptors (TLRs). Activation of TLRs by PAMPs induces a variety of intercellular signaling cascades leading to the transcription of other genes important for the defense of cytokines, chemokines and hosts.

대체로, TLRs을 통한 신호전달은 하나 또는 그 이상의 톨/인터루킨(IL)-1 수용체(TIR) 도메인-포함 어댑터 분자 즉, 미엘로이드 분화 인자(myeloid differentiation factor 88 (MyD88)) 및 ineterferon-β를 유도하는 Toll/IL-1R 도메인 포함 어댑터(TRIF)를 채택함으로써, 2가지 전달경로로 나뉠 수 있다(O'Neill and Bowie, 2007). 이들 어댑터들은 MyD88- 및 TRIF-의존적 경로의 활성화를 촉진시킨다. Generally, signaling through TLRs induces one or more toll / interleukin (IL) -1 receptor (TIR) domain-containing adapter molecules, namely myeloid differentiation factor 88 (MyD88) and inferfer- By adopting the Toll / IL-1R Domain-Incorporated Adapter (TRIF), it is possible to divide into two delivery paths (O'Neill and Bowie, 2007). These adapters facilitate activation of MyD88- and TRIF-dependent pathways.

TLR1, TLR2, TLR5, TLR6, TLR7, TLR8, TLR9 및 TLR11와 이들 리간드의 활성화는 MyD88를 채택하는 반면, TLR3와 그 리간드의 활성화는 TRIF를 채택한다. TLR4는 MyD88 및 TRIF 모두를 채택한다(Takeda and Akira, 2005). Activation of TLR1, TLR2, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR11 and their ligands adopt MyD88, whereas activation of TLR3 and its ligands adopts TRIF. TLR4 adopts both MyD88 and TRIF (Takeda and Akira, 2005).

어댑터 분자의 채택은 신호전달 경로의 캐스케이드 및 nuclear factor-κB (NF-κB) and IFN regulatory factor 3 (IRF3)와 같은 전사인자의 활성화를 개시하도록 하여, 염증 사이토카인(inflammatory cytokines), 케모카인(chemokines) 및 타입 Ⅰ IFNs의 유도를 야기시킨다(Takeda and Akira, 2005).The adoption of adapter molecules allows the initiation of cascade of signaling pathways and the activation of transcription factors such as nuclear factor-κB (NF-κB) and IFN regulatory factor 3 (IRF3), leading to inflammatory cytokines, chemokines ) And type I IFNs (Takeda and Akira, 2005).

TLR3를 제외한 모든 TLR 패밀리 멤버는 보존된 고전적 경로를 통해 염증 신호반응을 진행한다(Takeda and Akira, 2005). 이 경로는 TIR 도메인이라 불리는 보존된 세포질 단백질 서열에 의해 개시되며, 이는 IL-1-associated kinase (IRAK)-1 and IRAK-4, TRAF-6, mitogen-activated protein kinases (MAPK) and IkB kinases를 포함하는 신호전달 매개자를 활성화시켜, 원형 염증 전사인자(prototypic inflammatory transcription factor) NF-κB를 활성화시킨다.  All TLR family members except TLR3 carry an inflammatory signal response through the conserved classical pathway (Takeda and Akira, 2005). This pathway is initiated by a conserved cytoplasmic protein sequence called the TIR domain, which binds to IL-1-associated kinase (IRAK) -1 and IRAK-4, TRAF-6, mitogen-activated protein kinases (MAPK) Activates the signaling mediator involved, activating the prototypic inflammatory transcription factor NF-kB.

이러한 신호전달 경로는 사이토카인을 포함하는 염증성 유전자 산물의 발현을 유도한다(Akira et al., 2006). 염증성 신호전달 뿐만 아니라, 일부 TLRs 은 Mal, TRAM 및 TRIF를 채택하고, 신호전달에 특이성을 부여한다(Creagh and O'Neill, 2006). These signaling pathways lead to the expression of inflammatory gene products, including cytokines (Akira et al., 2006). In addition to inflammatory signaling, some TLRs adopt Mal, TRAM and TRIF and confer specificity for signaling (Creagh and O'Neill, 2006).

TRIF는 TLR4 및 TLR3에 의한 신호전달에 중요한 역할을 하는 것으로 알려져 왔으며, 반면, TRAM는 TLR4만 신호전달에 필요한 것으로 알려져 왔다. TRIF는 IRF3의 활성화 및 IFN-β와 란테스(regulated on activation normal T-cell expressed and secreted, RANTES)와 같은 IFN-유도 유전자의 발현을 유도한다(Fitzgerald et al., 2003; Gao et al., 1998; Kawai et al., 2001).TRIF has been shown to play an important role in signal transduction by TLR4 and TLR3, while TRAM has been shown to be essential for signaling only TLR4. TRIF induces the expression of IFN-inducible genes such as activation of IRF3 and regulated on activation normal T-cell expressed and secreted (RANTES) (Fitzgerald et al., 2003; Gao et al. 1998; Kawai et al., 2001).

니트로비닐-페닐 및 피롤리딘을 포함하는 (E)-1-(2-(2-니트로비닐)페닐)피롤리딘(NVPP) (도 1(A))는 생물학적으로 유용한 분자를 준비하여 기초 빌딩 블럭을 사용하여 본 발명자의 연구소에서 합성되었다. ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) (Fig. 1 (A)) comprising nitrovinyl-phenyl and pyrrolidine is prepared by preparing a biologically useful molecule Was synthesized at our laboratory using building blocks.

상술한 바와 같이, 발명자들은 NVPP 가 TLRs의 MyD88-의존적 신호전달 경로를 저해한다는 것을 보고한 바 있다(Eom et al., 2013). NVPP는 또한, 리포폴리사카라이드(LPS; TLR4 작용물질) 및 매크로파지-활성화 리포펩티드 2-kDa(MALP-2; TLR2 및 TLR6 작용물질)에 의해 유도되는 NF-κB 활성화 및 iNOS 발현을 저해한다. As described above, the inventors have reported that NVPP inhibits the MyD88-dependent signaling pathway of TLRs (Eom et al., 2013). NVPP also inhibits NF-kB activation and iNOS expression induced by lipopolysaccharide (LPS; TLR4 agonist) and macrophage-activated lipopeptide 2-kDa (MALP-2; TLR2 and TLR6 agonists).

그러나, NVPP가 TLRs의 TRIF-의존적 신호전달 경로를 저해하는지 여부는 알려진 바 없다. 따라서, 본 발명은 TLRs의 TRIF-의존적 신호전달 경로에서 NVPP의 항염증 타겟을 밝히고자 하는 것이다. However, it is not known whether NVPP inhibits the TRIF-dependent signaling pathway of TLRs. Accordingly, the present invention seeks to identify an anti-inflammatory target of NVPP in the TRIF-dependent signaling pathway of TLRs.

본 발명은 상기 문제점을 해결하기 위하여 톨-유사 수용체(TLRs)에 의해 유도되는 TRIF-의존성 신호전달 경로의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제를 제공하는 것을 목적으로 한다. The present invention relates to the use of ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine as an inhibitor of the TRIF-dependent signaling pathway induced by tol-like receptors (TLRs) NVPP) as an active ingredient.

상기와 같은 목적을 달성하기 위한 본 발명은 TRIF-의존성 신호전달 경로의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제를 제공한다. In order to achieve the above object, the present invention provides an anti-inflammatory agent comprising ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) as an active ingredient as an inhibitor of TRIF- Lt; / RTI >

또한, 본 발명에서 상기 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)는 하기의 [화학식 1]을 갖는 TRIF-의존성 신호전달의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제를 제공한다.In addition, the (E) -1- (2- (2- nitro-vinyl) phenyl) pyrrolidine in the present invention (NVPP) is (E) as an inhibitor of TRIF- dependent signaling having Formula 1 of the following - The present invention provides an anti-inflammatory agent comprising 1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) as an active ingredient.

[화학식 1] [Chemical Formula 1]

Figure 112013053763563-pat00001
Figure 112013053763563-pat00001

톨-유사 수용체(TLRs)는 많은 병원성 분자 패턴을 인식에 중요한 역할을 하며, 선천성 면역반응을 유도한다. TLRs에 의한 세균성 요소의 인식은 MyD88(myeloid differential factor 88) 및 톨-인터루킨-1 수용체 도메인-포함 어댑터 유발 인터페론-β(TRIF)-의존성 다운스트림 신호전달 경로를 개시하도록 한다.  Toll-like receptors (TLRs) play an important role in recognizing many pathogenic molecular patterns and induce congenital immune responses. Recognition of bacterial factors by TLRs allows MyD88 (myeloid differential factor 88) and toll-interleukin-1 receptor domain-containing adapter-initiated interferon-beta (TRIF) -dependent downstream signaling pathways to initiate.

상술한 바와 같이, 발명자들은 니트로비닐-페닐 및 피롤리딘을 포함하는 (E)-1-(2-(2-니트로비닐)페닐)피롤리딘(NVPP)를 합성하였다. NVPP의 치료제로서의 잠재성을 평가하기 위해, 리포폴리사카라이드(LPS), 폴리리보이노시닉 폴리리보시티딜릭 에시드(Poly[I:C])에 의해 유도되는 TLRs의 TRIF-의존적 경로를 통한 신호전달 유도의 효과를 조사하였다.As described above, the inventors synthesized ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) containing nitrovinyl-phenyl and pyrrolidine. To evaluate the potential of NVPP as a therapeutic agent, a signal through the TRIF-dependent pathway of TLRs induced by lipopolysaccharide (LPS), polyriboinosinic polyribosytidylic acid (Poly [I: C]) The effects of induction of delivery were investigated.

NVPP는 인터페론 유도 단백질-10(IP-10)과 같은 인터페론 유도 유전자의 활성화를 저해할 뿐만 아니라, LPS 또는 Poly[I:C]에 의해 유도되는 NF-κB, 인터페론 조절 인자 및 인터페론 조절 인자 3의 인산화의 활성화를 저해한다. 이러한 결과는 NVPP가 TLRs의 TRIF-의존적 신호전달 경로를 조절함으로써, 만성 염증 질환에 대한 효과적인 잠재적 치료제로 개발될 수 있음을 시사하는 것이다.  NVPP not only inhibits the activation of interferon inducible genes such as interferon inducible protein-10 (IP-10) but also inhibits the activation of NF-κB, interferon regulatory factor and interferon regulatory factor 3 induced by LPS or Poly [I: Inhibits the activation of phosphorylation. These results suggest that NVPP may modulate the TRIF-dependent signaling pathways of TLRs and thus may be developed as an effective potential treatment for chronic inflammatory diseases.

도 1은 (E)-1-(2-(2-니트로비닐)페닐)피롤리딘(NVPP)의 구조를 나타낸 것이다.
도 2는 NVPP가 TLR4의 MyD88-의존적 신호전달 경로를 억제하는 것을 나타낸 것으로서, 도 2(A)는 RAW264.7 세포를 NF-κB 루시퍼라아제 리포터 플라스미드로 형질전환 되었고, 1시간 동안 NVPP (20, 50, 100 μM)로 미리 처리한 후, 추가로 8시간 동안 LPS(10ng/ml)로 처리한 것이다.
Cell lysates를 준비하고, 루시퍼라아제 및 β-gal 효소 활성을 측정하였다. 상대 루시페라아제 활성은 β-gal 활성으로 정규화되었다. 측정값은 평균±SEM (n=3)으로 표시되었다. (A) *, LPS과 상당히 다름 p<0.05 (#). (B-D) 293T 세포는 NF-κB 루시페라아제 리포터 플라스미드 및 MyD88(B), IKKβ(C) 또는 p65(D)로 형질전환되었다.
세포는 추가적으로 18시간 동안 NVPP (20, 50, 100 μM)로 처리되었다. 상대 루시퍼라아제 활성은 β-gal 활성으로 정규화되었다. 측정값은 평균±SEM (n=3)으로 표시되었다. (B) +는 MyD88과 상당히 다름을 나타낸다. p<0.01 (++). (C) #는 IKKβ와 상당히 다름을 나나타낸다. p<0.01 (##). (D) ♣는 결과가 p65와 상당히 다름을 나타낸다. p<0.01(♣♣). Veh, vehicle; NVPP, (E)-1-(2-(2-니트로비닐)페닐)피롤리딘((E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine).
도 3은 NVPP가 LPS에 의해 유도되는 IRF3 활성을 억제하는 것을 나타낸 것으로서, 도 3(A)는 RAW264.7 세포를 IRF3 결합 사이트(IFNβ PRDIII-I)로 형질전환한 뒤, 1시간 동안 미리 NVPP (20, 50, 100 μM)를 처리한 후, 추가로 8시간 동안 LPS(10ng/ml)로 처리한 것이다.
Cell lysates를 준비하고, 루시퍼라아제 및 β-gal 효소 활성을 측정하였다. 상대 루시페라아제 활성은 β-gal 활성으로 정규화되었다. 측정값은 평균±SEM (n=3)으로 표시되었다. *는 LPS과 상당히 다름을 나타낸 다. p<0.01 (**).
도 3(B)는 RAW264.7 세포가 1시간 동안 미리 NVPP (20, 50, 100 μM)로 처리되고, 추가로 8시간 동안 LPS(10ng/ml)로 처리한 것이다. Cell lysates가 웨스턴 블롯팅에 의해 pIRF3 및 IRF3 단백질에 대해 분석되었다.
도 3(C)는 RAW264.7 세포가 IP-10-루시페라아제 리포터 플라스미드로 형질전환되고, 1시간 동안 미리 NVPP (20, 50, 100 μM)로 처리되고, 추가로 8시간 동안 LPS(10ng/ml)로 처리한 것이다. Cell lysates가 준비되고, 루시페라아제 및 β-gal 효소 활성이 측정되었다. 상대 루시페라아제 활성은 β-gal 활성으로 정규화되었다. 측정값은 평균±SEM (n=3)으로 표시되었다. +는 LPS과 상당히 다름을 나타낸 다. p<0.05 (+), p<0.01 (++).
도 3(D)는 RAW264.7 세포가 1시간 동안 미리 NVPP (20, 50, 100 μM)로 처리되고, 추가로 8시간 동안 LPS(10ng/ml)로 자극을 주었다. Cell lysates를 웨스턴 블롯팅에 의해 IP-10 및 β-액틴 단백질에 대해 분석하였다. Veh, vehicle; NVPP, (E)-1-(2-(2-니트로비닐)페닐)피롤리딘.
도 4는 NVPP가 TLR3의 TRIF-의존적 신호전달 경로를 억제하는 것을 나타낸 것이다. (A-C) RAW264.7 세포는 NF-κB(A), IRF3 결합 사이트(IFNβ PRDIII-I)(B) 및 IP-10 (C) 루시퍼라아제 리포터 플라스미드로 형질전환되고, 1시간 동안 미리 NVPP (20, 50, 100 μM)로 처리되고, 추가로 8시간 동안 poly[I:C](10 μg/ml)로 처리하였다.
Cell lysates가 준비되고, 루시페라아제 및 β-gal 효소 활성이 측정되었다. 상대 루시페라아제 활성은 β-gal 활성으로 정규화되었다. 측정값은 평균±SEM (n=3)으로 표시되었다. (A) *는 결과가 poly[I:C]과 상당히 다름을 나타낸다. p<0.05 (*), p<0.01 (**). (B) +는 결과가 poly[I:C]과 상당히 다름을 나타낸다. p<0.01 (++). (C) #는 결과가 poly[I:C]과 상당히 다름을 나타낸다. p<0.05 (#), p<0.01 (##). (D) RAW264.7 세포는 1시간 동안 미리 NVPP (20, 50, 100 μM)로 처리되고, 추가로 8시간 동안 poly[I:C](10μg/ml)로 자극하였다. Cell lysates가 웨스턴 블롯팅에 의해 IP-10 및 β-액틴 단백질에 대해 분석하였다. Veh, vehicle; NVPP, (E)-1-(2-(2-니트로비닐)페닐)피롤리딘.
도 5는 NVPPrk 다운스트림 신호전달 구성요소에 의한 IRF3 활성화를 억제하는 것을 나타낸 것으로서, (A)293T 세포는 IRF3 결합 사이트(IFNβ PRDIII-I)-루시페라아라제 플라스미드 및 TRIF 발현 플라스미드(A), TBK1 (B) 또는 IRF3 5D (C)로 형질전환되었다. 세포는 18시간 동안 NVPP (20, 50, 100 μM)로 처리되었다. 상대 루시페라아제 활성은 β-gal 활성으로 정규화되었다. 측정값은 평균±SEM (n=3)으로 표시되었다. Veh, vehicle; NVPP, (E)-1-(2-(2-니트로비닐)페닐)피롤리딘.
Figure 1 shows the structure of ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP).
Figure 2 shows that NVPP inhibits the MyD88-dependent signaling pathway of TLR4. Figure 2 (A) shows that RAW264.7 cells were transformed with the NF- [kappa] B luciferase reporter plasmid, and NVPP (20 , 50, 100 [mu] M) and then treated with LPS (10 ng / ml) for an additional 8 hours.
Cell lysates were prepared and the activity of luciferase and β-gal enzyme was measured. Relative luciferase activity was normalized to? -Gal activity. Measurements were expressed as mean ± SEM (n = 3). (A) *, significantly different from LPS p < 0.05 (#). (BD) 293T cells were transformed with the NF-κB luciferase reporter plasmid and MyD88 (B), IKKβ (C) or p65 (D).
Cells were treated with NVPP (20, 50, 100 [mu] M) for an additional 18 hours. Relative luciferase activity was normalized to? -Gal activity. Measurements were expressed as mean ± SEM (n = 3). (B) + is significantly different from MyD88. p < 0.01 (++). (C) # is quite different from IKKβ. p < 0.01 (##). (D) ♣ indicates that the result is significantly different from p65. p < 0.01 (♣. Veh, vehicle; NVPP, ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine.
FIG. 3 shows that NVPP inhibits LPS-induced IRF3 activity. FIG. 3 (A) shows that RAW264.7 cells were transformed with IRF3 binding site (IFNβ PRDIII-I) (20, 50, 100 [mu] M) and then treated with LPS (10 ng / ml) for an additional 8 hours.
Cell lysates were prepared and the activity of luciferase and β-gal enzyme was measured. Relative luciferase activity was normalized to? -Gal activity. Measurements were expressed as mean ± SEM (n = 3). * Indicates significantly different from LPS. p < 0.01 (**).
FIG. 3 (B) shows RAW 264.7 cells treated with NVPP (20, 50, 100 μM) for 1 hour in advance and further treated with LPS (10 ng / ml) for 8 hours. Cell lysates were analyzed for pIRF3 and IRF3 proteins by Western blotting.
Figure 3 (C) shows that RAW264.7 cells are transformed with IP-10-luciferase reporter plasmids and treated with NVPP (20, 50, 100 [mu] M) for 1 hour in advance and LPS ). Cell lysates were prepared and the luciferase and beta-gal enzyme activities were measured. Relative luciferase activity was normalized to? -Gal activity. Measurements were expressed as mean ± SEM (n = 3). + Indicates significantly different from LPS. p < 0.05 (+), p < 0.01 (++).
Figure 3 (D) shows RAW 264.7 cells treated with NVPP (20, 50, 100 μM) for 1 hour in advance and stimulated with LPS (10 ng / ml) for an additional 8 hours. Cell lysates were analyzed for IP-10 and beta-actin proteins by Western blotting. Veh, vehicle; NVPP, ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine.
Figure 4 shows that NVPP inhibits the TRIF-dependent signaling pathway of TLR3. (AC) RAW264.7 cells were transformed with NF-κB (A), IRF3 binding site (IFNβ PRDIII-I) (B) and IP-10 (C) luciferase reporter plasmid, 20, 50, 100 μM) and treated with poly [I: C] (10 μg / ml) for an additional 8 hours.
Cell lysates were prepared and the luciferase and beta-gal enzyme activities were measured. Relative luciferase activity was normalized to? -Gal activity. Measurements were expressed as mean ± SEM (n = 3). (A) * indicates that the result is quite different from poly [I: C]. p < 0.05 (*), p < 0.01 (**). (B) + indicates that the result is significantly different from poly [I: C]. p < 0.01 (++). (C) # indicates that the result is significantly different from poly [I: C]. p < 0.05 (#), p < 0.01 (##). (D) RAW 264.7 cells were pretreated with NVPP (20, 50, 100 μM) for 1 hour and stimulated with poly [I: C] (10 μg / ml) for an additional 8 hours. Cell lysates were analyzed for IP-10 and beta-actin proteins by Western blotting. Veh, vehicle; NVPP, ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine.
Figure 5 shows inhibition of IRF3 activation by the NVPPrk downstream signaling component. (A) 293T cells express IRF3 binding site (IFN beta PRDIII-I) -luciferase plasmid and TRIF expression plasmid (A) TBK1 (B) or IRF3 5D (C). Cells were treated with NVPP (20, 50, 100 [mu] M) for 18 hours. Relative luciferase activity was normalized to? -Gal activity. Measurements were expressed as mean ± SEM (n = 3). Veh, vehicle; NVPP, ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine.

본 발명은 톨-유사 수용체(TLRs)에 의해 유도되는 TRIF-의존성 신호전달 경로의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제에 관한 것이다.
The present invention relates to the use of ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) as an active ingredient as an inhibitor of the TRIF-dependent signaling pathway induced by toll- Lt; / RTI &gt;

이하, 본 발명을 실시예를 들어 상세히 설명하기로 한다.
Hereinafter, the present invention will be described in detail with reference to examples.

[[ 실시예Example 1 : 화학적 합성]  1: chemical synthesis]

NVPP는 확립된 절차의 수정에 의해 합성되었다(Rabong et al., 2008). 교반 막대를 포함하는 오븐 건조된 100 mL 플라스크를 2-(pyrrolidin-1-yl)benzaldehyde (0.875 g, 5 mmol), KF (0.192 g, 0.327 mmol), Me2NH2Cl (0.815 g, 10 mmol), 니트로메탄(nitromethane, 11.2 mL, 203 mmol) 및 톨루엔(11 mL)로 채운다. 플라스크를 Dean-Stark apparatus에 장착하고, 5시간 동안 환류시킨다. 감압하에서 용액를 제거하고, 잔여물은 플래시 크로마토그래피(ethyl acetate/hexane = 1/20)에 의해 정제시켜 흑적색의 고체로서, NVPP (0.9 g, 60%)가 생성되었다. Mp 175 oC; 1H NMR (200 MHz, CDCl3) d 8.33 (d, J = 13.4 Hz, 1H), 7.37 (d, J = 13.4 Hz, 1H), 7.30-7.17 (m, 2H), 6.83-6.66 (m, 2H), 3.30-3.23 (m, 4H), 1.94-1.85 (m, 4H). 13C NMR (50 MHz) d 148.7, 137.1, 132.3, 130.1, 127.2, 116.7, 116.2, 113.5, 50.4, 23.2.
NVPP was synthesized by modification of established procedures (Rabong et al., 2008). An oven-dried 100 mL flask containing a stir bar was charged with 2- (pyrrolidin-1-yl) benzaldehyde (0.875 g, 5 mmol), KF (0.192 g, 0.327 mmol), Me 2 NH 2 Cl ), Nitromethane (11.2 mL, 203 mmol) and toluene (11 mL). The flask is mounted on a Dean-Stark apparatus and refluxed for 5 hours. The solution was removed under reduced pressure and the residue was purified by flash chromatography (ethyl acetate / hexane = 1/20) to give NVPP (0.9 g, 60%). Mp 175 ° C; 1 H NMR (200 MHz, CDCl 3 ) d 8.33 (d, J = 13.4 Hz, 1H), 7.37 (d, J = 13.4 Hz, 1H), 7.30-7.17 (m, 2H), 6.83-6.66 2H), 3.30-3.23 (m, 4H), 1.94-1.85 (m, 4H). 13 C NMR (50 MHz) d 148.7, 137.1, 132.3, 130.1, 127.2, 116.7, 116.2, 113.5, 50.4, 23.2.

[[ 실시예Example 2 : 시약( 2: Reagent ( reagentsreagents )] )]

LPS는 List Biological Laboratories (San Jose, CA, USA)로부터 구입하였다. Poly[I:C]는 Amersham Biosciences (Piscataway, NJ, USA)에서 구입하였다. LPS와 Poly[I:C]는 내독소가 없는 물(endotoxin-free water)에서 용해되었다. 모든 다른 시약들은 언급이 없는 한, Sigma-Aldrich (St. Louis, MO, USA)에서 구입하였다.
LPS was purchased from List Biological Laboratories (San Jose, CA, USA). Poly [I: C] was purchased from Amersham Biosciences (Piscataway, NJ, USA). LPS and Poly [I: C] were dissolved in endotoxin-free water. All other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise noted.

[[ 실시예Example 3 : 세포 배양]  3: cell culture]

RAW264.7 세포(쥐의 단핵백혈구 세포; ATTCC TIB71) 및 293T 인간의 태아 신장세포(human embryonic kidney cells)이 10 % (v/v) 열-불활성화된 태아 소혈청, 100 units/mL 페니실린(Invitrogen, Carlsbad, CA, USA), 및 100 μg/mL 스트렙토마이신(Invitrogen)을 포함하는 Dulbecco's modified Eagle's 배지에서 배양되었다. 세포는 다른 언급이 없는 한, 5% CO2 대기, 37℃에서 유지되었다.
RAW264.7 cells (rat mononuclear leukocytes; ATTCC TIB71) and 293T human embryonic kidney cells were treated with 10% (v / v) heat-inactivated fetal bovine serum, 100 units / mL penicillin Invitrogen, Carlsbad, Calif., USA), and 100 μg / mL streptomycin (Invitrogen). Cells were maintained at 37 ° C in 5% CO 2 atmosphere unless otherwise noted.

[[ 실시예Example 4 : 플라스미드]  4: plasmid]

NF-κB(2x)-루시퍼라아제 리포터 구성은 Frank Mercurio에 의해 제공되었다 (Signal Pharmaceuticals, CA). An IFNβ PRDIII-I-루시퍼라아제 리포터 플라스미드는 Kate Fitzgerald가 제공하였다(University of Massachusetts Medical School, MA). Heat shock protein 70 (HSP70)-β-갈락토시다아제(β-gal) 리포터 플라스미드는 Robert Modlin로부터 얻었다(University of California, CA). IP-10-루시퍼라아제 리포터 구성은 Daniel Hwang로부터 얻었다 (University of California, CA). 모든 DNA 구성은 형질전환을 위해 EndoFree Plasmid Maxi kit (Qiagen, Valencia, CA, USA) 를 사용하여 대규모로 준비되었다.
The NF-κB (2x) -luciferase reporter construct was provided by Frank Mercurio (Signal Pharmaceuticals, CA). An IFN beta PRDIII-I-luciferase reporter plasmid was provided by Kate Fitzgerald (University of Massachusetts Medical School, MA). Heat shock protein 70 (HSP70) -β-galactosidase (β-gal) reporter plasmid was obtained from Robert Modlin (University of California, CA). The IP-10-Luciferase reporter construct was obtained from Daniel Hwang (University of California, CA). All DNA constructs were prepared on a large scale using the EndoFree Plasmid Maxi kit (Qiagen, Valencia, CA, USA) for transformation.

[[ 실시예Example 5 : 형질전환 및  5: Transformation and 루시퍼라아제Luciferase 분석]  analysis]

분석은 상술한 바에 따라 수행되었다(Ahn et al., 2009; Youn et al., 2009). 대략, RAW264.7 세포는 제조사의 메뉴얼에 따라 SuperFect transfection reagent(Qiagen, Valencia, CA, USA)를 사용하여, 내부 제어자로서, 루시퍼라아제 플라스미드 및 heat shock protein (HSP)70-β-galactosidase을 포함하는 플라스미드로 공동-형질전환 되었다. 루시퍼라아제 및 β-gal 효소 활성은 제조사의 지시에 따라 상업적인 루시퍼라아제 및 β-gal 효소 활성 분석 시스템(Promega)를 이용하여 측정되었다. 루시퍼라아제 활성은 β-갈락토시다아제 활성에 의해 정규화되었다.
Analysis was performed as described above (Ahn et al., 2009; Youn et al., 2009). Approximately, RAW264.7 cells were incubated with luciferase plasmid and heat shock protein (HSP) 70-β-galactosidase as internal controls using SuperFect transfection reagent (Qiagen, Valencia, CA, USA) Lt; RTI ID = 0.0 &gt; plasmid. &Lt; / RTI &gt; Luciferase and β-gal enzyme activity was measured using commercial luciferase and β-gal enzyme activity assay system (Promega) according to the manufacturer's instructions. The luciferase activity was normalized by? -Galactosidase activity.

[[ 실시예Example 6 :  6: 웨스턴Western 블롯Blot 분석( analysis( WesternWestern blotblot analysis분석 )] )]

웨스턴 블로팅은 상술한 바에 따라 수행되었다(Youn et al., 2006b; Yun et al., 2009). 동일한 양의 세포 추출액은 8% SDS 겔 전기영동(SDS-PAGE)으로 처리하여, 분리된 단백질은 폴리비닐리덴 디플루오라이드 멤브레인(polyvinylidene difluoride membrane)으로 전기이동시켰다. 멤브레인은 0.1% Tween-20 및 3% 탈지분유를 포함하는 phosphate-buffered saline에서 비특이적으로 결합한 항체를 제거하기 위해 블럭킹되었다. 면역블롯팅(Immunoblotting)은 표지된 항체로 수행되었으며, 2차 항체는 horseradish peroxidase (Amersham Biosciences, Arlington Heights, IL, USA)로 결합되었다. 반응 밴드는 강화된 화학발광 웨스턴 블롯 감지시약(Intron, Seongnam, Gyeonggi-do, South Korea)으로 시각화되었다. 다른 항체를 재조사하기 위해 멤브레인은 상온에서 10분간 0.2 N의 NaOH 로 분해하였다.
Western blotting was performed as described above (Youn et al., 2006b; Yun et al., 2009). The same amount of cell extract was treated with 8% SDS gel electrophoresis (SDS-PAGE), and the separated proteins were electro-transferred to a polyvinylidene difluoride membrane. Membranes were blocked to remove non-specifically bound antibodies in a phosphate-buffered saline containing 0.1% Tween-20 and 3% skim milk powder. Immunoblotting was performed with the labeled antibody and secondary antibody conjugated with horseradish peroxidase (Amersham Biosciences, Arlington Heights, IL, USA). Reaction bands were visualized with an enhanced chemiluminescence Western blot detection reagent (Intron, Seongnam, Gyeonggi-do, South Korea). The membrane was resolved with 0.2 N NaOH for 10 min at room temperature to re-examine other antibodies.

[[ 실시예Example 7 : 통계 분석]  7: Statistical analysis]

데이터는 3번의 실험으로 얻어졌다. 측정값은 평균±표준 오차(SEM)로 나타내었다. 데이터의 오차는 가정평균시사법(student's t test)으로 측정되었다. 0.05 미만의 P-값은 통계적으로 유의미한 차이를 나타내기 위해 사용되었다.
Data were obtained from three experiments. Measurements were expressed as mean ± standard error (SEM). The error of the data was measured by the student's t test. P-values less than 0.05 were used to indicate statistically significant differences.

상기 실시예를 통한 실험 결과를 분석하면 다음과 같다. The result of the experiment through the above embodiment is analyzed as follows.

NVPP는 TLRs의 MyD88-의존적 신호전달 경로를 억제한다. 대체로, TLRs 신호전달 경로는 MyD88- 및 TRIF-의존적 경로로 구성된다. MyD88- 및 TRIF-의존적 경로는 모두 NF-κB 활성화를 야기할 수 있으며, NF-κB는 TLRs의 공통적인 다운스트림 신호전달 구성요소이다. TLR4는 MyD88- 및 TRIF-의존적 경로 모두를 활성화하도록 개시한다. 따라서, LPS (TLR4 작용물질)에 의해 유도되는 NF-κB 활성화는 TLRs의 활성화 여부를 판단하는데 사용된다. NVPP는 도 2(A)의 루시페라아제 리포터 유전자 분석에서 확인된 바와 같이 용량-의존적 방식으로 LPS 유도 NF-κB 활성화를 억제한다. NVPP inhibits the MyD88-dependent signaling pathway of TLRs. In general, the TLRs signaling pathways consist of MyD88- and TRIF-dependent pathways. Both MyD88- and TRIF-dependent pathways can lead to NF-κB activation, and NF-κB is a common downstream signaling component of TLRs. TLR4 initiates activation of both MyD88- and TRIF-dependent pathways. Thus, NF-kB activation induced by LPS (TLR4 agonist) is used to determine whether TLRs are activated. NVPP inhibits LPS induced NF- [kappa] B activation in a dose-dependent manner as confirmed in the luciferase reporter gene assay of Fig. 2 (A).

NVPP에 의한 MyD88-의존적 신호전달 경로의 조절을 조사하기 위해서, 293T 세포에서 MyD88, IKKb, 또는 p65 과발현에 의해 NF-κB 활성화를 유도하였다. NVPP는 MyD88(도 2(B)), IKKb (도 2(C)) 또는 p65 (도 2(D))에 의해 유도되는 작용물질-비의존적 활성화를 억제하며, 이는 NVPP가 MyD88-의존적 신호전달 경로를 억제함을 증명하는 것이다.
In order to investigate the regulation of the MyD88-dependent signaling pathway by NVPP, NF-κB activation was induced by overexpression of MyD88, IKKb, or p65 in 293T cells. NVPP inhibits agonist-independent activation induced by MyD88 (Figure 2 (B)), IKKb (Figure 2 (C)) or p65 (Figure 2 (D)), indicating that NVPP inhibits MyD88- It is to prove that the path is suppressed.

또한, NVPP는 TLR4의 TRIF-의존적 신호전달 경로를 억제한다. 발명자들은 NVPP가 TLR4의 TRIF-의존적 신호전달 경로를 억제하는지 여부를 조사하였다. TRIF-의존적 신호전달 경로는 전사인자 IRF3의 활성화를 유도하기 때문에(Fitzgerald et al., 2003), IRF3 활성화는 TRIF-의존적 신호전달 경로의 판독을 위해 사용된다. IRF3 결합 사이트(IFNβ PRDIII-I)를 포함하는 IFNβ 프로모터 도메인을 사용한 리포터 유전자 분석에 의해 확인한 바와 같이(도 3(B)), NVPP는 LPS-유도 IRF3 활성화를 저해한다. 또한, NVPP는 웨스턴 블롯팅에서 확인된 바와 같이(도 3(B)) IRF3의 인산화를 저해한다. In addition, NVPP inhibits the TRIF-dependent signaling pathway of TLR4. The inventors investigated whether NVPP inhibits the TRIF-dependent signaling pathway of TLR4. Since the TRIF-dependent signaling pathway leads to the activation of the transcription factor IRF3 (Fitzgerald et al., 2003), IRF3 activation is used to read the TRIF-dependent signaling pathway. As shown by the reporter gene analysis using the IFN beta promoter domain containing the IRF3 binding site (IFN beta PRDIII-I) (Fig. 3 (B)), NVPP inhibits LPS-induced IRF3 activation. In addition, NVPP inhibits the phosphorylation of IRF3 as confirmed in Western blotting (Fig. 3 (B)).

NVPP가 TRIF-의존적 경로를 조절할 수 있는지 여부를 확인하기 위해, IP-10과 같은 TRIF-의존적 경로와 관련된 유전자의 발현을 루시퍼라아제 리포터 유전자 분석 및 웨스턴 블롯팅에 의해 측정하였다. NVPP는 루시퍼라아제 리포터 유전자 분석(도 3(C)) 및 웨스턴 블롯팅(도 3(D))에서 확인한 바와 같이, LPS-유도 IP-10 발현을 억제한다. 이러한 결과는 NVPP가 TLR4 활성화로부터 유도되는 TRIF-의존적 신호전달 경로를 억제한다는 것을 시사하는 것이다.
To determine whether NVPP can regulate TRIF-dependent pathways, the expression of genes associated with TRIF-dependent pathways such as IP-10 was determined by luciferase reporter gene analysis and Western blotting. NVPP inhibits LPS-induced IP-10 expression, as confirmed in the luciferase reporter gene assay (Figure 3 (C)) and Western blotting (Figure 3 (D)). These results suggest that NVPP inhibits the TRIF-dependent signaling pathway derived from TLR4 activation.

또한, NVPP는 TLR3의 TRIF-의존적 신호전달 경로를 억제한다. TLR4 신호전달 경로는 MyD88- 및 TRIF-의존적 경로 모두에 의해 중개되는 전사인자의 활성화에 의해 개시될 수 있음에도 불구하고, TLR3 신호전달 경로는 오직 TRIF-의존적 신호전달 경로에 의한 전사인자 활성화를 개시하도록 한다. 따라서, poly[I:C]에 의한 NF-κB 및 IRF3 활성화 유도는 TRIF-의존적 신호전달 경로의 판독으로 사용될 수 있다. NVPP는 루시페라아제 리포터 유전자 분석 (도 4(A) 및 4(B))에서 확인된 바와 같이, poly[I:C] 유도-NF-κB 및 IRF3 활성화를 저해한다. NVPP는 루시페라아제 리포터 유전자 분석 (도 4(C)) 및 웨스턴 블롯팅(도 4(D))에서 확인된 바와 같이, poly[I:C]-유도 IP-10 발현도 억제한다. 이들 결과는 NVPP가 TLR3 활성화로부터 유도되는 TRIF-의존적 신호전달 경로를 저해함을 나타내는 것이다.
In addition, NVPP inhibits the TRIF-dependent signaling pathway of TLR3. Although the TLR4 signaling pathway may be initiated by activation of transcription factors mediated by both the MyD88- and TRIF-dependent pathways, the TLR3 signaling pathway is only required to initiate transcription factor activation by the TRIF-dependent signaling pathway do. Thus, induction of NF-κB and IRF3 activation by poly [I: C] can be used as a reading of the TRIF-dependent signaling pathway. NVPP inhibits poly [I: C] -induced NF-kB and IRF3 activation, as confirmed in the luciferase reporter gene assay (Fig. 4 (A) and 4 (B)). NVPP also inhibits poly [I: C] -induced IP-10 expression, as confirmed in luciferase reporter gene analysis (Fig. 4C) and Western blotting (Fig. 4D). These results indicate that NVPP inhibits the TRIF-dependent signaling pathway derived from TLR3 activation.

또한, NVPP는 TLRs의 TRIF-의존적 신호전달 경로의 다운스트림 신호전달 구성요소에 의해 유도되는 IRF3의 활성화를 억제하지 않는다. 현재, TRIF-의존적 신호전달 경로의 저해에 대한 NVPP의 분자 타겟을 확인하기 위해, 상기 경로의 다운스트림 구성요소(TRIF, TBK1 또는 IRF3)가 293T 세포내로 형질전환 되었다. TLRs의 TRIF-의존적 신호전달 경로는 TRIF 및 TBK1를 통해 중개되는 IRF3 활성화를 야기한다. NVPP는 IRF3 결합사이트 (IFNb PRDIII-I) 리포터 유전자 분석 (도 5(A)-5)C)에서 확인된 바와 같이, TRIF, TBK1 또는 IRF3 5D (IRF3의 일반적인 활성화 형태)에 의해 유도되는 IRF3 활성화를 억제하지는 않는다. In addition, NVPP does not inhibit the activation of IRF3 induced by the downstream signaling component of the TRIF-dependent signaling pathway of TLRs. Presently, to identify the molecular target of NVPP for inhibition of the TRIF-dependent signaling pathway, the downstream component of the pathway (TRIF, TBKl or IRF3) was transformed into 293T cells. The TRIF-dependent signaling pathway of TLRs causes IRF3 activation mediated through TRIF and TBK1. NVPP is an IRF3 activated by TRIF, TBK1 or IRF3 5D (a generic activated form of IRF3) as shown in the IRF3 binding site (IFNb PRDIII-I) reporter gene analysis (Fig. 5 .

이러한 결과는 NVPP의 타겟이 어댑터 분자 자신을 포함한 TRIF-의존적 다운스트림 신호전달 구성요소가 아님을 시사하는 것이다. 그 타겟은 TLRs 또는 작용물질에 의한 TLRs 활성화를 야기하는 일을 포함한 어댑터 분자의 업스트림 구성요소일 수 있다.
These results suggest that the target of NVPP is not a TRIF-dependent downstream signaling component including the adapter molecule itself. The target may be an upstream component of the adapter molecule, including that causing TLRs activation by TLRs or agonists.

MyD88- 및 TRIF-의존적 신호전달 경로는 전사인자 NF-κB 및 IRFs를 활성화시키는 2개의 주요 TLRs 다운스트림 신호전달 경로이다. NF-κB 및 IRFs 모두는 세균 감염에 대해 동시에 활성화되나, NF-κB 및 IRFs에 의한 활성화에 의해 유도되는 타겟 유전자는 다르다. The MyD88- and TRIF-dependent signaling pathways are the two major TLRs downstream signaling pathways that activate the transcription factors NF-KB and IRFs. Both NF-κB and IRFs are simultaneously activated for bacterial infection, but the target genes induced by activation by NF-κB and IRFs are different.

NF-κB 활성화는 전염증성 사이토카인(proinflammatory cytokines)을 유도하나, IRFs활성화는 type I IFN 유전자를 유도한다(Honda and Taniguchi, 2006; Stetson and Medzhitov, 2006; Wietek and O'Neill, 2007). NF-κB activation induces proinflammatory cytokines, whereas activation of IRFs induces type I IFN genes (Honda and Taniguchi, 2006; Stetson and Medzhitov, 2006; Wietek and O'Neill, 2007).

Type I IFN 유전자는 선천적인 항바이러스성 반응을 확립하는데 핵심 유전자로서, NF-κB 및 IRF3의 협동작용에 의해 활성화된다. TLR3 및 TLR4 활성화는 IFN 및 케모카인(chemokines)을 인코딩하는 유전자의 발현을 유도한다(Servant et al., 2002). NF-κB 및 IRF3에 의해 유도되는 신호전달 경로는 매크로파지 및 수상돌기세포(dendritic cells)에서 병원균-특이적 산물과 TLRs의 결합에 의해 개시된다(Uematsu and Akira, 2007). TLRs는 박테리아, 바이러스 및 균류를 포함하는 주요 미생물을 감지하는 호스트의 면역 체계의 중요한 구성요소이다. The Type I IFN gene is a key gene in establishing innate antiviral responses, and is activated by the cooperative action of NF-κB and IRF3. TLR3 and TLR4 activation induces the expression of genes encoding IFN and chemokines (Servant et al., 2002). NF-κB and IRF3-induced signaling pathways are initiated by the combination of pathogen-specific products and TLRs in macrophages and dendritic cells (Uematsu and Akira, 2007). TLRs are an important component of the host's immune system, sensing key microorganisms including bacteria, viruses and fungi.

TLRs-중개 세포 반응 조절의 이상은 만성 염증을 야기할 수 있으며, 이는 다시 많은 염증성 질환의 진행과 발달에 영향을 미치게 된다. 많은 증거들은 TLRs의 TRIF-의존적 신호전달 경로가 염증 반응 및 특정 만성 질병에서 중요함을 암시하고 있다. 대다수 LPS-유도 유전자(>70%)의 발현은 TRIF-의존적 신호전달 경로를 통해 조절된다(Schafer et al., 1998). Abnormalities in the regulation of TLRs-mediated cell responses can lead to chronic inflammation, which in turn affects the progression and development of many inflammatory diseases. Much evidence suggests that the TRIF-dependent signaling pathways of TLRs are important in inflammatory responses and certain chronic diseases. Expression of the majority of LPS-induced genes (> 70%) is mediated through TRIF-dependent signaling pathways (Schafer et al., 1998).

따라서, TLRs의 TRIF-의존적 신호전달 경로의 조절은 항-염증성 전략으로 중요하다. 이러한 사실은 NVPP에 의한 TRIF-의존적 신호전달 경로의 억제 및 계속적인 IRF3 활성화 억제가 TLRs 신호전달 경로의 타겟 유전자 발현을 상당히 억제할 수 있음을 나타내는 것이다. Thus, regulation of the TRIF-dependent signaling pathways of TLRs is important as an anti-inflammatory strategy. This demonstrates that inhibition of the TRIF-dependent signaling pathway by NVPP and inhibition of subsequent IRF3 activation can significantly inhibit target gene expression in the TLRs signaling pathway.

TRIF는 TLR3 및 TLR4 신호전달 경로의 활성화를 촉진하는 중요한 어댑터 분자이다(O'Neill, 2008). 상기 보고서 결과들은 TRIF 신호전달 경로가 대다수 분자에 의해 음성적으로 조절되는 것을 나타낸다; 반면, 대부분의 경우, 그들은 TRIF를 특이적으로 타겟팅하지는 않으나, TBK1와 같이 TRIF 경로의 다운스트림 구성요소에 영향을 미친다(Park and Youn, 2010; Youn et al., 2005; Youn et al., 2006a). TRIF is an important adapter molecule that facilitates the activation of the TLR3 and TLR4 signaling pathways (O'Neill, 2008). These report results indicate that the TRIF signaling pathway is negatively regulated by the majority of molecules; On the other hand, in most cases they do not specifically target TRIF but affect downstream components of the TRIF pathway, such as TBK1 (Park and Youn, 2010; Youn et al., 2005; Youn et al., 2006a ).

본 발명자들은 마이클 첨가반응(Michael addition)을 수행한 α,β-불포화 카보닐 그룹 구조 모티프를 가지는 많은 파이토케미컬(phytochemicals)이 TLR4 다이머 형성을 억제하는 것을 증명한 바 있다(Ahn et al., 2009; Youn et al., 2008; Youn et al., 2006b). 이는 그러한 구조 모티프를 가지는 분자들이 마이클 첨가반응에 의한 시스테인의 설프하이드릴 그룹(sulfhydryl group)과 매우 높은 반응성을 나타내는 것을 보고하고 있다. We have demonstrated that many phytochemicals with α, β-unsaturated carbonyl group structure motifs that have undergone Michael addition have been shown to inhibit TLR4 dimer formation (Ahn et al., 2009 ; Youn et al., 2008; Youn et al., 2006b). It has been reported that molecules with such structural motifs exhibit very high reactivity with the sulfhydryl group of cysteine by the Michael addition reaction.

TLRs은 수용체의 이합체 형성을 위한 이황화 결합(disulfide bond)의 형성에 관련될 수 있는 세포외 및 세포질내 도메인에서 여러 개의 시스테인 잔기를 가진다. NVPP는 또한, 마이클 첨가반응의 가능성을 가지는 α,β-불포화 니트로 그룹 구조 모티프를 가진다. 이는 NVPP가 TLR4 이합체 형성의 저해를 야기하는 TLR4에서 시스테인 잔기와 반응할 수 있음을 나타내는 것이다. 앞으로의 추가 연구를 통해서 TLRs 신호전달 경로에서의 NVPP의 정확한 분자 타겟이 확인될 수 있을 것이다. TLRs have several cysteine residues in the extracellular and intracellular domains that may be involved in the formation of disulfide bonds for dimerization of the receptor. NVPP also has an alpha, beta -unsaturated nitro group structure motif with the potential for Michael addition reactions. This indicates that NVPP can react with the cysteine residues in TLR4 causing inhibition of TLR4 dimer formation. Future studies will confirm the exact molecular target of NVPP in the TLRs signaling pathway.

본 발명에서는 발명자들은 NVPP가 TLR3 및 TLR4의 TRIF-의존적 경로를 억제함을 증명하였다. NVPP에 의한 TLR3 및 TLR4의 TRIF 경로의 억제는 IFNβ 및 IP-10를 포함하는 NF-κB 및 IRF3와 이들의 타겟 유전자의 활성화 억제를 동반한다. In the present invention, the inventors have demonstrated that NVPP inhibits the TRIF-dependent pathway of TLR3 and TLR4. Inhibition of the TRIF pathway of TLR3 and TLR4 by NVPP is accompanied by inhibition of activation of NF-kB and IRF3, including IFN beta and IP-10, and their target genes.

이 모든 결과는 TLR4-중개의 염증 반응 및 이에 따른 많은 만성 염증반응에 대한 위험이 니트로비닐 유도체 NVPP에 의해 조절될 수 있다는 중요한 가능성을 나타내는 것이다. All these results indicate a significant possibility that the risk for TLR4-mediated inflammatory response and thus many chronic inflammatory responses can be controlled by the nitrovinyl derivative NVPP.

상기에 제시된 실시예는 예시적인 것으로 이 분야에서 통상의 지식을 가지는 자는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 제시된 실시예에 대한 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 이러한 변형 및 수정 발명에 의하여 본 발명의 범위는 제한되지 않는다.The above-described embodiments are illustrative and those skilled in the art will be able to make various modifications and alterations to the disclosed embodiments without departing from the spirit of the present invention. The scope of the present invention is not limited by these variations and modifications.

< 참고문헌 > < References>

Ahn, S.I., Lee, J.K., Youn, H.S., 2009. Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol. Mol Cells 27, 211-215.Ahn, S. I., Lee, J. K., Youn, H. S., 2009. Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol. Mol Cells 27, 211-215.

Akira, S., Uematsu, S., Takeuchi, O., 2006. Pathogen recognition and innate immunity. Cell 124, 783-801.Akira, S., Uematsu, S., Takeuchi, O., 2006. Pathogen recognition and innate immunity. Cell 124, 783-801.

Bjorkbacka, H., Fitzgerald, K.A., Huet, F., Li, X., Gregory, J.A., Lee, M.A., Ordija, C.M., Dowley, N.E., Golenbock, D.T., Freeman, M.W., 2004. The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiol Genomics 19, 319-330.Dowley, NE, Golenbock, DT, Freeman, MW, 2004. The induction of macrophage gene (Golenbock, H., Fitzgerald, KA, Huet, F., Li, X., Gregory, JA, expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiol Genomics 19, 319-330.

Creagh, E.M., O'Neill, L.A., 2006. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27, 352-357.Creagh, E. M., O'Neill, L. A., 2006. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27, 352-357.

Eom, S.H., Gu, G.J., Suh, C.W., Koh, K.O., Kim, D.Y., Eom, Y.B., Youn, H.S., 2013. Suppression of Inducible Nitric Oxide Synthase Expression induced by Toll-like Receptor Agonists by (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine. Int Immunopharmacol, in revision.Suppression of Inducible Nitric Oxide Synthase Expression Induced by Toll-like Receptor Agonists by ( E ) -1, Eom, SH, Gu, GJ, Suh, CW, Koh, KO, Kim, DY, Eom, YB, Youn, - (2- (2-Nitrovinyl) Phenyl) Pyrrolidine. Int Immunopharmacol, in revision.

Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., Maniatis, T., 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4, 491-496.IKKepsilon and TBK1 are essential components of the IRF3 signaling, and they are involved in the signaling of the IRF3 signaling. pathway. Nat Immunol 4, 491-496.

Gao, J.J., Filla, M.B., Fultz, M.J., Vogel, S.N., Russell, S.W., Murphy, W.J., 1998. Autocrine/paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J Immunol 161, 4803-4810.Gao, JJ, Filla, MB, Fultz, MJ, Vogel, SN, Russell, SW, Murphy, WJ 1998. Autocrine / paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J Immunol 161, 4803-4810.

Honda, K., Taniguchi, T., 2006. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6, 644-658.Honda, K., Taniguchi, T., 2006. IRFs: Master regulators of signaling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6, 644-658.

Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P.F., Sato, S., Hoshino, K., Akira, S., 2001. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167, 5887-5894.Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, PF, Sato, S., Hoshino, K., Akira, S., 2001. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167, 5887-5894.

Medzhitov, R., Preston-Hurlburt, P., Janeway, C.A., Jr., 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397.Medzhitov, R., Preston-Hurlburt, P., Janeway, C. A., Jr., 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397.

O'Neill, L.A., 2008. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 29, 12-20.O'Neill, L. A., 2008. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 29, 12-20.

O'Neill, L.A., Bowie, A.G., 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7, 353-364.O'Neill, L. A., Bowie, A.G., 2007. The family of five: TIR-domain-containing adapters in Toll-like receptor signaling. Nat Rev Immunol 7, 353-364.

Park, S.J., Youn, H.S., 2010. Isoliquiritigenin suppresses the Toll-interleukin-1 receptor domain-containing adapter inducing interferon-beta (TRIF)-dependent signaling pathway of Toll-like receptors by targeting TBK1. J Agric Food Chem 58, 4701-4705.Park, S. J., Youn, H. S., 2010. Isoliquiritigenin Suppresses the Toll-interleukin-1 Receptor Domain-Containing Adapter Inducing Interferon-beta (TRIF) -dependent signaling pathway of Toll-like receptors by targeting TBK1. J Agric Food Chem 58, 4701-4705.

Rabong, C., Hametner, C., Mereiter, K., Kartsev, V.C., Jordis, U., 2008. Scope and limitation of T-reaction employing some functionalized C-H-acids and naturally occurring secondary amines. Heterocycles 75, 799-838.Rabong, C., Hametner, C., Mereiter, K., Kartsev, V. C., Jordis, U., 2008. Scope and limitation of T-reaction employing some functionalized C-H-acids and naturally occurring secondary amines. Heterocycles 75, 799-838.

Schafer, S.L., Lin, R., Moore, P.A., Hiscott, J., Pitha, P.M., 1998. Regulation of type I interferon gene expression by interferon regulatory factor-3. J Biol Chem 273, 2714-2720.Schafer, S. L., Lin, R., Moore, P. A., Hiscott, J., Pitha, P. M., 1998. Regulation of type I interferon gene expression by interferon regulatory factor-3. J Biol Chem 273, 2714-2720.

Servant, M.J., Grandvaux, N., Hiscott, J., 2002. Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 64, 985-992.Servant, M. J., Grandvaux, N., Hiscott, J., 2002. Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 64, 985-992.

Stetson, D.B., Medzhitov, R., 2006. Type I interferons in host defense. Immunity 25, 373-381.Stetson, D. B., Medzhitov, R., 2006. Type I interferons in host defense. Immunity 25, 373-381.

Takeda, K., Akira, S., 2005. Toll-like receptors in innate immunity. Int Immunol 17, 1-14.Takeda, K., Akira, S., 2005. Toll-like receptors in innate immunity. Int Immunol 17, 1-14.

Uematsu, S., Akira, S., 2007. [Toll-like receptor and innate immunity]. Seikagaku 79, 769-776.Uematsu, S., Akira, S., 2007. [Toll-like receptor and innate immunity]. Seikagaku 79, 769-776.

Wietek, C., O'Neill, L.A., 2007. Diversity and regulation in the NF-kappaB system. Trends Biochem Sci 32, 311-319.Wietek, C., O'Neill, L. A., 2007. Diversity and regulation in the NF-kappaB system. Trends Biochem Sci 32, 311-319.

Youn, H.S., Ahn, S.I., Lee, B.Y., 2009. Guggulsterone suppresses the activation of transcription factor IRF3 induced by TLR3 or TLR4 agonists. Int Immunopharmacol 9, 108-112.Youn, H. S., Ahn, S. I., Lee, B. Y., 2009. Guggulsterone suppresses the activation of transcription factor IRF3 induced by TLR3 or TLR4 agonists. Int Immunopharmacol 9, 108-112.

Youn, H.S., Lee, J.K., Choi, Y.J., Saitoh, S.I., Miyake, K., Hwang, D.H., Lee, J.Y., 2008. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem Pharmacol 75, 494-502.Lee, Y., Lee, J.K., Choi, Y.J., Saitoh, S.I., Miyake, K., Hwang, D.H., Lee, J.Y., 2008. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the receptor oligomerization. Biochem Pharmacol 75, 494-502.

Youn, H.S., Lee, J.Y., Fitzgerald, K.A., Young, H.A., Akira, S., Hwang, D.H., 2005. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol 175, 3339-3346.Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: Molecular targets are TBK1 and RIP1 in TRIF. Wein, HS, Lee, JY, Fitzgerald, KA, Young, HA, Akira, S., Hwang, complex. J Immunol 175, 3339-3346.

Youn, H.S., Lee, J.Y., Saitoh, S.I., Miyake, K., Kang, K.W., Choi, Y.J., Hwang, D.H., 2006a. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharmacol 72, 850-859.Youn, H. S., Lee, J. Y., Saitoh, S. I., Miyake, K., Kang, K.W., Choi, Y.J., Hwang, D. H., 2006a. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-) - epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharmacol 72, 850-859.

Youn, H.S., Saitoh, S.I., Miyake, K., Hwang, D.H., 2006b. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 72, 62-69.Youn, H. S., Saitoh, S. I., Miyake, K., Hwang, D. H., 2006b. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 72, 62-69.

Yun, S.M., Kang, S.H., Lee, A.N., Park, S.J., Kim, D.Y., Youn, H.S., 2009. Suppression of Toll-like receptor 2 or 4 agonist-induced cyclooxygenase-2 expression by 4-oxo-4-(2-oxo-oxazolidin-3-yl)-but-2-enoic acid ethyl ester. Int Immunopharmacol.
The expression of Toll-like receptor 2 or 4 agonist-induced cyclooxygenase-2 expression by 4-oxo-4- ( 2-oxo-oxazolidin-3-yl) -but-2-enoic acid ethyl ester. Int Immunopharmacol.

Claims (2)

TRIF-의존성 신호전달 경로의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제.An anti-inflammatory agent comprising ( E ) -1- (2- (2-nitrovinyl) phenyl) pyrrolidine (NVPP) as an active ingredient as an inhibitor of the TRIF-dependent signaling pathway. 제1항에 있어서,
상기 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)는 하기의 [화학식 1]을 갖는 TRIF-의존성 신호전달의 억제제로서의 (E)-1-(2-(2-니트로 비닐)페닐)피롤리딘(NVPP)을 유효성분으로 포함하는 항염증제.
[화학식 1]
Figure 112013053763563-pat00002
The method according to claim 1,
The (E) -1- (2- (2- nitro-vinyl) phenyl) pyrrolidine (NVPP) is (E) -1- (2- TRIF- as inhibitors of dependent signaling with Formula 1 below (2-nitrovinyl) phenyl) pyrrolidine (NVPP) as an active ingredient.
[Chemical Formula 1]
Figure 112013053763563-pat00002
KR20130069236A 2013-06-17 2013-06-17 Anti-inflammatory therapeutic Agents containg (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine as an Suppressor of TRIF-dependent signaling pathway of Toll-like receptors KR101482999B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130069236A KR101482999B1 (en) 2013-06-17 2013-06-17 Anti-inflammatory therapeutic Agents containg (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine as an Suppressor of TRIF-dependent signaling pathway of Toll-like receptors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130069236A KR101482999B1 (en) 2013-06-17 2013-06-17 Anti-inflammatory therapeutic Agents containg (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine as an Suppressor of TRIF-dependent signaling pathway of Toll-like receptors

Publications (2)

Publication Number Publication Date
KR20140146464A KR20140146464A (en) 2014-12-26
KR101482999B1 true KR101482999B1 (en) 2015-01-14

Family

ID=52589088

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130069236A KR101482999B1 (en) 2013-06-17 2013-06-17 Anti-inflammatory therapeutic Agents containg (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine as an Suppressor of TRIF-dependent signaling pathway of Toll-like receptors

Country Status (1)

Country Link
KR (1) KR101482999B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006004A (en) * 2005-05-04 2008-01-15 화이자 리미티드 2-amido-6-amino-8-oxopurine derivatives as toll-like receptor modulators for the treatment of cancer and viral infections, such as hepatitis c
KR20080038413A (en) * 2005-08-19 2008-05-06 어레이 바이오파마 인크. 8-substituted benzoazepines as toll-like receptor modulators
JP2009509540A (en) 2005-09-30 2009-03-12 オクラホマ・メディカル・リサーチ・ファウンデーション Regulation of Toll-like receptors in stem cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006004A (en) * 2005-05-04 2008-01-15 화이자 리미티드 2-amido-6-amino-8-oxopurine derivatives as toll-like receptor modulators for the treatment of cancer and viral infections, such as hepatitis c
KR20080038413A (en) * 2005-08-19 2008-05-06 어레이 바이오파마 인크. 8-substituted benzoazepines as toll-like receptor modulators
JP2009509540A (en) 2005-09-30 2009-03-12 オクラホマ・メディカル・リサーチ・ファウンデーション Regulation of Toll-like receptors in stem cells

Also Published As

Publication number Publication date
KR20140146464A (en) 2014-12-26

Similar Documents

Publication Publication Date Title
Dange et al. Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension
Chen et al. Discovery of a new inhibitor of myeloid differentiation 2 from cinnamamide derivatives with anti-inflammatory activity in sepsis and acute lung injury
Xu et al. Phosphatase PTP1B negatively regulates MyD88-and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages
Eskan et al. TLR4 and S1P receptors cooperate to enhance inflammatory cytokine production in human gingival epithelial cells
Park et al. Suppression of homodimerization of toll-like receptor 4 by isoliquiritigenin
Li et al. Oncostatin M promotes proliferation of ovarian cancer cells through signal transducer and activator of transcription 3
Chen et al. The antimalarial chloroquine suppresses LPS-induced NLRP3 inflammasome activation and confers protection against murine endotoxic shock
ITMI20100093A1 (en) CYCLIC PEPTIDES THAT LINK THE CXCR4 RECEPTOR AND THEIR USE IN MEDICAL AND DIAGNOSTIC FIELD
JP2016104744A (en) Pharmaceutical composition and uses thereof
Raman et al. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity
Gkouveris et al. STAT3 signaling in cancer
KR101482999B1 (en) Anti-inflammatory therapeutic Agents containg (E)-1-(2-(2-Nitrovinyl)Phenyl)Pyrrolidine as an Suppressor of TRIF-dependent signaling pathway of Toll-like receptors
Kim et al. Differential regulation of MyD88-and TRIF-dependent signaling pathways of Toll-like receptors by cardamonin
Park et al. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract
Ren et al. HMGB1 and Toll-like receptors: potential therapeutic targets in autoimmune diseases
Ciesielska et al. Lysophosphatidic acid up-regulates IL-10 production to inhibit TNF-α synthesis in Mϕs stimulated with LPS
Lee et al. Vibrio vulnificus IlpA induces MAPK-mediated cytokine production via TLR1/2 activation in THP-1 cells, a human monocytic cell line
Grill et al. Strawberry notch homolog 2 is a novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the central nervous system
Dai et al. MicroRNA-22 regulates thyroid cell growth and lipid accumulation via IL6R
US20240059685A1 (en) Piezo1 agonists for the promotion of bone formation
Choi et al. Osteoporotic bone of miR-150-deficient mice: possibly due to low serum OPG-mediated osteoclast activation
CN115243702A (en) Cyclic peptide receptor lanthionine synthase C-like protein (LANCL) and uses thereof
Deng et al. Effects of p‐CREB‐1 on transforming growth factor‐β3 auto‐regulation in hepatic stellate cells
Gu et al. Suppression of TRIF-dependent signaling pathway of toll-like receptors by (E)-1-(2-(2-nitrovinyl) phenyl) pyrrolidine
Han et al. Neuroprotective effects of isoflurane against lipopolysaccharide-induced neuroinflammation in BV2 microglial cells by regulating HMGB1/TLRs pathway

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190108

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 6