KR101468070B1 - Method for manufacturing polyurethane using eco-friendly raw material - Google Patents

Method for manufacturing polyurethane using eco-friendly raw material Download PDF

Info

Publication number
KR101468070B1
KR101468070B1 KR1020130046438A KR20130046438A KR101468070B1 KR 101468070 B1 KR101468070 B1 KR 101468070B1 KR 1020130046438 A KR1020130046438 A KR 1020130046438A KR 20130046438 A KR20130046438 A KR 20130046438A KR 101468070 B1 KR101468070 B1 KR 101468070B1
Authority
KR
South Korea
Prior art keywords
oil
fatty acid
diisocyanate
polypropylene glycol
acid
Prior art date
Application number
KR1020130046438A
Other languages
Korean (ko)
Other versions
KR20140127961A (en
Inventor
김보영
문진영
김진국
서평원
Original Assignee
주식회사 지앤오 코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지앤오 코퍼레이션 filed Critical 주식회사 지앤오 코퍼레이션
Priority to KR1020130046438A priority Critical patent/KR101468070B1/en
Publication of KR20140127961A publication Critical patent/KR20140127961A/en
Application granted granted Critical
Publication of KR101468070B1 publication Critical patent/KR101468070B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/40Mixtures based upon bitumen or asphalt containing functional additives
    • C08L2555/60Organic non-macromolecular ingredients, e.g. oil, fat, wax or natural dye
    • C08L2555/62Organic non-macromolecular ingredients, e.g. oil, fat, wax or natural dye from natural renewable resources
    • C08L2555/64Oils, fats or waxes based upon fatty acid esters, e.g. fish oil, olive oil, lard, cocoa butter, bees wax or carnauba wax

Abstract

본 발명은 바이오폴리올로부터 폴리우레탄을 제조하는 방법으로서, (A) 동식물유를 가수분해하여 유리지방산을 제조하는 단계; (B) 상기 유리지방산을 고온고압하에서 중합하여 다이머산을 제조하는 단계; (C) 상기 다이머산과 프로필렌옥사이드를 반응시켜 폴리프로필렌글리콜을 제조하는 단계; 및 (D) 상기 폴리프로필렌글리콜을 디이소시아네이트와 반응시켜 폴리우레탄을 제조하는 단계;를 포함하는 것을 특징으로 하는 폴리우레탄의 제조방법을 개시한다.The present invention relates to a method for producing a polyurethane from a biopolyol, comprising the steps of: (A) hydrolyzing an animal or vegetable oil to prepare a free fatty acid; (B) polymerizing the free fatty acid under high temperature and high pressure to prepare dimeric acid; (C) reacting the dimer acid with propylene oxide to produce polypropylene glycol; And (D) reacting the polypropylene glycol with a diisocyanate to prepare a polyurethane.

Description

친환경 원료를 이용한 폴리우레탄의 제조방법{METHOD FOR MANUFACTURING POLYURETHANE USING ECO-FRIENDLY RAW MATERIAL}METHOD FOR MANUFACTURING POLYURETHANE USING ECO-FRIENDLY RAW MATERIAL BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 친환경 원료를 이용한 폴리우레탄의 제조방법에 관한 것으로, 동식물유 중합을 통하여 다이머산을 제조한 후 이를 원료로 하여 폴리올을 합성하고 이차로 디이소시아네이트 등과의 반응을 통하여 친환경 폴리우레탄을 제조하는 방법에 관한 것이다.
The present invention relates to a process for producing a polyurethane using an eco-friendly raw material, wherein a dimer acid is produced through an animal and vegetable polymerisation, and then a polyol is synthesized using the dimer acid as a raw material and an environmentally friendly polyurethane is produced through a reaction with a diisocyanate or the like ≪ / RTI >

폴리올(Polyol)은 분자 중에 수산기(Hydroxyl Group, -OH) 혹은 아민기(Amine Group, - NH2)를 2개이상 갖는 다관능(Multifunctional)알콜 또는 방향족 아민등의 개시제(Initiator)와 산화프로필렌(Propylene Oxide, PO) 또는 산화에틸렌(Ethylene Oxide, EO)을 적정 조건하에서 반응시켜 얻어지는 물질로써, 디이소시아네이트와 함께 폴리우레탄 제조에 필수적인 원료이다. Polyol is an initiator such as multifunctional alcohols or aromatic amines having two or more hydroxyl groups (-OH) or amine groups (Amine Group, - NH2) in molecules and initiators such as propylene Oxide (PO) or Ethylene Oxide (EO) under appropriate conditions. It is an essential raw material for polyurethane production together with diisocyanate.

폴리프로필렌글리콜(PolyPropylene Glycol, PPG)은 최종제품으로 사용하기 보다는 폴리우레탄의 원료로 사용하는 것이 일반적이다. 폴리프로필렌글리콜을 이용한 폴리우레탄은 코팅 및 섬유, 고무 산업 등에서 매우 다양하게 사용되고 있다.Polypropylene glycol (PPG) is generally used as a raw material for polyurethane rather than as a final product. Polyurethane using polypropylene glycol is widely used in coatings, textiles and rubber industries.

종래의 폴리프로필렌글리콜은 프로필렌옥사이드의 링이 열리면서 합성이 된다(하기의 반응식 참조). 이때, 반응의 개시제로는 알코올이 사용되며, 일반적으로 글리세린, 펜타에리스리톨 또는 솔비톨 등이 사용된다. 또한, 개시제로 에틸렌 글리콜을 사용할 경우에는 선형구조를 가지게 된다. 가장 많이 사용되는 개시제는 에틸렌 글리콜이며, 여기에 더하여 프로필렌글리콜, 트리메틸올 프로판 등을 추가할 수 있다. Conventional polypropylene glycol is synthesized by opening a ring of propylene oxide (see the following reaction formula). At this time, an alcohol is used as an initiator for the reaction, and generally, glycerin, pentaerythritol, or sorbitol is used. Further, when ethylene glycol is used as the initiator, it has a linear structure. The most commonly used initiator is ethylene glycol, and in addition, propylene glycol, trimethylolpropane and the like can be added.

Figure 112013036837612-pat00001
Figure 112013036837612-pat00001

< 폴리프로필렌 글리콜의 제조 >&Lt; Preparation of polypropylene glycol >

에틸렌 글리콜은 부동액 및 계면활성제 등의 원료로 다양하게 사용되며 분자량은 62.7g/mol이다. 에틸렌 글리콜은 알콜기를 2개나 가지고 있어 합성의 장점을 가지지만, 이로 인하여 독성을 가지는 위험물질이므로 취급의 주의를 하여야 하는 단점이 있다.Ethylene glycol is widely used as a raw material for antifreeze and surfactant, and has a molecular weight of 62.7 g / mol. Ethylene glycol has the advantage of having two alcohols, but it has the disadvantage that it is a hazardous substance with toxicity and must be treated with caution.

종래의 에틸렌 글리콜로 합성된 폴리프로필렌글리콜은 OH기를 2개 보유하고 있어, 이를 디이소시아네이트와 반응시켜 폴리우레탄을 합성하는 것이 일반적이었다. 이러한 폴리우레탄의 합성 반응식은 아래와 같다. Conventionally, polypropylene glycol synthesized with ethylene glycol has two OH groups, and it has been common to synthesize polyurethane by reacting it with diisocyanate. The synthetic reaction formula of the polyurethane is as follows.

Figure 112013036837612-pat00002
Figure 112013036837612-pat00002

< 폴리우레탄의 합성 ><Synthesis of polyurethane>

한편, 최근에는 석유자원의 고갈에 따라 친환경 소재를 이용한 석유대체품의 개발에 대한 요구가 증가하고 있다. 특히 고분자물질의 경우 석유화학제품군에서 유래되며, 근자에는 전분 및 천연물질로부터 고분자를 제조하는 기술이 많이 연구되고 있다. 이에 따라 바이오폴리올을 제조하고, 이러한 바이오폴리올로부터 폴리우레탄을 제조하는 기술이 연구되고 있다. In recent years, there has been an increasing demand for the development of alternative petroleum products using environmentally friendly materials in response to depletion of petroleum resources. In particular, polymers are derived from the petrochemical product group. Recently, a lot of techniques for manufacturing polymers from starch and natural materials have been studied. Accordingly, a technique for producing a bio-polyol and producing a polyurethane from such a bio-polyol has been studied.

이러한 기술로는 대한민국 공개특허 제10-2011-0131980호(바이오폴리올을 포함하는 흡음재용 폴리우레탄 폼 및 이의 제조방법), 대한민국 공개특허 제10-2012-0038038호(천연 오일을 이용한 바이오 폴리올의 제조방법 및 이로부터 제조되는 폴리우레탄) 등이 개시되어 있다. 하지만, 이들 종래 기술은 대두유 등을 에폭시화한 후 에폭시화기를 이용하여 폴리올을 제조하는 것으로, 이러한 폴리올을 이용하여 우레탄 수지를 제조하면 우레탄 수지의 품질 적성이 열악하고, 반응 수율이 낮다는 문제점이 있었다. Such technologies include Korean Patent Laid-Open No. 10-2011-0131980 (polyurethane foam for a sound-absorbing material including a bio-polyol and a manufacturing method thereof), Korean Patent Laid-Open No. 10-2012-0038038 (preparation of a bio- Method and a polyurethane produced therefrom) and the like. However, these prior arts have produced a polyol by epoxidizing soybean oil or the like and then using an epoxidizer. When a urethane resin is produced using such a polyol, the quality of the urethane resin is poor and the reaction yield is low there was.

이에 본 발명의 발명자들은 친환경 원료를 기초로 하여 합성의 안정성을 극대화하면서도 우수한 물성을 가지는 우레탄 수지를 제조하기 위한 합성 반응 조건을 확립하고자 하였다.
Accordingly, the inventors of the present invention have attempted to establish synthesis reaction conditions for producing urethane resins having excellent physical properties while maximizing the stability of synthesis based on environmentally friendly raw materials.

본 발명은 친환경적이며 독성을 함유하고 있지 않은 원료로 하여 바이오폴리올(폴리프로필렌글리콜)을 합성하고, 이러한 바이오폴리올을 이용하여 친환경 폴리우레탄을 제조하는 방법을 제공하는 것을 목적으로 한다.
It is an object of the present invention to provide a method for producing a bio-polyol (polypropylene glycol) using an eco-friendly and toxic raw material, and using the bio-polyol to produce an environment-friendly polyurethane.

상기 목적을 달성하기 위하여, 본 발명은 바이오폴리올로부터 폴리우레탄을 제조하는 방법으로서, (A) 동식물유를 가수분해하여 유리지방산을 제조하는 단계; (B) 상기 유리지방산을 고온고압하에서 중합하여 다이머산을 제조하는 단계; (C) 상기 다이머산과 프로필렌옥사이드를 반응시켜 폴리프로필렌글리콜을 제조하는 단계; 및 (D) 상기 폴리프로필렌글리콜을 디이소시아네이트와 반응시켜 폴리우레탄을 제조하는 단계;를 포함하는 것을 특징으로 하는 폴리우레탄의 제조방법을 제공한다.
In order to achieve the above object, the present invention provides a method for producing a polyurethane from a biopolyol, comprising the steps of: (A) hydrolyzing a plant and animal oil to prepare a free fatty acid; (B) polymerizing the free fatty acid under high temperature and high pressure to prepare dimeric acid; (C) reacting the dimer acid with propylene oxide to produce polypropylene glycol; And (D) reacting the polypropylene glycol with a diisocyanate to prepare a polyurethane.

구체적으로, 본 발명은 동식물유 특히 불포화 지방산을 다량 함유한 유지를 가수분해 하여 99.9%이상의 지방산을 얻고 이를 고온고압하에서 중합공정을 거쳐 카르복실기를 2개 함유한 다이머산을 제조한 후 이를 원료로 하여 프로필렌옥사이드로 폴리프로필렌글리콜(PolyPropylene Glycol, PPG)를 합성한다. 이를 다시 메틸렌 디페닐 디이소시아네이트(Methylene diphenyl diisocyanate, MDI), 톨루엔 디이소시아네이트(Toluene Diisocyanate, TDI), 나프탈렌 디이소시아네이트(naphthalene diisocyanate, NDI) 또는 p-페닐렌 디이소시아네이트(p-phenylene diisocynate, PPDI) 등의 디이소시아네이트로 폴리우레탄을 합성한다. 이와 같이 얻어진 친환경 폴리우레탄은 일반 건축외장용 페인트, 접착제, 섬유의 원료로 사용될 수 있다.
Specifically, the present invention relates to a method for producing a dimer acid comprising a step of hydrolyzing a vegetable oil, especially a fat containing a large amount of an unsaturated fatty acid, to obtain a fatty acid having a fatty acid content of 99.9% or more and polymerizing the fatty acid under high temperature and high pressure to prepare a dimer acid containing two carboxyl groups, Polypropylene glycol (PPG) is synthesized with propylene oxide. (MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), or p-phenylene diisocynate (PPDI), and the like. Of diisocyanate to synthesize a polyurethane. The environmentally friendly polyurethane thus obtained can be used as a raw material for general building exterior paint, adhesive, and fiber.

이하에서는 본 발명의 바이오폴리올로부터 폴리우레탄을 제조하는 방법을 각 단계별로 자세히 설명하겠다.
Hereinafter, a method for producing polyurethane from the bio-polyol of the present invention will be described in detail in each step.

(A) 동식물유를 가수분해하여 유리지방산을 제조하는 단계(A) a step of hydrolyzing animal and plant oil to prepare a free fatty acid

본 단계는 동식물유 특히, 식물성유지, 예를 들면 대두유, 채종유, 팜유, 아마인유, 피마자유,해바라기유, 포도씨유, 폐식용유 등을 가수분해 공정을 통하여 유리지방산으로 제조하는 단계이다. This step is a step of producing animal and vegetable oils, especially vegetable oils, such as soybean oil, seed oil, palm oil, linseed oil, castor oil, sunflower oil, grape seed oil and waste cooking oil through a hydrolysis process as free fatty acids.

구체적으로는, 동식물유를 100 ~ 200℃의 온도, 5 ~ 40kg/cm2의 압력조건에서 물 10 ~ 30중량%를 첨가하여 5 ~ 20시간 동안 가수분해하여 유리지방산을 얻는데, 이 유리지방산은 불포화지방산 50중량% 이상의 지방산이다. Specifically, 10 to 30% by weight of water is added to the animal and plant oil at a temperature of 100 to 200 ° C under a pressure of 5 to 40 kg / cm 2 , and hydrolysis is performed for 5 to 20 hours to obtain a free fatty acid. Unsaturated fatty acid is at least 50% by weight fatty acid.

하기는 유지를 가수분해 공정을 통하여 지방산으로 분해하는 반응식이다. The following is a reaction formula in which the fat is decomposed into fatty acids through a hydrolysis process.

Figure 112013036837612-pat00003
Figure 112013036837612-pat00003

< 유지의 가수분해공정 > &Lt; Hydrolysis step of fat &

이렇게 분해된 유리지방산 중에서 불포화기를 가진 올레인산, 리놀레인산, 리놀레닉산 등을 다음 단계의 고온 중합 반응에서 사용하는 것이다.
Of these free fatty acids, unsaturated oleic acid, linoleic acid, linolenic acid and the like are used in the subsequent high temperature polymerization.

(B) 상기 유리지방산을 고온고압하에서 중합하여 다이머산을 제조하는 단계(B) polymerizing the free fatty acid under high temperature and high pressure to prepare dimeric acid

본 단계는 상기 (A)단계에서 제조된 불포화지방산 50중량% 이상의 유리지방산을 고온고압하에서 중합하여 다이머산 20 ~ 90중량%, 바람직하게는 50 ~ 90중량%의 중합산을 얻는 단계이다.This step is a step of polymerizing 50% by weight or more of free fatty acids produced in the step (A) under high temperature and high pressure to obtain 20 to 90% by weight, preferably 50 to 90% by weight, of polymerized acid of dimeric acid.

이때, 상기 유리지방산을 100 ~ 300℃의 온도, 5 ~ 40kg/cm2의 압력조건에서 백토 및 제오라이트 등의 중합 촉매를 2 ~ 15중량% 첨가하여 중합하여 다이머산을 얻는다. At this time, the free fatty acid is polymerized by adding 2 to 15% by weight of a polymerization catalyst such as clay and zeolite at a temperature of 100 to 300 ° C under a pressure of 5 to 40 kg / cm 2 to polymerize to obtain dimeric acid.

여기서, 불포화 지방산의 중합공정은 하기와 같다. Here, the polymerization process of the unsaturated fatty acid is as follows.

Figure 112013036837612-pat00004
Figure 112013036837612-pat00004

<불포화 지방산의 중합공정>&Lt; Polymerization step of unsaturated fatty acid &

이와 같이 자연계에 존재하는 동식물유를 원료로 하여 제조된 다이머산은 중량평균분자량이 560으로, 종래 폴리프로필렌글리콜 합성의 반응 개시제(Initiator)로 사용되던 에틸렌글리콜의 분자량 62에 비하여 분자량이 매우 높다. 따라서, 이러한 다이머산을 폴리프로필렌글리콜 합성의 반응 개시제로 사용하면 폴리프로필렌글리콜의 고분자화가 보다 용이하며 합성 시간을 단축시킬 수 있다는 장점을 가진다.
The dimer acid prepared from animal and vegetable oils present in nature as a raw material has a weight average molecular weight of 560 and is very high in molecular weight as compared with the molecular weight 62 of ethylene glycol used conventionally as a reaction initiator for the synthesis of polypropylene glycol. Therefore, when such a dimer acid is used as a reaction initiator for the synthesis of polypropylene glycol, it is easier to polymerize polypropylene glycol and shorten the synthesis time.

(C) 상기 다이머산과 프로필렌옥사이드를 반응시켜 폴리프로필렌글리콜을 제조하는 단계(C) reacting the dimeric acid with propylene oxide to prepare polypropylene glycol

본 단계는 상기 (B)단계에서 제조된 다이머산에 프로필렌옥사이드 10 ~ 90중량% 첨가하고, KOH, NaOH, Ba(OH)2, Fe(OH)3 또는 Na2CO3·10H20를 촉매로 1 ~ 20중량% 첨가하여 50 ~ 200℃의 온도조건에서 30분 ~ 7시간 동안 반응시켜 폴리프로필렌글리콜을 얻는 단계이다. This is a step for the (B) adding 10 to 90% by weight of propylene oxide in the production of dimer acid in step and, KOH, NaOH, Ba (OH ) 2, Fe (OH) 3 or Na 2 CO 3 · 10H 2 0 The catalyst To 1 to 20% by weight, and the mixture is reacted at a temperature of 50 to 200 캜 for 30 minutes to 7 hours to obtain polypropylene glycol.

여기서, 다이머산과 프로필렌옥사이드의 반응은 다음과 같은데, 이를 통하여 중량평균분자량 800이상의 폴리프로필렌글리콜을 얻을 수 있다. Here, the reaction between dimer acid and propylene oxide is as follows, whereby a polypropylene glycol having a weight average molecular weight of 800 or more can be obtained.

Figure 112013036837612-pat00005
Figure 112013036837612-pat00005

< 다이머산과 프로필렌옥사이드의 반응 >&Lt; Reaction of dimer acid with propylene oxide >

다이머산은 말단에 카르복실기(-COOH)를 두개 보유하고 있어 프로필렌 옥사이드와 반응을 하게 되면 카르복실기 말단에 상기와 같이 반응하면서 분자량이 증량되는 반응 공정이 일어난다. 게다가, 앞 단계의 식물성 유지를 중합하는 공정에서 다이머산 외에 트리머산 등이 생성될 수 있는데, 트리머산의 경우 카르복실기(-COOH)를 세개 보유하고 있어 프로필렌 옥사이드와 반응을 하게 되면 카르복실기 말단에 다이머산과 같은 방식으로 반응하면서 분자량이 증량되는 반응 공정도 일어날 수 있다. The dimer acid has two carboxyl groups (-COOH) at the terminal. When the reaction is carried out with propylene oxide, a reaction process is performed in which the molecular weight is increased while reacting at the terminal of the carboxyl group as described above. In addition, in the step of polymerizing the vegetable oil in the previous step, trimeric acid and the like may be produced in addition to dimeric acid. In the case of trimeric acid, three carboxyl groups (-COOH) are contained. When reacting with propylene oxide, A reaction process in which the molecular weight is increased while reacting in the same manner may occur.

이와 같이 본 발명은 동식물유를 이용하여 다이머산화하여 다이머산의 중량평균분자량을 이미 560 이상으로 만든 후 중량평균분자량 800 이상의 폴리올(폴리프로필렌글리콜)을 제조하는바, 폴리올의 분자량을 증량시키기가 매우 유리하다.As described above, the present invention provides a polyol (polypropylene glycol) having a weight average molecular weight of 800 or more after making the weight average molecular weight of dimer acid to 560 or more by dimer oxidation using animal or vegetable oil, It is advantageous.

또한, 본 발명은 다이머산의 말단에 위치한 카르복실기에서 반응이 일어나므로 선형 폴리올의 생산에 적합하다. 선형 폴리올을 이용하여 우레탄 수지를 합성하면 환형 및 기타 형태의 우레탄이 생성되지 않으므로, 우레탄 수지의 성질이 매우 우수하고 단일 종류의 우레탄 수지의 합성에도 매우 유리하다. 또한, 본 발명은 다이머산이 카르복실기를 100% 함유하고 있어 반응의 수율이 매우 높다.Further, the present invention is suitable for the production of linear polyols because the reaction takes place at the carboxyl groups located at the terminal of dimer acid. When the urethane resin is synthesized by using the linear polyol, the urethane resin is very excellent in the properties of the urethane resin because the urethane is not produced in the form of a ring and other forms, and is also very advantageous in the synthesis of a single kind of urethane resin. In addition, since the dimer acid contains 100% of carboxyl groups in the present invention, the yield of the reaction is very high.

반면, 종래의 대두유를 원료로 하여 대두유의 이중결합을 에폭시화 한후 에폭시화기를 이용하여 폴리올을 제조하는 기술의 경우, 대두유의 중간에 위치한 에폭시에서 폴리올이 제조되므로 선형 폴리올의 생산에 적합하지 않다. 또한, 에폭시화 대두유를 원료로 할 경우에 관능기가 80% 미만이어서 반응의 수율도 매우 떨어진다.
On the other hand, in the case of a conventional technique of epoxidizing soybean oil with a double bond and using an epoxidizer to produce a polyol, it is not suitable for the production of a linear polyol because a polyol is prepared from an epoxy located in the middle of soybean oil. When the epoxidized soybean oil is used as a raw material, the yield of the reaction is also very low because the functional group is less than 80%.

(D) 상기 폴리프로필렌글리콜을 디이소시아네이트와 반응시켜 폴리우레탄을 제조하는 단계(D) reacting the polypropylene glycol with a diisocyanate to prepare a polyurethane

본 단계는 상기 (C)단계에서 제조된 폴리프로필렌글리콜에 디이소시아네이트를 약 1 ~ 50중량% 첨가하여 50 ~ 300℃에서 반응하여 우레탄수지를 얻는 단계이다. In this step, about 1 to 50% by weight of diisocyanate is added to the polypropylene glycol prepared in the step (C), and the reaction is performed at 50 to 300 ° C to obtain a urethane resin.

이때, 디이소시아네이트는 메틸렌 디페닐 디이소시아네이트(Methylene diphenyl diisocyanate, MDI), 톨루엔 디이소시아네이트(Toluene Diisocyanate, TDI), 나프탈렌 디이소시아네이트(naphthalene diisocyanate, NDI) 및 p-페닐렌 디이소시아네이트(p-phenylene diisocynate, PPDI)로 이루어진 군에서 선택된 하나 이상인 것을 사용한다. The diisocyanate may be selected from the group consisting of methylene diphenyl diisocyanate (MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), and p-phenylene diisocynate PPDI). &Lt; / RTI &gt;

바람직하게는 당량비로 폴리프로필렌글리콜 : 디이소시아네이트를 1:1 ~ 1:1.5 의 비율로 혼합하여 프리폴리머(PrePolymer)를 만들어 준후, 이것을 진공 오븐에서 건조시키면 원하는 우레탄 수지를 얻을 수 있다. 이때 여기에 확장제(Extender)로서 에틸렌글리콜, 글리세린 등을 함께 첨가할 수도 있다. Preferably, polypropylene glycol: diisocyanate is mixed at a ratio of 1: 1 to 1: 1.5 at an equivalent ratio to prepare a prepolymer, which is then dried in a vacuum oven to obtain a desired urethane resin. At this time, ethylene glycol, glycerin and the like may be added thereto as an extender.

이와 같이 제조된 우레탄 수지의 품질기준은 다음과 같다. The quality standards of the urethane resin thus produced are as follows.

품명Product Name OH valueOH value Acid valueAcid value 수분moisture 점도Viscosity mnmn TS
(kgf/cm2)
TS
(kgf / cm 2 )
Elong
(%)
Elong
(%)
50%Modulus
(kgf/cm2)
50% Modulus
(kgf / cm 2 )
다이머
우레탄수지
Dimer
Urethane resin
91.2891.28 1.2151.215 0.01660.0166 277277 12131213 10301030 9595 582582

이와 같이 제조된 본 발명의 친환경 우레탄 수지는 방수방근 내화학성소재 및 다양한 코팅 소재로 이용할 수 있으며, 특히 동식물성 친환경 소재로써 섬유 등 인체에 보다 밀접한 제품에 사용함으로써 그 기능성을 증대시킬 수 있다.
The eco-friendly urethane resin of the present invention thus produced can be used as a chemical resistant material and various coating materials in a waterproof antiperspirant. In particular, the eco-friendly urethane resin can be used in products that are more closely related to human body such as fibers.

본 발명은 친환경적이며 독성을 함유하고 있지 않은 원료로 바이오폴리올(폴리프로필렌글리콜)을 합성하고, 이러한 바이오폴리올을 이용하여 폴리우레탄을 합성하므로 친환경 폴리우레탄을 얻을 수 있다. 즉, 본 발명은 친환경 비독성을 기초로하여 합성의 안정성을 확보할 수 있으며, 최종 코팅 및 섬유제품 등에서의 친환경성도 확보할 수 있다. The present invention synthesizes a bio-polyol (polypropylene glycol) as a raw material that is environment-friendly and does not contain toxicity, and synthesizes polyurethane using such a bio-polyol, so that an environment-friendly polyurethane can be obtained. That is, the present invention can secure the stability of synthesis on the basis of environment-friendly non-toxicity, and can also ensure eco-friendliness in the final coating and fiber products.

또한, 본 발명은 동식물유를 이용하여 다이머산화된 중량평균분자량 560 이상의 다이머산을 폴리올의 제조에 이용하므로, 중량평균분자량 800 이상의 폴리올(폴리프로필렌글리콜)을 쉽게 제조할 수 있으며, 폴리올의 분자량을 증량시키기도 매우 유리하다.In addition, since dimer acid oxidized by dimerization using an animal or vegetable oil and having a weight average molecular weight of 560 or more is used in the production of a polyol, a polyol (polypropylene glycol) having a weight average molecular weight of 800 or more can be easily produced, It is also very advantageous to increase the amount.

또한, 본 발명은 다이머산을 폴리올의 제조에 이용하므로 선형 폴리올을 생산할 수 있고, 이러한 선형 폴리올을 이용하여 우레탄 수지를 합성하므로 우레탄 수지의 성질이 매우 우수하고 단일 종류의 우레탄 수지를 합성할 수 있으며, 반응의 수율이 매우 높다.In addition, since dimer acid is used in the production of a polyol, the present invention can produce a linear polyol. By synthesizing a urethane resin by using such a linear polyol, the urethane resin has excellent properties and a single kind of urethane resin can be synthesized , The yield of the reaction is very high.

이하, 본 발명의 구성을 하기 실시예를 통해 구체적으로 설명하지만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고 이와 등가의 기술적 사상의 변형까지를 포함한다.
Hereinafter, the structure of the present invention will be described in detail with reference to the following examples, but the scope of the present invention is not limited to the following examples, but includes modifications of equivalent technical ideas.

실시예Example 1 : 친환경 우레탄 수지의 제조 1: Manufacture of environmentally friendly urethane resin

대두유 1kg에 물 10 ~ 30중량% 첨가하고 200℃의 온도, 15kg/cm2의 압력조건에서 15시간 동안 가수분해한 후, 200℃, 진공 5torr로 증류하여 불포화 지방산 50중량% 이상의 유리지방산을 얻었다. 수득된 유리지방산을 150℃의 온도, 3kg/cm2의 압력, 산성 백토 0.1kg 첨가조건에서 중합하여 다이머산을 얻었다. 이때, 중합 후 다이머산 생산량은 0.5kg이었다. 수득된 다이머산에 KOH 0.0009375kg, 프로필렌옥사이드 0.219kg를 첨가하여 100℃에서 5시간 반응을 하여 PPG를 얻었다. 여기에 산성백토를 투입하여 여과한 후, MDI 1.62494kg 첨가하여 50℃에서 교반하면서 반응을 진행시켜 우레탄 수지를 얻었다. 수득된 우레탄 수지의 품질은 하기 표 3에 나타내었다.
10 to 30% by weight of water was added to 1 kg of soybean oil and hydrolyzed at a temperature of 200 ° C and a pressure of 15 kg / cm 2 for 15 hours, followed by distillation at 200 ° C under a vacuum of 5 torr to obtain a free fatty acid having an unsaturated fatty acid content of 50% . The obtained free fatty acid was polymerized under the conditions of a temperature of 150 캜, a pressure of 3 kg / cm 2 , and an acidic clay soil of 0.1 kg to obtain a dimer acid. At this time, the amount of dimeric acid produced after polymerization was 0.5 kg. 0.0009375 kg of KOH and 0.219 kg of propylene oxide were added to the obtained dimer acid, and the reaction was carried out at 100 占 폚 for 5 hours to obtain PPG. The acidic white clay was added thereto, followed by filtration. 1.62494 kg of MDI was added, and the reaction was allowed to proceed while stirring at 50 캜 to obtain a urethane resin. The quality of the obtained urethane resin is shown in Table 3 below.

실시예 2 : 친환경 우레탄 수지의 제조 Example 2 : Preparation of eco-friendly urethane resin

폐식용유 1kg에 물 10 ~ 30중량% 첨가하고 180℃의 온도, 30kg/cm2의 압력조건에서 7시간 동안 가수분해한 후, 200℃, 진공 6torr로 증류하여 불포화 지방산 50중량% 이상의 유리지방산을 얻었다. 수득된 유리지방산을 150℃의 온도, 5kg/cm2의 압력, 산성 백토 0.1kg 첨가조건에서 중합하여 다이머산을 얻었다. 이때, 중합 후 다이머산 생산량은 0.5kg이었다. 수득된 다이머산에 NaOH 0.0009375kg, 프로필렌옥사이드 0.219kg 첨가하여 100℃에서 5시간 반응을 하여 PPG를 얻었다. 여기에 산성백토를 투입하여 여과한 후, MDI 1.62494kg 첨가하여 50℃에서 교반하면서 반응을 진행시켜 우레탄 수지를 얻었다. 수득된 우레탄 수지의 품질은 하기 표 3에 나타내었다.
10 to 30% by weight of water is added to 1 kg of waste cooking oil and hydrolyzed at a temperature of 180 ° C. under a pressure of 30 kg / cm 2 for 7 hours. Thereafter, distilled at 200 ° C. under a vacuum of 6 torr, . The obtained free fatty acid was polymerized under the conditions of a temperature of 150 캜, a pressure of 5 kg / cm 2 and an acidic clay soil of 0.1 kg to obtain a dimer acid. At this time, the amount of dimeric acid produced after polymerization was 0.5 kg. 0.0009375 kg of NaOH and 0.219 kg of propylene oxide were added to the obtained dimer acid, and the reaction was carried out at 100 DEG C for 5 hours to obtain PPG. The acidic white clay was added thereto, followed by filtration. 1.62494 kg of MDI was added, and the reaction was allowed to proceed while stirring at 50 캜 to obtain a urethane resin. The quality of the obtained urethane resin is shown in Table 3 below.

실시예 3 : 친환경 우레탄 수지의 제조Example 3: Preparation of eco-friendly urethane resin

채종유 1kg에 물 10 ~ 30중량% 첨가하고 200℃의 온도, 10kg/cm2의 압력조건에서 20시간 동안 가수분해한 후, 200℃, 진공 7torr로 증류하여 불포화 지방산 50중량% 이상의 유리지방산을 얻었다. 수득된 유리지방산을 200℃의 온도, 10kg/cm2의 압력, 산성 백토 0.1kg 첨가조건에서 중합하여 다이머산을 얻었다. 이때, 중합 후 다이머산 생산량은 0.6kg이었다. 수득된 다이머산에 Ba(OH)2 0.001125kg, 프로필렌옥사이드 0.2628kg 첨가하여 120℃에서 5시간 반응을 하여 PPG를 얻었다. 여기에 산성백토를 투입하여 여과한 후, MDI 1.949928kg 첨가하여 50℃에서 교반하면서 반응을 진행시켜 우레탄 수지를 얻었다. 수득된 우레탄 수지의 품질은 하기 표 3에 나타내었다.
After 10 to 30% by weight of water was added to 1 kg of the seed oil and hydrolyzed at a temperature of 200 ° C and a pressure of 10 kg / cm 2 for 20 hours, distillation was carried out at 200 ° C under a vacuum of 7 torr to obtain a free fatty acid having an unsaturated fatty acid content of 50% . The obtained free fatty acid was polymerized under the conditions of a temperature of 200 캜, a pressure of 10 kg / cm 2 , and 0.1 kg of an acidic white clay to obtain a dimer acid. At this time, the amount of dimeric acid produced after polymerization was 0.6 kg. 0.001125 kg of Ba (OH) 2 and 0.2628 kg of propylene oxide were added to the obtained dimer acid, and the reaction was carried out at 120 ° C for 5 hours to obtain PPG. The acidic white clay was added thereto and filtered. Then, 1.949928 kg of MDI was added, and the reaction was allowed to proceed while stirring at 50 캜 to obtain a urethane resin. The quality of the obtained urethane resin is shown in Table 3 below.

실시예 4 : 친환경 우레탄 수지의 제조Example 4: Preparation of eco-friendly urethane resin

올레인산 1kg을 200℃의 온도, 10kg/cm2의 압력, 산성 백토 0.1kg 첨가조건에서 중합하여 다이머산을 얻었다. 이때, 중합 후 다이머산 생산량은 0.7kg이었다. 수득된 다이머산에 NaOH 0.0013125kg, 프로필렌옥사이드 0.3066kg 첨가하여 120℃에서 5시간 반응을 하여 PPG를 얻었다. 여기에 산성백토를 투입하여 여과한 후, MDI 2.274916kg 첨가하여 50℃에서 교반하면서 반응을 진행시켜 우레탄 수지를 얻었다. 수득된 우레탄 수지의 품질은 하기 표 3에 나타내었다.
1 kg of oleic acid was polymerized under the conditions of a temperature of 200 캜, a pressure of 10 kg / cm 2 , and an acidic clay soil of 0.1 kg to obtain a dimer acid. At this time, the amount of dimeric acid produced after polymerization was 0.7 kg. 0.0013125 kg of NaOH and 0.3066 kg of propylene oxide were added to the obtained dimer acid, and the reaction was carried out at 120 DEG C for 5 hours to obtain PPG. The acidic white clay was added thereto, followed by filtration. 2.274916 kg of MDI was added, and the reaction was allowed to proceed while stirring at 50 캜 to obtain a urethane resin. The quality of the obtained urethane resin is shown in Table 3 below.

실시예 5 : 친환경 우레탄 수지의 제조Example 5: Preparation of eco-friendly urethane resin

아마인유 1kg에 물 10 ~ 30중량% 첨가하고 200℃의 온도, 10kg/cm2의 압력조건에서 17시간 동안 가수분해한 후, 200℃, 진공 9torr로 증류하여 불포화 지방산 50중량% 이상의 유리지방산을 얻었다. 수득된 유리지방산을 150℃의 온도, 15kg/cm2의 압력, 산성 백토 0.1kg 첨가조건에서 중합하여 다이머산을 얻었다. 이때, 중합 후 다이머산 생산량은 0.7kg이었다. 수득된 다이머산에 KOH 0.0013125kg, 프로필렌옥사이드 0.3066kg 첨가하여 110℃에서 5시간 반응을 하여 PPG를 얻었다. 여기에 산성백토를 투입하여 여과한 후, MDI 2.274916kg 첨가하여 50℃에서 교반하면서 반응을 진행시켜 우레탄 수지를 얻었다. 수득된 우레탄 수지의 품질은 하기 표 3에 나타내었다. 10 to 30% by weight of water is added to 1 kg of linseed oil and hydrolyzed at a temperature of 200 ° C. and a pressure of 10 kg / cm 2 for 17 hours, followed by distillation at 200 ° C. under a vacuum of 9 torr to obtain a free fatty acid having an unsaturated fatty acid content of 50% . The obtained free fatty acid was polymerized under the conditions of a temperature of 150 ° C, a pressure of 15 kg / cm 2 , and an acidic clay soil of 0.1 kg to obtain dimeric acid. At this time, the amount of dimeric acid produced after polymerization was 0.7 kg. 0.0013125 kg of KOH and 0.3066 kg of propylene oxide were added to the obtained dimer acid, and the reaction was carried out at 110 DEG C for 5 hours to obtain PPG. The acidic white clay was added thereto, followed by filtration. 2.274916 kg of MDI was added, and the reaction was allowed to proceed while stirring at 50 캜 to obtain a urethane resin. The quality of the obtained urethane resin is shown in Table 3 below.

Figure 112013036837612-pat00006
Figure 112013036837612-pat00006

Figure 112013036837612-pat00007
Figure 112013036837612-pat00007

Claims (9)

바이오폴리올로부터 폴리우레탄을 제조하는 방법으로서,
(A) 동식물유를 가수분해하여 유리지방산을 제조하는 단계;
(B) 상기 유리지방산을 고온고압하에서 중합하여 다이머산을 제조하는 단계;
(C) 상기 다이머산과 프로필렌옥사이드를 반응시켜 폴리프로필렌글리콜을 제조하는 단계; 및
(D) 상기 폴리프로필렌글리콜을 디이소시아네이트와 반응시켜 폴리우레탄을 제조하는 단계;를 포함하는 것을 특징으로 하는 폴리우레탄의 제조방법.
A method for producing a polyurethane from a bio polyol,
(A) hydrolyzing animal and plant oil to produce a free fatty acid;
(B) polymerizing the free fatty acid under high temperature and high pressure to prepare dimeric acid;
(C) reacting the dimer acid with propylene oxide to produce polypropylene glycol; And
(D) reacting the polypropylene glycol with a diisocyanate to prepare a polyurethane.
제1항에 있어서,
상기 (A) 단계에서,
상기 동식물유는 대두유, 채종유, 팜유, 아마인유, 피마자유, 해바라기유, 포도씨유, 폐식용유로 이루어진 군에서 선택되는 하나 이상의 식물성 유지인 것을 특징으로 하는 폴리우레탄의 제조방법.
The method according to claim 1,
In the step (A)
Wherein the animal or vegetable oil is at least one vegetable oil selected from the group consisting of soybean oil, seed oil, palm oil, linseed oil, castor oil, sunflower oil, grape seed oil, and waste cooking oil.
제1항에 있어서,
상기 (A) 단계에서,
상기 동식물유를 100 ~ 200℃의 온도, 5 ~ 40kg/cm2의 압력조건에서 5 ~ 20시간 동안 가수분해하는 것을 특징으로 하는 폴리우레탄의 제조방법.
The method according to claim 1,
In the step (A)
Wherein the animal and vegetable oil is hydrolyzed at a temperature of 100 to 200 DEG C and a pressure of 5 to 40 kg / cm &lt; 2 &gt; for 5 to 20 hours.
제1항에 있어서,
상기 (A)단계에서,
상기 유리지방산은 불포화지방산 50중량% 이상의 지방산인 것을 특징으로 하는 폴리우레탄의 제조방법.
The method according to claim 1,
In the step (A)
Wherein the free fatty acid is at least 50% by weight of an unsaturated fatty acid fatty acid.
제1항에 있어서,
상기 (B)단계에서,
상기 유리지방산을 100 ~ 300℃의 온도, 5 ~ 40kg/cm2의 압력조건에서 중합하는 것을 특징으로 하는 폴리우레탄의 제조방법.
The method according to claim 1,
In the step (B)
Wherein said free fatty acid is polymerized at a temperature of 100 to 300 DEG C under a pressure of 5 to 40 kg / cm &lt; 2 &gt;.
제1항에 있어서,
상기 (C)단계에서,
중량평균분자량 800 이상의 폴리프로필렌글리콜을 제조하는 것을 특징으로 하는 폴리우레탄의 제조방법.
The method according to claim 1,
In the step (C)
A polypropylene glycol having a weight average molecular weight of 800 or more is prepared.
제1항에 있어서,
상기 (C)단계에서,
KOH, NaOH, Ba(OH)2, Fe(OH)3 및 Na2CO3·10H20로 이루어진 군에서 선택되는 촉매를 첨가하여 50 ~ 200℃의 온도조건에서 30분 ~ 7시간 동안 반응시키는 것을 특징으로 하는 폴리우레탄의 제조방법.
The method according to claim 1,
In the step (C)
A catalyst selected from the group consisting of KOH, NaOH, Ba (OH) 2 , Fe (OH) 3 and Na 2 CO 3 .10H 2 O is added and reacted at a temperature of 50-200 ° C for 30 minutes to 7 hours &Lt; / RTI &gt;
제1항에 있어서,
상기 (D)단계에서,
폴리프로필렌글리콜과 디이소시아네이트를 1 : 1 ~ 1 : 1.5의 당량비로 혼합한 후, 50 ~ 300℃에서 반응시키는 것을 특징으로 하는 폴리우레탄의 제조방법.
The method according to claim 1,
In the step (D)
Polypropylene glycol and diisocyanate are mixed at an equivalent ratio of 1: 1 to 1: 1.5, and then reacted at 50 to 300 占 폚.
제1항에 있어서,
상기 (D)단계에서,
상기 디이소시아네이트는 메틸렌 디페닐 디이소시아네이트(Methylene diphenyl diisocyanate, MDI), 톨루엔 디이소시아네이트(Toluene Diisocyanate, TDI), 나프탈렌 디이소시아네이트(naphthalene diisocyanate, NDI) 및 p-페닐렌 디이소시아네이트(p-phenylene diisocynate, PPDI)로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 폴리우레탄의 제조방법.
The method according to claim 1,
In the step (D)
The diisocyanate may be selected from the group consisting of methylene diphenyl diisocyanate (MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), and p-phenylene diisocynate ). &Lt; / RTI &gt;
KR1020130046438A 2013-04-26 2013-04-26 Method for manufacturing polyurethane using eco-friendly raw material KR101468070B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130046438A KR101468070B1 (en) 2013-04-26 2013-04-26 Method for manufacturing polyurethane using eco-friendly raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130046438A KR101468070B1 (en) 2013-04-26 2013-04-26 Method for manufacturing polyurethane using eco-friendly raw material

Publications (2)

Publication Number Publication Date
KR20140127961A KR20140127961A (en) 2014-11-05
KR101468070B1 true KR101468070B1 (en) 2014-12-02

Family

ID=52451947

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130046438A KR101468070B1 (en) 2013-04-26 2013-04-26 Method for manufacturing polyurethane using eco-friendly raw material

Country Status (1)

Country Link
KR (1) KR101468070B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170001900A (en) 2015-06-26 2017-01-05 켄스코 주식회사 Manufacturing method of bio-polyurethane and polyurethane manufacturing thereof and polyurethane coating fiber coating polyurethane thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060062869A (en) * 2004-12-06 2006-06-12 에스케이씨 주식회사 Prepolymer composition for preparing of water-dispersible polyurethane and manufacturing method of water-dispersible polyurethane elastomer using there of
JP2007269849A (en) * 2006-03-30 2007-10-18 Dainippon Ink & Chem Inc Method of manufacturing hard polyurethane foam and heat insulating material for construction
KR100849123B1 (en) * 2007-06-15 2008-07-30 한국포리올 주식회사 Synthesis method of high functional polyol using the castor oil and polyol and polyurethane produced by that method
KR20120038038A (en) * 2010-10-12 2012-04-23 케이피엑스케미칼 주식회사 Method for preparing natural oil-derived biopolyol and polyurethanes made therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060062869A (en) * 2004-12-06 2006-06-12 에스케이씨 주식회사 Prepolymer composition for preparing of water-dispersible polyurethane and manufacturing method of water-dispersible polyurethane elastomer using there of
JP2007269849A (en) * 2006-03-30 2007-10-18 Dainippon Ink & Chem Inc Method of manufacturing hard polyurethane foam and heat insulating material for construction
KR100849123B1 (en) * 2007-06-15 2008-07-30 한국포리올 주식회사 Synthesis method of high functional polyol using the castor oil and polyol and polyurethane produced by that method
KR20120038038A (en) * 2010-10-12 2012-04-23 케이피엑스케미칼 주식회사 Method for preparing natural oil-derived biopolyol and polyurethanes made therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170001900A (en) 2015-06-26 2017-01-05 켄스코 주식회사 Manufacturing method of bio-polyurethane and polyurethane manufacturing thereof and polyurethane coating fiber coating polyurethane thereof

Also Published As

Publication number Publication date
KR20140127961A (en) 2014-11-05

Similar Documents

Publication Publication Date Title
US4826944A (en) Polyurethane casting resins
CN105849151B (en) Polyalcohol and corresponding polyurethane based on dimer fatty acid residue
US4551517A (en) Two-component polyurethane adhesive
EP0689556B1 (en) Polyol for an isocyanate casting resin and coatings
CN102942674B (en) Three-component polyurethane elastomer composition
KR101660237B1 (en) Preparation methode of Biobased Epoxy Resin and It&#39;s Composition for Cured System
KR20190137483A (en) Polyol composition for forming polyurethane, chain-extended polyurethane using the same and hot melt adhesive comprising the polyurethane
DE102006036072B4 (en) Process for the production of polyurethane products
CN114163598B (en) Bio-based polyol derived self-repairing polyurethane and preparation method thereof
KR101468070B1 (en) Method for manufacturing polyurethane using eco-friendly raw material
CN112062937B (en) Carbamate-based epoxy compounds, methods of making, and uses thereof
CN108018017B (en) Water-based environment-friendly polyurethane adhesive, and preparation method and application thereof
CN108299341B (en) Castor oil-based epoxy resin and preparation method thereof
KR102271145B1 (en) Isocyanate prepolymer, moisture-curing polyurethane and eco-friendly adhesive composition comprising the same
CN111171268B (en) Heat-resistant polyurethane soft foam and preparation method thereof
KR102351307B1 (en) Isocyanate prepolymer, moisture-curing polyurethane and eco-friendly adhesive composition comprising the same
WO2009000405A1 (en) Polyisocyanate mixtures
JP2014529002A (en) Method for obtaining polyol from palm oil, polyol obtained by the method, product using the polyol, and method for producing the same
KR20110100382A (en) Manufacturing method of polyesterpolyol increased functionality using polyethylene terephtalate chip
CN116904102B (en) Single-component polyurethane waterproof paint and preparation method thereof
CN110776643A (en) Rosin modified polyether polyol and preparation method thereof
KR102054641B1 (en) Method of preparation catalytic compound
EP3887469A1 (en) Adhesive composition for flexible lamination
DE10351268A1 (en) Modified foliated silicates obtained by modification with ammonium compound with acid group and esterification with di- or polyol are used for producing polyurethanes containing exfoliated foliated silicates e.g. for insulating foam
Sangeetha Biodegradation of Polyurethane Composites

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171124

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191126

Year of fee payment: 6