KR101465440B1 - Spherical yolk-shell nanoparticles with a silica shell and single Au nanodots as the core and synthetic method therof - Google Patents

Spherical yolk-shell nanoparticles with a silica shell and single Au nanodots as the core and synthetic method therof Download PDF

Info

Publication number
KR101465440B1
KR101465440B1 KR1020130091561A KR20130091561A KR101465440B1 KR 101465440 B1 KR101465440 B1 KR 101465440B1 KR 1020130091561 A KR1020130091561 A KR 1020130091561A KR 20130091561 A KR20130091561 A KR 20130091561A KR 101465440 B1 KR101465440 B1 KR 101465440B1
Authority
KR
South Korea
Prior art keywords
silica
nanoparticles
core
gold
shell
Prior art date
Application number
KR1020130091561A
Other languages
Korean (ko)
Inventor
유효종
박준성
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Priority to KR1020130091561A priority Critical patent/KR101465440B1/en
Application granted granted Critical
Publication of KR101465440B1 publication Critical patent/KR101465440B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a spherical nanoparticle consisting of a single gold nanodot core in yolk shell shape and silica shell and a synthesis method thereof, comprising the steps of putting a spherical nanoparticle consisting of a multi-gold nanodot core and silica shell in a polyvinylpyrrolidone solution; manufacturing a spherical nanoparticle consisting of the yolk shell shaped single gold nanodot core and silica shell; heating the obtained spherical nanoparticle in water or a hydrophilic solution; manufacturing of the yolk shell shaped single gold nanodot core and porous silica shells.

Description

요크-쉘 형태의 단일 금 나노닷 코어와 실리카 외각으로 이루어진 구형 나노입자 및 그 합성방법 {Spherical yolk-shell nanoparticles with a silica shell and single Au nanodots as the core and synthetic method therof}BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to spherical nanoparticles composed of a single gold nanodot core in the form of a yoke-shell and a silica shell, and a method for synthesizing the spherical nanoparticles.

본 발명은 요크-쉘 형태의 단일 금 나노닷 코어와 실리카 외각으로 이루어진 구형 나노입자 및 그 합성방법에 관한 것으로서, 다중 금 나노닷 코어와 실리카 외각으로 이루어진 구형 나노입자를 폴리비닐피롤리돈 수용액에서 고반하여 요크-쉘 형태의 단일 금 나노닷 코어와 실리카 외각으로 이루어진 구형 나노입자를 제조하였으며, 이와 같이 얻은 요크-쉘 형태의 단일 금 나노닷 코어와 실리카 외각으로 이루어진 구형 나노입자를 물 또는 친수성 용액 내에서 가열하여 요크-쉘 형태의 단일 금 나노닷 코어와 다공성 실리카 외각으로 이루어진 나노입자를 제조하였다.
The present invention relates to a spherical nanoparticle comprising a single gold nanodot core in the form of a yoke-shell and a silica shell, and a method of synthesizing the spherical nanoparticle, wherein a spherical nanoparticle comprising a plurality of gold nanodots core and a silica outer shell is immersed in an aqueous solution of polyvinylpyrrolidone Spherical nanoparticles composed of a single gold nanodot core and a silica outer shell were prepared. The thus obtained spherical nanoparticles composed of a single gold nanodot core in the form of a yoke-shell and a silica shell were immersed in water or a hydrophilic solution To produce nanoparticles consisting of a single gold nanodot core in the form of a yoke-shell and a porous silica shell.

제어된 크기와 형상의 나노입자 조립체 합성에 대한 관심이 증대되고 있는데, 이는 그러한 재료의 특성이 독특하며 잠재적 응용분야가 다양하기 때문이다 (El-Sayed M. A.;Acc. Chem. Res. 2001, 34, 257-264, Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60-103, Hu, M.; Chen, J.; Li,Z.-Y.; Au,L.; Hartland,G. V.; Li,X.; Marquez,M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.). 콜로이드성 금 나노입자는 가시광선 및 원적외서 스펙트럼에 걸치는 파장에서 복잡한 광학적 및 입체적 특성을 나타낸다. 또한, 이것은 일반적으로 독성이 낮은 것으로 여겨지며 표면이 쉽게 관능기화될 수 있다 (Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Acc.Chem. Res. 2008, 41, 1578-1586, Eustis, S.;El-Sayed, M. A.Chem. Soc. Rev. 2006,35, 209-217). 특히, 금 나노입자의 특성은 가까이 있는 다른 금속 나노입자의 존재에 의해 현저하게 영향을 받는다 (Huang, H.-Y.; Chen, W.-F.; Kuo, P.-L. J. Phys. Chem. B 2005, 109, 24288-24294, Hu, H.; Duan, H.; Yang, J. K. W.; Shen, Z. X. ACS Nano 2012, 6, 10147-10155). 예컨대, 금 나노입자의 플라스몬 공명 (plasmon resonance)은 입자들이 아주 가까이 있을 때 짝을 이룰 수 있고, 입자들 간의 커플링은 각 입자간의 거리에 매우 의존적이다 (Huang, H.-Y.; Chen, W.-F.; Kuo, P.-L. J. Phys. Chem. B 2005, 109, 24288-24294). 다양한 응용분야에서 금 나노입자 간의 짝을 이룬 상호작용을 활용하기 위해, 금 나노입자 간의 작은 간격을 허용하는 조립구조체 구축에 관한 연구가 활발해지고 있다. 그렇지만, 금 나노입자 조립체 구조에서 금 나노입자 간의 거리와 상호작용 제어는 여전히 굉장한 도전거리이다. There is growing interest in synthesizing nanoparticle assemblies of controlled size and shape because of the unique nature of such materials and the variety of potential applications (El-Sayed MA; Acc. Chem. Res. 2001 , 34 , 257-264, Xia, Y .; Xiong, Y .; Lim, B .; Skrabalak, SE Angew. Chem. Int. Ed. 2009, 48, 60-103, Hu, M .; Chen, J .; Li, Z.-Y .; Au, L .; Hartland, GV;.. Li, X .; Marquez, M .; Xia, Y. Chem Soc Rev. 2006, 35, 1084-1094).. Colloidal gold nanoparticles exhibit complex optical and steric properties at wavelengths that span both visible and extrinsic spectra. In addition, this is generally considered to be of low toxicity is a surface functional group can be easily screen (Jain, PK; Huang, X .; El-Sayed, IH;.. El-Sayed, MA Acc.Chem Res 2008, 41, 1578 -1586, Eustis, S., El-Sayed, MA Chem. Soc Rev. 2006 , 35 , 209-217). In particular, the properties of gold nanoparticles are significantly influenced by the presence of other metallic nanoparticles in close proximity (Huang, H.-Y .; Chen, W.-F .; Kuo, P.-L. J. Phys B, 2005 , 109 , 24288-24294, Hu, H .; Duan, H., Yang, JKW; Shen, ZX ACS Nano 2012 , 6 , 10147-10155). For example, the plasmon resonance of gold nanoparticles can be matched when the particles are very close, and the coupling between the particles is highly dependent on the distance between each particle (Huang, H.-Y .; Chen , W.-F .; Kuo, P.-L. J. Phys. Chem. B 2005, 109, 24288-24294). In order to utilize the paired interactions between gold nanoparticles in a variety of applications, research is being actively conducted on constructing assembly structures that allow small gaps between gold nanoparticles. However, the distance and interaction control between gold nanoparticles in gold nanoparticle assembly structures is still a tremendous challenge.

금 나노입자를 조립하는 한 가지 유용한 기술은 이들을 실리카로 감싸는 것이다 (Liz-Marzan, L. M.; Correa-Duarte,M. A.;Pastoriza-Santos,I. ;Mulvaney,P. ;Ung,T.;Giersig,M.;Kotov,N. A.Handbook of Surfaces and Interfaces ofMaterials, (Ed: H. S. Nalwa), Academic Press, San Diego, USA 2001, Fan,H.;Yang,K.;Boye,D.;Sigmon,M. T.;Malloy, K. J.;Xu,H.; Brinker,C. J.Science 2004, 304, 567-571). 금 코어와 실리카 외각으로 이루어진 나노입자는 실리카 외각이 코팅재료로 이용되기 때문에 특히 수용성 용매에서 코어를 이루는 금 나노입자의 안정성을 증대시킬 수 있어서 많은 관심을 끌고 있다 (Guerrero-Martinez, A.; Perez-Juste, J.; Liz-Marzan, L. M. Adv.Mater. 2010, 22, 1182-1195.and references therein). 실리카는 화학적으로 안정적일 뿐만 아니라 광학적으로 불투명하여 내포된 금 나노입자의 광학적 특성에 대해 중대한 효과를 미치지 않는다. 또한, 다공성이고, 생체적합하며, 비독성인 것으로 알려져 있는 실리카 층의 표면은 간단한 기술로 쉽게 변형 가능한데, 이로 말미암아 변형된 실리카 외각을 갖는 나노입자는 다양한 생물학적 응용에 이용할 수 있게 된다 (Avnir,D.;Coradin, T.; Lev,O.; Livage, J. J. Mater. Chem., 2006,16, 1013-1030). 금 나노입자에 실리카를 직접 코팅하는 몇 가지 합성방법이 개발되었다. 최초의 방법은 Stober 방법으로 미리 합성된 금 나노입자의 표면 상에 실리카 외각을 성장시키기 위해 커플링제 또는 폴리머 안정화제를 이용하는 것이다 (Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 1996, 12, 4329-4335, Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A. Langmuir 2003,19, 6693-6700, Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L. M. Chem. Mater. 2006,18, 2465-2467, Lu, Y.; Yin, Y.; Li, Z.-Y.; Xia, Y. Nano Lett. 2002, 2, 785-788, Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L. M. Chem. Mater. 2006,18, 2465-2467, Stober,W.; Fink, A.; Bohn,E.;J. Colloid Interface Sci. 1968, 26, 62-69). 금 나노입자 상에 실리카를 코팅하는 다른 방법은 역마이크로에멀젼 {유중수(W/O) 마이셀 용액}의 이용을 포함하는데, 이것은 작은 금 나노입자 (<20nm)의 실리카 코팅을 가능하게 해준다 (Han, Y.; Jiang, J.; Lee, S. S.; Ying, J. Y.Langmuir 2008, 24, 5842-5848, Earhart,C.; Jana,N. R.;Erathodiyil,N.; Ying,J. Y. Langmuir 2008, 24, 6215-6219, Thakur,R.; Gupta,R. B. Ind. Eng. Chem. Res. 2005, 44, 3086-3090). 마이크로에멀젼 상 (phase)에서, 표면 역 마이셀 내에 물방울이 형성된다. 실리콘 전구체는 물 속에서 가수분해 및 응축에 의해 금 나노입자의 표면 상에 폴리머화되어 금 코어-실리카 외각 나노입자를 형성할 수 있다.
One useful technique for assembling gold nanoparticles is to wrap them in silica (Liz-Marzan, LM; Correa-Duarte, MA; Pastoriza-Santos, I.; Mulvaney, P.; Ung, T. ; Kotov, NAHandbook of Surfaces and Interfaces ofMaterials, (Ed: HS Nalwa), Academic Press, San Diego, USA 2001; Fan, H.; Yang, K .; Boye, , H .; Brinker, CJ Science 2004 , 304 , 567-571). Nanoparticles composed of gold core and silica shells are attracting much attention because they can be used to enhance the stability of gold nanoparticles, especially in water-soluble solvents, as the silica shell is used as a coating material (Guerrero-Martinez, A .; Perez -Juste, J .; Liz-Marzan, LM Adv.Mater . 2010 , 22 , 1182-1195.and references therein). The silica is chemically stable as well as optically opaque and does not have a significant effect on the optical properties of the encapsulated gold nanoparticles. In addition, the surface of a porous, biocompatible, non-toxic silica layer can be easily modified with simple techniques, which allows nanoparticles with modified silica shells to be used in a variety of biological applications (Avnir, D., et al. ; Coradin, T .; Lev, O .; Livage, J. J. Mater. Chem. , 2006 , 16 , 1013-1030). Several synthetic methods have been developed to directly coat silica with gold nanoparticles. The first method is to use a coupling agent or a polymer stabilizer to grow the silica outer surface on the surface of gold nanoparticles pre-synthesized by the Stober method (Liz-Marzan, LM; Giersig, M .; Mulvaney, P. Langmuir 1996 , 12 , 4329-4335, Graf, C .; Vossen, DLJ; Imhof, A .; van Blaaderen, A. Langmuir 2003 , 19 , 6693-6700, Pastoriza-Santos, I.; Perez-Juste, -Marzan, LM Chem. Mater. 2006 , 18, 2465-2467, Lu, Y .; Yin, Y .; Li, Z.-Y .; Xia, Y. Nano Lett. 2002, 2, 785-788, Pastoriza -Santos, I .; Perez-Juste, J .; Liz-Marzan, LM Chem. Mater. 2006, 18, 2465-2467, Stober, W .; Fink, A .; Bohn, E .; J. Colloid Interface Sci 1968 , 26 , 62-69). Another method of coating silica on gold nanoparticles involves the use of reverse microemulsion (water / micellar solution), which enables the silica coating of small gold nanoparticles (<20 nm) Ying, JY Langmuir 2008, 24, 5842-5848, Earhart, C .; Jana, NR; Erathodiyil, N .; Ying, JY Langmuir 2008 , 24 , 6215-6219 , Thakur, R .; Gupta, RB Ind. Eng. Chem. Res., 2005 , 44 , 3086-3090). In the microemulsion phase, water droplets are formed in the surface reverse micelle. The silicon precursor can be polymerized on the surface of gold nanoparticles by hydrolysis and condensation in water to form gold core-silica outer nanoparticles.

본 발명은 단일 금 나노닷을 내부에 함유하는 실리카 외각의 나노입자를 합성하는 새로운 방법을 제공하려는 것을 목적으로 한다. It is an object of the present invention to provide a novel method for synthesizing nanoparticles of silica having a single gold nano dot in its interior.

또한, 본 발명은 요크-쉘 형태의 단일 금 나노닷 코어-실리카 나노입자 합성방법을 제공하려는 것을 목적으로 한다.It is another object of the present invention to provide a method for synthesizing a single gold nanodot core-silica nanoparticle in the form of a yoke-shell.

또한, 본 발명은 나노입자의 표면안정제로 쓰이는 물질을 이용하여 다중 금 나노닷 코어-실리카 나노입자 내의 다중 금 나노닷 사이의 상호작용을 발생시킬 수 있는 방법을 제공하려는 것을 목적으로 한다. It is another object of the present invention to provide a method for generating interactions between multiple gold nanodots in multiple gold nanodots core-silica nanoparticles using a material used as a surface stabilizer for nanoparticles.

또한, 본 발명은 다공성의 단일 금 나노닷 코어-실리카 나노입자 합성방법을 제공하려는 것을 목적으로 한다. It is another object of the present invention to provide a method for synthesizing porous gold nanodots core-silica nanoparticles.

뿐만 아니라, 본 발명은 요크-쉘 형태의 단일 금 나노닷 코어-실리카 나노입자 와 요크-쉘 형태의 단일 금 나노닷 코어-다공성 실리카 나노입자의 반응 촉매로서의 이용가능성을 제공하려는 것을 목적으로 한다.
In addition, the present invention aims to provide a possibility to utilize a single gold nanodot core-silica nanoparticle in a yoke-shell form and a single gold nanodot core-porous silica nanoparticle in a yoke-shell form as a reaction catalyst.

본 발명은 The present invention

다중 금 나노닷 코어가 실리카 외각 내에 들어 있는 나노입자에 폴리비닐피롤리돈 수용액을 가하는 단계;Applying a polyvinylpyrrolidone aqueous solution to nanoparticles in which multiple gold nanodots cores are contained within the silica;

상기 나노입자가 든 폴리비닐피롤리돈 수용액을 교반하는 단계;를 포함하는 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자를 합성하는 방법에 관한 것이다.And stirring the aqueous solution of polyvinylpyrrolidone with the nanoparticles. The present invention also relates to a method of synthesizing a nanoparticle comprising a single gold nanodot core and silica nanoparticles.

또한, 본 발명은 상기 교반 단계 이후 세척 및 원심분리 단계가 추가되는 것을 특징으로 하는 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자를 합성하는 방법에 관한 것이다.The present invention also relates to a method of synthesizing a single gold nano-dot core and silica nanoparticles, wherein the step of washing and centrifugation is added after the stirring step.

뿐만 아니라, 본 발명은 상기 방법에 의해 합성된 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자를 물 또는 친수성 용액에 가하여 열처리하는 단계를 포함하는 단일 금 나노닷 코어와 다공성 실리카 외각으로 이루어진 나노입자를 합성하는 방법에 관한 것이다. In addition, the present invention relates to a single gold nano-dot core comprising a single gold nano-dot core synthesized by the above method and a step of heat-treating nanoparticles made of silica externally added to water or a hydrophilic solution and a nanoparticle comprising a porous silica nanoparticle And a method for synthesizing the same.

뿐만 아니라, 본 발명은 상기 방법에 의해 합성된 요크-쉘 형태의 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자 또는 요크-쉘 형태의 단일 금 나노닷 코어와 다공성 실리카 외각으로 이루어진 나노입자를 환원반응에서 촉매로 이용하는 방법에 관한 것이다.
In addition, the present invention relates to a method for producing a nanocomposite comprising a single gold nano-dot core in the form of a yoke-shell synthesized by the above method, a single gold nanodot core in the form of a nanoparticle or yoke- As a catalyst in the reaction.

다중 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자를 폴리비닐피롤리돈 용액에 넣고 교반한 결과, 코어의 다중 금 나노닷이 단일 금 나노닷으로 변환되어 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자가 생성되었다. As a result of mixing the nanoparticles composed of a plurality of gold nanodots and an outer shell of silica in a polyvinylpyrrolidone solution, the core of the gold nanodots was converted into a single gold nanodot, and a single gold nanodot core and a nanodot Particles were created.

또한, 이와 같이 얻어진 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자를 물 또는 친수성 용액에 넣고 열처리한 결과, 단일 금 나노닷 코어와 다공성 실리카 외각으로 이루어진 나노입자가 생성되었다. In addition, nanoparticles composed of a single gold nanodot core and a porous silica were produced as a result of heat treatment of the single gold nanodot core and the silica nanoparticles thus obtained in water or a hydrophilic solution.

도 1은 (a) 단일 금@실리카 외각 나노입자 및 (b) 단일 금@다공성 실리카 외각 나노입자의 투과전자현미경 사진이다 (크기 막대: 50 ㎚); (c) 상기 3a (실선)와 3b (점선)에 해당하는 나노입자의 UV-가시광선 스펙트럼이다. (d)는 단일 금@실리카 외각 나노입자 (○)와 단일 금@다공성 실리카 외각 나노입자 (△)를 촉매로 하는 환원반응에서 반응시간 (t)과 Ct/Cc의 관계를 나타낸다.1 is a transmission electron micrograph (size bar: 50 nm) of (a) a single gold @ silica outer nanoparticle and (b) a single gold @ porous silica outer nanoparticle; (c) UV-visible spectra of nanoparticles corresponding to 3a (solid line) and 3b (dotted line). (d) shows the relationship between reaction time (t) and Ct / Cc in the reduction reaction using a single gold @ silica outer nanoparticle (O) and a single gold @ porous silica outer nanoparticle (Δ) as catalysts.

아래에서는 실시예를 들어 본 발명의 구성을 좀 더 구체적으로 설명한다. 그러나, 본 발명의 범위가 실시예의 기재 범위 내로 한정되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.
Hereinafter, the configuration of the present invention will be described in more detail with reference to embodiments. However, it is apparent to those skilled in the art that the scope of the present invention is not limited to the scope of the embodiments.

<단일 금 코어-실리카 외각 나노입자 및 단일 금 코어-다공성 실리카 외각 나노입자 합성>&Lt; Single gold core-silica outer nanoparticle and single gold core-porous silica outer nanoparticle synthesis >

폴리비닐피롤리돈 (PVP10) 수용액 (초순수 1 ㎖에 PVP10 0.1 g을 혼합한 혼합물)을 정제된 다중 금 나노닷 코어-실리카 외각 나노입자에 가하고 상온에서 교반하였다. 다중 금 나노닷 코어-실리카 외각 나노입자 합성방법은 종래방법을 응용하였다 [Pak, J.; Yoo, H. Facile synthesis of spherical nanoparticles with a silicashell and multiple Au nanodots as the core. J. Mater. Chem. A 2013, 1, 5408-5413, Yoo. H.; Pak, J. Synthesis of highly fluorescent silica nanoparticlesin a reverse microemulsion through double-layered dopingof organic fluorophores. J. Nanopart. Res. 2013, 15. 1609]. 처음에는 황회색 반응 혼합물이 생성되고 이것은 6시간 동안의 교반 후 연한 적색으로 변하였다. 반응은 12시간 후 종결되었고, 그 결과 얻어지는 나노입자 (단일 금 코어-실리카 외각 나노입자, single-Au@SiO2 NPs)는 에탄올로 수회 반복 세척한 후 원심분리하여 정제하였다. 단일 금 코어-다공성 실리카 외각 나노입자 (single-Au@mesoporos-SiO2 NPs) 합성은 상기 정제된 단일 금 코어-실리카 외각 나노입자를 초순수 (1 ㎖)에 재현탁한 후 90 ℃로 12시간 동안 가열하였다. 가열 후 반응 혼합물은 서서히 상온으로 식히고 원심분리하였다 (13,500 rpm, 5분).
An aqueous solution of polyvinylpyrrolidone (PVP10) (a mixture of 1 ml of ultrapure water and 0.1 g of PVP10) was added to purified gold nanodots core-silica external nanoparticles and stirred at room temperature. Conventional methods have been applied to synthesize multiple gold nanodots core-silica outer nanoparticles [Pak, J .; Yoo, H. Facile synthesis of spherical nanoparticles with a silicashell and multiple Au nanodots as the core. J. Mater. Chem. A 2013 , 1 , 5408-5413, Yoo. H .; Pak, J. Synthesis of highly fluorescent silica nanoparticles from a reverse microemulsion through double-layered doping of organic fluorophores. J. Nanopart. Res. 2013 , 15 . 1609]. Initially, a yellow-gray reaction mixture was formed, which turned pale red after stirring for 6 hours. The reaction was terminated after 12 hours and the resulting nanoparticles (single gold core-silica nanoparticles, single-Au @ SiO 2 NPs) were washed several times with ethanol and centrifuged. Synthesis of Single Gold Core-Porous Silica Outer Nanoparticles (Single-Au @ mesoporos-SiO 2 NPs) The purified single gold core-silica outer nanoparticles were resuspended in ultrapure water (1 ml) and heated to 90 ° C for 12 hours Respectively. After heating, the reaction mixture was slowly cooled to room temperature and centrifuged (13,500 rpm, 5 minutes).

다중 금 나노닷은 서로 근접하기 때문에 서로 상호작용할 수 있고, 흥미로운 집합적 특성을 나타낸다. 다중 금 나노닷 코어-다공성 실리카 외각 나노입자에서 다중 금 나노닷의 집합적 특성을 이해하기 위해 본 발명자들은 실리카 외각 내에 단일 금 나노닷 코어가 들어 있는 나노입자들 (single-Au@SiO2 NPs 및 single-Au@mesoporos-SiO2 NPs)을 제조하였다. 직접적인 비교를 하기 위해 다중 금 나노닷 및 단일 금 나노닷 제조에 사용되는 금의 양은 동일하게 하였다. 한 가지 유용한 합성 전략은 다중 금 나노닷 코어-실리카 외각 나노입자의 금 나노닷들을 합병시켜 실리카 매트릭스 내에 단일 금 나노입자를 제조하는 것이다. 그렇지만, 다중 금 나노닷 코어-실리카 외각 나노입자는 광 자극 및 온도 자극에 매우 안정적이기 때문에 다중 금 나노닷은 쉽게 응집되지 않는다. 흥미롭게도, 다중 금 나노닷 코어-실리카 외각 나노입자를 폴리비닐피롤리돈 수용액 내에서 상온으로 6시간 이상 교반하면, 실리카 매트릭스 내의 다중 금 나노닷이 서로 합병하여 단일 금 나노입자로 바뀐다. 도 1의 (a)는 상온에서 PVP 수용액에 다중 금 나노닷 코어-실리카 외각 나노입자로부터 제조된 단일 금 코어-실리카 외각 나노입자의 투과전자현미경 사진이다. Multiple gold nanodots can interact with each other because of their proximity to each other and exhibit interesting collective characteristics. In order to understand the collective nature of multiple gold nanodots in a multi-gold nanodots core-porous silica nanoparticles, the present inventors have developed nanoparticles containing single gold nanodots (single-Au @ SiO 2 NPs and single-Au @ mesoporos-SiO 2 NPs). To make a direct comparison, the amount of gold used in the manufacture of multiple gold nanodots and single gold nanodots was the same. One useful synthetic strategy is the incorporation of gold nanodots in multiple gold nanodot core-silica outer nanoparticles to produce a single gold nanoparticle within the silica matrix. However, since multiple gold nanodots core-silica outer nanoparticles are very stable to light stimulation and temperature stimuli, multiple gold nanodots do not readily aggregate. Interestingly, when multiple gold nanodots core-silica nanoparticles are agitated in aqueous polyvinylpyrrolidone solution at room temperature for 6 hours or more, multiple gold nanodots within the silica matrix are merged into single gold nanoparticles. FIG. 1 (a) is a transmission electron micrograph of single gold core-silica outer nanoparticles prepared from multiple gold nanodots core-silica outer nanoparticles in PVP aqueous solution at room temperature.

각 실리카 나노입자는 단지 하나의 금 나노입자만을 감싸고, 이 단일 금 나노입자는 실리카 매트릭스의 중앙에 위치하였다. 개별 구형 실리카 나노입자의 크기는 다중 금 나노닷이 응집하더라도 크게 달라지지 않았다 (응집 전: 40.79 ± 2.76 ㎚, 응집 후: 46.23 ± 1.93 ㎚). 반면, 실리카 매트릭스 내에 있는 금 나노입자의 평균 입경은 5.50 ± 1.25 ㎚ (100 개 이상의 실리카 나노입자를 평가함)였고, 이는 다중 금 나노닷 코어-실리카 외각 나노입자 내의 개별 금 나노닷의 직경 (평균 3.60 ± 0.91 ㎚)보다 약 50% 증가한 것이다. 뿐만 아니라, 각 다중 금 나노닷 코어-실리카 외각 나노입자에서 금 나노입자와 실리카 층 사이의 약간 빈 공간이 있는데, 이것은 이 입자를 "요크-쉘 (yolk-shell)" 형태로 만들었다 [Liu, J. et al., Chem. Commun. 2011, 47, 12578-12591, Park, J. C.; Song, H. Nano Res. 2011, 4, 33-49, Yin, Y. et al., Science 2004 304 711-714]. 앞서 폴리비닐피롤리돈이 최외각 실리카층을 보호하여 내측의 선택적 부식을 가능하게 한다고 보고된바 있었다 [Hu, Y. et al., Phys. Chem. Chem. Phys., 2010, 12, 11836-11842, Zhang,Q. et al., Nano Res. 2009,2, 583-591, Zhang, Q. et al., Nano Lett. 2008, 8, 2867-2871, Zhang,Q. et al., Adv. Funct. Mater. 2010, 20, 2201-2214]. 본 발명자들은 다중 금 나노닷을 둘러싼 내측 실리카 매트릭스 (다중 금 나노닷 코어-실리카 외각 나노입자의 중앙 부분)가 외측에 비해 좀더 소프트 (즉, 덜 딱딱하게 응축됨)하며, 따라서, PVP를 표면 보호제로 이용할 때 불균등하게 부식될 수 있는 것으로 판단하고 있다. 특히, 내측 실리카 매트릭스가 먼저 부식된 후 실리카 나노입자 중앙에 비어있는 물 환경이 형성되는 것으로 보인다. 이러한 조건에서, 다중 금 나노닷은 높은 표면 에너지로 인해 빈 실리카 나노입자 내에서 응집하여 단일 금 나노입자를 생성한다. 수중 [Wong,Y. J. et al., J. Am. Chem. Soc., 2011, 133, 11422-11425] 및 산성 조건 [Yu, Q. et al., Langmuir 2011, 27, 7185-7191]에서 실리카 매트릭스의 불균등한 부식의 유사 사례가 관찰되었다.
Each silica nanoparticle wraps only one gold nanoparticle, which is located in the center of the silica matrix. The size of individual spherical silica nanoparticles did not significantly change even after agglomeration of multiple gold nanodots (before aggregation: 40.79 ± 2.76 ㎚, after aggregation: 46.23 ± 1.93 ㎚). On the other hand, the average particle size of the gold nanoparticles in the silica matrix was 5.50 +/- 1.25 nm (evaluating more than 100 silica nanoparticles), which is the average diameter of individual gold nanodots in the multiple gold nanodot core- 3.60 ± 0.91 ㎚). In addition, there is a slightly empty space between the gold nanoparticles and the silica layer in each of the multiple gold nanodots core-silica outer nanoparticles, which makes the particles into a "yolk-shell" form [Liu, J et al., Chem. Commun. 2011 , 47 , 12578-12591, Park, JC; Song, H. Nano Res . 2011 , 4 , 33-49, Yin, Y. et al., Science 2004 304 711-714). Previously, it has been reported that polyvinylpyrrolidone protects the outermost silica layer to allow selective internal corrosion of the interior [Hu, Y. et al., Phys. Chem. Chem. Phys ., 2010 , 12 , 11836-11842, Zhang, Q. et al., Nano Res. 2009 , 2 , 583-591, Zhang, Q. et al., Nano Lett. 2008 , 8 , 2867-2871, Zhang, Q. et al., Adv. Funct. Mater. 2010 , 20 , 2201-2214]. The present inventors have found that the inner silica matrix surrounding the multiple gold nanodots (the central portion of the multiple gold nanodot core-silica outer nanoparticles) is less soft (i.e., less rigidly condensed) as compared to the outside, It is judged that it can be eroded unevenly when used with zero. In particular, it appears that an empty water environment is formed at the center of the silica nanoparticles after the inner silica matrix first corrodes. Under these conditions, multiple gold nanodots aggregate within empty silica nanoparticles due to their high surface energy, producing a single gold nanoparticle. Underwater [Wong, YJ et al., J. Am. Chem. Soc., 2011 , 133 , 11422-11425] and acidic conditions [Yu, Q. et al., Langmuir 2011 , 27 , 7185-7191].

단일 금 코어-실리카 외각 나노입자는 열처리하여 단일 금 코어-다공성 실리카 나노입자를 생성할 수 있다. 도 1의 (b)는 단일 금 코어-다공성 실리카 외각 나노입자의 TEM 사진인데, 이것은 단일 금 코어-실리카 외각 나노입자를 수용액 상에서 90 ℃로 12시간 동안 가열함으로써 제조한 것이며, 실리카 외각의 다공을 용이하게 관찰할 수 있다. 또한, 단일 금 코어-실리카 외각 나노입자 내의 금 나노입자 주위의 빈 공간이 확장되어 뚜렷한 요크-쉘 구조를 이룬다. 이것은 또한 금 나노닷을 둘러싼 좀더 부드러운 주변 실리카가 우선적으로 부식됨을 보여주는 증거가 될 수 있다. 요크-쉘 구조의 금 코어-실리카 외각 나노입자를 제조하기 위해 다양한 합성전략이 시도되었지만 [Liu, J. et al., Chem. Commun. 2011, 47, 12578-12591, Park, J. C. et al., Nano Res. 2011, 4, 33-49, Yin, Y. et al., Science 2004, 304, 711-714], 실리카 외각 내의 다중 금 나노닷을 처리하여 요크-쉘 구조를 제조하는 방법은 지금까지 보고된 바 없었다.Single gold core-silica outer nanoparticles can be heat treated to produce a single gold core-porous silica nanoparticle. Figure 1 (b) is a TEM image of a single gold core-porous silica outer nanoparticle, which is prepared by heating a single gold core-silica outer nanoparticle in an aqueous solution at 90 &lt; 0 &gt; C for 12 hours, And can be easily observed. In addition, the void space around the gold nanoparticles within the single gold core-silica outer nanoparticles expands to form a distinct yoke-shell structure. This can also be a testament to the preferential corrosion of the softer surrounding silica surrounding the gold nano dot. Various synthetic strategies have been attempted to produce the gold core-silica outer nanoparticles of the yoke-shell structure [Liu, J. et al., Chem. Commun. 2011 , 47 , 12578-12591, Park, JC et al., Nano Res . . 2011, 4, 33-49, Yin , Y. et al, Science 2004, 304, 711-714], to handle multiple gold nano dots in the silica outer yoke-process for producing a shell structure are reported to date bar There was no.

도 1의 (c)는 도 1의 (a) (실선) 및 도 1의 (b) (점선)에 해당하는 나노입자의 UV-가시광선 스펙트럼인데, 500~550 ㎚ 범위에서 약한 SPRs가 관찰되었다. 도 1d는 단일 금 코어-실리카 외각 나노입자 및 단일 금 코어-다공성 실리카 외각 나노입자를 촉매로 하는 환원반응에서 반응시간 (t)과 흡광도 (Ct/Cc) 간의 상관관계를 나타낸다. 두 나노입자 모두 4-나이트로페놀 (4-Nitrophenol, 4-NP)을 4-아미노페놀 (4-Aminophenol)로 변환시키는 환원반응에서 훌륭한 촉매 작용성을 보였다. 특히 단일 금 코어-다공성 실리카 외각 나노입자가 단일 금 코어-실리카 외각 나노입자 보다 좋은 촉매작용을 보이는 것으로 관측되었으며 외각의 실리카에 있는 다공성의 구조로 인해 촉매반응물이 촉매작용을 보이는 금 나노닷의 표면에 훨씬 쉽게 확산되어 들어가기 때문으로 여겨진다.1 (c) is a UV-visible light spectrum of nanoparticles corresponding to (a) (solid line) and (b) (dotted line) in FIG. 1 and weak SPRs were observed in the range of 500 to 550 nm . Figure 1d shows the correlation between reaction time (t) and absorbance (Ct / Cc) in a reduction reaction catalyzed by a single gold core-silica outer nanoparticle and a single gold core-porous silica outer nanoparticle. Both nanoparticles showed good catalytic activity in the reduction reaction of 4-Nitrophenol, 4-NP to 4-aminophenol. In particular, it was observed that single gold core-porous silica outer nanoparticles exhibit better catalytic activity than single gold core-silica outer nanoparticles, and the surface of gold nanodots that exhibit catalytic reactivity due to the porous structure in the outer silica As it spreads much more easily.

Claims (5)

다중 금 나노닷 코어가 실리카 외각 내에 들어 있는 나노입자에 폴리비닐피롤리돈 수용액을 가하는 단계;
상기 나노입자가 든 폴리비닐피롤리돈 수용액을 교반하는 단계;를 포함하는 요크-쉘 형태의 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자를 합성하는 방법.
Applying a polyvinylpyrrolidone aqueous solution to nanoparticles in which multiple gold nanodots cores are contained within the silica;
And stirring the aqueous solution of polyvinylpyrrolidone with the nanoparticles. The method of synthesizing a nanoparticle comprising a single gold nanodop core and a silica shell in the form of a yoke-shell.
청구항 1에 있어서,
상기 교반 단계 이후 세척 및 원심분리 단계가 추가되는 것을 특징으로 하는 요크-쉘 형태의 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자를 합성하는 방법.
The method according to claim 1,
Wherein the step of washing and the step of centrifuging are added after the stirring step, and a method of synthesizing a nanocomposite comprising a single gold nanodot core and a silica shell in the form of a yoke-shell.
청구헝 1 또는 청구항 2의 방법에 의해 합성된 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자를 물 또는 친수성 용액에 가하여 50~200 ℃로 열처리하는 단계를 포함하는 요크-쉘 형태의 단일 금 나노닷 코어와 다공성 실리카 외각으로 이루어진 나노입자를 합성하는 방법.
A single gold nanodot core synthesized by the method of claim 1 or claim 2 and a nanoparticle of silica outer shell are added to water or a hydrophilic solution and heat treated at 50-200 ° C to form a single gold nano- A method for synthesizing nanoparticles composed of a dot core and a porous silica shell.
청구항 3에 있어서,
상기 친수성 용매는 DMSO (dimethylsulfoxide) 또는 DMF (dimethylformamide)임을 특징으로 하는, 요크-쉘 형태의 단일 금 나노닷 코어와 다공성 실리카 외각으로 이루어진 나노입자를 제조하는 방법.
The method of claim 3,
Wherein the hydrophilic solvent is dimethylsulfoxide (DMSO) or dimethylformamide (DMF). 2. The method of claim 1, wherein the hydrophilic solvent is dimethylsulfoxide (DMSO) or dimethylformamide (DMF).
청구항 1 내지 청구항 4 중 어느 한 항의 방법에 의해 합성된 요크-쉘 형태의 단일 금 나노닷 코어와 실리카 외각으로 이루어진 나노입자 또는 요크-쉘 형태의 단일 금 나노닷 코어와 다공성 실리카 외각으로 이루어진 나노입자를 환원반응에서 촉매로 이용하는 방법.A single gold nanodot core in the form of a yoke-shell synthesized by the method of any one of claims 1 to 4, a single gold nanodot core in the form of nanoparticles or yoke-shells made out of silica and nanoparticles of porous silica As a catalyst in the reduction reaction.
KR1020130091561A 2013-08-01 2013-08-01 Spherical yolk-shell nanoparticles with a silica shell and single Au nanodots as the core and synthetic method therof KR101465440B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130091561A KR101465440B1 (en) 2013-08-01 2013-08-01 Spherical yolk-shell nanoparticles with a silica shell and single Au nanodots as the core and synthetic method therof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130091561A KR101465440B1 (en) 2013-08-01 2013-08-01 Spherical yolk-shell nanoparticles with a silica shell and single Au nanodots as the core and synthetic method therof

Publications (1)

Publication Number Publication Date
KR101465440B1 true KR101465440B1 (en) 2014-12-01

Family

ID=52676829

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130091561A KR101465440B1 (en) 2013-08-01 2013-08-01 Spherical yolk-shell nanoparticles with a silica shell and single Au nanodots as the core and synthetic method therof

Country Status (1)

Country Link
KR (1) KR101465440B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877262B1 (en) * 2016-10-26 2018-07-11 한림대학교 산학협력단 Assemblies of Au and core-shell Au/Pt Nanoparticles within Silica Nanotubes and synthetic methods thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A General Method To Coat Colloidal Particles with Silica, Langmuir, 2003, Vol. 19, pp. 6693-6700. *
A General Method To Coat Colloidal Particles with Silica, Langmuir, 2003, Vol. 19, pp. 6693-6700.*
Reverse Microemulsion-Mediated Synthesis of Silica-Coated Gold and Silver Nanoparticles, Langmuir, 2008, Vol. 24, 5842-5848. *
Reverse Microemulsion-Mediated Synthesis of Silica-Coated Gold and Silver Nanoparticles, Langmuir, 2008, Vol. 24, 5842-5848.*
Single Quantum Dots in Spherical Silica Particles, Angewante Chemie, 2994, Vol. 43, pp. 5393-5396. *
Synthesis and catalytic performance of multiple gold nanodots core-mesoporous silica shell nanoparticles, Microporous and Mesoporous Materials, 2014, Vol. 185, pp. 107-112. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877262B1 (en) * 2016-10-26 2018-07-11 한림대학교 산학협력단 Assemblies of Au and core-shell Au/Pt Nanoparticles within Silica Nanotubes and synthetic methods thereof

Similar Documents

Publication Publication Date Title
Cheng et al. Mixed‐metal MOF‐derived hollow porous nanocomposite for trimodality imaging guided reactive oxygen species‐augmented synergistic therapy
Lin et al. Yolk–Shell nanostructures: design, synthesis, and biomedical applications
Wang et al. Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres
Liu et al. Advances in multicompartment mesoporous silica micro/nanoparticles for theranostic applications
Velikov et al. Synthesis and characterization of monodisperse core− shell colloidal spheres of zinc sulfide and silica
CN103992774B (en) A kind of magnetic microcapsules phase-changing energy storage material and preparation method thereof
Hartlen et al. Facile preparation of highly monodisperse small silica spheres (15 to> 200 nm) suitable for colloidal templating and formation of ordered arrays
Sounderya et al. Use of core/shell structured nanoparticles for biomedical applications
CN104624125B (en) A kind of Photochromic double-shell microcapsule and its preparation method and application
CN107522389B (en) Micro-nano bioactive glass microsphere with surface nano-pore structure and preparation method thereof
CN109047790A (en) A kind of gold nanorods/zinc oxide/mesoporous silicon oxide yolk shell nanocomposite and preparation method thereof
WO2015090145A1 (en) Magnetic composite microsphere loaded with precious metal quantum dots and preparation method thereof
Do et al. Controlled formation of magnetic yolk-shell structures with enhanced catalytic activity for removal of acetaminophen in a heterogeneous fenton-like system
KR101465440B1 (en) Spherical yolk-shell nanoparticles with a silica shell and single Au nanodots as the core and synthetic method therof
KR101390657B1 (en) Spherical nanoparticles with a silica shell and multiple au nanodots as the core and synthetic method therof
Blanco-Formoso et al. Boosting the analytical properties of gold nanostars by single particle confinement into yolk porous silica shells
KR101927715B1 (en) Gold multipod nanoparticle core - Silica shell nanoparticles and synthetic method thereof
CN104843715A (en) Preparation method of silicon dioxide asymmetrically-modified magnetic colloidal particles
CN111139065B (en) Bio-based luminescent nano material and preparation method and application thereof
Chen et al. Synthesis of hollow mesoporous silica nanoparticles by silica-etching chemistry for biomedical applications
CN111924851B (en) Silicon dioxide nano material with umbrella-shaped dendritic structure and preparation method thereof
KR101918927B1 (en) Gold multipod nanoparticle core - titania shell nanoparticles and synthetic method thereof
Lv et al. Exploration of accessibility of internal pore surface by using rigid nanoparticles as a probe for constructing the integrated nanocomposites
Jiang et al. A novel method to prepare Au nanocage@ SiO2 nanoparticle
Regulacio Copper Sulfide-based Nanomaterials for Photothermal Applications

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181017

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6