KR101456174B1 - The glycosylated non-quinone geldanamycin derivatives having increased solubility or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for Heat shock protein(Hsp90) ATPase inhibitor containing same - Google Patents

The glycosylated non-quinone geldanamycin derivatives having increased solubility or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for Heat shock protein(Hsp90) ATPase inhibitor containing same Download PDF

Info

Publication number
KR101456174B1
KR101456174B1 KR1020110106457A KR20110106457A KR101456174B1 KR 101456174 B1 KR101456174 B1 KR 101456174B1 KR 1020110106457 A KR1020110106457 A KR 1020110106457A KR 20110106457 A KR20110106457 A KR 20110106457A KR 101456174 B1 KR101456174 B1 KR 101456174B1
Authority
KR
South Korea
Prior art keywords
cancer
quinone
geldanamycin
derivative
pharmaceutically acceptable
Prior art date
Application number
KR1020110106457A
Other languages
Korean (ko)
Other versions
KR20130042269A (en
Inventor
홍영수
김중수
오성주
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020110106457A priority Critical patent/KR101456174B1/en
Priority to PCT/KR2012/008560 priority patent/WO2013058582A2/en
Publication of KR20130042269A publication Critical patent/KR20130042269A/en
Application granted granted Critical
Publication of KR101456174B1 publication Critical patent/KR101456174B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D225/00Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom
    • C07D225/04Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D225/06Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/02Heterocyclic radicals containing only nitrogen as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 용해도가 증가된 비-퀴논 젤다나마이신 당전이 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이의 열충격 단백질 에이티피아제(ATPase) 활성 저해용 약학적 조성물에 관한 것이다. 본 발명에 의한 비-퀴논 젤다나마이신 당전이 유도체는 종래 비-퀴논 젤다나마이신 유도체에 글루코스를 도입됨으로써, 용해도가 상승하고, 생체 내 이용율을 높일 수 있을 뿐만 아니라, 에이티피아제 저해 활성이 우수하므로 항암제, 항생제, 항진균제, 항바이러스제, 면역억제제, 퇴행성 신경 질환 치료제 또는 항염증제로 유용하게 사용될 수 있다.The present invention relates to a non-quinone geldanamycin derivative having increased solubility, a pharmaceutically acceptable salt thereof, a process for preparing the same, and a pharmaceutical composition for inhibiting thermal shock protein aptase activity. The present non-quinone geldanamycin glycoconjugate derivative according to the present invention can be used as a non-quinone geldanamycin derivative since glucose is introduced into a non-quinone geldanamycin derivative to increase the solubility and the bioavailability, Anticancer agents, antibiotics, antifungal agents, antiviral agents, immunosuppressants, therapeutic agents for degenerative neurological diseases, or anti-inflammatory agents.

Description

용해도가 증가된 비―퀴논 젤다나마이신 당전이 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이의 열충격 단백질(Hsp90) 에이티피아제(ATPase) 활성 저해용 약학적 조성물{The glycosylated non-quinone geldanamycin derivatives having increased solubility or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for Heat shock protein(Hsp90) ATPase inhibitor containing same}FIELD OF THE INVENTION The present invention relates to a non-quinone geldanamycin derivative having increased solubility, a pharmaceutically acceptable salt thereof, a process for preparing the same, and a pharmaceutical composition for inhibiting ATPase activity of a heat shock protein (Hsp90) (Hsp90) ATPase inhibitor containing same or a pharmaceutically acceptable salt thereof,

본 발명은 용해도가 증가된 비-퀴논 젤다나마이신 당전이 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이의 열충격 단백질(Heat shock protein 90; Hsp90) 에이티피아제(ATPase) 활성 저해용 약학적 조성물에 관한 것이다.
The present invention relates to a non-quinone geldanamycin derivative having increased solubility or a pharmaceutically acceptable salt thereof, a process for preparing the same, and a method for inhibiting the heat shock protein 90 (Hsp90) ATPase activity ≪ / RTI >

젤다나마이신(geldanamycin)은 하기 화학식에 나타낸 바와 같이, 거대 환형 락탐구조의 안사마이신 계열의 항생제로서, 허비마이신(herbimycin), 레블라스타틴(reblastatin), 멕베신(mecbecin)과 같이, 3-아미노-5-하이드록시벤조산(3-amino-5-hydroxybenzoic acid, AHBA)을 전구체로 생합성이 되는 폴리케타이드(polyketide) 골격을 가진 화합물이다.Geldanamycin is an ansamycin-based antibiotic of the macrocyclic lactam structure, as shown in the following formula: 3-aminocarbamate, such as herbimycin, reblastatin, mecbecin, (3-amino-5-hydroxybenzoic acid, AHBA) as a precursor.

[화학식][Chemical Formula]

Figure 112011081365795-pat00001
Figure 112011081365795-pat00001

상기한 화합물들은 1970년에서 2000년 사이에 항생제, 항진균제, 항바이러스제 및 항암제로서 그 기능이 확인되었다.The above compounds were identified as antibiotics, antifungal agents, antiviral agents and anticancer agents between 1970 and 2000.

이와 같은 젤다나마이신의 생합성은 상기와 같이 AHBA를 출발 단위로 하여, 아세테이트, 프로피오네이트 및 글리콜레이트와 같은 골격연장 전구체의 연속적 부가에 의해 폴리케타이드 기본 골격을 형성한 후에, 기본골격을 수식하는 부가적인 반응을 거쳐서 생합성되며, 상기 젤다나마이신은 1994년에 Neckers 등에 의해 샤페론단백질(protein chaperone) 활성을 가진 열충격 단백질 90(Heat shock protein 90; Hsp90)의 ATP 결합자리에 결합하는 것이 확인되었다. Such biosynthesis of geldanamycin can be achieved by forming a polyketide basic skeleton by continuous addition of skeleton-extending precursors such as acetate, propionate and glycolate, starting from AHBA as a starting unit, And the geldanamycin was confirmed to bind to the ATP binding site of Heat shock protein 90 (Hsp90) having chaperone protein activity by Neckers et al. In 1994 .

이에, 종래 젤다나마이신이 암 발생단백질(oncogenic protein) 기능을 갖는 타이로신 키나아제(tyrosin kinase)의 효소활성을 억제하여 항암활성을 나타내는 것이 아니라, 타이로신 키나아제를 포함한 다양한 종류의 Hsp90의 대상단백질(client protein)의 구조적 안전성에 중요한 Hsp90의 기능을 저해함으로서 상기 대상 단백질들의 안정성이 저해되어 나타나는 약리효능인 것으로 확인되었다.Therefore, it has been proposed that geldanamycin does not exhibit anticancer activity by inhibiting the enzyme activity of tyrosine kinase having an oncogenic protein function, but may be a protein of a variety of Hsp90 including a tyrosine kinase ) Inhibits the function of Hsp90, which is important for the structural stability of the target proteins, and thus the stability of the proteins is inhibited.

이러한 Hsp90의 생리적 중요성 때문에 젤다나마이신의 화학 합성 유도체인 17-알릴 아미노 젤다나마이신(17-AAG) 와 17-DMAG가 같은 Hsp90 활성 저해제가 항암제로서 개발되고 있으나, 상기 젤다나마이신 유도체는 물에 잘 녹지 않는 문제점이 있다. Because of the physiological importance of Hsp90, Hsp90 activity inhibitors such as 17-allyl amino geldanamycin (17-AAG) and 17-DMAG, which are chemically synthesized derivatives of geldanamycin, have been developed as anticancer drugs. However, There is a problem that does not dissolve well.

또한 벤조 퀴논 환을 가진 젤다나마이신의 화학적 특징으로 인해 높은 간독성은 이들 화합물의 신약 개발에 걸림돌이 되고 있다. 젤다나마이신의 벤죠 퀴논 환의 탄소 19번은 생체 내에서 자발적 화학반응을 통해 여러 가지 불특정 단백질과의 공유 결합 가능성이 글루타치온(glutathione)의 결합력을 통해 확인된 바 있다 4. 이러한 반응성 높은 화학구조로 인해 간독성이 나타나는 것으로 알려져 있다. 이를 완화 혹은 제거하기 위해 생합성 유전자 변형 방법 등을 통해 비-퀴논 젤다나마이신 유도체를 개발하는 연구가 진행되었다. 이 산물로 대한민국 등록특허 제10-860502 등에서 비-퀴논 젤다나마이신 유도체가 보고된 바 있다. 상기 비-퀴논 젤다나마이신 유도체는 글루타치온(glutathione)의 결합력이 상실되거나 약화되어 간독성이 완화될 것으로 기대되지만 여전히 물에 잘 녹지 않는 문제점이 존재하였다.
Furthermore, due to the chemical characteristics of geldanamycin with benzoquinone rings, high hepatotoxicity is hampering the development of new drugs for these compounds. Carbon 19 in the benzoquinone ring of geldanamycin has been identified through the spontaneous chemical reaction in vivo and the possibility of covalent bonding with various unspecified proteins through the binding force of glutathione 4. Due to this highly reactive chemical structure, Is known to occur. In order to alleviate or eliminate it, studies have been conducted to develop a non-quinone geldanamycin derivative through a biosynthetic gene modification method. As this product, non-quinone geldanamycin derivatives have been reported in Korean Patent No. 10-860502. The non-quinone geldanamycin derivative is expected to lose the binding power of glutathione and to weaken hepatotoxicity, but still has a problem of being insoluble in water.

이에, 본 발명자들은 상기 문제점을 해결하고자 연구하던 중, 비-퀴논 젤다나마이신 유도체에 글루코스를 도입함으로써, 비-퀴논 젤다나마이신 유도체의 용해도가 상승하여 임상에 적용이 용이한 제제로 개발 가능성을 높일 수 있음을 확인함으로써 본 발명을 완성하였다.
Accordingly, the inventors of the present invention have conducted studies to solve the above problems. As a result, the non-quinone geldanamycin derivative is improved in solubility of the non-quinone geldanamycin derivative by introducing glucose into the non-quinone geldanamycin derivative. The present invention has been completed.

1. 대한민국 등록특허 제10-8605021. Korean Registered Patent No. 10-860502

1. DeBoer C. et al. J. Antibiotic., 23(9) 442-447, 1970; Omura, S. et al., J. Antibiotic. 32, 255-261, 1979; Muroi, M. et. al., J. Antibiotic. 33, 205-212, 1980; Neckers L. et al.,Invest. New Drugs 17, 361-373, 1999; Piper P.W., Curr. Opin. Investing Drugs 2(11) 1606-1610, 20011. DeBoer C. et al. J. Antibiotic., 23 (9) 442-447, 1970; Omura, S. et al., J. Antibiotic. 32, 255-261, 1979; Muroi, M. et. al., J. Antibiotic. 33, 205-212, 1980; Neckers L. et al., Invest. New Drugs 17, 361-373,1999; Piper P.W., Curr. Opin. Investing Drugs 2 (11) 1606-1610, 2001 2. Whitesell L. et. al. Proc. Natl. Acad. Sci. USA, 91, 8324-8328, 1994; Prodromou C. et. al. Cell , 90, 65-75, 19972. Whitesell L. et. al. Proc. Natl. Acad. Sci. USA, 91, 8324-8328, 1994; Prodromou C. et. al. Cell, 90, 65-75, 1997 3. Walter S. and Buchner J., Angew. Chem. Int. Ed. 41, 1098-1113, 2002; Piper P. W., Current opinion in Investigational Drugs 2, 1606-1610, 20013. Walter S. and Buchner J., Angew. Chem. Int. Ed. 41, 1098-1113, 2002; Piper P. W., Current Opinion in Investigational Drugs 2, 1606-1610, 2001 4. Cysyk, R. L. et al. Chem. Res. Toxicol. 19, 376-381, 2006; Maroney, A. C. et al. Biochemistry 45, 5678-5685, 2006.4. Cysyk, R. L. et al. Chem. Res. Toxicol. 19, 376-381, 2006; Maroney, A. C. et al. Biochemistry 45, 5678-5685, 2006. 5. Kim, W. et al. ChemBioChem. 8, 1491-1494, 2007; Kim, W. et al. ChemBioChem. 10, 1243-1251, 2009; Wu, C.-Z. et al. J. Antibiotic. 64, 461-463, 2011.5. Kim, W. et al. ChemBioChem. 8, 1491-1494, 2007; Kim, W. et al. ChemBioChem. 10, 1243-1251, 2009; Wu, C.-Z. et al. J. Antibiotic. 64, 461-463, 2011.

본 발명의 목적은 비-퀴논 젤다나마이신 당전이 유도체 또는 이의 약학적으로 허용가능한 염을 제공하는 것이다.It is an object of the present invention to provide a non-quinone geldanamycin derivative or a pharmaceutically acceptable salt thereof.

본 발명의 다른 목적은 상기 비-퀴논 젤다나마이신 당전이 유도체의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a process for preparing the non-quinone geldanamycin derivative.

본 발명의 또 다른 목적은 비-퀴논 젤다나마이신 당전이 유도체 및 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 열충격 단백질의 에이티피아제(ATPase) 활성 저해용 약학적 조성물을 제공하는 것이다.It is still another object of the present invention to provide a pharmaceutical composition for inhibiting the ATPase activity of a heat shock protein comprising a non-quinone geldanamycin derivative and a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명의 다른 목적은 비-퀴논 젤다나마이신 당전이 유도체 및 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 암 질환 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
It is another object of the present invention to provide a pharmaceutical composition for preventing or treating cancer diseases, which comprises a non-quinone geldanamycin derivative and a pharmaceutically acceptable salt thereof as an active ingredient.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1 내지 5로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 또는 이의 약학적으로 허용가능한 염을 제공한다.In order to achieve the above object, the present invention provides a non-quinone geldanamycin glycoside derivative represented by the following general formulas 1 to 5 or a pharmaceutically acceptable salt thereof.

[화학식 1][Chemical Formula 1]

Figure 112011081365795-pat00002
Figure 112011081365795-pat00002

[화학식 2](2)

Figure 112011081365795-pat00003
Figure 112011081365795-pat00003

[화학식 3](3)

Figure 112011081365795-pat00004
Figure 112011081365795-pat00004

[화학식 4][Chemical Formula 4]

Figure 112011081365795-pat00005
Figure 112011081365795-pat00005

[화학식 5][Chemical Formula 5]

Figure 112011081365795-pat00006
Figure 112011081365795-pat00006

또한, 본 발명은In addition,

당전이 효소와, 기질로써 비-퀴논 젤다나마이신 유도체를 사용하여 당전이 반응을 수행하여 비-퀴논 젤다나마이신 당전이 유도체를 제조하는 단계를 포함하는 용해도가 증가된 상기 비-퀴논 젤다나마이신 당전이 유도체의 제조방법을 제공한다. Quinone geldanamycin having an increased solubility, comprising the steps of: preparing a non-quinone geldanamycin derivative by carrying out a glycosylation reaction using an enzyme of the present invention and a non-quinone geldanamycin derivative as a substrate, To provide a method for preparing the derivative.

나아가, 본 발명은 비-퀴논 젤다나마이신 당전이 유도체 및 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 열충격 단백질의 에이티피아제(ATPase) 활성 저해용 약학적 조성물을 제공한다.Furthermore, the present invention provides a pharmaceutical composition for inhibiting the ATPase activity of a heat shock protein comprising a non-quinone geldanamycin derivative and a pharmaceutically acceptable salt thereof as an active ingredient.

또한, 본 발명은 비-퀴논 젤다나마이신 당전이 유도체 및 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 암 질환 예방 또는 치료용 약학적 조성물을 제공한다.
The present invention also provides a pharmaceutical composition for the prevention or treatment of cancer diseases, which comprises a non-quinone geldanamycin derivative and a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명에 의한 비-퀴논 젤다나마이신 당전이 유도체는 종래 비-퀴논 젤다나마이신 유도체에 글루코스를 도입됨으로써, 용해도가 상승하고, 생체 내 이용율을 높일 수 있을 뿐만 아니라, 열충격 단백질의 에이티피아제 저해 활성이 우수하므로 항암제, 항생제, 항진균제, 항바이러스제, 면역억제제, 퇴행성 신경 질환 치료제 또는 항염증제로 유용하게 사용될 수 있다.
The present non-quinone geldanamycin glycoconjugate derivative according to the present invention can increase the solubility and bioavailability by introducing glucose into the non-quinone geldanamycin derivative, It can be effectively used as an anticancer agent, an antibiotic, an antifungal agent, an antiviral agent, an immunosuppressant agent, a therapeutic agent for degenerative nerve disease or an anti-inflammatory agent.

도 1은 본 발명의 실시예 1의 화합물의 LC/MS 분석 데이터를 나타내는 도면이다.
도 2는 본 발명의 실시예 2의 화합물의 LC/MS 분석 데이터를 나타내는 도면이다.
도 3은 본 발명의 실시예 3의 화합물의 LC/MS 분석 데이터를 나타내는 도면이다.
도 4는 본 발명의 실시예 4의 화합물의 LC/MS 분석 데이터를 나타내는 도면이다.
도 5는 본 발명의 실시예 5의 화합물의 LC/MS 분석 데이터를 나타내는 도면이다.
도 6은 본 발명의 실시예에 따른 화합물의 열충격 단백질의 발현 저해 효과를 측정한 도면이다.
도 7은 본 발명의 실시예에 따른 화합물의 용해도를 비교하기 위한 HPLC 분석 데이터를 나타내는 도면이다.
1 is a diagram showing LC / MS analysis data of the compound of Example 1 of the present invention.
2 is a diagram showing LC / MS analysis data of the compound of Example 2 of the present invention.
3 is a diagram showing LC / MS analysis data of the compound of Example 3 of the present invention.
4 is a diagram showing LC / MS analysis data of the compound of Example 4 of the present invention.
5 shows LC / MS analysis data of the compound of Example 5 of the present invention.
FIG. 6 is a graph showing the inhibitory effect of a compound according to an embodiment of the present invention on the expression of heat shock proteins. FIG.
7 is a graph showing HPLC analysis data for comparing the solubility of a compound according to an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1 내지 5로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 또는 이의 약학적으로 허용가능한 염을 제공한다.The present invention provides a non-quinone geldanamycin glycoside derivative represented by the following general formulas 1 to 5, or a pharmaceutically acceptable salt thereof.

Figure 112011081365795-pat00007
Figure 112011081365795-pat00007

Figure 112011081365795-pat00008
Figure 112011081365795-pat00008

Figure 112011081365795-pat00009
Figure 112011081365795-pat00009

Figure 112011081365795-pat00010
Figure 112011081365795-pat00010

Figure 112011081365795-pat00011
Figure 112011081365795-pat00011

본 발명은 상기 화학식 1 내지 5로 표시되는 비-퀴논 젤다나마이신 당전이 유도체뿐만 아니라, 이의 약학적으로 허용되는 염, 이로부터 제조될 수 있는 가능한 용매화물, 수화물, 라세미체, 또는 입체이성질체를 모두 포함한다.
The present invention also relates to the non-quinone geldanamycin glycoconjugate derivatives represented by the above general formulas (1) to (5), as well as their pharmaceutically acceptable salts, possible solvates, hydrates, racemates or stereoisomers .

본 발명의 화학식 1 내지 5로 표시되는 비-퀴논 젤다나마이신 당전이 유도체은 약학적으로 허용 가능한 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산 부가염이 유용하다. 산 부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요드화수소산, 아질산 또는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산으로부터 얻는다. 이러한 약학적으로 무독한 염류로는 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, 하이드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트를 포함한다.The non-quinone geldanamycin derivative represented by the general formulas (1) to (5) of the present invention can be used in the form of a pharmaceutically acceptable salt. Examples of the salt include pharmaceutically acceptable acid addition salts formed by free acid Salts are useful. Acid addition salts include those derived from inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid, and aliphatic mono- and dicarboxylates, phenyl-substituted alkanoates, hydroxyalkanoates, Dioleate, aromatic acid, aliphatic and aromatic sulfonic acids. Such pharmaceutically innocuous salts include, but are not limited to, sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate chloride, bromide, Butyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, succinate, maleic anhydride, maleic anhydride, , Sebacate, fumarate, maleate, butyne-1,4-dioate, hexane-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, Methoxybenzoate, phthalate, terephthalate, benzene sulfonate, toluene sulfonate, chlorobenzene sulfide Sulfonate, methanesulfonate, propanesulfonate, naphthalene-1-sulphonate, naphthalene-1-sulphonate, , Naphthalene-2-sulfonate or mandelate.

본 발명에 따른 산 부가염은 통상의 방법, 예를 들면, 화학식 1 내지 5로 표시되는 비-퀴논 신젤다나마이신 당전이 유도체를 과량의 산 수용액 중에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들면 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조할 수 있다.The acid addition salt according to the present invention can be produced by a conventional method, for example, by dissolving the derivative of the non-quinone cinzincanamic acid derivative represented by Chemical Formulas 1 to 5 in an excess amount of an acid aqueous solution, For example, methanol, ethanol, acetone or acetonitrile.

동량의 화학식 1 내지 5로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 및 산 수용액 또는 알코올을 가열하고, 이어서 이 혼합물을 증발시켜서 건조하거나 또는 석출된 염을 흡입 여과시켜 제조할 수도 있다.The same amount of the non-quinone geldanamycin derivative represented by Chemical Formulas 1 to 5 and an acid aqueous solution or alcohol may be heated, followed by evaporating the mixture, followed by drying or precipitation of the precipitated salt by suction filtration.

또한, 염기를 사용하여 약학적으로 허용 가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속 염은 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비 용해 화합물 염을 여과하고, 여액을 증발, 건조시켜 얻는다. 이때, 금속염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다.
In addition, bases can be used to make pharmaceutically acceptable metal salts. The alkali metal or alkaline earth metal salt is obtained, for example, by dissolving the compound in an excess amount of an alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the salt of the undissolved compound, and evaporating and drying the filtrate. At this time, it is preferable for the metal salt to produce sodium, potassium or calcium salt.

상기 비-퀴논 젤다나마이신 당전이 유도체는 용해도가 증가하고(실험예 4 참조), 열충격 단백질 에이티피아제 저해 활성이 증가(실험예 1 참조)하는 효과가 있다.
The non-quinone geldanamycin derivative has an increased solubility (see Experimental Example 4) and an increased activity of the thermal shock proteinaceptase inhibitor (see Experimental Example 1).

또한, 본 발명은In addition,

당전이 효소와, 기질로써 비-퀴논 젤다나마이신 유도체를 사용하여 당전이 반응을 수행하여 비-퀴논 젤다나마이신 당전이 유도체를 제조하는 단계를 포함하는 상기 비-퀴논 젤다나마이신 당전이 유도체의 제조방법을 제공한다.
Quinone geldanamycin derivative, which comprises the step of preparing a non-quinone geldanamycin derivative by carrying out a glycosylation reaction using an enzyme of the present invention and a non-quinone geldanamycin derivative as a substrate, And a manufacturing method thereof.

본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체의 제조방법은 당전이 효소를 분리하는 단계를 더 포함할 수 있고, 이때, 상기 당전이 효소는 대장균으로부터 당전이 효소를 분리할 수 있다.The method for preparing a non-quinone geldanamycin glycoconjugate derivative according to the present invention may further include separating the glycosyltransferase from the Escherichia coli, wherein the glycosyltransferase can be isolated from Escherichia coli.

상기 당전이 효소는 바실러스 리체포르미스로부터 유래한 UDP-당전이 효소이고, 구체적으로, 상기 바실러스 리체포르미스 유래한 UDP-당전이 효소를 대장균 발현 벡터에 크론하고 N 말단에 6개의 아미노산 히스티딘을 포함한 상태로 발현하여 UDP-당전이 효소를 니켈-NTA 친화성 컬럼 크로마토그래피를 이용하여 분리하여 사용할 수 있다.
Specifically, the UDP-tagged enzyme derived from Bacillus lentorformis is cloned into an Escherichia coli expression vector, and 6 amino acid histines at the N-terminus are added to the Escherichia coli expression vector. And the UDP-tagged enzyme can be separated and used by using nickel-NTA affinity column chromatography.

상기 비-퀴논 젤다나마이신 당전이 유도체의 제조방법은 당전이 효소와, 기질로써 비-퀴논 젤다나마이신 유도체를 사용하여 당전이 반응을 수행하여 비-퀴논 젤다나마이신 당전이 유도체를 제조할 수 있고, 구체적으로 당전이 반응은 UDP-당전이 효소와 UDP-글루코즈를 첨가한 후, 25-35 ℃에서 11-13시간 동안 반응을 수행할 수 있고, pH 6.0-9.0의 환경에서 수행될 수 있다.The non-quinone geldanamycin glycosylation derivative can be prepared by subjecting glycosaminoglycans to a glycosylation reaction using a glycosidase and a non-quinone geldanamycin derivative as a substrate. Specifically, the sugar chain reaction can be carried out at 25-35 ° C for 11-13 hours after the addition of the UDP-tagged enzyme and UDP-glucose, and can be performed in an environment of pH 6.0-9.0 .

이때, 사용가능한 비-퀴논 젤다나마이신 유도체는 하기 화학식 A, B 또는 C로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종이다.At this time, the non-quinone geldanamycin derivatives which can be used are one kind selected from the group consisting of the compounds represented by the following formulas (A), (B) and (C).

[화학식 A](A)

Figure 112011081365795-pat00012
Figure 112011081365795-pat00012

[화학식 B][Chemical Formula B]

Figure 112011081365795-pat00013
Figure 112011081365795-pat00013

[화학식 C]≪ RTI ID = 0.0 &

Figure 112011081365795-pat00014

Figure 112011081365795-pat00014

나아가, 본 발명은 비-퀴논 젤다나마이신 당전이 유도체 및 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 열충격 단백질의 에이티피아제(ATPase) 활성 저해용 약학적 조성물을 제공한다.Furthermore, the present invention provides a pharmaceutical composition for inhibiting the ATPase activity of a heat shock protein comprising a non-quinone geldanamycin derivative and a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체는 열충격 단백질의 에이티피아제(ATPase) 저해 활성(IC50)이 실시예 1의 화학식 1로 표시되는 화합물의 경우 0.75 μM, 실시예 4의 화학식 4로 표시되는 화합물의 경우 2.14 μM로서 종래 비-퀴논 젤다나마이신보다 우수한 ATPase 저해활성을 나타내었다. 특히, 당화된 화합물이 원래 기질로 사용한 비-퀴논 젤다나마이신 유도체에 비해 유사한 ATPase 저해활성을 나타내는 것으로 확인되었다(실험예 1 참조).(ATPase) inhibitory activity (IC 50 ) of the heat shock protein according to the present invention is 0.75 μM in the case of the compound represented by the formula (1) of Example 1, 4 Was 2.14 [mu] M, which is superior to the conventional non-quinone geldanamycin. In particular, it was confirmed that the glycated compound exhibited similar ATPase inhibitory activity as that of the non-quinone geldanamycin derivative used as the original substrate (see Experimental Example 1).

이에, 상기 약학적 조성물은 열충격 단백질의 에이티피아제(ATPase) 활성을 저해함으로서, 항생제, 항진균제, 항바이러스제, 면역억제제, 퇴행성 신경 질환 치료제 또는 항염증제로 사용될 수 있다.
Accordingly, the pharmaceutical composition can be used as an antibiotic, an antifungal agent, an antiviral agent, an immunosuppressant, a therapeutic agent for degenerative neurological disease or an anti-inflammatory agent by inhibiting the ATPase activity of heat shock protein.

또한, 본 발명은 비-퀴논 젤다나마이신 당전이 유도체 및 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 암 질환 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for the prevention or treatment of cancer diseases, which comprises a non-quinone geldanamycin derivative and a pharmaceutically acceptable salt thereof as an active ingredient.

본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체는 유방암 세포주에서 대조군으로 사용된 대한민국 등록특허 제10-860502; WK-88-2의 화학식 A로 표시되는 화합물보다 IC50값이 낮은 것으로 확인되었으나, IC50값이 우수하므로 항암제에 유용하게 사용될 수 있다(실험예 2 참조).The non-quinone geldanamycin glycoconjugate derivative according to the present invention is used as a control in Korean breast cancer cell lines, Korean Patent Registration No. 10-860502; It was confirmed that the IC 50 value was lower than that of the compound represented by the chemical formula A of WK-88-2. However, since the IC 50 value is excellent, it can be effectively used for an anticancer drug (see Experimental Example 2).

상기 암 질환은 유방암, 간암, 위암, 결장암, 골암, 췌장암, 두부 또는 경부암, 자궁암, 난소암, 직장암, 식도암, 소장암, 항문부근암, 결장암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병, 전립선암, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종 또는 중추신경계 종양이다.
The cancer diseases may include breast cancer, liver cancer, stomach cancer, colon cancer, bone cancer, pancreatic cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, esophageal cancer, small intestine cancer, anorectal cancer, colon cancer, fallopian tube carcinoma, endometrial carcinoma, Carcinoma, vulvar carcinoma, Hodgkin's disease, prostate cancer, bladder cancer, kidney cancer, ureter cancer, renal cell carcinoma, renal pelvic carcinoma or central nervous system tumor.

이하, 본 발명을 하기 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the following examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시한 것일 뿐, 이에 한정하지 않는다.
However, the following examples and experimental examples are illustrative of the present invention, but the present invention is not limited thereto.

<< 실시예Example 1 내지 3> 비-퀴논  1 to 3> non-quinone 젤다나마이신Zeldanamycin 당전이The party 유도체의 제조-1 Preparation of derivative 1

당전이The party 효소의 분리 Isolation of enzymes

바실러스 리체니포르미스(Bacilluslicheniformis)로부터유래한당전이 효소인 UDP-당전이효소(glycosyltransferase)(BL-C)를 발현하는 대장균에서 히스티딘이 표지된(His-tagged) 효소를 니켈-NTA 친화성 컬럼 크로마토그래피를 통해 분리하였다. 단백질의 과생산은 과발현 플라스미드(plasmid)를 가진 대장균 BL21 (DE3)을 50 ㎍/㎖ 농도의 카나마이신(kanamycin)과 클로람페니콜(chloramphenicol)을 포함하는 5 ㎖ LB(Luria-Bertani) 액체 배지에서 약 17시간 동안 배양하였다. 이를 30 ㎖의 새로운 LB 배지를 사용하여 1/60 희석하였고, 이를 2~3시간 더 배양하여 UV 스펙트럼 600 ㎚에서 OD(optical density)값이 약 0.5~0.6이 되도록 하였다. 이때 10분간 얼음에 두었다가 이소프로필 β-D-티오글루코피라노시드(isopropyl β-D-thioglucopyranoside, IPTG)를 최종 농도가 1 mM이 되도록 첨가하여 과발현을 유도하고 20 ℃에서 17시간을 더 배양하였다. 이렇게 배양된 대장균을 원심분리(3500 rpm, 30분)하여 수득한 후, 완충액(100 mM Sodium phosphate solution (pH7.4), 20 mM KCl, 6 mM MgCl2, 10 mM imidazole) 3 ㎖에 대장균을 현탁하였다. 초음파 분쇄기를 이용하여 대장균 세포를 분쇄한 후, 원심분리(15,000 rpm, 30분)하고 상기 분쇄액을 SDS-PAGE하여 단백질 생산을 확인하였다. 상기 분쇄 상층액은 빈 컬럼(column)에 0.5 ㎖의 Ni-NTA 레진(resin)과 섞어 4 ℃에서 60분간 부드럽게 흔들어 준 후, 3 ㎖의 세척 완충액(wash buffer; 100 mM Sodium phosphate solution (pH7.4), 20 mM KCl, 6 mM MgCl2, 20 mM imidazole)을 세 번 처리하고, 마지막으로 용출 완충액(Elution buffer; 100 mM Sodium phosphate solution (pH7.4), 20 mM KCl, 6 mM MgCl2, 250 mM imidazole)을 0.5 ㎖씩 다섯 번 처리한 후, 각각의 분획을 SDS-PAGE로 확인하여 당전이 효소가 분리되었음을 확인하였다.
The His-tagged enzyme in Escherichia coli expressing UDP-glycosyltransferase (BL-C), a peritonezyme derived from Bacillus licheniformis, was analyzed by nickel-NTA affinity column chromatography . Over-production of the protein was achieved by incubating E. coli BL21 (DE3) with an overexpressing plasmid in a 5 ml LB (Luria-Bertani) liquid medium containing kanamycin and chloramphenicol at a concentration of 50 μg / ml for about 17 hours Lt; / RTI &gt; It was diluted 1/60 with 30 ml of fresh LB medium and cultured for 2 to 3 hours to obtain an OD (optical density) value of about 0.5 to 0.6 at a UV spectrum of 600 nm. At this time, the cells were placed on ice for 10 minutes, and isopropyl β-D-thioglucopyranoside (IPTG) was added to a final concentration of 1 mM to induce overexpression, followed by further incubation at 20 ° C. for 17 hours . Escherichia coli thus obtained was obtained by centrifugation (3500 rpm, 30 minutes) and then E. coli was added to 3 ml of a buffer (100 mM sodium phosphate solution (pH 7.4), 20 mM KCl, 6 mM MgCl 2 , 10 mM imidazole) Lt; / RTI &gt; Escherichia coli cells were pulverized using an ultrasonic pulverizer, followed by centrifugation (15,000 rpm, 30 minutes), and the pulverized liquid was subjected to SDS-PAGE to confirm protein production. The above crushed supernatant was mixed with 0.5 ml of Ni-NTA resin in an empty column, gently shaken at 4 ° C for 60 minutes, and then washed with 3 ml of wash buffer (100 mM sodium phosphate solution; 4), 20 mM KCl, 6 mM MgCl 2, 20 mM imidazole) the process three times, and finally eluting buffer (elution buffer; 100 mM Sodium phosphate solution (pH7.4), 20 mM KCl, 6 mM MgCl 2, 250 mM imidazole) was treated five times with 0.5 ml each. After confirming each fraction by SDS-PAGE, the enzyme was isolated.

당화Glycation 반응 reaction

상기 단계 1에서 분리된 당전이 효소의 기질로서, 대한민국 등록특허 제10-860502호에 개시되어있는 화합물 중, 하기 화학식 A로 표시되는 벤젠환을 가진화합물(비-퀴논 젤다나마이신 유도체:WK-88-2)을 사용하였다.Among the compounds disclosed in Korean Patent No. 10-860502, which is a substrate of the sugar-transferred enzyme separated in the step 1, a compound having a benzene ring represented by the following formula A (non-quinone geldanamycin derivative: WK- 88-2).

당전이 반응은 25 μM의 Tris-HCl (pH 8.0) 용액 1 ml에 효소 1 mg, UDP-글루코즈 2 mM, 1 μM MgCl2 및 하기 화학식 A로 표시되는 비-퀴논(non-quinone) 젤다나마이신 유도체를 1 mg 첨가하여 30 ℃에서 12시간 반응을 수행하였다. 반응이 종결된 후, 상기 반응액을 일차적으로 에틸아세테이트(EtOAc)로 추출하고, 물층을 냉동건조기에서 24시간 건조한 후, 소량의 메탄올에 녹인다. 이들 추출액과 메탄올 농축액을 MeCN:H2O(0.05 % TFA)=10:90 용매를 시작으로 10분마다 10%씩 단계적으로 MeCN을 증가시키며 분취 HPLC(Waters Delta Prep 3000 system, Waters사, 미국; [YMC-Jsphere ODS-H80 250 X 10 mm i.d., 3 ㎖/min])를 수행하였다. 그 결과, 하기 화학식 1로 표시되는 화합물 20 mg, 화학식 2로 표시되는 화합물 6.7 mg, 및 화학식 3으로 표시되는 화합물 6.2 mg을 얻었다.This reaction was carried out by adding 1 mg of enzyme, 2 mM of UDP-glucose, 1 μM of MgCl 2 and a non-quinone geldanamycin derivative represented by the following formula A to 1 ml of 25 μM Tris-HCl (pH 8.0) Was added and the reaction was carried out at 30 ° C for 12 hours. After the reaction is completed, the reaction solution is first extracted with ethyl acetate (EtOAc), and the water layer is dried in a freeze drier for 24 hours and then dissolved in a small amount of methanol. These extracts and methanol concentrate were separated by preparative HPLC (Waters Delta Prep 3000 system, Waters, USA; USA) with increasing MeCN stepwise in 10% increments every 10 min starting from MeCN: H 2 O (0.05% TFA) = 10: [YMC-Jsphere ODS-H80 250 X 10 mm id, 3 ml / min]). As a result, 20 mg of the compound represented by the formula (1), 6.7 mg of the compound represented by the formula (2) and 6.2 mg of the compound represented by the formula (3) were obtained.

[화학식 A](A)

Figure 112011081365795-pat00015

Figure 112011081365795-pat00015

분석 결과Analysis

상기 단계 2에서 분리된 화합물을 동정하기 위해, 하기 실험을 수행하였다.In order to identify the compound isolated in step 2, the following experiment was conducted.

본 발명에 따른 화합물의 용융점 측정은 일렉트로써말(Electrothermal)9100 장비(Electrothermal사, 영국)를 사용하였고, 비회전(Specific rotation)([α]D 25)은 JASCO DIP-370 폴러리메터(JASCO, 일본)를 사용하여 측정하였으며, UV는 Shimadzu UV-1601 스펙트로포토메터(Shimadzu, 일본)를 사용하여 측정하였다. ESI-MS는 Finnigan LCQ Advantage Max 매스 스펙트로포토메터(Thermo사, 미국)로 수행하여 얻었으며, HRESI-MS 데이터는 한국기초과학지원연구원에 의뢰하여 얻었으며, LC/MS 분석 데이터는Shimadzu LCMS-IT-TOF 매스 스펙트로포토메터(Shimadzu사, 일본)로 측정하여 분석결과를 얻었다. 그 결과를 하기 표 1에 나타내었다.The specific rotation ([?] D 25 ) was measured using a JASCO DIP-370 polarimeter (JASCO, Inc.) using an Electrothermal 9100 instrument (Electrothermal, UK) Japan), and UV was measured using a Shimadzu UV-1601 spectrophotometer (Shimadzu, Japan). ESI-MS was obtained from Finnigan LCQ Advantage Max Mass Spectrophotometer (Thermo, USA). HRESI-MS data were obtained from Korea Basic Science Research Institute and LC / MS analysis data were obtained from Shimadzu LCMS-IT -TOF mass spectrophotometer (Shimadzu Corp., Japan). The results are shown in Table 1 below.

이때, LC/MS 분석에서 글루코스 (glucose)가 첨가된 예상 화합물의 질량 피크가 관찰되는지를 Xcalibur software(version 1.3 SP2, Thermo Electron)프로그램을 이용하여 기본적으로 생산되는 백그라운드(back ground) 피크를 Metabolite ID 2.0 software(Thermo Electron Co., USA) 프로그램으로 제거한 후 확인하였다. 그 결과, 본 발명에 따른 화학식 1 내지 3으로 표시되는 화합물이 당화 전의 화학식 A로 표시되는 화합물보다 분자량이 글루코스가 첨가된 형태의 분자량이 증가됨이 확인되었다. 그 결과를 하기 표 1 및 도 1 내지 3에 나타내었다.
At this time, whether the mass peak of the predicted compound to which glucose was added was observed in the LC / MS analysis was measured using the Xalibur software (version 1.3 SP2, Thermo Electron) program to measure the background ground peak produced by the Metabolite ID 2.0 software (Thermo Electron Co., USA). As a result, it was confirmed that the molecular weight of the compound represented by formulas (1) to (3) according to the present invention was higher than that of the compound represented by formula (A) before saccharification. The results are shown in the following Table 1 and Figs.

구분division 구조rescue 분석 데이터Analytical data


실시예 1
(화학식 1)



Example 1
(Formula 1)

Figure 112011081365795-pat00016
Figure 112011081365795-pat00016

백색분말;
[α]18 D:+49.98(c, 0.10, MeOH);
UV(MeOH); λmax(log ε): 206(4.18), 256(3.54);
HR-ESIMS(m/z): 703.3411[M+Na]+, 측정값 703.3412(C34H52N2O12)

White powder;
[α] 18 D: +49.98 ( c, 0.10, MeOH);
UV (MeOH); ? max (log?): 206 (4.18), 256 (3.54);
HR-ESIMS (m / z): 703.3411 [M + Na] + , measured value 703.3412 (C 34 H 52 N 2 O 12 )



실시예 2
(화학식 2)



Example 2
(2)
Figure 112011081365795-pat00017
Figure 112011081365795-pat00017

백색분말;
[α]18 D: -6.46(c, 0.10, MeOH);
UV (MeOH) λmax (log ε): 256(3.39), 204(4.09);
HR-ESIMS(m/z): 865.3945[M+Na]+, 측정값; 865.3941(C40H62N2O17)

White powder;
[α] 18 D: -6.46 ( c, 0.10, MeOH);
UV (MeOH)? Max (log?): 256 (3.39), 204 (4.09);
HR-ESIMS (m / z): 865.3945 [M + Na] &lt; + &gt;, measured value; 865.3941 (C 40 H62N 2 O 17 )



실시예 3
(화학식 3)



Example 3
(Formula 3)
Figure 112011081365795-pat00018
Figure 112011081365795-pat00018


백색분말;
[α]18 D:-4.62(c, 0.10, MeOH);
UV(MeOH) λmax(log ε): 259(3.37), 204(4.09);
HR-ESIMS(m/z): 703.3411[M+Na]+, 측정값; 703.3412(C34H52N2O12)


White powder;
[α] 18 D: -4.62 ( c, 0.10, MeOH);
UV (MeOH) [lambda] max (log [epsilon]): 259 (3.37), 204 (4.09);
HR-ESIMS (m / z): 703.3411 [M + Na] &lt; + &gt;, measured value; 703.3412 (C 34 H 52 N 2 O 12)

<< 실시예Example 4> 비-퀴논  4> Non-quinone 젤다나마이신Zeldanamycin 당전이The party 유도체의 제조-2 Preparation of derivative-2

상기 실시예 1 내지 3에서 대한민국 등록특허 제10-860502호에 개시되어있는 화합물 중, 하기 화학식 A로 표시되는 벤젠환을가진화합물(비-퀴논 젤다나마이신 유도체:WK-88-2)을 사용하는 대신 화학식 B로 표시되는 화합물(WK-88-1)을 사용하는 것을 제외하고는 동일한 방법을 수행하여 하기 화학식 4로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 화합물을 6 mg 얻었다. 그 결과를 하기 표 2 및 도 4에 나타내었다.Among the compounds disclosed in Korean Patent No. 10-860502 in Examples 1 to 3, a compound having a benzene ring (non-quinone geldanamycin derivative: WK-88-2) represented by the following formula A was used Quinone geldanamycin derivative derivative represented by the following formula (4) was obtained by carrying out the same procedure as the above except that the compound (WK-88-1) represented by the formula (B) was used instead of the compound represented by the formula The results are shown in Table 2 and FIG.

[화학식 B][Chemical Formula B]

Figure 112011081365795-pat00019

Figure 112011081365795-pat00019

화학식The 구조rescue 분석 데이터Analytical data



화학식 4




Formula 4

Figure 112011081365795-pat00020
Figure 112011081365795-pat00020


백색분말;
[α]18 D:-3.24(c, 0.10, MeOH);
UV (MeOH) λmax (log ε): 205(3.99), 251(3.33);
HR-ESIMS(m/z): 687.3469[M+Na]+, 측정값; 687.3463(C34H52N2O11)


White powder;
[α] 18 D: -3.24 ( c, 0.10, MeOH);
UV (MeOH) [lambda] max (log [epsilon]): 205 (3.99), 251 (3.33);
HR-ESIMS (m / z): 687.3469 [M + Na] &lt; + &gt;, measured value; 687.3463 (C 34 H 52 N 2 O 11)

<< 실시예Example 5> 비-퀴논 5> Non-quinone 젤다나마이신Zeldanamycin 당전이The party 유도체의 제조-3 Preparation of derivative-3

상기 실시예 1 내지 3에서 대한민국 등록특허 제10-860502호에 개시되어있는 화합물 중, 하기 화학식 A로 표시되는 벤젠환을가진화합물(비-퀴논 젤다나마이신 유도체:WK-88-2)을 사용하는 대신 하기 화학식 C로 표시되는 화합물(17-디메톡시-레블라스타인)을 사용하는 것을 제외하고는 동일한 방법을 수행하여 하기 화학식 5로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 화합물을 2.3 mg 얻었다. 그 결과를 하기 표 3 및 도 5에 나타내었다.Among the compounds disclosed in Korean Patent No. 10-860502 in Examples 1 to 3, a compound having a benzene ring (non-quinone geldanamycin derivative: WK-88-2) represented by the following formula A was used Quinone geldanamycin derivative derivative represented by the following formula (5) was obtained by carrying out the same process except that the compound represented by the following formula (C) (17-dimethoxy-levastatin) was used instead of the compound . The results are shown in Table 3 and FIG.

[화학식 C]&Lt; RTI ID = 0.0 &

Figure 112011081365795-pat00021

Figure 112011081365795-pat00021

화학식The 구조rescue 분석 데이터Analytical data



화학식 5




Formula 5

Figure 112011081365795-pat00022
Figure 112011081365795-pat00022


백색분말;
[α]18 D: +24.5(c, 0.10, MeOH);
UV(MeOH) λmax(log ε): 206(4.68);
HR-ESIMS(m/z) 703.3410[M+Na]+, 측정값; 703.3412(C34H52N2O12)


White powder;
[α] 18 D: +24.5 ( c, 0.10, MeOH);
UV (MeOH) [lambda] max (log [epsilon]): 206 (4.68);
HR-ESIMS (m / z) 703.3410 [M + Na] &lt; + &gt;, measured value; 703.3412 (C 34 H 52 N 2 O 12)

<< 실험예Experimental Example 1>  1> 열충격Thermal shock 단백질의  Protein 에이티피아제Atopy (( ATPaseATPase ) 저해 활성 측정) Inhibition activity measurement

본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체의 ATPase 저해 활성 측정하기 위하여 하기 실험을 수행하였다.
The following experiment was conducted to measure the ATPase inhibitory activity of the derivative of non-quinone geldanamycin glycoconjugate according to the present invention.

단계 1: Step 1: 열충격Thermal shock 단백질의 분리정제 Separation of protein purification

먼저, 효모의 열충격 단백질(Hsp90)을 분리정제하기 위해 하기와 같이 수행하였다. Hsp90 단백질을 암호화하는 유전자를 클로닝하기 위해 NdeI 제한효소 부위를 도입한 5'-CAT ATG GCT AGT GAA ACT TTT GAA TTT CAA G-3'(정방향 프라이머) 및 SalI 제한효소 부위를 도입한 5'-GCT GAC ATC TAC CTC TTC CAT TTC GGT GTC AG-3'(역방향 프라이머)으로 중합반응 후 pET-28a(+) 벡터에 클로닝하였다. 상기 제작된 벡터를 대장균 로제타(Rosetta)(DE3)에 형질전환하여 발현시켰다. First, the heat shock protein (Hsp90) of yeast was separated and purified as follows. In order to clone the gene coding for a Hsp90 protein by introducing a Nde I restriction site 5'-CAT ATG GCT AGT GAA ACT TTT GAA TTT CAA G-3 ' introducing a 5 (forward primer) and a Sal I restriction site " -GCT GAC ATC TAC CTC TTC CAT TTC GGT GTC AG-3 '(reverse primer) and cloned into the pET-28a (+) vector. The prepared vector was transformed into Escherichia coli Rosetta (DE3) and expressed.

단백질의 과생산은 과발현 플라스미드(plasmid)를 가진 대장균 Rosetta (DE3)을 50 ㎍/㎖ 농도의 카나마이신(kanamycin)과 클로람페니콜(chloramphenicol)을 포함하는 5 ㎖ LB(Luria-Bertani) 액체 배지에서 약 17시간 동안 배양하였다. 이를 30 ㎖의 새로운 LB 배지를 사용하여 1/60 희석하였고, 이를 2~3시간 더 배양하여 UV 스펙트럼 600 ㎚에서 OD(optical density)값이 약 0.5~0.6이 되도록 하였다. 이때 10분간 얼음에 두었다가 이소프로필 β-D-티오글루코피라노시드(isopropyl β-D-thioglucopyranoside, IPTG)를 최종 농도가 1 mM이 되도록 첨가하여 과발현을 유도하고 20 ℃에서 17시간을 더 배양하였다. 이렇게 배양된 대장균을 원심분리(3500 rpm, 30분)하여 수득한 후, 완충액(100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl2, imidazole 10 mM, pH7.4) 3 ㎖에 대장균을 현탁하였다. 초음파 분쇄기를 이용하여 대장균 세포를 분쇄한 후, 원심분리(15,000 rpm, 30분)하고 상기 분쇄액을 SDS-PAGE하여 단백질 생산을 확인하였다. 상기 분쇄 상층액은 빈 컬럼(column)에 0.5 ㎖의 Ni-NTA 레진(resin)과 섞어 4 ℃에서 60분간 부드럽게 흔들어 준 후, 3 ㎖의 세척 완충액(wash buffer, 100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl2, imidazole 20 mM, pH 7.4)을 세 번 처리하고, 마지막으로 용출 완충액(Elution buffer, 100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl2, imidazole 250 mM, pH 7.4)을 0.5 ㎖씩 다섯 번 처리한 후, 각각의 분획을 SDS-PAGE로 확인하여 Hsp90 단백질이 분리되었음을 확인하였다.
Overproduction of the protein was carried out in a 5 ml LB (Luria-Bertani) liquid medium containing kanamycin and chloramphenicol at a concentration of 50 μg / ml for about 17 hours Lt; / RTI &gt; It was diluted 1/60 with 30 ml of fresh LB medium and cultured for 2 to 3 hours to obtain an OD (optical density) value of about 0.5 to 0.6 at a UV spectrum of 600 nm. At this time, the cells were placed on ice for 10 minutes, and isopropyl β-D-thioglucopyranoside (IPTG) was added to a final concentration of 1 mM to induce overexpression, followed by further incubation at 20 ° C. for 17 hours . Escherichia coli thus obtained was obtained by centrifugation (3500 rpm, 30 minutes) and then E. coli was suspended in 3 ml of a buffer (100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl 2 , imidazole 10 mM, pH 7.4) Respectively. Escherichia coli cells were pulverized using an ultrasonic pulverizer, followed by centrifugation (15,000 rpm, 30 minutes), and the pulverized liquid was subjected to SDS-PAGE to confirm protein production. The crushed supernatant was mixed with 0.5 ml of Ni-NTA resin in an empty column, gently shaken at 4 ° C for 60 minutes, and then washed with 3 ml of wash buffer (100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl 2, imidazole 20 mM, pH 7.4) the process three times, and finally eluting buffer (elution buffer, 100 mM Tris- HCl, 20 mM KCl, 6 mM MgCl 2, imidazole 250 mM, pH 7.4) Were each treated five times with 0.5 ml each. After confirming each fraction by SDS-PAGE, the Hsp90 protein was isolated.

단계 2: Step 2: 열충격Thermal shock 단백질의  Protein 에이티피아제Atopy (( ATPaseATPase ) 저해 활성 반응 측정) Inhibition activity measurement

상기에서 분리 정제된 효모의 열충격 단백질(Hsp90)을 이미 공지된 방법으로 그 ATPase 활성을 측정하였다(B. Panaretou, C. Prodromou, S. M. Roe, R. O'Brien, J. E. Ladbury, P. W. Piper, L. H. Pearl, EMBO J.1998,17(16),4829-4836.; Rowlands, M. G., Newbatt, Y. M., Prodromou, C., Pearl, L. H., Workman, P. and Aherne, W. Anal. Biochem. 2004. 327,176-183). 단백질을 반응 완충용액(100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl2, pH 7.4)에 투석하여 최종농도 0.3 mg/㎖로 사용하였고, 말라카이트 그린 반응액은 공지된 방법으로 준비하였다(malachite green(0.0812%, w/v), polyvinyl alcohol(2.32%, w/v; dissolves with difficulty and requires heating), ammonium molybdate(5.72%, w/v, in 6 M HCl), and water in the ratio 2:1:1:2).The heat-shock protein (Hsp90) of the yeast isolated and purified as described above was measured for its ATPase activity by a known method (B. Panaretou, C. Prodromou, SM Roe, R. O'Brien, JE Ladbury, PW Piper, , EMBO J.1998,17 (16), 4829-4836 .; Rowlands, MG, Newbatt, YM, Prodromou, C., Pearl, LH, Workman, P. and Aherne, W. Anal. Biochem 2004. 327,176- 183). The protein was dialyzed against a reaction buffer (100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl 2 , pH 7.4) to a final concentration of 0.3 mg / ml, and the malachite green reaction solution was prepared by a known method (5.72%, w / v, in 6 M HCl), and water in the ratio 2 (2%), green (0.0812%, w / v), polyvinyl alcohol (2.32%, w / v; dissolves with difficulty and requires heating), ammonium molybdate : 1: 1: 2).

ATPase 저해 활성 측정을 위해 본 발명에 따른 화학식 1 내지 4의 화합물과 대조군으로 젤다나마이신, 비-퀴논 젤다나마이신 화학식 A(대한민국 등록특허 제10-860502; WK-88-2) 및 화학식 B(대한민국 등록특허 제10-860502; WK-88-1)로 표시되는 화합물을 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0 μM의 농도별로 준비하여 각각 1 ㎕씩 취하여 상기 단계 1에서 준비한 10 ㎕의 열충격 단백질(1 μM) 및 4 ㎕의 반응완충액(100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl2, pH 7.4)에 첨가하고, 37 ℃에서 한 시간 동안 반응을 수행한 후, 여기에 10 ㎕의 2.5 mM ATP을 첨가한 후 1분간 흔들어 주고, 상기 반응액을 37 ℃에서 3시간 동안 반응시킨 후, 80 ㎕의 말라카이트 반응액을 첨가하고 10 ㎕ 의 34 % 구연산나트륨을 첨가하여 상온에서 15분 방치한 후 반응을 정지시킨다. 다음으로, 문헌[EMBO J.1998,17(16),4829-4836; Anal. Biochem. 2004. 327,176-183.]에 기재된 방법과 동일하게, 이 반응액을 UV 스펙트럼 분석기를 이용하여 620 nm 파장에서 흡광도를 측정하고 ATPase 저해 IC50 값을 산출하였다. 그 결과를 하기 표 4에 나타내었다.ATPase inhibitory activity of the compounds of formulas (1) to (4) according to the present invention and geldanamycin, non-quinone geldanamycin A (Korea Patent No. 10-860502; WK- 0.11, 0.01, 0.001, 0.0001, 0.00001, and 0 μM, respectively, and 1 μl of each of the compounds was prepared. Was added to 10 μl of heat shock protein (1 μM) and 4 μl of reaction buffer (100 mM Tris-HCl, 20 mM KCl, 6 mM MgCl 2 , pH 7.4) and the reaction was performed at 37 ° C. for one hour, 10 μl of 2.5 mM ATP was added thereto, followed by shaking for 1 minute. The reaction solution was allowed to react at 37 ° C for 3 hours, and then 80 μl of malachite reaction solution was added. 10 μl of 34% sodium citrate was added Allow to stand for 15 minutes at room temperature and stop the reaction. Next, as described in EMBO J.1998, 17 (16), 4829-4836; Anal. Biochem. 2004. 327, 176-183. The absorbance of this reaction solution was measured at a wavelength of 620 nm using a UV spectrum analyzer, and the ATPase inhibition IC 50 value was calculated. The results are shown in Table 4 below.

화합물compound ATPase 저해 활성
(IC50, μM±SD)
ATPase inhibitory activity
(IC 50 , μM ± SD)
화학식 1Formula 1 0.75±0.170.75 + 0.17 화학식 4Formula 4 2.14±0.672.14 ± 0.67 화학식 A(WK-88-2)Formula A (WK-88-2) 1.58±0.651.58 ± 0.65 화학식 B(WK-88-1)Formula (B) (WK-88-1) 0.79±0.120.79 + - 0.12 젤다나마이신Zeldanamycin 3.19±0.653.19 ± 0.65

상기 표 4에 나타난 바와 같이, 본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체는 ATPase 저해활성(IC50)이 화학식 1로 표시되는 화합물의 경우 0.75 μM, 화학식 4로 표시되는 화합물의 경우 2.14 μM로서 종래 젤다나마이신보다 우수한 ATPase 저해활성을 나타내었다. 특히, 본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체 화합물이 원래 기질로 사용한 화합물에 비해 유사한 ATPase 저해활성을 나타내는 것으로 확인되었다.
As shown in Table 4, the ATPase inhibitory activity (IC 50 ) of the non-quinone geldanamycin glycoconjugate derivative according to the present invention was 0.75 μM in the case of the compound represented by the formula (1) and 2.14 μM in the case of the compound represented by the formula mu] M, exhibited superior ATPase inhibitory activity than the conventional geldanamycin. In particular, the non-quinone geldanamycin glycoconjugate derivative compound according to the present invention was found to exhibit similar ATPase inhibitory activity compared to the compound used as the original substrate.

따라서, 본 발명에 따른 화합물은 열충격 단백질의 ATPase 활성을 저해하는 효과가 우수하므로, 항암제뿐만 아니라 항생제, 항진균제, 항바이러스제, 면역억제제, 퇴행성신경질환치료제, 항염증제 등으로 유용하게 사용될 수 있다.
Therefore, the compound according to the present invention can be effectively used not only as an anticancer agent but also as an antibiotic, an antifungal agent, an antiviral agent, an immunosuppressant, a therapeutic agent for degenerative neurological diseases, an antiinflammatory agent and the like because it has excellent effect of inhibiting ATPase activity of heat shock protein.

<< 실험예Experimental Example 2> 항암 활성 평가 2> Evaluation of anticancer activity

본 발명에 따른 화학식 1로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 화합물의 암세포에 대한 세포독성을 측정하기 위하여 하기 실험을 수행하였다.The following experiments were carried out to determine the cytotoxicity of the non-quinone geldanamycin glycoconjugate derivative represented by formula (1) according to the present invention to cancer cells.

암 세포주는 인간 유방암(SK-Br3)를 사용하였다. SK-Br3세포주는 Hsp90 단백질의 기질 단백질인 ErbB2(kinase, 암관련 인산화효소)가 과량 발현되는 세포주로 기존의 젤다나마이신 유도체에 대한 항암 활성 평가 세포주로 널리 이용되고 있다. 상기의 암 세포주들을 각각의 96-웰 플레이트(96-well plate)에 웰 당 104개의 암세포를 분주하고, 5 % CO2, 37 ℃에서 24시간 배양한 후, DMSO에 100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0 μM 농도별로 실시예 1에서 얻은 화학식 1로 표시되는 화합물과 대조군으로 화학식 A로 표시되는 화합물(대한민국 등록특허 제10-860502; WK-88-2)을 첨가하여 각각 처리하였다. 이를 다시 동일 조건하에 72시간 동안 배양하고 나서, MTT 시약을 가하여 37 ℃에서 4시간 반응시켜 세포 내에 포마잔(formazan)을 형성하였다. 상기 포마잔을 녹여 흡광도를 측정하기 위하여 용해 완충액(lysis buffer)을 가하여 37 ℃에서 하루 동안 방치하고, UV 스펙트럼 분석기를 이용하여 570 ㎚/650 ㎚로 흡광도를 측정하고 IC50을 산출하였다. 그 결과를 하기 표 5에 나타내었다.Cancer cell lines used human breast cancer (SK-Br3). The SK-Br3 cell line is a cell line that overexpresses ErbB2 (kinase, cancer-related phosphorylation enzyme), a substrate protein of Hsp90 protein, and is widely used as a cell line for evaluating anticancer activity against existing geldanamycin derivatives. The cancer cell lines were divided into 10 4 cancer cells per 96 well plate in a 96-well plate and cultured at 37 ° C in 5% CO 2 for 24 hours. Then, 100, 10, 1, (Korean Registered Patent No. 10-860502; WK-88-2) as the control group and the compound represented by the formula (1) obtained in Example 1 at concentrations of 0.1, 0.01, 0.001, 0.0001, 0.00001, Respectively. The cells were incubated for 72 hours under the same conditions. Then, MTT reagent was added and reacted at 37 ° C for 4 hours to form formazan in the cells. In order to measure the absorbance of the formazan glass, a lysis buffer was added, and the mixture was allowed to stand at 37 ° C for one day. The absorbance was measured at 570 nm / 650 nm using a UV spectrum analyzer and IC 50 was calculated. The results are shown in Table 5 below.

화합물compound 유방암(SK-Br3)
(IC50; μM)
Breast cancer (SK-Br3)
(IC 50 ; uM)
화학식 1Formula 1 19.0 μM19.0 [mu] M 화학식 A
(WK-88-2)
A
(WK-88-2)
9.43 μM9.43 [mu] M

상기 표 5에 나타난 바와 같이, 본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체는 유방암 세포주에서 대조군으로 사용된 대한민국 등록특허 제10-860502; WK-88-2의 화학식 A로 표시되는 화합물보다 IC50값이 낮은 것으로 확인되었으나, IC50값이 우수하므로 항암제에 유용하게 사용될 수 있다.
As shown in Table 5, the non-quinone geldanamycin glycoconjugate derivative according to the present invention was used as a control group in breast cancer cell lines in Korean Patent No. 10-860502; It was confirmed that the IC 50 value was lower than that of the compound represented by the chemical formula A of WK-88-2, but it can be usefully used for an anticancer drug because it has an excellent IC 50 value.

<< 실험예Experimental Example 3>  3> Her2Her2 , , AktAkt 와 c- And c- RafShelf 단백질 발현 저해 평가  Evaluation of Protein Expression Inhibition

본 발명에 따른 화합물 1로 표시되는 비-퀴논 젤다나마이신 당전이 유도체의 열충격 단백질(Hsp90)의 기질 단백질인 Her2(kinase, 암관련 인산화효소), Akt 및 c-Raf 발현 저해 효과를 측정하기 위하여 다음과 같이 실험하였다.In order to determine the inhibitory effect of Her2 (kinase, cancer-associated phosphorylase), Akt and c-Raf on the substrate protein of the heat shock protein (Hsp90) of the non-quinone geldanamycin glycoprotein derivative represented by the compound 1 according to the present invention The following experiment was conducted.

Her2를 과발현시킨 유방암 암세포주인 SK-Br3를 5 % CO2, 37 ℃에서 24시간 배양한 후, 대조군으로 화학식 A로 표시되는 종래(대한민국특허등록 제10-860502호) 화합물(WK-88-2)과 실시예 1로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 화합물 1 μM을 DMSO에 녹여 농도별로 처리하였다. 이를 다시 동일한 시간으로 배양하고, 배양한 상기 세포주를 수거하여 용해 완충액(50 mM Tris Buffer pH7.6, 150 mM NaCl, 2 mM EDTA, 0.1 % SDS, 1 %(v/v) 단백질 저해 혼합물(Sigma #P8340)) 처리를 수행한 후, 세포를 초음파 분쇄하여 분쇄물을 얻고, 상기 분쇄물을 BCA법으로 단백질 정량을 실시하였다. 약 50 ㎍의 단백질을 SDS-PAGE에 로딩하여 Her2, Akt, c-Raf 및 대조군으로 β-actin에 대한 면역블로팅(immunoblotting)을 실시하였다. 그 결과를 도 6에 나타내었다.
Herb-overexpressed breast cancer cell line SK-Br3 was cultured in 5% CO 2 at 37 ° C for 24 hours. As a control, the compound (WK-88-2 ) And 1 mu M of the derivative compound of the non-quinone geldanamycin glycoside derivative represented by Example 1 were dissolved in DMSO and treated for each concentration. The cultured cell lines were harvested and resuspended in lysis buffer (50 mM Tris Buffer pH 7.6, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% (v / v) # P8340)), the cells were ultrasonically pulverized to obtain pulverized material, and the pulverized material was quantitated by BCA method. Approximately 50 μg of the protein was loaded on SDS-PAGE and immunoblotted against Her2, Akt, c-Raf and β-actin as a control. The results are shown in Fig.

도 6에 타나낸 바와 같이, 본 발명에 따른 화학식 1로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 화합물이 열충격 단백질(Hsp90)에 결합하여 Hsp90의 활성을 저해함으로써, Hsp90의 기질 단백질인 Her2, Akt, c-Raf의 발현을 저해하는 효과를 나타내는 것을 확인할 수 있었다.
As shown in FIG. 6, the non-quinone geldanamycin glycoconjugate derivative represented by formula (1) according to the present invention binds to a heat shock protein (Hsp90) to inhibit the activity of Hsp90, Akt and c-Raf, respectively.

따라서, 본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체 화합물은 열충격 단백질(Hsp90)의 기질 단백질인 Her2, Akt, c-Raf의 발현을 저해하는 효과가 우수하므로, 항암제뿐만 아니라 항생제, 항진균제, 항바이러스제, 면역억제제, 퇴행성 신경 질환치료제, 항염증제 등으로 유용하게 사용될 수 있다.
Therefore, the non-quinone geldanamycin glycosylated derivatives according to the present invention are excellent in the effect of inhibiting the expression of Her2, Akt, c-Raf, which is a substrate protein of a heat shock protein (Hsp90), and thus can be used as anticancer agents, antibiotics, Antiviral agents, immunosuppressive agents, therapeutic agents for degenerative neurological diseases, anti-inflammatory agents and the like.

<< 실험예Experimental Example 4> 비-퀴논 4> Non-quinone 젤다나마이신Zeldanamycin 당전이The party 유도체의 용해도 측정 Determination of the solubility of derivatives

종래 비-퀴논 형태의 젤다나마이신은 우수한 열충격 단백질 저해 활성과 낮은 간독성을 가지고 있지만 낮은 용해도로 인해 항암 활성평가의 문제점이 있었다. 이에, 본 발명에 따른 화학식 1로 표시되는 화합물의 용해도 측정을 위하여 하기 실험을 수행하였다.Conventionally, non-quinone type geldanamycin has excellent thermal shock protein inhibitory activity and low hepatic toxicity, but has a problem in evaluation of anticancer activity due to low solubility. In order to measure the solubility of the compound represented by formula (1) according to the present invention, the following experiment was conducted.

화합물의 용해도는 완충용액 내에 존재하는 비-퀴논 젤다나마이신과 당화된 비-퀴논 젤다나마이신을 에틸아세테이트(EtOAc) 용매로 추출하여 물층과 용매층으로 이동하는 화합물의 정도를 HPLC 분석하는 방법으로 확인하였다. The solubility of the compound is determined by a method of HPLC analysis of the degree of the compound which extracts non-quinone geldanamycin and glycosylated non-quinone geldanamycin present in the buffer solution with ethyl acetate (EtOAc) solvent and moves to the water layer and the solvent layer Respectively.

그 결과, 본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체 화합물은 물 용해도가 향상된 것으로 나타났고, 특히, 하기 도 7에 나타낸 바와 같이 완충용액에서 반응한 당화 반응액의 일부를 HPLC 분석한 결과 본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체 화합물 피크가 당화 전의 기질로 사용한 화학식 A로 표시되는 비-퀴논 젤다나마이신으로부터 48.8%의 전환율을 나타내고 있으나, 상기 반응액을 에틸아세테이트(EtOAc) 용매로 추출하여 HPLC 한 결과, 도 7의 B)에서와 같이 당화된 화합물의 피크가 상대적으로 극히 적은데 반하여, 추출 후, 물층에 대부분 존재하는 당화된 화합물 피크를 확인할 수 있다. 이는 기질로 사용한 비-퀴논 젤다나마이신들은 물에 용해되지 않는 반면 당화된 화합물들은 물층에 잘 용해되는 것으로 확인할 수 있다. As a result, the water solubility of the non-quinone geldanamycin glycoconjugate derivative according to the present invention was improved. Particularly, as shown in FIG. 7, a part of the glycation reaction solution reacted in the buffer solution was analyzed by HPLC Quinone geldanamycin derivative derivative peak according to the present invention shows a conversion of 48.8% from the non-quinone geldanamycin represented by the formula (A) used as a substrate before saccharification. However, the reaction solution was extracted with ethyl acetate (EtOAc) As a result of the extraction with a solvent and HPLC, peaks of the glycated compounds were found to be extremely small as shown in Fig. 7B, while peaks of the glycated compounds mostly present in the water layer after extraction were confirmed. This indicates that the non-quinone geldanamycin used as the substrate is not soluble in water, while the glycosylated compounds are well soluble in the water layer.

따라서, 본 발명에 따른 비-퀴논 젤다나마이신 당전이 유도체 화합물들이 기질로 사용한 비-퀴논 젤다나마이신에 비해 다소 활성적 측면에서 매우 우수한 것은 아니나, 용해도 측면에서 상당히 우수하여 실제 생체 내 투여에 유리한 사실이 있으므로, 용해도가 높은 글루코스 당화된 화합물을 쉽게 주사제롤 제조가 가능하고 또한 생체내로 투여 할 경우 혈액내에 존재하는 글루코시다제(glycosidase; 해당효소)에 의해 다시 원래 활성 구조인 비-퀴논 젤다나마이신 화합물로 전환된다는 점을 이용하여 프로드러그 (produrg)으로 유용하게 사용될 수 있다.Therefore, the non-quinone geldanamycin derivative derivatives according to the present invention are not very superior in activity from the non-quinone geldanamycin used as a substrate, but they are very excellent in solubility, Because of the fact, it is possible to easily produce an injectable roll with high solubility of glucose-glycosylated compounds, and when administered in vivo, the glycosidase (the enzyme) present in the blood again causes the originally active structure of non-quinone zeldanas Can be advantageously used as prodrugs by taking advantage of the fact that they are converted into a mycine compound.

Claims (12)

하기 화학식 1 내지 5로 표시되는 비-퀴논 젤다나마이신 당전이 유도체 또는 이의 약학적으로 허용가능한 염.
[화학식 1]
Figure 112011081365795-pat00023

[화학식 2]
Figure 112011081365795-pat00024

[화학식 3]
Figure 112011081365795-pat00025

[화학식 4]
Figure 112011081365795-pat00026

[화학식 5]
Figure 112011081365795-pat00027

A non-quinone geldanamycin derivative represented by the following general formulas (1) to (5): or a pharmaceutically acceptable salt thereof.
[Chemical Formula 1]
Figure 112011081365795-pat00023

(2)
Figure 112011081365795-pat00024

(3)
Figure 112011081365795-pat00025

[Chemical Formula 4]
Figure 112011081365795-pat00026

[Chemical Formula 5]
Figure 112011081365795-pat00027

삭제delete 분리된 당전이 효소와, 기질로써 하기 화학식 A, B 또는 C로 표시되는 비-퀴논 젤다나마이신 유도체를 사용하여 당전이 반응을 수행하여 비-퀴논 젤다나마이신 당전이 유도체를 제조하는 단계를 포함하는 용해도가 증가된 제1항의 비-퀴논 젤다나마이신 당전이 유도체의 제조방법.
[화학식 A]
Figure 112014057820966-pat00038

[화학식 B]
Figure 112014057820966-pat00039

[화학식 C]
Figure 112014057820966-pat00040

Quinone geldanamycin derivative represented by the following formula (A), (B) or (C) as a substrate to prepare a non-quinone geldanamycin derivative Wherein the solubility of the non-quinone geldanamycin derivative is increased.
(A)
Figure 112014057820966-pat00038

[Chemical Formula B]
Figure 112014057820966-pat00039

&Lt; RTI ID = 0.0 &
Figure 112014057820966-pat00040

제3항에 있어서, 상기 비-퀴논 젤다나마이신 유도체의 제조방법에서, 당전이 효소를 분리하는 단계를 더 포함하는 것을 특징으로 하는 제조방법.
4. The method according to claim 3, wherein the non-quinone geldanamycin derivative further comprises a step of separating the enzyme.
제3항에 있어서, 상기 당전이 효소는 바실러스 리체포르미스로부터 유래한 UDP-당전이 효소인 것을 특징으로 하는 제조방법.
4. The method according to claim 3, wherein the glycoprotein is a UDP-glycosyltransferase derived from bacillus ricortosum.
제3항에 있어서, 상기 당전이 반응은 UDP-당전이 효소와 UDP-글루코즈를 첨가한 후, 25-35 ℃에서 11-13시간 동안 반응을 수행하는 것을 특징으로 하는 제조방법.
[Claim 5] The method according to claim 3, wherein the sugar chain reaction is carried out at 25-35 &lt; [deg.] &Gt; C for 11-13 hours after addition of the UDP-tagged enzyme and UDP-glucose.
제3항에 있어서, 상기 당전이 반응은 pH 6.0-9.0의 환경에서 수행되는 것을 특징으로 하는 제조방법.
4. The method according to claim 3, wherein the glycation reaction is performed in an environment of pH 6.0-9.0.
삭제delete 하기 화학식 1 또는 화학식 4로 표시되는 젤다나마이신 당전이 유도체 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 항암제, 항생제, 항진균제, 항바이러스제, 면역억제제, 퇴행성 신경 질환 치료제 또는 항염증제용 약학적 조성물.
[화학식 1]
Figure 112014057820966-pat00041

[화학식 4]
Figure 112014057820966-pat00042

An anticancer agent, an antibiotic, an antifungal agent, an antiviral agent, an immunosuppressant, a therapeutic agent for degenerative neurological disease or an anti-inflammatory agent containing a pharmaceutically acceptable salt of geldanamycin glycoside derivative represented by the following formula 1 or 4 as an active ingredient .
[Chemical Formula 1]
Figure 112014057820966-pat00041

[Chemical Formula 4]
Figure 112014057820966-pat00042

삭제delete 삭제delete 제 9항에 있어서, 상기 암은 유방암, 간암, 위암, 결장암, 골암, 췌장암, 두부 또는 경부암, 자궁암, 난소암, 직장암, 식도암, 소장암, 항문부근암, 결장암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병, 전립선암, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종 또는 중추신경계 종양인 것을 특징으로 하는 약학적 조성물.10. The method of claim 9, wherein the cancer is selected from the group consisting of breast cancer, liver cancer, stomach cancer, colon cancer, bone cancer, pancreatic cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, esophageal cancer, small intestine cancer, Wherein the cancer is a cervical cancer, a vaginal cancer, a vulvar carcinoma, a Hodgkin's disease, a prostate cancer, a bladder cancer, a renal cancer, a ureter cancer, a renal cell carcinoma, a renal pelvic carcinoma or a central nervous system tumor.
KR1020110106457A 2011-10-18 2011-10-18 The glycosylated non-quinone geldanamycin derivatives having increased solubility or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for Heat shock protein(Hsp90) ATPase inhibitor containing same KR101456174B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110106457A KR101456174B1 (en) 2011-10-18 2011-10-18 The glycosylated non-quinone geldanamycin derivatives having increased solubility or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for Heat shock protein(Hsp90) ATPase inhibitor containing same
PCT/KR2012/008560 WO2013058582A2 (en) 2011-10-18 2012-10-18 Preparation method for ansamycin glycoside using glycosyltransferase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110106457A KR101456174B1 (en) 2011-10-18 2011-10-18 The glycosylated non-quinone geldanamycin derivatives having increased solubility or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for Heat shock protein(Hsp90) ATPase inhibitor containing same

Publications (2)

Publication Number Publication Date
KR20130042269A KR20130042269A (en) 2013-04-26
KR101456174B1 true KR101456174B1 (en) 2014-11-03

Family

ID=48441014

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110106457A KR101456174B1 (en) 2011-10-18 2011-10-18 The glycosylated non-quinone geldanamycin derivatives having increased solubility or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for Heat shock protein(Hsp90) ATPase inhibitor containing same

Country Status (1)

Country Link
KR (1) KR101456174B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292271A2 (en) * 2001-10-10 2011-03-09 BioGeneriX AG Remodelling and glycoconjugation of an antibody

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292271A2 (en) * 2001-10-10 2011-03-09 BioGeneriX AG Remodelling and glycoconjugation of an antibody

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cheng-Zhu Wu, 충남대학교 박사학위논문, "Heat Shock Protein 90 Inhibitors Geldanamycin Analogs from Generically Engineered Streptomyces hygroscopicus" (2011.08.) *
Cheng-Zhu Wu, 충남대학교 박사학위논문, "Heat Shock Protein 90 Inhibitors Geldanamycin Analogs from Generically Engineered Streptomyces hygroscopicus" (2011.08.)*

Also Published As

Publication number Publication date
KR20130042269A (en) 2013-04-26

Similar Documents

Publication Publication Date Title
CN108530310A (en) 2- (the miscellaneous base of substituted benzene) fragrance formic acid class FTO inhibitor, preparation method and its application
Kassem et al. Design, synthesis and anticancer activity of new thiazole-tetrazole or triazole hybrid glycosides targeting CDK-2 via structure-based virtual screening
CN117800991A (en) PRMT5 inhibitor and application thereof
De Moura et al. Palladium (ii) complexes bearing 1-iminothiolate-3, 5-dimethylpyrazoles: synthesis, cytotoxicity, DNA binding and enzymatic inhibition studies
CN107129506B (en) As pyrimido [4,5-d] [1,3] oxazines -2- ketone derivatives of EGFR inhibitor and its application
CN102503932B (en) Novel gas signal molecule donator and preparation method and use thereof
CN114805357B (en) Small molecule inhibitor targeting SETDB1-TTD and pharmaceutical application thereof
KR101456174B1 (en) The glycosylated non-quinone geldanamycin derivatives having increased solubility or pharmaceutically acceptable salts thereof, preparation method thereof and pharmaceutical composition for Heat shock protein(Hsp90) ATPase inhibitor containing same
IL91001A (en) N-alkyl derivatives of antibiotic bu-3608 complex their preparation and pharmaceutical compositions containing them
KR100796637B1 (en) Geldanamycin derivatives, pharmaceutically acceptable salt thereof, preparation method thereof and agent for the prevention and treatment of tumor containing the same as an active ingredient
CN102153558A (en) Derivative of multi-target antitumor inhibitor 2-aminopyrrole-triazine and synthesis method thereof
Peng et al. Inhibitor development of MTH1 via high-throughput screening with fragment based library and MTH1 substrate binding cavity
CN109476650B (en) Five-membered heterocyclic compound and preparation method, pharmaceutical composition and application thereof
WO2008016547A9 (en) Aurora kinase inhibitors from an encoded small molecule library
CN111393405B (en) Fluorine-containing substituted benzothiophene compounds, and pharmaceutical composition and application thereof
KR20190044835A (en) Composition for Preventing or Treating Brain Tumor Comprising Calcium-Activated Chloride Channel Inhibitors
Ren et al. EGFR/HER-2 inhibitors: synthesis, biological evaluation and 3D-QSAR analysis of dihydropyridine-containing thiazolinone derivatives
KR101456173B1 (en) Novel geldanamycin derivatives, pharmaceutically acceptable salt thereof, preparation method thereof and agent for the prevention and treatment of tumor containing the same as an active ingredient
EP2226388B1 (en) Novel aminoglycoside antibiotic, method for producing the same, and pharmaceutical use of the same
CN105237523B (en) Pyrimidine derivatives and preparation method thereof, purposes
KR20240111529A (en) Compound binding to MDA-9 protein with inhibitory effect on glioblastoma and use of the same
CN116375644B (en) Aporphine alkaloid compound and preparation method and application thereof
CN113321665B (en) P23 small-molecule inhibitor, preparation method and application
CN103333936B (en) Phloroglucinol glucoside derivatives and preparation method thereof
KR20240111528A (en) Compound with inhibitory effect on glioblastoma and use of the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170824

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 17