KR101453645B1 - Pharmaceutical composition for treating metabolic disease comprising human blood derived hematosphere - Google Patents

Pharmaceutical composition for treating metabolic disease comprising human blood derived hematosphere Download PDF

Info

Publication number
KR101453645B1
KR101453645B1 KR1020130005902A KR20130005902A KR101453645B1 KR 101453645 B1 KR101453645 B1 KR 101453645B1 KR 1020130005902 A KR1020130005902 A KR 1020130005902A KR 20130005902 A KR20130005902 A KR 20130005902A KR 101453645 B1 KR101453645 B1 KR 101453645B1
Authority
KR
South Korea
Prior art keywords
insulin
cells
human blood
present
derived
Prior art date
Application number
KR1020130005902A
Other languages
Korean (ko)
Other versions
KR20130085383A (en
Inventor
박영배
김효수
허진
최재일
양지민
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to PCT/KR2013/000441 priority Critical patent/WO2013109104A1/en
Priority to US14/372,891 priority patent/US20150157663A1/en
Publication of KR20130085383A publication Critical patent/KR20130085383A/en
Application granted granted Critical
Publication of KR101453645B1 publication Critical patent/KR101453645B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 인간 혈액 유래 혈구 세포괴(BBHS)를 이용하여 효율적으로 인슐린 분비세포로 분화하는 방법 및 이를 이용한 대사성 질환 치료제 등에 관한 것이다. 본 발명에 따라 분화된 인슐린 분비세포를 이용하여 대사성 질환 세포 치료제 개발을 실용화할 수 있을 것으로 기대되며, 본 발명에 따른 인간 혈액 유래 혈구 세포괴를 이용함으로써 줄기세포 치료제 개발과 관련한 종래의 문제점, 즉 종양발생, 면역거부, 윤리문제점, 분화방법 등을 해결할 수 있다.The present invention relates to a method for efficiently differentiating into insulin-secreting cells using human blood-derived blood cell mass (BBHS), a therapeutic agent for metabolic diseases using the same, and the like. It is expected that the development of a therapeutic agent for metabolic diseases using the differentiated insulin-secreting cells according to the present invention will be put to practical use. By using the hematopoietic stem cells derived from human blood according to the present invention, Development, immune rejection, ethical problems, and differentiation methods.

Description

인간 혈액 유래 혈구 세포괴를 포함하는 대사성 질환 치료용 약학적 조성물{Pharmaceutical composition for treating metabolic disease comprising human blood derived hematosphere}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pharmaceutical composition for treating metabolic diseases including hematopoietic cells derived from human blood,

본 발명은 인간 혈액 유래 혈구 세포괴(BBHS)를 이용하여 효율적으로 인슐린 분비세포로 분화하는 방법 및 이를 이용한 대사성 질환 치료제 등에 관한 것이다.
The present invention relates to a method for efficiently differentiating into insulin-secreting cells using human blood-derived blood cell mass (BBHS), a therapeutic agent for metabolic diseases using the same, and the like.

줄기세포는(Stem cell)은 전능세포(Pluripotent cell)이며, 이는 어떤 세포로든 분화가 가능한 세포이다. 줄기세포는 기본적으로 배아줄기세포(Embryonic Stem Cell, ESC), 역분화줄기세포(Induced Pluripotent Stem cell, IPS) 그리고 성체줄기세포(Adult Stem Cell, ASC)로 구성되어 있으며, 이러한 세포들을 이용하여 인슐린 분화 연구가 많이 되어왔다(A.S. Boyd, K.J. Wood, Characteristics of the early immune response following transplantation of mouse ES cell derived insulin-producing cell clusters, PLoS One, 2010). 하지만 현재 여러가지 문제점들이 존재한다. 예를 들면, 배아줄기세포(ESC)는 증식이 활발하고, 모든 세포로 분화가 가능하지만, 끊임없는 증식으로 인해 종양의 발생 및 면역 거부 반응 문제, 및 윤리적인 문제점이 해결되지 않았다. 상기 배아줄기세포(ESC)의 문제점을 극복하고자 2006년에 역분화줄기세포(IPS)가 개발되었으나(Kazutoshi Takahashi and Shinya Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006;126:663-676), 실제 치료에 사용하기에는 여러가지 문제점이 존재하며, 예를 들면 특히 Virus를 사용했다는 점과 면역 거부반응 등이 있다. 또한 성체줄기세포(ASC)는 세포의 수가 적고, 증식이 활발하지 않으며, 인슐린분비세포로의 분화 방법에 대한 어려움이 있다.
Stem cells are pluripotent cells, which can be differentiated into any cell. Stem cells are basically composed of Embryonic Stem Cell (ESC), Induced Pluripotent Stem Cell (IPS) and Adult Stem Cell (ASC) (AS Boyd, KJ Wood, Characteristics of the early immune response following transplantation of mouse ES cell-derived insulin-producing cell clusters, PLoS One, 2010). However, there are various problems at present. For example, embryonic stem cells (ESCs) are proliferating and capable of differentiating into all cells, but the ongoing proliferation has not solved the problem of tumor development, immune rejection, and ethical problems. In order to overcome the problems of ESCs, degenerative stem cells (IPS) have been developed in 2006 (Kazutoshi Takahashi and Shinya Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006; 126: 663-676), there are various problems to be used for actual treatment, for example, viruses and immune rejection. In addition, adult stem cells (ASC) have few cells, proliferation is not active, and there is a difficulty in the method of differentiating into insulin-secreting cells.

본 발명은 기존에 개발된 배아줄기세포(ESC), 역분화 줄기세포(IPS) 및 성체줄기세포(ASC) 등을 이용한 줄기세포 치료제 개발과 관련하여 종양발생, 면역거부, 윤리문제점, 분화방법 등에서의 문제점을 해결하고자, 인간 혈액 유래 혈구 세포괴(BBHS)를 인슐린 분비 세포로 분화를 유도하여 대사성 질환 치료제로 사용할 수 있는 방법을 제공하고자 한다.The present invention relates to the development of a stem cell therapeutic agent using previously developed ESCs, degenerated stem cells (IPS) and adult stem cells (ASC), and the like in the fields of tumor development, immune rejection, ethical problems, (BBHS) to induce differentiation into insulin-secreting cells, thereby providing a method of using the same as a therapeutic agent for metabolic diseases.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 과제를 해결하기 위하여, 본 발명은 인간 혈액 유래 혈구 세포괴를 포함하는 대사성 질환 치료용 약학적 조성물을 제공한다.In order to solve the above problems, the present invention provides a pharmaceutical composition for the treatment of metabolic diseases comprising hematopoietic cells derived from human blood.

본 발명의 일구현예에서, 상기 인간 혈액 유래 혈구 세포괴는 인간 혈액으로부터 단핵구세포를 분리하여 삼차원 응집 배양을 통해 형성되는 것을 특징으로 한다.In one embodiment of the present invention, the hematopoietic cell population derived from human blood is characterized by being formed through three-dimensional coagulation culture by separating mononuclear cells from human blood.

본 발명의 다른 구현예에서, 상기 인간 혈액 유래 혈구 세포괴는 인슐린 분비 세포로 유도되는 것을 특징으로 한다.In another embodiment of the present invention, the hematopoietic cell derived from human blood is characterized in that it is induced into an insulin secretory cell.

본 발명의 또다른 구현예에서, 상기 대사성 질환은 당뇨병, 고지혈증, 및 비만으로 이루어진 군으로부터 선택되는 것을 특징으로 한다.In another embodiment of the present invention, the metabolic disease is characterized by being selected from the group consisting of diabetes, hyperlipidemia, and obesity.

또한, 본 발명은 본 발명을 통해 만들어진 약학적 조성물의 약제학적 유효량을 개체에 투여하여 대사성 질환을 치료하는 방법을 제공한다.
The present invention also provides a method for treating a metabolic disease by administering to a subject a pharmaceutically effective amount of the pharmaceutical composition produced by the present invention.

본 발명에 따라 인간 혈액 유래 혈구 세포괴를 이용하여 인슐린 분비 세포 분화가 가능하며, 상기 인슐린 분비세포를 이용하여 대사성 질환 세포 치료제 개발을 실용화 하는 데 기여할 수 있을 것으로 기대된다. 본 발명에 따른 인간 혈액 유래 혈구 세포괴의 이용은 줄기세포 치료제 개발과 관련한 종래의 문제점, 즉 종양발생, 면역거부, 윤리문제점, 분화방법 및 기존 세포는 얻기가 어려울 뿐만 아니라 고가라는 점 등을 해결하는 것을 가능하게 한다.
According to the present invention, it is expected that insulin secretory cells can be differentiated using hematopoietic cells derived from human blood, and that the use of the insulin-secreting cells will contribute to the practical development of a therapeutic agent for metabolic disease cells. The use of hematopoietic stem cells derived from human blood according to the present invention solves the conventional problems associated with the development of stem cell treatment agents, namely, tumor development, immunodeficiency, ethical problems, differentiation methods and existing cells as well as being difficult to obtain Lt; / RTI >

도 1은 인간 혈액 유래 혈구 세포괴(BBHS)의 형성 방법을 나타낸 그림이다.
도 2는 인간 혈액 유래 혈구 세포괴에서 면역형광염색법을 이용하여 일부 인슐린을 발현하는 세포가 있음을 확인한 결과이다 (초록색 : 인슐린, 파랑색 : 핵).
도 3은 인간 혈액 유래 혈구 세포괴(BBHS)에서 Nestin을 발현하고 있다는 것을 면역형광염색법을 통해서 확인한 결과이다(초록색 : Nestin, 파랑색 : 핵, Scale bar : 50um).
도 4는 인간 혈액 유래 혈구 세포괴(BBHS)에서 면역 형광 염색법을 이용하여 beta-tubulin Ⅲ을 발현하고 있는 것을 확인한 결과이다(초록색 : beta-tubulin Ⅲ, 파랑색 : 핵, Scale bar : 50um).
도 5는 인간 혈액 유래 혈구 세포괴를 이용한 인슐린 분비 세포 분화를 유도하는 과정을 나타내는 그림이다.
도 6은 인슐린 분비 세포 분화 유도 각 단계별로 역전사 중합연쇄반응(Reverse Transcription Polymerase Chain Reaction; RT-PCR)기법을 이용하여 인슐린 발현에 중요한 유전자들을 확인한 결과, 4단계로 갈수록 증가한 것을 확인한 결과이다.
도 7은 인간 혈액 유래 혈구 세포괴(BBHS)에서 인슐린 분비 세포로 분화 후에 면역형광염색법을 이용하여 인슐린(빨강)과 Nestin(초록)을 염색한 결과, 대부분의 세포가 인슐린을 발현하고 있었으며, 일부 Nestin을 발현하고 있음을 확인한 결과이다(빨강색 : 인슐린, 초록색 : Nestin, 파랑색 : 핵, Scale bar : 50um).
도 8은 인슐린을 탐지하여 빨강색을 띠는 Dithizone staining 기법을 이용하여, 인간 혈액 유래 혈구 세포괴와 인슐린 분비 세포 분화 각 단계별로 진행한 결과, 인슐린 분비세포로의 분화 마지막 단계인 4단계에서 빨강색이 가장 많음을 확인한 결과이다.(Scale bar : 10um)
도 9는 인간 혈액 유래 혈구 세포괴(BBHS)에서 유도된 인슐린 분비 세포에 포도당-자극에 의한 인슐린 분비(Glucose-Stimulated Insulin Secretion, GSIS)를 비교하였을 때, 고농도의 포도당에서 인슐린이 분비되는 것을 확인한 결과이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a method of forming a blood hematopoietic cell (BBHS) derived from human blood. FIG.
FIG. 2 shows a result of confirming that some cells expressing insulin were present in a human blood-derived blood cell mass using immunofluorescence staining (green: insulin, blue: nuclear).
FIG. 3 shows that Nestin is expressed in human blood-derived blood cell mass (BBHS) through immunofluorescence staining (green: Nestin, blue: nuclear, Scale bar: 50um).
FIG. 4 shows the results of beta-tubulin III expression in human blood-derived blood cell mass (BBHS) using immunofluorescent staining (green: beta-tubulin III, blue: nuclear, Scale bar: 50um).
FIG. 5 is a diagram showing a process of inducing insulin secretory cell differentiation using human blood-derived blood cell mass.
FIG. 6 shows the result of confirming genes important for insulin expression using the reverse transcription polymerase chain reaction (RT-PCR) technique at each step of inducing differentiation of insulin-secreting cells.
FIG. 7 shows that insulin (red) and Nestin (green) were stained by immunofluorescence staining after differentiation into human insulin-secreting cells from human blood hematopoietic cell mass (BBHS). As a result, most cells expressed insulin (Red: insulin, green: Nestin, blue: nuclear, Scale bar: 50um).
FIG. 8 shows the results of the differentiation of human blood-derived hematopoietic cells and insulin-secreting cells using a Dithizone staining technique which detects insulin and shows a red color. As a result, in step 4, which is the last stage of differentiation into insulin- (Scale bar: 10um).
9 is a graph comparing the glucose-stimulated insulin secretion (GSIS) of insulin-secreted cells derived from human blood-derived blood cell mass (BBHS) with insulin secretion in glucose at a high concentration to be.

본 발명자들은 인간 혈액 유래 혈구 세포괴(Blood-born hematoshere, BBHS)를 통해 인슐린 분비세포 친화적 미세환경 조성, 및 단핵구 세포의 인슐린 분비세포로의 분화능을 규명하였다. 본 발명은 인간 혈액 유래 혈구 세포괴를 이용한 줄기세포 치료 및 유전자치료에서 인슐린 분비세포의 생존 및 분화증진 효과를 가지며, 당뇨, 고지혈증 또는 비만 등 다양한 종류의 대사성 질환을 위한 줄기세포 치료제 개발에 이용될 수 있을 것으로 기대된다.The present inventors confirmed the formation of an insulin secretory cell-friendly microenvironment through the blood-born hematosome (BBHS) derived from human blood and the ability of mononuclear cells to differentiate into insulin-secreting cells. The present invention has the effect of promoting the survival and differentiation of insulin-secreting cells in stem cell therapy and gene therapy using human hematopoietic cell mass, and can be used for the development of a stem cell therapeutic agent for various metabolic diseases such as diabetes, hyperlipidemia or obesity It is expected to be.

따라서 본 발명은 인간 혈액 유래 혈구 세포괴를 포함하는 대사성 질환 치료용 약학적 조성물을 제공한다. 상기 인간 혈액 유래 혈구 세포괴는 인슐린 분비세포로 유도되며, 상기 대사성 질환은 당뇨병, 고지혈증, 또는 비만 등을 포함하나, 인슐린 분비 대사기능과 관련하여 발병하는 모든 질병이라면 이에 제한되는 것은 아니다.Accordingly, the present invention provides a pharmaceutical composition for the treatment of metabolic diseases comprising hematopoietic cells derived from human blood. The hematopoietic cell derived from human blood is induced into insulin-secreting cells. The metabolic diseases include diabetes, hyperlipidemia, obesity and the like, but are not limited thereto as long as they are all diseases that are related to insulin secretion metabolic function.

발명에서 사용되는 용어 "인간 혈액 유래 혈구 세포괴 (blood-born hematospheres: BBHS)"는 혈액 내에 존재하고 있는 단핵구 세포들과 줄기성을 가지고 있는 특정 세포들과의 응집체로서, 삼차원적 구조를 형성하여 배반포기의 내부 세포덩어리들과 같은 구형을 형성하고 있는 것을 의미한다.The term " blood-born hematopoietic cells (BBHS) "used in the present invention refers to an aggregate of mononuclear cells existing in the blood and specific cells having stem cells, and forms a three- It means that it forms a spherical shape like the inner cell masses of aeration.

본 발명의 약학적 조성물은 약제학적으로 허용 가능한 담체를 포함할 수 있다. 상기 약제학적으로 허용 가능한 담체는 생리식염수, 폴리에틸렌글리콜, 에탄올, 식물성 오일, 및 이소프로필미리스테이트 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.The pharmaceutical composition of the present invention may comprise a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier may include, but is not limited to, physiological saline, polyethylene glycol, ethanol, vegetable oil, and isopropyl myristate.

또한 본 발명은 상기 약학적 조성물의 약제학적 유효량을 개체에 투여하여 대사성 질환을 치료하는 방법을 제공한다. 본 발명에서 '개체'란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는 인간, 또는 비-인간인 영장류, 생쥐(mouse), 쥐(rat), 개, 고양이, 말, 및 소 등의 포유류를 의미한다. 또한, 본 발명에서 '약제학적 유효량'은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율, 및 질환의 중증도 등에 따라 그 범위가 다양하게 조절될 수 있음은 당업자에게 명백하다.The present invention also provides a method for treating a metabolic disease by administering to said individual a pharmaceutically effective amount of said pharmaceutical composition. In the present invention, an 'individual' refers to a subject in need of treatment for diseases, and more specifically, a human or non-human primate, mouse, rat, dog, cat, horse, And the like. It is to be understood that the term "pharmaceutically effective amount" in the present invention can be variously adjusted depending on the patient's body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, .

본 발명의 약학적 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물 형태, 투여경로, 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나 바람직하게는, 1일 0.001 내지 100 mg/체중kg으로, 보다 바람직하게는 0.01 내지 30 mg/체중kg으로 투여한다. 투여는 하루에 한번 투여할 수도 있고, 여러번 나누어 투여할 수 있다. The preferred dosage of the pharmaceutical composition of the present invention varies depending on the condition and the weight of the patient, the degree of disease, the drug form, the administration route, and the period, but can be appropriately selected by those skilled in the art. However, it is preferably administered at a daily dose of 0.001 to 100 mg / kg body weight, more preferably 0.01 to 30 mg / kg body weight. The administration can be carried out once a day or divided into several times.

본 발명의 약학적 조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여방법에는 제한이 없으며, 예를 들면, 경구, 직장, 또는 정맥, 근육, 피하, 자궁내 경막, 또는 뇌혈관(intra cerbroventricular) 주사에 의해 투여될 수 있다.The pharmaceutical composition of the present invention can be administered to mammals such as rats, mice, livestock, humans, and the like in various routes. The method of administration is not limited and can be administered, for example, orally, rectally, or by intravenous, intramuscular, subcutaneous, intrauterine, or intra-cerebroventricular injection.

본 발명의 약학적 조성물은 다양한 약제학적 제형으로 제조될 수 있으며, 제제의 형태에는 제한이 없다.The pharmaceutical composition of the present invention can be prepared into various pharmaceutical formulations, and there is no limitation on the form of the formulation.

본 발명은 인간 혈액 유래 혈구 세포괴(Blood-born hematoshere, BBHS)를 형성하였고(실시예 1), 상기 형성된 인간 혈액 유래 혈구 세포괴(BBHS)에서 인슐린이 발현되는 것을 확인하였으며(실시예 2), 인슐린 분비 세포 분화를 유도하였고(실시예 3), 마지막으로 실제로 인슐린 혹은 인슐린 발현에 중요한 유전자의 확인과 인슐린이 실제로 분비되는지를 확인하였다(실시예 4).
The present invention has shown that a human blood-derived hematopoietic cell (BBHS) forms a blood-born hematosome (BBHS) (Example 1), and insulin is expressed in the blood hematopoietic cell (BBHS) Secretory cell differentiation was induced (Example 3). Finally, it was confirmed whether the insulin or the insulin was actually secreted and the gene important for insulin expression (Example 4).

이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. In addition, the preferred embodiments of the present invention will be described below, but it is needless to say that the technical idea of the present invention is not limited thereto and can be variously modified by those skilled in the art.

실시예 1에서는 인간 혈액 유래 혈구 세포괴(Blood-born hematoshere, BBHS) 형성 과정을 설명하고, 실시예 2에서는 형성된 인간 혈액 유래 혈구 세포괴의 특징을 설명하였다. 실시예 3에서는 인간 혈액 유래 혈구 세포괴(BBHS)에서 인슐린 분비 세포 분화를 유도하는 과정을 기술했다. 실시예 4에서는 실제로 인슐린 혹은 인슐린 발현에 중요한 유전자의 확인과 인슐린이 실제로 분비되는지를 확인했다.
Example 1 describes the process of forming blood-born hematosome (BBHS) from human blood, and Example 2 describes the characteristics of hematopoietic cell derived from human blood. Example 3 described the process of inducing insulin secretory cell differentiation in human blood-derived blood cell mass (BBHS). In Example 4, it was confirmed whether genes actually important for insulin or insulin expression and insulin were actually secreted.

실시예Example 1. 인간 혈액 유래 혈구  1. Human hematopoietic stem cells 세포괴Cell mass ( ( bloodblood -- bornborn hematospherehematosphere , , BBHSBBHS ) 의 형성 및 특징) ≪ / RTI >

(1) 말초혈액에서 단핵구 세포 분리단계(1) Mononuclear cell separation step in peripheral blood

50ml 주사기에 Heparin (대략 100 ul)으로 도포 후 말초혈액을 얻었다. 50ml 튜브에 말초혈액을 10ml 씩 나눠 담은 뒤 PBS (phosphate-buffered saline) 30ml을 넣어 조심스럽게 잘 혼합하였다. 희석된 혈액에 밀도 구배에 사용되는 Ficoll 10ml을 파이펫 에이드를 이용하여 튜브 하단에 천천히 내보내서 투명한 Ficoll층과 붉은 혈액층이 분리되게 한 후 2,500rpm 으로 25℃ 에서 30분간 정지 속도를 최소화하여 원심분리하였다. 상단에 노란색 혈청층, 하얀색 단핵구층, 투명한 Ficoll층 하단에 붉은 적혈구 및 단핵구층이 분리된 것을 확인한 뒤, 상단의 노란색 혈청층을 흡입하고 하얀색 단핵구층을 조심스럽게 새로운 튜브에 옮겨 담았다. 옮겨 담은 단핵구층은 두개의 튜브로 나눠 담은 뒤 PBS를 끝까지 채워, 1,800rpm 으로 4℃ 에서 10분간 원심분리하였다. 세포 펠렛 (pellet)은 볼텍싱 (vortexing)하여 단일 세포로 잘 풀어준 뒤 PBS로 끝까지 채우고, 1,700rpm 으로 4℃ 에서 10분간 원심분리 하였다. 위 헹굼 과정을 세 번 반복하며 이를 통해 밀도 구배에 사용된 물질 및 혈액 내 잔류물들을 제거하였다. 마지막 원심분리 전 헤모사이토미터 (hemocytometer) 로 세포 수를 측정하였다.
Peripheral blood was obtained by applying Heparin (approximately 100 ul) to a 50 ml syringe. 10 ml of peripheral blood was poured into 50 ml tubes, and 30 ml of PBS (phosphate-buffered saline) was added and carefully mixed. 10 ml of Ficoll used for the density gradient in the diluted blood was slowly poured into the bottom of the tube using a pipette to separate the clear Ficoll layer and the red blood layer and then the centrifugation was performed at 2500 rpm at 25 ° C for 30 minutes, Respectively. After the yellow serum layer, white mononuclear cell layer and transparent Ficoll layer were separated at the upper part, red erythrocytes and mononuclear layer were separated. Then, the upper yellowish layer was inhaled and the white mononuclear cell layer was carefully transferred to a new tube. The transferred mononuclear layer was divided into two tubes, filled with PBS, and centrifuged at 1,800 rpm at 4 ° C for 10 minutes. The cell pellet was vortexed and unfolded into single cells, filled to the end with PBS, and centrifuged at 1700 rpm for 10 min at 4 ° C. The above rinse procedure was repeated three times to remove the substances used in the density gradient and the residues in the blood. Cell counts were measured with a hemocytometer prior to the final centrifugation.

(2) 삼차원 배양단계(2) Three-dimensional culture step

상기 헹굼 과정이 끝난 세포는 Endothelial basal medium-2 (EBM-2)에 5% FBS를 첨가한 배양액을 사용하여 106/ml 이상의 고밀도로 초저부착 배양접시(Ultra-low attach culture dish)에 부유시킨 후, 5% CO2가 공급되는 배양기에서 37℃ 를 유지하며 배양하였으며, 배양 첫 2일 후 동일한 배지를 첨가해주었다.The rinsed cells were suspended in an ultra-low attach culture dish at a high density of 10 6 / ml or more using a culture medium supplemented with 5% FBS in Endothelial basal medium-2 (EBM-2) After incubation at 37 ° C in a 5% CO 2 -concentrated incubator, the same medium was added for the first two days after incubation.

도 1은 인간 말초혈액 단핵구(Peripheral Blood Mononuclear Cells, PBMC) 분리 후 5일 동안 인간 혈액 유래 세포괴(blood-born hematosphere, BBHS)를 배양하는 과정을 나타낸 모식도이다.
FIG. 1 is a schematic diagram showing a process of culturing a blood-born hematosphere (BBHS) for 5 days after the separation of human peripheral blood mononuclear cells (PBMC).

(3) (3) 세포괴의Cell mass 단일세포로의 해체단계 Disassembly step into single cell

상기 배양 과정을 거쳐 얻은 세포괴를 특성분석 및 치료용으로 사용하기 위하여 단일세포로 분리하는 과정을 거쳤다. 부유해 있는 세포괴는 배양접시를 가로·세로로 흔들어 가운데로 모이도록 한 뒤 현미경을 보며 세포괴만을 튜브에 옮겨 담고 1,700rpm 으로 4℃ 에서 10분간 원심분리 하였다. 세포 펠렛은 세포 해체 용액인 Accutase 1ml 로 가볍게 풀어준 뒤, 37℃ 배양기에 2~3분간 배양시켰다. 인큐베이션이 끝난 세포는 세포 배양액 1ml을 넣어준 뒤 수차례 파이펫팅하고 PBS를 끝까지 채워 1,700rpm 으로 4℃ 에서 10분간 원심분리 하였다.
The cell mass obtained through the culturing process was separated into single cells for use in characterization and treatment. The suspended cells were collected by centrifugation at 4 ° C for 10 minutes at 1,700 rpm. After the culture plate was shaken horizontally and vertically, the cells were collected in the center. The cell pellet was lightly loosened with 1 ml of Accutase, a cell disassembly solution, and cultured in a 37 ° C incubator for 2 to 3 minutes. After incubation, 1 ml of the cell culture was added, followed by several pipetting, followed by centrifugation at 1,700 rpm at 4 ° C for 10 minutes.

실시예Example 2. 인간 혈액 유래 혈구  2. Human hematopoietic stem cells 세포괴에서In the cell mass 인슐린 분비 세포의 확인 Identification of insulin-secreting cells

도 2에서 본 발명에 의하여 개발된 인간 혈액 유래 혈구 세포괴의 인슐린의 발현정도를 확인하기 위해, 면역형광염색법(immunofluorescence)을 이용하여 인슐린을 염색한 결과 일부 인슐린을 발현하는 세포(Nestin 및 beta-tubulin)들이 있음을 확인하였다.In FIG. 2, in order to confirm the expression level of insulin in human blood-derived hematopoietic cells developed by the present invention, immunofluorescence was used to stain insulin. As a result, cells expressing some insulin (Nestin and beta-tubulin ).

구체적으로, 면역형광염색은 인간 혈액 유래 혈구 세포괴를 30분간 고정 (Fixation) 후 PBS로 3번 세척하였고, 30분 동안 Blocking 한 뒤, 인슐린 항체를 이용하여 염색했다(초록색 : 인슐린, 파랑색 : 핵).For immunofluorescence staining, human blood-derived hematopoietic cells were fixed for 30 minutes, washed three times with PBS, blocked for 30 minutes, and stained with insulin antibody (green: insulin, blue: nuclear ).

Nestin 및 beta-tubulin을 발현하는 신경 전구 세포 및 신경 세포와 인슐린 전구 세포는 많은 부분을 공유 할 뿐만 아니라, 쉽게 인슐린 분비 세포로 (IPC) 분화가 잘 된다고 알려져 있다(Hori Y, Gu X, Xie X, Kim SK. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med. 2005).Nestin and beta-tubulin-expressing neuronal progenitor cells and neurons and insulin precursors are known to share many parts and to be easily differentiated into insulin secretory cells (IPC) (Hori Y, Gu X, Xie X , Kim SK. Differentiation of insulin-producing cells from human neural progenitor cells.

따라서 Nestin과 beta-tubulin 항체를 이용하여 도 2와 동일한 방법으로 면역형광염색법을 이용하여, 공초점 현미경을 사용하여 인간 혈액 유래 혈구 세포괴에서 Nestin 및 beta-tubulin의 발현 정도를 분석하였다.Therefore, the expression level of Nestin and beta-tubulin in human blood-derived hematopoietic cells was analyzed using a confocal microscope using immunofluorescence staining method using the Nestin and beta-tubulin antibodies in the same manner as in Fig.

그 결과, 인간 혈액 유래 혈구 세포괴에서 Nestin(도 3 참조) 및 beta-tubulin(도 4 참조)을 발현하는 세포가 많이 있음을 증명하였다(도 3 - 초록색: Nestin, 도 4 - 초록색 : beta-tubulin, 파랑색: 핵, Scale bar : 50um).
As a result, it was demonstrated that there are many cells expressing Nestin (see FIG. 3) and beta-tubulin (see FIG. 4) in human hematopoietic cell mass (FIG. 3 - green: Nestin, , Blue: nuclear, Scale bar: 50um).

실시예Example 3. 인간 혈액 유래 혈구  3. Human hematopoietic stem cells 세포괴에서In the cell mass 인슐린 분비 세포 분화 유도 Induction of insulin secretory cell differentiation

도 5는 본 발명에 의하여 개발된 인간 혈액 유래 혈구 세포괴를 7일 동안 배양 후 인슐린 분비 세포로 분화시키는 과정을 나타낸 것이다.FIG. 5 shows a process of culturing a human hematopoietic cell line developed by the present invention for 7 days to differentiate into insulin-secreting cells.

보다 구체적으로, 먼저 제 1단계에서 인간 혈액 유래 혈구 세포괴를 7일간 배양 후, 5ug/ml Fibronectin 코팅된 배양접시에서 인간 혈액 유래 혈구 세포괴(BBHS)를 옮기고, EBM-2에 1% FBS 및 Low-Glucose (5.9mM)을 넣은 배지를 이용하여 2일간 배양하였다. 제 2단계에서는 EBM-2에 1% FBS 및 High-Glucose (25mM)을 넣은 배지로 갈아주고, 2일간 배양하였다. 제 3단계에서는 EBM-2에 1% FBS 및 Low-Glucose (5.9mM)에다가 N2 supplement (Invitrogen)을 넣은 배지로 갈아준 후 2일간 배양하였다. 마지막으로 4단계에서는 EBM-2에 1% FBS 및 High-Glucose (25mM), 10mM Nicotinamide (Sigma Aldrich)를 넣은 배지로 갈아주었고, 2일간 배양하였다.
More specifically, in the first step, blood cells derived from human blood were cultured for 7 days, and then human blood hematopoietic cells (BBHS) were transferred from 5 g / ml Fibronectin-coated culture dishes. EBM- Glucose (5.9 mM) for 2 days. In the second step, EBM-2 was changed to medium containing 1% FBS and high-glucose (25 mM) and cultured for 2 days. In the third step, EBM-2 was replaced with medium supplemented with 1% FBS and low-glucose (5.9 mM), N2 supplement (Invitrogen), and cultured for 2 days. Finally, in step 4, EBM-2 was replaced with medium supplemented with 1% FBS, High-Glucose (25 mM), and 10 mM Nicotinamide (Sigma Aldrich) and cultured for 2 days.

실시예Example 4. 인슐린 분비 세포로의 분화 유도 후 유전자 및 단백질 특성 분석 4. Characterization of genes and proteins after induction of differentiation into insulin-secreting cells

본 발명에 의하여 개발된 인간 혈액 유래 혈구 세포괴(BBHS)를 인슐린 분비 세포로 분화시키는 각 단계별로 역전사 중합연쇄반응기법(Reverse Transcription Polymerase Chain Reaction; RT-PCR)을 이용하여, cDNA를 합성한 다음, 인슐린, 및 인슐린 분비에 중요한 유전자인 Glucose transporter 2 (GLUT2), insulin promoter factor 1(Pdx-1), Neurogenin 3(Ngn3), Nkx6.1, Proprotein convertase 2 (PC2), PC1/3, SUR1, GAPDH 유전자에 특이적인 Primer를 이용하여 PCR을 진행하였다. PCR 산물은 아가로스 겔 전기영동을 이용하여 분석하였으며, 이들 유전자의 발현을 확인한 결과를 도 6에 나타내었다.CDNA was synthesized using Reverse Transcription Polymerase Chain Reaction (RT-PCR) at each step of differentiating the human blood-derived blood cell mass (BBHS) developed by the present invention into insulin-secreting cells, (GLUT2), insulin promoter factor 1 (Pdx-1), Neurogenin 3 (Ngn3), Nkx6.1, Proprotein convertase 2 (PC2), PC1 / 3, SUR1 and GAPDH, which are important genes for insulin and insulin secretion PCR was carried out using a primer specific for the gene. The PCR products were analyzed using agarose gel electrophoresis. The results of confirming the expression of these genes are shown in FIG.

구체적으로 가장 중요한 인슐린 유전자가 증가하였으며, 췌장의 및 베타 세포의 발달에 중요한 전사 인자 유전자(Transcription factor genes)로 알려진 insulin promoter factor 1(Pdx-1), Neurogenin 3(Ngn3), Nkx6.1이 각 단계별로 증가하였다. 또한, 췌장의 내분비 기능에 중요한 Glucose transporter 2 (GLUT2), Proprotein convertase 2 (PC2)이 각 단계별로 증가하였다. 그리고 베타 세포의 중요한 기능을 하는 Kir6.2, ATP-binding cassette transporter sub-family C member 8(SUR1) 또한 각 단계에 따라 증가하였다. 이때 사용된 각각의 Primer는 하기 표 1과 같다.In particular, the most important insulin genes were increased, insulin promoter factor 1 (Pdx-1), Neurogenin 3 (Ngn3), and Nkx6.1, which are known as transcription factor genes important for pancreatic and beta cell development Respectively. Glucose transporter 2 (GLUT2) and proprotein convertase 2 (PC2), which are important for the endocrine function of the pancreas, increased with each step. In addition, Kir6.2, an important function of beta cells, and ATP-binding cassette transporter sub-family C member 8 (SUR1) also increased with each step. The primers used at this time are shown in Table 1 below.

PrimerPrimer SequenceSequence Access NumberAccess Number Product size (bp)Product size (bp) InsulinInsulin Forward 5'-CCTGTGCGGCTCACACCTGG-3'Forward 5'-CCTGTGCGGCTCACACCTGG-3 ' NM_000207NM_000207 540540 Reverse 5'-CCACTCAGGCAGGCAGCCAC-3'Reverse 5'-CCACTCAGGCAGGCAGCCAC-3 ' Glut2Glut2 Forward 5'-AGGACTTCTGTGGACCTTATGTG-3'Forward 5'-AGGACTTCTGTGGACCTTATGTG-3 ' L09674L09674 231231 Reverse 5'-GTTCATGTCAAAAAGCAGGG-3'Reverse 5'-GTTCATGTCAAAAAGCAGGG-3 ' Pdx1Pdx1 Forward 5'-GGATGAAGTCTACCAAAGCTCACGC-3'Forward 5'-GGATGAAGTCTACCAAAGCTCACGC-3 ' NM_000209NM_000209 220220 Reverse 5'-CCAGATCTTGATGTGTCTCTCGGTC-3'Reverse 5'-CCAGATCTTGATGTGTCTCTCGGTC-3 ' Ngn3Ngn3 Forward 5'-CGTGAACTCCTTGAACTGAGCAG-3'Forward 5'-CGTGAACTCCTTGAACTGAGCAG-3 ' AF234829AF234829 211211 Reverse 5'-TGGCACTCCTGGGACAGATTTC-3'Reverse 5'-TGGCACTCCTGGGACAGATTTC-3 ' Nkx6.1Nkx6.1 Forward 5'-CAATGGAGGGCACCCGGCAG-3'Forward 5'-CAATGGAGGGCACCCGGCAG-3 ' NM_006168.2NM_006168.2 599599 Reverse 5'-CCAGAAGATGGGCGTCCGGC-3'Reverse 5'-CCAGAAGATGGGCGTCCGGC-3 ' PC2PC2 Forward 5'-GCATCAAGCACAGACCTACACTCG-3'Forward 5'-GCATCAAGCACAGACCTACACTCG-3 ' NM_002594NM_002594 309309 Reverse 5'-GAGACACAACCCTTCATCCTTC-3'Reverse 5'-GAGACACAACCCTTCATCCTTC-3 ' PC1/3PC1 / 3 Forward 5'-TTGGCTGAAAGAGAACGGGATACATCT-3'Forward 5'-TTGGCTGAAAGAGAACGGGATACATCT-3 ' NM_000439NM_000439 457457 Reverse 5'-ACTTCTTTGGTGATTGCTTTGGCGGTG-3'Reverse 5'-ACTTCTTTGGTGATTGCTTTGGCGGTG-3 ' SUR1SUR1 Forward 5'-CACATCCACCACAGCACATGG-3'Forward 5'-CACATCCACCACAGCACATGG-3 ' NM_000352.3NM_000352.3 420420 Reverse 5'-GTCTTGAAGAAGATGTATCTCCTCA-3'Reverse 5'-GTCTTGAAGAAGATGTATCTCCTCA-3 ' GAPDHGAPDH Forward 5'-CAAATTCGTTGTCATACCAG-3'Forward 5'-CAAATTCGTTGTCATACCAG-3 ' NM_002046NM_002046 480480 Reverse 5'-CGTGGAAGGACTCATGAC-3'Reverse 5'-CGTGGAAGGACTCATGAC-3 '

도 7에서는 인간 혈액 유래 혈구 세포괴에서 (BBHS) 인슐린 분비 세포 분화 유도 후 면역형광염색법을 통해 인슐린과 Nestin을 발현하는지를 면역형광염색기법을 통해 확인 한 결과, 인슐린과 Nestin을 발현하고 있었다. 또한, 인간 혈액 유래 혈구 세포괴와 비교하여, 인간 혈액 유래 혈구 세포괴를 인슐린 분비 세포로의 분화를 유도했을 경우에 인슐린 발현 세포가 더욱 증가하였다 (빨강 : 인슐린, 초록 : Nestin, 파랑 : 핵, Scale bar : 50um).FIG. 7 shows the expression of insulin and Nestin by immunofluorescence staining after induction of insulin secretory cell differentiation in human hematopoietic stem cells (BBHS) through immunofluorescence staining. As a result, insulin and Nestin were expressed. In addition, when human blood hematopoietic cells were induced to differentiate into insulin-secreting cells, insulin-expressing cells were further increased (red: insulin, green: Nestin, blue: nuclear, Scale bar : 50um).

도 8에서는 인슐린 분비 세포에서의 인슐린 분자에서 아연이온 (Zinc ion)을 탐지하여 붉은색(Crimson red)으로 염색되는 Dithizone staining (DTZ)을 통해 인슐린 분비 세포 분화 후에 실제로 인슐린을 다량 발현하고 있다는 것을 확인했다 (Scale bar : 10um). DTZ 염색은 1% FBS가 포함된 EBM-2 배양액에 DTZ를 (100ug/ml) 첨가하여 인슐린 분비 세포의 분화 각각의 단계를 염색하였다.FIG. 8 shows that insulin secretion is detected by inserting zinc ions (zinc ions) in the insulin-secreting cells, and Dithizone staining (DTZ), which is stained with red (Crimson red) (Scale bar: 10um). For DTZ staining, each step of differentiation of insulin-secreting cells was stained by adding DTZ (100 ug / ml) to EBM-2 medium containing 1% FBS.

도 9에서는 실제로 인슐린을 분비하는지 확인하기 위해, 포도당 자극에 의한 인슐린 분비(Glucose-Stimulated Insulin Secretion, GSIS)를 세포의 상등액을 이용하여 효소결합 면역흡수 분석법 (Enzyme-linked immunosobent assay, ELISA)를 통해 분석하였다.In FIG. 9, glucose-stimulated insulin secretion (GSIS) was assayed by enzyme-linked immunosorbent assay (ELISA) using supernatant of cells to confirm whether insulin secretion actually occurred Respectively.

보다 구체적으로, GSIS는 인간 혈액 유래 혈구 세포괴(BBHS)에서 인슐린 분비 세포 분화 유도 후 PBS로 한번 세척했고, low glucose가 (5.9 mM) 포함된 Krebs-Ringer bicarbonate (KRB) buffer (120 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.1 mM MgCl2, 25 mM NaHCO3, 0.1 g BSA)을 이용하여 1시간 동안 37℃에서 incubation 했다. 그리고 나서 상등액을 제거 한 후 5.9 mM (Low glucose) 혹은 25 mM glucose를 (High glucose) 포함하는 새로운 KRB buffer를 각각 넣어준 뒤 2시간 동안 37℃에서 incubation 했고, 상등액을 얻어 효소결합 면역흡수 분석법을 (Enzyme-linked immunosobent assay, ELISA) 통해 인슐린의 분비 정도를 분석했다. 그 결과, 저농도의 포도당에 비해 고농도의 포도당에서 더 많은 인슐린이 분비되는 것을 확인하였다. 즉, 인간 혈액 유래 혈구 세포괴(BBHS)에서 유래한 인슐린 분비 세포는 glucose 자극에 의해 인슐린을 분비하는 것을 확인하였다(도 9 참조).
More specifically, GSIS was washed once with PBS after induction of differentiation of insulin-secreting cells in human blood-derived blood cell mass (BBHS), and Krebs-Ringer bicarbonate (KRB) buffer (120 mM NaCl, 5 mM) containing low glucose mM KCl, 2.5 mM CaCl 2 , 1.1 mM MgCl 2 , 25 mM NaHCO 3 , 0.1 g BSA) for 1 hour at 37 ° C. Then, the supernatant was removed, and then a new KRB buffer containing 5.9 mM (Low glucose) or 25 mM glucose (High glucose) was added to each well. After incubation at 37 ° C. for 2 hours, supernatant was obtained and enzyme-linked immunosorbent assay (Enzyme-linked immunosorbent assay, ELISA). As a result, it was confirmed that more insulin was secreted from glucose at a high concentration than at low concentration of glucose. That is, it was confirmed that insulin-secreting cells derived from human blood-derived blood cell mass (BBHS) secrete insulin by glucose stimulation (see FIG. 9).

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. It will be apparent to those skilled in the art that various modifications, substitutions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. will be.

따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Therefore, the embodiments disclosed in the present invention and the accompanying drawings are intended to illustrate and not to limit the technical spirit of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments and the accompanying drawings . The scope of protection of the present invention should be construed according to the following claims, and all technical ideas falling within the scope of the same shall be construed as falling within the scope of the present invention.

<110> SNU R&DB FOUNDATION <120> PHARMACEUTICAL COMPOSITION FOR TREATING METABOLIC DISEASE COMPRISING HUMAN BLOOD DERIVED HEMATOSPHERE <130> PB13-11179 <150> KR 2012/0006070 <151> 2012-01-19 <160> 18 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Insulin(NM_000207) Forward primer <400> 1 cctgtgcggc tcacacctgg 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Insulin(NM_000207) Reverse primer <400> 2 ccactcaggc aggcagccac 20 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Glut2(L09674) Forward primer <400> 3 aggacttctg tggaccttat gtg 23 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Glut2(L09674) Reverse primer <400> 4 gttcatgtca aaaagcaggg 20 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Pdx1(NM_000209) Forward primer <400> 5 ggatgaagtc taccaaagct cacgc 25 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Pdx1(NM_000209) Reverse primer <400> 6 ccagatcttg atgtgtctct cggtc 25 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Ngn3(AF234829) Forward primer <400> 7 cgtgaactcc ttgaactgag cag 23 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Ngn3(AF234829) Reverse primer <400> 8 tggcactcct gggacagatt tc 22 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nkx6.1(NM_006168.2) Forward primer <400> 9 caatggaggg cacccggcag 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nkx6.1(NM_006168.2) Reverse primer <400> 10 ccagaagatg ggcgtccggc 20 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PC2(NM_002594) Forward primer <400> 11 gcatcaagca cagacctaca ctcg 24 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PC2(NM_002594) Reverse primer <400> 12 gagacacaac ccttcatcct tc 22 <210> 13 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PC1/3(NM_000439) Forward primer <400> 13 ttggctgaaa gagaacggga tacatct 27 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PC1/3(NM_000439) Reverse primer <400> 14 acttctttgg tgattgcttt ggcggtg 27 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SUR1(NM_000352.3) Forward primer <400> 15 cacatccacc acagcacatg g 21 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> SUR1(NM_000352.3) Reverse primer <400> 16 gtcttgaaga agatgtatct cctca 25 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH(NM_002046) Forward primer <400> 17 caaattcgtt gtcataccag 20 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GAPDH(NM_002046) Reverse primer <400> 18 cgtggaagga ctcatgac 18 <110> SNU R & DB FOUNDATION <120> PHARMACEUTICAL COMPOSITION FOR TREATING METABOLIC DISEASE          COMPRISING HUMAN BLOOD DERIVED HEMATOSPHERE <130> PB13-11179 <150> KR 2012/0006070 <151> 2012-01-19 <160> 18 <170> Kopatentin 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Insulin (NM_000207) Forward primer <400> 1 cctgtgcggc tcacacctgg 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Insulin (NM_000207) Reverse primer <400> 2 ccactcaggc aggcagccac 20 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Glut2 (L09674) Forward primer <400> 3 aggacttctg tggaccttat gtg 23 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Glut2 (L09674) Reverse primer <400> 4 gttcatgtca aaaagcaggg 20 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Pdx1 (NM_000209) Forward primer <400> 5 ggatgaagtc taccaaagct cacgc 25 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Pdx1 (NM_000209) Reverse primer <400> 6 ccagatcttg atgtgtctct cggtc 25 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Ngn3 (AF234829) Forward primer <400> 7 cgtgaactcc ttgaactgag cag 23 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Ngn3 (AF234829) Reverse primer <400> 8 tggcactcct gggacagatt tc 22 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nkx6.1 (NM_006168.2) Forward primer <400> 9 caatggaggg cacccggcag 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nkx6.1 (NM_006168.2) Reverse primer <400> 10 ccagaagatg ggcgtccggc 20 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PC2 (NM_002594) Forward primer <400> 11 gcatcaagca cagacctaca ctcg 24 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PC2 (NM_002594) Reverse primer <400> 12 gagacacaac ccttcatcct tc 22 <210> 13 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PC1 / 3 (NM_000439) Forward primer <400> 13 ttggctgaaa gagaacggga tacatct 27 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PC1 / 3 (NM_000439) Reverse primer <400> 14 acttctttgg tgattgcttt ggcggtg 27 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SUR1 (NM_000352.3) Forward primer <400> 15 cacatccacc acagcacatg g 21 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> SUR1 (NM_000352.3) Reverse primer <400> 16 gtcttgaaga agatgtatct cctca 25 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH (NM_002046) Forward primer <400> 17 caaattcgtt gtcataccag 20 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GAPDH (NM_002046) Reverse primer <400> 18 cgtggaagga ctcatgac 18

Claims (5)

인슐린 분비 세포 분화 유도성 인간 혈액 유래 혈구 세포괴를 포함하는 당뇨병 치료용 약학적 조성물로서,
상기 인간 혈액 유래 혈구 세포괴는 PDX-1, Ngn-3, Nkx6.1, PC2, 또는 Sur-1 발현을 증가시키는 것을 특징으로 하는, 약학적 조성물.
Claims 1. A pharmaceutical composition for the treatment of diabetes comprising an insulin secretory cell differentiation-inducing human blood-derived hemocyte cell mass,
Wherein the human hematopoietic cell population increases PDX-1, Ngn-3, Nkx6.1, PC2, or Sur-1 expression.
제1항에 있어서,
상기 인간 혈액 유래 혈구 세포괴는 인간 혈액으로부터 단핵구세포를 분리하여 삼차원 응집 배양을 통해 형성되는 것을 특징으로 하는, 약학적 조성물.
The method according to claim 1,
Wherein the human blood-derived hemocyte cell mass is formed through three-dimensional coagulation culture by separating mononuclear cells from human blood.
삭제delete 삭제delete 삭제delete
KR1020130005902A 2012-01-19 2013-01-18 Pharmaceutical composition for treating metabolic disease comprising human blood derived hematosphere KR101453645B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2013/000441 WO2013109104A1 (en) 2012-01-19 2013-01-18 Pharmaceutical composition comprising human-blood-derived blood-cell mass
US14/372,891 US20150157663A1 (en) 2012-01-19 2013-01-18 Pharmaceutical Composition Comprising Human-Blood-Derived-Cell Mass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120006070 2012-01-19
KR20120006070 2012-01-19

Publications (2)

Publication Number Publication Date
KR20130085383A KR20130085383A (en) 2013-07-29
KR101453645B1 true KR101453645B1 (en) 2014-10-23

Family

ID=48995609

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130005902A KR101453645B1 (en) 2012-01-19 2013-01-18 Pharmaceutical composition for treating metabolic disease comprising human blood derived hematosphere

Country Status (1)

Country Link
KR (1) KR101453645B1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Cell Research, Vol.21, pp.987-990 (2011) *
Cell Research, Vol.21, pp.987-990 (2011)*
Journal of American Medical Association, Vol.297, No.14, pp.1568-1576 (2007) *
Journal of American Medical Association, Vol.297, No.14, pp.1568-1576 (2007)*

Also Published As

Publication number Publication date
KR20130085383A (en) 2013-07-29

Similar Documents

Publication Publication Date Title
JP6764912B2 (en) Cell population with immunomodulatory activity, its preparation method and use
KR101507174B1 (en) Immune privileged and modulatory progenitor cells
Domouky et al. Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus
Prodinger et al. Current and future perspectives of stem cell therapy in dermatology
RU2717983C2 (en) Induction medium and methods of stem cell cultivation and therapy
Chen et al. Characterization of mesenchymal stem cells under the stimulation of Toll‐like receptor agonists
CN104357383A (en) Preparation method of human adipose-derived MSCs (mesenchymal stem cells) and application of human adipose-derived mesenchymal stem cell in preparation of medicine for treating diseases
KR20180127355A (en) Colony-forming medium and uses thereof
KR20140040696A (en) Cell therapy composition for preventing or treating immune disease comprising mesenchymal stem cell and regulatory t cell
KR102053868B1 (en) Pharmaceutical composition for preventing or treating neurodegenerative disease, comprising turbinate mesenchymal stem cell as an active ingredient
US20200384082A1 (en) Cosmetic composition and pharmaceutical composition for alleviating atopic dermatitis, hair loss, and wounds or reducing skin wrinkles
Zhou et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke
KR102100307B1 (en) Isolation and use of human lymphoid organ-derived suppressive stromal cells
US20220403326A1 (en) Media formulations and methods for producing progenitor t cells
Dai et al. Reprogramming adipose mesenchymal stem cells into islet β-cells for the treatment of canine diabetes mellitus
CN106282103A (en) Animal mescenchymal stem cell immunosuppressant can strengthen serum-free medium
KR101659158B1 (en) Mesenchymal stem cells treated metformin having immuno-modulating activity and cell therapeutic agent for preventing or treating immune disease
KR101453645B1 (en) Pharmaceutical composition for treating metabolic disease comprising human blood derived hematosphere
KR101583666B1 (en) Composition for preventing or treating autoimmune diseases or transplant rejection comprising human fetal cartilage-derived cells
Du et al. Engineering islets from stem cells: the optimal solution for the treatment of diabetes?
Qujeq et al. Viability and functional recovery of pancreatic islet cells co-cultured with liver, salivary glands and intestine cells
CN101760446B (en) Method for preparing monocyte type stem cell and application
Gonzalez Rejuvenation of Aging Adipose-Derived Mesenchymal Stem Cells for Autologous Therapy
Sargent CNS Disease Diminishes the Therapeutic Functionality of Mesenchymal Stem Cells
KR20240008054A (en) Anti-cancer composition comprising stem cell-derived exosomes and method for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 5