KR101451510B1 - Method for preparing Nd based rare earth sintered magnet - Google Patents
Method for preparing Nd based rare earth sintered magnet Download PDFInfo
- Publication number
- KR101451510B1 KR101451510B1 KR1020130054372A KR20130054372A KR101451510B1 KR 101451510 B1 KR101451510 B1 KR 101451510B1 KR 1020130054372 A KR1020130054372 A KR 1020130054372A KR 20130054372 A KR20130054372 A KR 20130054372A KR 101451510 B1 KR101451510 B1 KR 101451510B1
- Authority
- KR
- South Korea
- Prior art keywords
- based rare
- alloy powder
- earth alloy
- rare earth
- absorption
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0557—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1003—Use of special medium during sintering, e.g. sintering aid
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/058—Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/086—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/45—Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
본 발명은 Nd계 희토류 영구 소결 자석의 제조방법에 관한 것이다. The present invention relates to a method of manufacturing an Nd-based rare earth permanent magnet.
Nd계 희토류 영구 소결 자석은 자장 중 성형을 하기 이전에 strip cast ally을 조분쇄 하기 위해 수소 가스의 흡수/탈수소(Hydrogen Decrepitation, 이하 HD 처리라 함) 처리를 실시한다. 이렇게 하여 얻어진 조분말을 다시 최적의 자기특성을 나타내는 입자분말 사이즈(3~5㎛)로 만들기 위해 제트 밀링(Jet milling)을 실시한다. 제트 밀링은 볼 밀링(Ball milling)보다 균일한 크기의 미분말을 얻을 수 있고, 산화도 및 오염도가 적어 보다 자기특성이 향상된 영구자석을 제조할 수 있는 것으로 알려져 있다. The Nd-based rare earth permanent magnet is subjected to Hydrogen Decrement (hereinafter referred to as "HD treatment") to coarsely crush the strip cast ally before magnetic field formation. Jet milling is performed to make the obtained coarse powder into a particle powder size (3 to 5 mu m) again showing optimum magnetic properties. It is known that jet milling can produce a permanent magnet having a uniform particle size than that of ball milling and having less degree of oxidation and contamination and improved magnetic properties.
Nd계 strip cast alloy를 이용하여 분말로 분쇄한 후, 높은 자기 특성 발현을 위해 다음 도 1과 같은 수소 가스와 Nd 희토류 금속과의 흡수/탈수소 거동 제어(HD처리)를 통한 공법으로 소결자석용 분말을 제조한다. Nd based strip cast alloy, and then the absorption / dehydrogenation behavior control (HD treatment) between hydrogen gas and Nd rare-earth metal as shown in FIG. .
기존의 방식은 strip cast alloy를 열처리 퍼니스에 넣고 가열 후 수소 가스를 주입/가압한다(Hydrogen). 주입/가압된 수소는 Nd-풍부 영역(Nd-rich phase)과 먼저 흡수 반응한 후 모합금 상인 Nd2Fe14B 영역과 반응/흡수되어, 체적 팽창을 유발시킨다. 이때 모합금에 1차 크랙 및 분쇄가 발생하게 된다. 수소가 더 이상 흡수되어지지 않을 때까지 반응시킨 후 진공 분위기에서 열처리를 실시하면 두 상에 흡수되었던 수소는 분해(탈수소)되며, 이때 2차 분쇄가 일어나게 된다. In the conventional method, a strip cast alloy is placed in a heat-treated furnace, and hydrogen gas is injected / pressurized after heating (Hydrogen). The injected / pressurized hydrogen reacts first with the Nd-rich phase and then reacts / absorbs with the Nd 2 Fe 14 B region, the parent alloy phase, causing volume expansion. At this time, primary cracks and crushing occur in the parent alloy. If the reaction is continued until the hydrogen is no longer absorbed, and then heat treatment is performed in a vacuum atmosphere, the hydrogen absorbed in the two phases is decomposed (dehydrogenated), resulting in secondary crushing.
이런 과정을 거쳐서 얻어진 분말 내에는 수많은 크랙들이 발생해 분말이 부스러지기 쉬운(Brittle) 경향을 가지기 때문에 제트 밀링을 시행함으로써 미분말이 얻어진다. 상기 발생된 분쇄와 크랙들은 주로 Nd-풍부 영역과 Nd2Fe14B 영역의 경계면에서 일어난다. Since a lot of cracks are generated in the powder obtained through such a process and the powder tends to be brittle, a fine powder is obtained by jet milling. The generated fractures and cracks occur mainly at the interface between the Nd-rich region and the Nd 2 Fe 14 B region.
종래의 HD처리법에서는 다음 도 1과 같이 고온/가압인 상태에서 단 한번의 수소/탈수소 반응을 시켜 모합금의 조분쇄를 실시하였다. 이와 같이, 한번에 많은 양의 strip cast alloy들이 다루어질 경우, 특히 용기의 밑부분에 채워진 alloy들까지는 수소 가스가 고루 분산되지 않을 뿐만 아니라 모합금 내 깊숙한 곳에 있는 Nd phase들에 완전한 수소의 흡수/탈수소화가 이루어 지지 않게 되어 균일하고 미세한 분쇄가 이루어 지지 않는 문제가 있다.In the conventional HD treatment method, as shown in Fig. 1, a single hydrogen / dehydrogenation reaction was carried out at a high temperature / pressurized state to perform coarse grinding of the parent alloy. Thus, when a large amount of strip cast alloys are handled at once, especially the alloy filled in the bottom of the vessel, not only hydrogen gas is dispersed uniformly but also the absorption / dehydrogenation of complete hydrogen in the Nd phases deep within the parent alloy There is a problem that uniform and fine pulverization can not be carried out.
이에 본 발명에서는 제트 밀링을 실시하기 이전의 공정인 종래의 HD처리를 보완하여 보다 균일하고 미세한 입자 사이즈를 가지게 함으로써 제트 밀링 공정을 거치지 않아도 되는 Nd계 희토류 소결영구자석의 제조방법에 관한 것이다. Accordingly, the present invention relates to a method of manufacturing an Nd-based rare-earth sintered permanent magnet which does not require a jet milling process by making a uniform and fine particle size by complementing conventional HD processing prior to jet milling.
본 발명의 일 실시예에 따른 Nd계 희토류 소결영구자석의 제조방법은 Nd계 희토류 합금 분말을 가열시키는 단계, 상기 가열시킨 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시켜 조분쇄시키는 단계, 상기 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시키는 단계를 반복 수행하여 상기 Nd계 희토류 합금 분말을 미세하게 분쇄시키는 단계, 및 상기 미세 분쇄된 Nd계 희토류 합금 분말을 소결시키는 단계를 포함할 수 있다. A method of manufacturing an Nd-based rare earth sintered permanent magnet according to an embodiment of the present invention includes heating an Nd-based rare earth alloy powder, adding hydrogen gas to the heated Nd-based rare earth alloy powder and performing absorption / dehydrogenation Pulverizing the Nd-based rare-earth alloy powder with hydrogen gas and repeating the step of adsorbing / dehydrogenating the Nd-based rare-earth alloy powder to finely pulverize the Nd-based rare earth alloy powder; and finely pulverizing the Nd- And sintering the rare earth alloy powder.
상기 Nd계 희토류 합금 분말의 가열은 100~250℃까지 수행되는 것일 수 있다. The Nd-based rare-earth alloy powder may be heated to 100 to 250 ° C.
상기 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)는 진공 분위기 하에서 400~700℃에서 수행되는 것일 수 있다. The Nd-based rare-earth alloy powder may be subjected to adsorption / dehydrogenation by hydrogen gas at a temperature of 400 to 700 ° C. under a vacuum atmosphere.
상기 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시키는 단계를 후, 제트 밀링 단계를 포함하지 않는 것을 특징으로 한다.The method includes the step of adding hydrogen gas to the Nd-based rare-earth alloy powder to perform absorption / dehydrogenation (hydrogen decrepitation), but not including a jet milling step.
상기 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시키는 단계를 반복 수행함으로써 상기 Nd계 희토류 합금 분말의 Nd-풍부 영역과 Nd계 희토류 합금 모상 영역의 모든 경계에서 분쇄가 발생되어 상기 Nd계 희토류 합금 분말을 미세하게 분쇄시키는 데 특징이 있다.The Nd-rare-earth alloy powder is pulverized at all boundaries of the Nd-rich region and the Nd-based rare-earth alloy parent region by repeating the step of applying hydrogen gas to the Nd-based rare earth alloy powder and performing absorption / dehydrogenation Thereby finely pulverizing the Nd-based rare-earth alloy powder.
상기 제조된 Nd계 희토류 영구 소결 자석의 입자 크기는 3~5㎛인 것을 특징으로 한다.The particle size of the Nd-based rare earth permanent magnet thus produced is 3 to 5 탆.
상기 Nd계 희토류 소결 자석은 Nd-Fe-B 소결 자석일 수 있다.The Nd-based rare-earth sintered magnet may be an Nd-Fe-B sintered magnet.
상기 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시키는 단계를 반복 수행시, 상기 Nd계 희토류 합금 분말에 불활성 가스 하에서 냉각시키는 단계를 포함할 수 있다.And adding hydrogen gas to the Nd-based rare-earth alloy powder to perform absorption / dehydrogenation, the Nd-based rare earth alloy powder may be cooled in an inert gas.
본 발명에 따르면, HD 처리공정을 여러 번 반복 수행함으로써 자기특성이 향상된 Nd계 희토류 영구 소결 자석의 미분말 제조 방법을 제공할 수 있으며, 미세 분말 제조를 위한 후속 공정인 제트 밀링을 생략할 수 있으므로 공정을 단순화시킬 수 있어 가격 경쟁력을 가지며 제조 단가를 낮출 수 있는 효과를 가진다. According to the present invention, it is possible to provide a method of manufacturing a fine powder of an Nd-based rare-earth permanent magnet sintered magnet having improved magnetic properties by repeating the HD treatment process several times. Since jet milling as a subsequent process for producing fine powder can be omitted, It is possible to reduce the manufacturing cost by having a price competitive advantage.
도 1은 종래의 HD처리 공정도이고,
도 2는 본 발명에 따른 연속 HD처리 공법 공정도이고,
도 3은 본 발명의 실시예에 따라 제조된 Nd-Fe-B계 합금 분말의 미세 구조를 주사전자현미경으로 확인한 결과이다. 1 is a conventional HD processing process chart,
2 is a flowchart of a continuous HD processing method according to the present invention,
FIG. 3 is a result of scanning electron microscopy of the microstructure of the Nd-Fe-B alloy powder prepared according to the embodiment of the present invention.
이하에서 본 발명을 더욱 상세하게 설명하면 다음과 같다. Hereinafter, the present invention will be described in more detail.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a,""an," and "the" include singular forms unless the context clearly dictates otherwise. Also, " comprise "and / or" comprising "when used herein should be interpreted as specifying the presence of stated shapes, numbers, steps, operations, elements, elements, and / And does not preclude the presence or addition of one or more other features, integers, operations, elements, elements, and / or groups.
본 발명은 연속 HD 처리 공정을 이용하여 제트 밀링 공정을 거치지 않고도 미세한 Nd계 희토류 영구 소결 자석을 제조할 수 있는 방법에 관한 것이다. The present invention relates to a method for producing fine Nd-based rare-earth permanent magnet magnets without a jet milling process using a continuous HD processing process.
본 발명에 따른 Nd계 희토류 영구 소결 자석의 제조방법은 Nd계 희토류 합금 분말을 가열시키는 단계, 상기 가열시킨 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시켜 조분쇄시키는 단계, 상기 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시키는 단계를 반복 수행하여 상기 Nd계 희토류 합금 분말을 미세하게 분쇄시키는 단계, 및 상기 미세 분쇄된 Nd계 희토류 합금 분말을 소결시키는 단계를 포함할 수 있다. The method of manufacturing an Nd-based rare-earth permanent magnet according to the present invention comprises the steps of heating an Nd-based rare-earth alloy powder, adding hydrogen gas to the heated Nd-based rare-earth alloy powder and hydrogen- And repeating the step of hydrogenating the Nd-based rare-earth alloy powder with hydrogen gas and performing hydrogen reduction, finely pulverizing the Nd-based rare earth alloy powder, and finely pulverizing the Nd-based rare earth alloy powder, And sintering.
본 발명에 따른 Nd계 희토류 영구 소결 자석은 먼저 Nd계 희토류 strip cast alloy를 열처리 퍼니스에서 가열시키는 단계이다. 상기 열처리 퍼니스에서의 가열은 약 100~250℃까지 수행될 수 있다. The Nd-based rare earth permanent magnet according to the present invention is a step of heating an Nd-based rare earth strip cast alloy in a heat-treated furnace. The heating in the heat treatment furnace may be performed to about 100 to 250 캜.
상기 온도까지 가열시킨 다음, 상기 가열시킨 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation) 공정을 거쳐 상기 Nd계 희토류 합금 분말을 조분쇄시킨다. 상기 흡수/탈수소 처리(hydrogen decrepitation) 공정은 약 10℃/min 의 속도로 400~700℃까지 승온시키고, 2~5시간 동안 유지시켜 수행하는 것이 바람직하다.The Nd-based rare-earth alloy powder is heated to the above temperature, hydrogen gas is added to the heated Nd-rare-earth alloy powder, and the Nd-based rare earth alloy powder is roughly pulverized through absorption / dehydrogenation. The above-described hydrogen decrepitation process is preferably performed by raising the temperature to 400 to 700 ° C at a rate of about 10 ° C / min and maintaining the temperature for 2 to 5 hours.
특별히 본 발명에서는 다음 도 2와 같이 새로운 타입의 연속 HD 처리공법을 거치는 데 특징이 있다. 즉, 단 한 번만의 공정에서 HD 처리를 완료시켜, 다시 최적의 자기특성을 나타내는 입자분말 사이즈(2~3um)로 만들기 위해 제트 밀링 공정으로 넘어가는 것이 아니라, 한번 처리가 끝난 상태에서 다시 3~10회의 HD 처리 공법을 반복적으로 실시하는 것이다. Particularly, the present invention is characterized by passing through a new type of continuous HD processing method as shown in FIG. That is, instead of going to the jet milling process to finish the HD treatment in only one process and to make the particle size (2 ~ 3 um) showing the optimum magnetic characteristics again, 10 times HD processing method is repeatedly performed.
상기 HD 처리 공법을 반복 수행하는 경우, 각 단계가 끝날 때마다 Nd계 희토류 합금 분말을 불활성 가스 분위기에서 냉각시키는 과정을 거친 후 다시 HD 처리 공법을 수행하는 것이 바람직하다.When the HD processing method is repeatedly performed, it is preferable to perform the HD processing method after cooling the Nd-based rare-earth alloy powder in an inert gas atmosphere at the end of each step.
종래의 1회의 HD 처리법으로는 한번에 많은 양의 strip cast alloy들이 다루어질 경우, 특히 용기의 밑부분에 채워진 합금 분말들까지는 수소 가스가 고루 분산되지 않을 뿐만 아니라 모합급 내 깊숙한 곳까지 미쳐 Nd phase들에 완전한 수소의 흡수/탈수소화가 이루어 지지 않게 되어 균일하고 미세한 분쇄가 이루어 지지 않는 점이 문제로 들 수 있다. In the conventional HD treatment method, when a large amount of strip cast alloys are treated at a time, hydrogen gas is not uniformly dispersed even to the alloy powders filled in the bottom of the vessel, and the Nd phases The complete hydrogen absorption / dehydrogenation can not be carried out, and homogeneous and fine pulverization can not be carried out.
반면에, 본 발명에 따른 연속 HD공법은 연속적으로 HD 처리를 실시함으로써 종래처리법의 문제점으로 지적되는 수소/탈수소가 일어나지 않은 Nd phase들까지 완전히 반응을 일으키게 해 보다 미세한 분말을 얻을 수 있는 효과가 있다. 연속적으로 진행할 경우, 결국은 Nd-rich phase과 Nd2Fe14B phase의 모든 경계면에서 분쇄가 일어나게 된다. On the other hand, the continuous HD method according to the present invention has the effect of obtaining a finer powder by continuously performing the HD treatment to completely react to the Nd phases in which hydrogen / dehydrogenation does not occur, which is pointed out as a problem of the conventional treatment method . In the continuous process, the Nd-rich phase and the Nd 2 Fe 14 B phase are crushed at all interfaces.
즉, HD 공법을 위해 주입/가압된 수소는 Nd-풍부 영역(Nd-rich phase)과 먼저 흡수 반응한 후 모합금 상인 Nd2Fe14B 영역과 반응/흡수되어, 체적 팽창을 유발시킨다. 이때 모합금에 1차 크랙 및 분쇄가 발생하게 되는데, 수소가 더 이상 흡수되어지지 않을 때까지 반응시킨 후 진공 분위기에서 열처리(400~700℃에서)를 실시하면 두 상에 흡수되었던 수소는 분해(탈수소)되며, 이때 2차 분쇄가 일어나게 된다. That is, for the HD method, the injected / pressurized hydrogen first reacts with the Nd-rich phase and then reacts with the Nd 2 Fe 14 B region, which is the parent alloy phase, to cause volume expansion. In this case, the primary cracks and crushing occur in the parent alloy. When the reaction is continued until the hydrogen is no longer absorbed and then the heat treatment is performed in a vacuum atmosphere (at 400 to 700 ° C.), the hydrogen absorbed in the two phases is decomposed Dehydrogenation), where the second milling occurs.
따라서, 본 발명에 따른 연속 HD 처리 공법을 이용하는 경우, 상기 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시키는 단계를 거친 후, 제트 밀링 단계를 실질적으로 포함하지 않는 것을 특징으로 한다.Accordingly, in the case of using the continuous HD processing method according to the present invention, after the hydrogen gas is added to perform the absorption / dehydrogenation, hydrogen is not substantially included in the jet milling step.
즉, 상기 본 발명에 따른 연속 HD 처리 공법을 이용하여 제조된 Nd계 희토류 영구 소결 자석의 입자 크기는 3~5㎛의 최적의 자성 특성을 가지는 것이므로, 별도의 제트 밀링 단계를 거칠 필요가 없다. 따라서, 종래와 같이 제트 밀링 공정 중 분말들이 서로 충돌하여 분쇄될 때 자기특성 저하의 원인이 되는 분말손상(결함)이나 산화의 발생을 미연에 방지할 수 있다. 뿐만 아니라 본 발명에 따른 연속 HD법은 여러 가지 제조공정에서 하나의 프로세스를 감소시킬 수 있어 비슷한 소결 영구 자석을 제조하는 타 경쟁사에 기술우위 및 가격경쟁력을 가짐으로써 영구자석 시장 선점을 가능하게 한다.
That is, since the particle size of the Nd-based rare earth permanent magnet manufactured by the continuous HD processing method according to the present invention has an optimum magnetic property of 3 to 5 탆, it is not necessary to perform a separate jet milling step. Therefore, it is possible to prevent the occurrence of powder damage (defects) and oxidation, which are a cause of the magnetic property degradation, when the powders collide with each other and are crushed during the jet milling process as in the prior art. In addition, the continuous HD method according to the present invention can reduce one process in various manufacturing processes, and thus it is possible to prevail in the permanent magnet market by having technical superiority and price competitiveness to other competitors manufacturing similar sintered permanent magnets.
본 발명에 따른 상기 수소 가스를 가하여 흡수/탈수소 처리 공정은 진공 분위기 하에서 400~700℃에서 수행되는 것이 바람직하다. The absorption / dehydrogenation treatment by adding the hydrogen gas according to the present invention is preferably performed at 400 to 700 ° C. under a vacuum atmosphere.
또한, 상기 수소 가스를 가하여 흡수/탈수소 처리 공정은 3~10회를 반복 수행할 수 있으며, 그 횟수가 특별히 한정되는 것은 아니다.
In addition, the absorption / dehydrogenation treatment by adding the hydrogen gas may be repeated 3 to 10 times, and the number of times of the absorption / dehydrogenation treatment is not particularly limited.
상기 최적의 크기로 미세 분쇄된 Nd계 희토류 합금 분말을 자장 중 성형기를 이용하여 자석 성형체로 만들 수 있다. 또한, 상기 자장 중 성형기를 사용하여 제조한 자석 성형체는 소결 치밀화 과정을 위해 소결 처리를 진행하여 본 발명에 따른 Nd계 희토류 영구 소결 자석을 제조할 수 있다. The Nd-based rare-earth alloy powder finely pulverized in the optimum size can be made into a magnet compact by using a magnetic field molding machine. In addition, the magnet formed body manufactured by using the molding machine in the magnetic field can be sintered for sintering densification to produce the Nd-based rare earth permanent magnet according to the present invention.
본 발명에 따른 상기 Nd계 희토류 소결 자석은 Nd-Fe-B 소결 자석이 바람직하다.
The Nd-based rare-earth sintered magnet according to the present invention is preferably an Nd-Fe-B sintered magnet.
이하에서 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되어서는 안 된다. 또한, 이하의 실시예에서는 특정 화합물을 이용하여 예시하였으나, 이들의 균등물을 사용한 경우에 있어서도 동등 유사한 정도의 효과를 발휘할 수 있음은 당업자에게 자명하다.
Hereinafter, preferred embodiments of the present invention will be described in detail. The following examples are intended to illustrate the present invention, but the scope of the present invention should not be construed as being limited by these examples. In the following examples, specific compounds are exemplified. However, it is apparent to those skilled in the art that equivalents of these compounds can be used in similar amounts.
실시예Example
strip cast alloy Nd-Fe-B 합금 분말(Dy, Pr, Al, Cu, Co 등이 포함된 모합금)을 열처리 퍼니스에 넣고 200℃까지 가열시켰다. 그 다음, 수소 가스를 주입/가압시켜 HD 공법을 진행하는데, 10℃/min의 속도로 약 500℃까지 승온시키고 3시간에 걸쳐 진행하였다. strip cast alloy Nd-Fe-B alloy powder (parent alloy containing Dy, Pr, Al, Cu, Co, etc.) was heated in a furnace and heated to 200 ° C. Then, the HD process was carried out by injecting / pressurizing the hydrogen gas, and the temperature was raised to about 500 ° C at a rate of 10 ° C / min and the process was carried out for 3 hours.
상기 HD 공정을 거친 다음 아르곤 가스 분위기 하에서 상기 퍼니스를 냉각시키고, 다시 수소 가스를 주입/가압시켜 10℃/min의 속도로 약 500℃까지 승온시키고 3시간에 걸쳐 HD 공법을 진행하였다. After passing through the HD step, the furnace was cooled in an argon gas atmosphere, and hydrogen gas was injected / pressurized again to raise the temperature to about 500 ° C at a rate of 10 ° C / min, and the HD method was performed for 3 hours.
상기 냉각과 HD 공법을 약 3회에 걸쳐 추가로 반복하여 약 3㎛의 입자 크기를 가지는 Nd-Fe-B계 합금 분말을 얻었다. The above cooling and HD method was further repeated three times to obtain an Nd-Fe-B alloy powder having a particle size of about 3 mu m.
상기 얻어진 Nd-Fe-B계 합금 분말을 자장 중 성형기에서 성형시켜 자석 성형체로 제조하고, 이를 900~1200℃에서 소결 처리하여 Nd계 희토류 영구 소결 자석을 얻었다.
The obtained Nd-Fe-B alloy powder was molded into a magnetic compact by a magnetic-field molding machine, and sintered at 900 to 1200 ° C to obtain an Nd-based rare earth permanent magnet.
실험예Experimental Example : : NdNd -- FeFe -B계 합금 분말의 미세 구조 확인-B Confirmation of microstructure of alloy powder
상기 실시예에서 얻어진 Nd-Fe-B계 합금 분말의 미세 구조를 주사전자현미경으로 확인하였으며, 그 결과를 다음 도 3에 나타내었다.
The microstructure of the Nd-Fe-B based alloy powder obtained in the above Example was confirmed by a scanning electron microscope and the results are shown in FIG.
다음 도 3에서와 같이, Nd-풍부 영역(흰색)들은 균일하면서 일정하게 Nd2Fe14B phase 모상들을 둘러싸고 있다. 본 발명에 따른 연속 HD공법을 이용하면, 상기 Nd-rich phase과 Nd2Fe14B phase의 모든 경계면에서 분쇄가 일어나게 된다. 이렇게 해서 얻어진 최종 분말들은 종래의 공법과 비교하여 미세하고 균일한 크기의 분말들이 얻어진다. 그리고 얻어진 분말의 사이즈는 최대의 자기특성을 나타낸다고 알려진 3~5㎛의 크기를 가지므로, 종래의 HD 처리법 다음에 미분발을 얻기 위해 실시되는 제트 밀링 공정을 스킵할 수 있는 효과를 가진다.
As shown in Figure 3, the Nd-rich regions (white) are uniformly and constantly surrounding the Nd 2 Fe 14 B phase morphologies. When the continuous HD method according to the present invention is used, crushing occurs at all interfaces between the Nd-rich phase and the Nd 2 Fe 14 B phase. The final powders thus obtained are finer and uniform in size compared to conventional processes. Since the size of the obtained powder has a size of 3 to 5 탆 which is known to exhibit the maximum magnetic property, it has an effect of skipping the jet milling process performed to obtain differential powder after the conventional HD treatment.
Claims (8)
상기 가열시킨 Nd계 희토류 합금 분말에 진공 분위기에서 수소 가스를 가하고, 10℃/min의 속도로 500℃까지 승온하는 단계;
상기 500℃까지 승온된 Nd계 희토류 합금 분말을 500℃의 온도로 3시간 동안 유지시키는 단계;
상기 500℃에서 3시간 동안 유지된 Nd계 희토류 합금 분말을 아르곤 가스 분위기에서 냉각하여 흡수/탈수소 처리(hydrogen decrepitation)시켜 조분쇄시키는 단계;
상기 Nd계 희토류 합금 분말을 가열하는 단계 및 상기 수소 가스를 가하고, 10℃/min의 속도로 500℃까지 승온하는 단계, 상기 500℃의 온도로 3시간 동안 유지시키는 단계, 상기 흡수/탈수소 처리(hydrogen decrepitation)시켜 조분쇄시키는단계를 3회 반복 수행하여 상기 Nd계 희토류 합금 분말을 3㎛ 크기로 분쇄시키는 단계;
상기 3㎛ 크기로 분쇄된 Nd계 희토류 합금 분말을 불활성 가스하에서 냉각시키는 단계;
상기 불활성 가스하에서 냉각된 Nd계 희토류 합금 분말을 자장중 성형기에서 성형하여 자성 성형체로 제조하는 단계; 및
상기 자성 성형체를 900℃ ~ 1,200℃의 온도로 소결시키는 단계로 이루어진 Nd계 희토류 영구 소결 자석의 제조방법.
Heating the Nd-based rare-earth alloy powder containing Dy, Pr, Al, Cu, and Co to 200 DEG C in a heat treatment furnace;
Adding hydrogen gas to the heated Nd-based rare-earth alloy powder in a vacuum atmosphere, and raising the temperature to 500 ° C at a rate of 10 ° C / min;
Maintaining the Nd-based rare-earth alloy powder heated to 500 ° C at a temperature of 500 ° C for 3 hours;
Cooling the Nd-based rare-earth alloy powder held at 500 ° C. for 3 hours in an argon gas atmosphere, and then pulverizing the powder by absorption / dehydrogenation;
Heating the Nd-based rare earth alloy powder, adding the hydrogen gas, raising the temperature to 500 ° C at a rate of 10 ° C / min, maintaining the temperature at 500 ° C for 3 hours, performing the absorption / hydrogen reducing and pulverizing the Nd-based rare-earth alloy powder to a size of 3 탆;
Cooling the Nd-based rare-earth alloy powder pulverized to a size of 3 mu m under an inert gas;
Molding the Nd-based rare-earth alloy powder cooled under the inert gas in a magnetic field molding machine to produce a magnetic molded body; And
Sintering the magnetic compact at a temperature of 900 ° C to 1,200 ° C.
상기 Nd계 희토류 합금 분말에 수소 가스를 가하여 흡수/탈수소 처리(hydrogen decrepitation)시키는 단계를 반복 수행함으로써 상기 Nd계 희토류 합금 분말의 Nd-풍부 영역과 Nd계 희토류 합금 모상 영역의 모든 경계에서 분쇄가 발생되어 상기 Nd계 희토류 합금 분말을 미세하게 분쇄시키는 것인 Nd계 희토류 영구 소결 자석의 제조방법.
The method according to claim 1,
The Nd-rare-earth alloy powder is pulverized at all boundaries of the Nd-rich region and the Nd-based rare-earth alloy parent region by repeating the step of applying hydrogen gas to the Nd-based rare earth alloy powder and performing absorption / dehydrogenation Whereby the Nd-based rare-earth alloy powder is finely pulverized.
상기 Nd계 희토류 소결 자석은 Nd-Fe-B 소결 자석인 Nd계 희토류 영구 소결 자석의 제조방법.
The method according to claim 1,
Wherein the Nd-based rare-earth sintered magnet is an Nd-Fe-B sintered magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130054372A KR101451510B1 (en) | 2013-05-14 | 2013-05-14 | Method for preparing Nd based rare earth sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130054372A KR101451510B1 (en) | 2013-05-14 | 2013-05-14 | Method for preparing Nd based rare earth sintered magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101451510B1 true KR101451510B1 (en) | 2014-10-15 |
Family
ID=51997875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130054372A KR101451510B1 (en) | 2013-05-14 | 2013-05-14 | Method for preparing Nd based rare earth sintered magnet |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101451510B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101711859B1 (en) * | 2015-12-21 | 2017-03-03 | 주식회사 포스코 | Method for preparing rare earth permanent magnet |
KR101787549B1 (en) * | 2015-12-14 | 2017-10-18 | 주식회사 포스코 | MANUFACTURING METHOD OF Nd-BASED SINTERED MAGNET AND Nd-BASED SINTERED MAGNET THEREBY |
CN111029075A (en) * | 2019-12-31 | 2020-04-17 | 烟台首钢磁性材料股份有限公司 | Preparation method of neodymium iron boron magnetic powder |
WO2024177358A1 (en) * | 2023-02-24 | 2024-08-29 | 주식회사 그린첨단소재 | Method for producing rare earth magnet fine powder, and method for manufacturing rare earth-based sintered magnets using same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960008185B1 (en) * | 1987-03-02 | 1996-06-20 | 세이꼬엡손 가부시끼가이샤 | Rare earth-iron system permanent magnet and process for producing the same |
JP2002367819A (en) * | 2001-06-04 | 2002-12-20 | Nec Tokin Corp | Method of manufacturing rare-earth permanent magnet |
KR20110062917A (en) * | 2009-12-04 | 2011-06-10 | 한국기계연구원 | The method for preparation of r-fe-b type anisotropic metal powder with enhanced magnetic properties and r-fe-b type anisotropic metal powder thereby |
JP2011190482A (en) | 2010-03-12 | 2011-09-29 | Tdk Corp | Method for producing powder of rare earth alloy, and permanent magnet |
-
2013
- 2013-05-14 KR KR1020130054372A patent/KR101451510B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960008185B1 (en) * | 1987-03-02 | 1996-06-20 | 세이꼬엡손 가부시끼가이샤 | Rare earth-iron system permanent magnet and process for producing the same |
JP2002367819A (en) * | 2001-06-04 | 2002-12-20 | Nec Tokin Corp | Method of manufacturing rare-earth permanent magnet |
KR20110062917A (en) * | 2009-12-04 | 2011-06-10 | 한국기계연구원 | The method for preparation of r-fe-b type anisotropic metal powder with enhanced magnetic properties and r-fe-b type anisotropic metal powder thereby |
JP2011190482A (en) | 2010-03-12 | 2011-09-29 | Tdk Corp | Method for producing powder of rare earth alloy, and permanent magnet |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101787549B1 (en) * | 2015-12-14 | 2017-10-18 | 주식회사 포스코 | MANUFACTURING METHOD OF Nd-BASED SINTERED MAGNET AND Nd-BASED SINTERED MAGNET THEREBY |
KR101711859B1 (en) * | 2015-12-21 | 2017-03-03 | 주식회사 포스코 | Method for preparing rare earth permanent magnet |
CN111029075A (en) * | 2019-12-31 | 2020-04-17 | 烟台首钢磁性材料股份有限公司 | Preparation method of neodymium iron boron magnetic powder |
EP3845335A1 (en) * | 2019-12-31 | 2021-07-07 | Yantai Shougang Magnetic Materials Inc. | Method for preparing ndfeb magnet powder |
US20210280344A1 (en) * | 2019-12-31 | 2021-09-09 | Yantai Shougang Magnetic Materials Inc | Method for preparing NdFeB magnet powder |
WO2024177358A1 (en) * | 2023-02-24 | 2024-08-29 | 주식회사 그린첨단소재 | Method for producing rare earth magnet fine powder, and method for manufacturing rare earth-based sintered magnets using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6229783B2 (en) | Method for producing microcrystalline alloy intermediate product and microcrystalline alloy intermediate product | |
JP6366666B2 (en) | Method for producing sintered Nd-Fe-B magnetic body containing no heavy rare earth element | |
RU2377680C2 (en) | Rare-earth permanaent magnet | |
TWI421885B (en) | Manufacture method of rare earth metal permanent magnet material | |
KR101451430B1 (en) | Rare earth permanent magnet and its preparation | |
RU2389098C2 (en) | Functional-gradient rare-earth permanent magnet | |
TWI421886B (en) | Manufacture method of rare earth metal permanent magnet material | |
TWI423274B (en) | Manufacture method of rare earth metal permanent magnet material | |
JP6177877B2 (en) | Method for manufacturing RFeB-based sintered magnet and RFeB-based sintered magnet manufactured thereby | |
WO2011145674A1 (en) | Method for producing rare earth permanent magnets, and rare earth permanent magnets | |
CN109935432B (en) | R-T-B permanent magnet | |
CN103377820B (en) | A kind of R-T-B-M based sintered magnet and manufacture method thereof | |
CN101770862B (en) | Method for preparing radiation oriental magnetic ring and radiation multipolar magnetic ring | |
KR101451510B1 (en) | Method for preparing Nd based rare earth sintered magnet | |
CN108831653A (en) | The neodymium iron boron preparation method of the low heavy rare earth of high-residual magnetism high-coercive force | |
JP5757394B2 (en) | Rare earth permanent magnet manufacturing method | |
JP2008127648A (en) | Method for producing rare earth anisotropic magnet powder | |
EP3845335A1 (en) | Method for preparing ndfeb magnet powder | |
KR101196497B1 (en) | Permanent magnet and manufacturing method for permanent magnet | |
Morimoto et al. | Magnetic properties of anisotropic Nd–Fe–B HDDR powders prepared from strip cast alloys | |
Corfield et al. | The effects of long term annealing at 1000° C for 24 h on the microstructure and magnetic properties of Pr–Fe–B/Nd–Fe–B magnets based on Nd16Fe76B8 and Pr16Fe76B8 | |
KR101787549B1 (en) | MANUFACTURING METHOD OF Nd-BASED SINTERED MAGNET AND Nd-BASED SINTERED MAGNET THEREBY | |
KR101789726B1 (en) | Manufacturing method of neodymium magnet | |
KR102698757B1 (en) | Manufacturing method of rare earth sintered magnet | |
KR102070869B1 (en) | Recycled neodymium-based sintered magnets having high coercivity and residual magnetic flux density and method of preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |