KR101451169B1 - Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications - Google Patents

Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications Download PDF

Info

Publication number
KR101451169B1
KR101451169B1 KR1020120079909A KR20120079909A KR101451169B1 KR 101451169 B1 KR101451169 B1 KR 101451169B1 KR 1020120079909 A KR1020120079909 A KR 1020120079909A KR 20120079909 A KR20120079909 A KR 20120079909A KR 101451169 B1 KR101451169 B1 KR 101451169B1
Authority
KR
South Korea
Prior art keywords
phosphor
light emitting
oxide
white light
oxide phosphor
Prior art date
Application number
KR1020120079909A
Other languages
Korean (ko)
Other versions
KR20140017713A (en
Inventor
임원빈
이경화
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020120079909A priority Critical patent/KR101451169B1/en
Publication of KR20140017713A publication Critical patent/KR20140017713A/en
Application granted granted Critical
Publication of KR101451169B1 publication Critical patent/KR101451169B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7768Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7786Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

본 발명에 따른 oxide계 형광체는 발광다이오드, 레이저다이오드, 면발광 레이저다이오드, 무기 일렉트로루미네선스 소자, 또는 유기 일렉트로루미네센스 소자와 같은 발광소자에 유용하게 적용될 수 있다.The oxide-based fluorescent material according to the present invention can be applied to light emitting devices such as light emitting diodes, laser diodes, surface emitting laser diodes, inorganic electroluminescence devices, and organic electroluminescence devices.

Description

백색발광소자용 Rare earth가 첨가된 Oxide계 형광체 및 상기 형광체가 적용된 백색 발광소자{Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications}[0001] The present invention relates to an oxide-based phosphor in which a rare earth element for a white light emitting device is added, and a white light emitting element to which the phosphor is applied (Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-

본 발명은 LED 조명에 사용될 수 있는 형광체에 관한 것으로, 보다 구체적으로는 형광체의 일부를 유로피움(Eu), 프라세오디뮴(Pr)으로 치환하여 390 ~ 460nm 여기광원에서 490 ~ 630nm 파장의 빛을 방출하여 백색발광소자에 사용될 수 있는 oxide계 형광체 및 상기 형광체가 적용된 백색 발광소자에 관한 것이다.
More particularly, the present invention relates to a phosphor that can be used for LED illumination, and more specifically, a phosphor is replaced with Eu (Eu) or Praseodymium (Pr) to emit light having a wavelength of 490 to 630 nm from a 390 to 460 nm excitation light source An oxide-based fluorescent material that can be used for a white light emitting device, and a white light emitting device to which the fluorescent material is applied.

최근 전 세계적인 에너지 위기 및 지구 온난화 등 환경에 대한 세계적인 높은 관심과 함께 고효율, 친환경적인 장점을 가진 Light Emitting Diodes (LEDs)에 대한 연구가 활발히 진행되고 있다. 우수한 장점을 가지고 있는 LED가 형광등이나 백열등, 그리고 LCD backlight unit을 대체할 고체광원으로 쓰이기 위해서는 백색광을 구현하는 것이 가장 중요하며, 이와 관련해서 정밀 세라믹 재료인 형광체는 LED를 이용한 백색광 구현에 없어서는 안 될 핵심 재료이다. LED를 이용하여 백색광을 구현하는 방법은 크게 3가지로 나누어진다. In recent years, researches on light emitting diodes (LEDs) having high efficiency and environment-friendly advantages have been actively carried out along with world-wide interest in environment such as global energy crisis and global warming. In order to be used as a solid light source to replace fluorescent lamps, incandescent lamps and LCD backlight units, it is most important to realize white light, and as a result, phosphors which are precision ceramic materials are indispensable for realizing white light using LEDs It is a key material. There are three main ways to implement white light using LEDs.

첫째로 빛의 삼원색인 적색, 녹색, 청색을 내는 3개의 LED를 조합하여 백색을 구현하는 방법이다. 이 방법은 방출되는 파장 스펙트럼이 넓어 연색성이 우수하지만, 각각의 칩마다 동작 전압이 불균일하고 주변온도에 따라 칩의 출력이 변해 색좌표가 달라지며, 가격이 높다는 단점을 가지고 있다. First, it is a method to realize white by combining three LEDs emitting red, green, and blue, which are the three primary colors of light. This method is disadvantageous in that the operating voltage is uneven for each chip and the output of the chip changes according to the ambient temperature, the color coordinate changes, and the price is high.

둘째는 청색 LED를 광원으로 사용하여 황색 형광체를 여기 시킴으로써 백색을 구현하는 방법을 들 수 있다. 이 방법은 1칩 2단자의 단순한 구조이기 때문에 제조단가를 절감할 수 있고, 발광 효율이 우수하지만, 적색 영역의 발광 부족으로 인해 연색 지수가 낮은 단점을 가지고 있다. The second method is to realize a white color by exciting a yellow phosphor by using a blue LED as a light source. This method has a disadvantage in that the manufacturing cost can be reduced because of the simple structure of one-chip two terminals and the light emitting efficiency is excellent, but the color rendering index is low due to insufficient light emission in the red region.

셋째, 자외선 발광 LED(near-UV LED)를 광원으로 이용하여 삼원색 형광체를 여기 시켜 백색을 만드는 방법이 있다. 이 방법은 자외선으로 형광등 램프를 구현하는 방법과 매우 비슷한 것으로 백열전구와 같은 아주 넓은 파장 스펙트럼을 가질 뿐만 아니라 우수한 색 안정성을 확보할 수 있으며, 상관색온도와 연색성 평가 지수를 조절하기 쉽다는 장점이 있어 현대 조명용 백색 LED 구현을 위해 연구되고 있다. 하지만, near-UV LED(370~420nm)를 여기광원으로 사용하여 적색(Red), 녹색(Green), 청색(Blue) 형광체를 조합할 경우, 연색성(CRI)이 높은 백색 LED를 구현할 수 있지만 이 중 적색 형광체는 자외선으로부터 적색까지의 에너지 차이가 너무 커서 높은 효율의 형광체를 얻기가 어렵다. Third, there is a method of exciting a three-primary-color phosphor by using ultraviolet LED (near-UV LED) as a light source to make a white color. This method is very similar to the method of embodying a fluorescent lamp with ultraviolet rays. It has a very wide wavelength spectrum such as an incandescent lamp, has excellent color stability, and has an advantage of being able to easily adjust the correlation color temperature and the color rendering index. It is being studied for the implementation of white LED for illumination. However, when a near-UV LED (370 to 420 nm) is used as an excitation light source to combine red, green, and blue phosphors, a white LED having high CRI can be realized. It is difficult to obtain a phosphor with high efficiency because the energy difference from ultraviolet to red is too large.

따라서 청색 LED 및 near-UV LED와 조합될 고 효율의 형광체 개발이 시급히 요구되고 있다. 특히 고효율 백색 LED 개발에 있어서 무엇보다도 다른 형광체 특허를 침해하지 않으면서 우수한 새로운 조성의 형광체 개발이 무엇보다도 필요하다.Therefore, it is urgently required to develop a phosphor having high efficiency to be combined with a blue LED and a near-UV LED. Especially, in the development of high efficiency white LED, it is first of all necessary to develop a phosphor with excellent new composition without infringing the other phosphor patent.

한편, 일본특허공개번호 2009-256449호는 일반식 CaM1Al3O7으로 표시되는 정방상 구조의 산화물(M1은,Y,La 또는 Gd)과, 발광 중심인 Eu2+을 포함하고, 또한 상기 산화물의 원료로부터 형성되는 불순물상 및 M1으로 표시되는 원자가 결손 되고 있는 격자 결함 구조인 상기 산화물의 결정을 포함하는 응력 발광 재료를 개시하고 있는데, 응력 발광은 기계적으로 더하게 되는 외력에 따라서 발광 재료가 빛을 출발하는 현상이다.On the other hand, Japanese Unexamined Patent Publication No. 2009-256449 discloses a general formula including CaM1Al 3 O 7 oxide of the tetragonal structure represented by (M1 is, Y, La or Gd), and luminescent center of Eu 2+ and also the oxide And a crystal of the oxide which is a lattice defect structure in which an atom represented by M < 1 > is defective is disclosed. Stress light emission is a phenomenon in which a luminescent material emits light .

또한, V. Singh et al. Journal of Fluorescence 21 (2011) 313??320은 CaYAl3O7:Eu3+ 적색 형광체의 합성방법과 특성 등에 관하여 개시하고 있는데, CaYAl3O7:Eu0.03의 Excitation spectrum과 Emission spectrum 등을 제시하고는 있으나 CaYAl3O7:Eu3+ 적색 형광체 자체의 광특성을 분석하였을 뿐 상기 적색 형광체에 대한 구체적인 응용가능성에 대해 언급조차 하고 있지 않다.V. Singh et al. Journal of Fluorescence 21 (2011) 313-320 discloses methods and properties for the synthesis of CaYAl 3 O 7 : Eu 3 + red phosphor, including the excitation spectrum and emission spectrum of CaYAl 3 O 7 : Eu 0.03 The optical characteristics of CaYAl 3 O 7 : Eu 3+ red phosphor itself are analyzed and the specific application possibility of the red phosphor is not mentioned.

이와 같이 CaYAl3O7:Eu3+ 적색 형광체는 현재까지 백색 LED에 적용된 바 없다.
Thus, CaYAl 3 O 7 : Eu 3 + red phosphors have not been applied to white LEDs to date.

본 발명자들은 이러한 문제점을 해결하기 위해 연구를 거듭한 결과 압광(mechano-luminescence) 형광체로 알려져 있을 뿐 UV-LED용으로 적용된 바 없는 CaYAl3O7 조성의 형광체를 백색LED에 적용함으로써 본 발명을 완성하였다.The present inventors have completed the present invention by applying a phosphor of CaYAl 3 O 7 composition, which is known as a mechano-luminescence phosphor and has not been applied for UV-LED, to a white LED as a result of repeated research to solve such problems. Respectively.

따라서, 본 발명의 목적은 압광(mechano-luminescence) 형광체로 알려져 있을 뿐 UV-LED용으로 적용된 바 없는 CaYAl3O7 형광체의 일부분을 rare earth이온으로 치환하여 390 ~ 460nm 여기광원에서 490 ~ 630 nm 파장의 빛을 방출할 수 있도록 함으로써 백색LED에 적용 가능한 새로운 조성의 oxide계 형광체를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for manufacturing a light emitting device, which is known as a mechano-luminescence fluorescent substance and which substitutes rare earth ions for a part of a CaYAl 3 O 7 fluorescent material which has not been applied for UV- Thereby emitting a light of a wavelength, thereby providing a new composition of an oxide-based phosphor applicable to a white LED.

본 발명의 다른 목적은 새로운 조성의 oxide계 형광체를 적용함으로써 발광휘도가 증가할 뿐만 아니라 우수한 소비전력을 나타내는 백색발광소자를 제공하는 것이다.It is another object of the present invention to provide a white light emitting device which not only increases emission brightness but also exhibits excellent power consumption by applying an oxide-based phosphor having a novel composition.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

상술된 본 발명의 목적을 달성하기 위해, 본 발명은 하기 화학식 1의 백색발광소자용 oxide계 형광체를 제공한다.In order to achieve the above-described object of the present invention, the present invention provides an oxide-based phosphor for a white light emitting device,

[화학식 1][Chemical Formula 1]

CaY1-xAl3O7:Rx CaY 1-x Al 3 O 7 : R x

상기 화학식1에서 R은 Eu 및 Pr 중 어느 하나의 rare earth이온이며,0.01≤x≤0.4이다. In the above formula (1), R is a rare earth ion of any one of Eu and Pr, and 0.01? X? 0.4.

바람직한 실시예에 있어서, 상기 화학식 1 중 R로 선택된 이온에 따라 형광체의 발광 파장이 변화하며 발광휘도가 증가한다. In a preferred embodiment, the emission wavelength of the phosphor varies according to the ions selected as R in Formula 1, and the emission luminance increases.

또한, 본 발명은 390 ~ 460nm의 여기광원; 및 제1항 또는 제2항의 oxide계 형광체를 포함하는 백색발광소자를 제공한다.The present invention also provides an excitation light source of 390 to 460 nm; And an oxide-based fluorescent material according to any one of claims 1 to 3.

바람직한 실시예에 있어서, 상기 여기광원은 450 ~ 460nm의 여기광원이다. In a preferred embodiment, the excitation light source is an excitation light source of 450 to 460 nm.

바람직한 실시예에 있어서, 상기 390 ~ 460nm의 여기광원에서 상기 oxide계 형광체가 490 ~ 630 nm 파장의 빛을 방출한다. In a preferred embodiment, the oxide-based fluorescent material emits light having a wavelength of 490 to 630 nm in the excitation light source of 390 to 460 nm.

바람직한 실시예에 있어서, 상기 형광체는 실리콘레진과 1:1의 중량비로 혼합되어 사용된다. In a preferred embodiment, the phosphor is mixed with silicon resin in a weight ratio of 1: 1.

바람직한 실시예에 있어서, 상기 백색발광소자는 발광다이오드, 레이저다이오드, 면발광 레이저다이오드, 무기 일렉트로루미네선스 소자, 또는 유기 일렉트로루미네센스 소자를 포함한다.
In a preferred embodiment, the white light emitting device includes a light emitting diode, a laser diode, a surface emitting laser diode, an inorganic electroluminescence device, or an organic electroluminescence device.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명의 oxide계 형광체에 의하면 압광(mechano-luminescence) 형광체로 알려져 있을 뿐 UV-LED용으로 적용된 바 없는 CaYAl3O7 형광체의 일부분을 rare earth이온으로 치환하여 390 ~ 460nm 여기광원에서 490 ~ 630 nm 파장의 빛을 방출할 수 있도록 함으로써 백색LED에 적용 가능하다.First, according to the oxide-based fluorescent material of the present invention, a part of CaYAl 3 O 7 fluorescent material, which is known as a mechano-luminescent fluorescent material and not applied to a UV-LED, is substituted with rare earth ions and 490-460 nm in excitation light source It can be applied to white LEDs by emitting light of ~ 630 nm wavelength.

또한, 본 발명의 백색발광소자는 새로운 조성의 oxide계 형광체를 적용함으로써 발광휘도가 증가할 뿐만 아니라 우수한 소비전력을 갖는다.
In addition, the white light emitting device of the present invention not only increases light emission luminance but also has excellent power consumption by applying an oxide-based phosphor having a novel composition.

도 1은 (a-b) CaYAl3O7 형광체의 결정 구조, (c) (Ca/Y)O8 polyhedral,
도 2는 본 발명에 따른 실시예 1에서 얻어진 형광체1의 XRD 결과 그래프,
도 3은 본 발명에 따른 실시예 2에서 얻어진 형광체2의 XRD 결과 그래프,
도 4는 본 발명에 따른 형광체1에서 Eu3+의 함량에 따른 PL 결과 그래프,
도 5는 본 발명에 따른 형광체2에서 Pr3+의 함량에 따른 PL 결과 그래프,
도 6은 패키지 형태의 백색 LED의 개략 단면도,
도 7은 패키지 형태의 백색 LED에 본 발명의 실시예 1의 형광체와 상용화된 다른 청, 녹색 형광체 및 실리콘레진 적용에 따른 발광스펙트럼 그래프.
1 shows the crystal structure of (ab) CaYAl 3 O 7 phosphor, (c) (Ca / Y) O 8 polyhedral,
2 is a graph showing XRD results of the phosphor 1 obtained in Example 1 according to the present invention,
3 is a graph showing XRD results of the phosphor 2 obtained in Example 2 according to the present invention,
4 is a graph showing a PL result according to the content of Eu 3+ in the phosphor 1 according to the present invention,
FIG. 5 is a graph showing the PL result according to the content of Pr 3+ in the phosphor 2 according to the present invention,
6 is a schematic cross-sectional view of a package type white LED,
FIG. 7 is a graph of an emission spectrum according to application of blue, green, and silicone resins, which are commercialized with the phosphor of Example 1 of the present invention, in a package type white LED.

본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.Although the terms used in the present invention have been selected as general terms that are widely used at present, there are some terms selected arbitrarily by the applicant in a specific case. In this case, the meaning described or used in the detailed description part of the invention The meaning must be grasped.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals used to describe the present invention throughout the specification denote like elements.

본 발명의 기술적 특징은 압광(mechano-luminescence) 형광체로 알려져 있을 뿐 UV-LED용으로 적용된 바 없는 CaYAl3O7 형광체의 일부분을 rare earth이온으로 치환한 oxide계 형광체를 390 ~ 460nm 여기광원에서 490 ~ 630 nm 파장의 빛을 방출할 수 있도록 하여 백색LED에 적용한 것에 있다. The technical feature of the present invention is that an oxide-based phosphor in which a portion of a CaYAl 3 O 7 phosphor that is not known for a UV-LED and is known as a mechano-luminescent phosphor is substituted with a rare earth ion is changed to a 490-460 nm excitation light source To emit light of a wavelength of ~ 630 nm and applied to a white LED.

즉, 도 1에 도시된 바와 같이, CaYAl3O7 의 결정 구조(a), (b)를 살펴보면, 본 발명은 CaYAl3O7 형광체의 일부분을 유로퓸(Eu) 또는 프라세오디뮴(Pr)으로 대체하여 (c) (Ca/Y)O8 polyhedral 사이트에 치환하여 발광강도를 증가시킬 수 있다.That is, as shown in Fig. 1, CaYAl 3 O look at the crystal structure (a), (b) 7, the present invention is to replace a portion of CaYAl 3 O 7 phosphors with europium (Eu) or praseodymium (Pr) (c) (Ca / Y) O 8 polyhedral sites.

따라서, 본 발명의 백색소자용 oxide계 형광체는 하기 화학식 1과 같은 조성을 갖는다. Accordingly, the oxide-base phosphor for a white element of the present invention has a composition represented by the following formula (1).

[화학식 1][Chemical Formula 1]

CaY1-xAl3O7:Rx CaY 1-x Al 3 O 7 : R x

상기 화학식1에서 R은 Eu 및 Pr 중 어느 하나의 rare earth이온이며,0.01≤x≤0.4이다. In the above formula (1), R is a rare earth ion of any one of Eu and Pr, and 0.01? X? 0.4.

상기 화학식 1 중 R이 Eu인 본 발명의 oxide계 형광체에서는, 활성제인 Eu의 양이 증가할수록 발광강도가 증가하지만 0.4를 초과하게 되면, 농도 소광 현상(concentration quenching effect)에 따른 휘도 저하가 커져 바람직하지 못하다. 또한, 활성제인 Eu의 양이 0.1미만이면 발광강도가 감소하여 백색발광소자에 적용할 수 있는 충분한 광특성이 구현되지 않는다. 이는 0.1미만에서는 direct excitation band보다 charge transfer의 영향이 지배적으로 작용하기 때문에 UV-LED에 적용하기에 부적절하며, lamp 또는 PDP용 형광체에 사용해야 한다. 따라서 상기 화학식 1에서 활성제인 Eu의 양은 0.1≤x≤0.4를 가지는 것이 바람직하다. 가장 바람직하기로는 약 0.35 mol을 가지는 것이 가장 좋은 발광강도를 나타낸다.In the oxide-based fluorescent material of the present invention, in which R is Eu, the emission intensity increases as the amount of Eu as the activator increases. However, when the concentration exceeds 0.4, the luminance decreases due to the concentration quenching effect I can not. In addition, if the amount of Eu as the activator is less than 0.1, the light emission intensity is reduced, so that sufficient optical characteristics that can be applied to the white light emitting device are not realized. If it is less than 0.1, the effect of charge transfer is more dominant than direct excitation band, which is not suitable for UV-LED and should be used for fluorescent lamp for PDP or lamp. Therefore, it is preferable that the amount of Eu, which is an activator in the above formula (1), satisfies 0.1? X? 0.4. Most preferably about 0.35 mol, exhibits the best light emission intensity.

또한, 상기 화학식 1 중 R이 Pr인 본 발명의 oxide계 형광체에서는, 활성제인 Pr의 양이 증가할수록 발광강도가 증가하지만 0.03을 초과하게 되면 농도 소광 현상(concentration quenching effect)에 따른 휘도 저하가 커져 바람직하지 못하다. 따라서 상기 화학식 1에서 활성제인 Pr의 양은 0.01≤x≤0.03을 가지는 것이 바람직하다. 가장 바람직하기로는 약 0.03 mol을 가지는 것이 가장 좋은 발광강도를 나타낸다.In the oxide-based fluorescent material of the present invention, in which R is Pr in the above formula (1), the luminescence intensity increases as the amount of Pr, which is an activator, increases. However, when the R value exceeds 0.03, the luminance decreases as the concentration quenching effect increases It is not desirable. Therefore, it is preferable that the amount of Pr, which is an activator in the above formula (1), satisfies 0.01? X? 0.03. Most preferably about 0.03 mol, exhibits the best light emission intensity.

이와 같이 상기 화학식 1 중 R로 선택된 이온에 따라 형광체의 발광 파장이 변화하며 발광휘도가 증가하게 된다. 따라서, 본 발명에 따른 oxide계 형광체는 발광다이오드, 레이저다이오드, 면발광 레이저다이오드, 무기 일렉트로루미네선스 소자, 또는 유기 일렉트로루미네센스 소자를 포함하는 백색발광소자의 재료로 유용하다. Thus, the emission wavelength of the phosphor varies depending on the ions selected as R in Formula 1, thereby increasing the emission luminance. Accordingly, the oxide-based fluorescent material according to the present invention is useful as a material for a white light emitting device including a light emitting diode, a laser diode, a surface emitting laser diode, an inorganic electroluminescence device, or an organic electroluminescence device.

다음으로, 본 발명에 따른 oxide계 형광체 제조방법은 상기 화학식 1의 형광체 조성에 따라 원료물질을 준비하는 단계; 상기 원료물질을 상기 화학식 1의 형광체 조성비로 칭량하여 균일하게 혼합하는 단계; 및 상기 균일하게 혼합된 원료물질을 경우에 따라 환원분위기 또는 대기 분위기 하에서 소성하는 단계를 포함한다. Next, a method for preparing an oxide-based phosphor according to the present invention comprises: preparing a raw material according to the phosphor composition of Formula 1; Weighing the raw materials at a phosphor composition ratio of Formula 1 and uniformly mixing them; And firing the uniformly mixed raw material optionally in a reducing atmosphere or an air atmosphere.

이 때, 원료물질은 공지된 물질이 사용되므로 자세한 내용은 설명하지 않는다.At this time, since the known material is used as the raw material, details are not described.

또한, 소성하는 단계는 경우에 따라 환원 분위기 또는 대기 분위기에 하에 900 ~ 1600 ℃ 온도 조건으로 1 내지 12시간 동안 열처리하여 수행되는 것이 바람직하다. 소성온도가 900℃ 미만이면 단일상의 결정이 완전히 형성되지 못하고 미반응물이나 부반응물이 생기게 되고, 1600℃ 이상에서는 입자 모양이 불규칙하며 형광체를 구성하는 구성원소가 휘발하여 형광체의 결정성의 저하를 가져와 휘도가 급격히 저하되기 때문이다. It is preferable that the baking step is performed by a heat treatment under a reducing atmosphere or an atmospheric environment at a temperature of 900 to 1600 占 폚 for 1 to 12 hours depending on the case. If the calcination temperature is less than 900 ° C, the single-phase crystals can not be completely formed, unreacted materials and side reactants are formed. At 1600 ° C or higher, the particle shape is irregular and the constituent elements constituting the phosphor are volatilized, Is rapidly decreased.

한편, 소성하는 단계가 1회 이상 더 수행될 수 있는데, 소성단계가 수차례 실시되면 형광체의 발강강도가 증가할 수도 있기 때문이다.On the other hand, the firing step may be performed one or more times, because the firing strength of the phosphor may increase when the firing step is repeated several times.

마지막으로, 본 발명에 따른 백색발광소자는 390 ~ 460nm의 여기광원; 및 상술된 oxide계 형광체를 포함한다. 보다 바람직하게는 450 ~ 460nm의 여기광원일 수 있으며, 형광체는 실리콘레진과 1:1의 중량비로 혼합되어 사용되는 것이 보다 우수한 특성을 나타낼 수 있다.
Finally, the white light emitting device according to the present invention includes an excitation light source of 390 to 460 nm; And the above-mentioned oxide-base phosphor. More preferably 450 to 460 nm, and the phosphors may be mixed with silicon resin in a weight ratio of 1: 1 to exhibit more excellent characteristics.

실시예 1Example 1

상기 화학식 1을 갖는 oxide계 형광체의 각 성분의 몰조성비가 Ca:Y:Al:O:Eu=1:0.65:3:7:0.35를 갖도록 다음과 같이 oxide계 형광체1을 제조하였다. The oxide-based phosphor 1 was prepared as follows so that the molar composition ratio of each component of the oxide-based phosphor having the formula 1 was Ca: Y: Al: O: Eu = 1: 0.65: 3: 7: 0.35.

즉, 상기 몰조성비를 갖도록 Aluminum Oxide Al2O3 0.6669g, Yttrium Oxide Y2O3 0.32g, Calcium carbonate CaCO3 0.4364g, Europium Oxide Eu2O3 0.2685g을 습식혼합 및 분쇄하였다. 상기 혼합물을 충분히 건조한 후, 1300도 환원분위기에서 4시간동안 열처리한 후 CaYAl3O7:Eu3+ 0.35(형광체1:EU3+ 0.35))을 제조하였다.
That is, 0.6669 g of Aluminum Oxide Al 2 O 3 , 0.32 g of Yttrium Oxide Y 2 O 3 , 0.4364 g of Calcium carbonate CaCO 3 and 0.2685 g of Europium Oxide Eu 2 O 3 were wet-mixed and pulverized to have the molar composition ratio. The mixture was sufficiently dried and then heat-treated for 4 hours in a reducing atmosphere of 1300 ° C. to prepare CaYAl 3 O 7 : Eu 3+ 0.35 (phosphor 1: EU 3+ 0.35 )).

실시예 2Example 2

실시예1과 동일한 합성 방법을 이용하여 oxide계 형광체인 CaYAl3O7:Pr3+ 0.03(형광체2:Pr3+ 0.03)을 제조하였다. 상기 oxide계 형광체의 각 성분의 몰조성비는 Ca:Y:Al:O:Pr=1:0.97:3:7:0.03이다. Aluminum Oxide Al2O3 0.7292g, Yttrium Oxide Y2O3 0.5078g, Calcium carbonate CaCO3 0.4641g, Praseodymium Oxide Pr6O11 0.0237g 습식혼합 및 분쇄하였다.
An oxide-based phosphor, CaYAl 3 O 7 : Pr 3+ 0.03 (Phosphor 2: Pr 3+ 0.03 ) was prepared using the same synthetic method as in Example 1. The molar composition ratio of each component of the oxide-based phosphor is Ca: Y: Al: O: Pr = 1: 0.97: 3: 7: 0.03. 0.7292 g of Aluminum Oxide Al 2 O 3, 0.5078 g of Yttrium Oxide Y 2 O 3, 0.4641 g of Calcium carbonate CaCO 3 and 0.0237 g of Praseodymium Oxide Pr 6 O 11 were wet mixed and pulverized.

실험예 1Experimental Example 1

실시예 1 및 2에서 얻어진 형광체1(Eu3+ 0.35) 및 2(Pr3+ 0.03)를 XRD 분석하고 그 결과를 도 2 및 도 3에 나타내었다. XRD analysis of the phosphors 1 (Eu 3+ 0.35 ) and 2 (Pr 3+ 0.03 ) obtained in Examples 1 and 2 was performed, and the results are shown in FIG. 2 and FIG.

도2 및 도3으로부터 형광체1(Eu3+ 0.35) 및 형광체2(Pr3+ 0.03)가 거의 동일한 결정구조를 갖는 것을 알 수 있다.
2 and 3, it can be seen that the phosphor 1 (Eu 3+ 0.35 ) and the phosphor 2 (Pr 3+ 0.03 ) have almost the same crystal structure.

실험예 2Experimental Example 2

Eu의 함량에 따른 형광체1(Eu3+)의 PL 결과(상대 발광강도와 발광중심파장)를 분석하고, 그 결과를 도 4에 나타내었다.The PL result (relative luminescence intensity and luminescent center wavelength) of phosphor 1 (Eu 3+ ) according to the content of Eu was analyzed, and the results are shown in FIG.

도 4로부터 형광체1(Eu3+)은 Eu의 함량에 따라 상대 발광강도가 상이함을 알 수 있는데, 활성제인 Eu의 양이 증가할수록 발광강도가 증가하지만 몰비가 0.4를 초과하게 되면, 농도 소광 현상(concentration quenching effect)에 따른 휘도 저하가 커지는 것을 알 수 있다. 이와 같은 실험결과로부터 형광체1에 함유된 Eu의 몰비는 0.1 내지 0.4가 바람직함을 알 수 있다. 또한 Eu의 몰비가 0.35mol 일 때 가장 좋은 발광강도를 나타남을 알 수 있다.
It can be seen from FIG. 4 that the relative luminescence intensity of phosphor 1 (Eu 3+ ) differs depending on the content of Eu. When the amount of Eu as the activator increases, the luminescence intensity increases. When the molar ratio exceeds 0.4, It can be seen that the luminance decline due to the concentration quenching effect increases. From the experimental results, it can be seen that the molar ratio of Eu contained in the phosphor 1 is preferably from 0.1 to 0.4. It can be seen that the best light emission intensity is obtained when the molar ratio of Eu is 0.35 mol.

실험예 3Experimental Example 3

Pr의 함량에 따른 형광체2(Pr3+)의 PL 결과(상대 발광강도와 발광중심파장)를 분석하고, 그 결과를 도 5에 나타내었다.The PL result (relative luminescence intensity and luminescent center wavelength) of phosphor 2 (Pr 3+ ) according to the content of Pr was analyzed, and the results are shown in FIG.

도 5로부터 형광체2(Pr3+)은 Pr의 함량에 따라 상대 발광강도가 상이함을 알 수 있는데, 활성제인 Pr의 양이 증가할수록 발광강도가 증가하지만 0.1을 초과하게 되면, 농도 소광 현상(concentration quenching effect)에 따른 휘도 저하가 커지는 것을 알 수 있다. 이와 같은 실험결과로부터 형광체2에 함유된 Pr의 몰비는 0.01 내지 0.1이 바람직함을 알 수 있다. 또한 Pr의 몰비가 0.03mol 일 때 가장 좋은 발광강도를 나타남을 알 수 있다.
It can be seen from FIG. 5 that the relative luminescence intensity of phosphor 2 (Pr 3+ ) differs depending on the content of Pr, and the luminescence intensity increases as the amount of Pr, the activator, increases. However, concentration quenching effect) is increased. From the experimental results, it can be seen that the molar ratio of Pr contained in the phosphor 2 is preferably 0.01 to 0.1. It can be seen that the best light emission intensity is obtained when the molar ratio of Pr is 0.03 mol.

실시예 3Example 3

도 6에 도시된 바와 같은 구성을 갖는 패키지형 백색 발광 다이오드를 다음과 같이 제조하였다.A packaged white light emitting diode having the structure shown in Fig. 6 was manufactured as follows.

도시된 바와 같이 백색 발광 다이오드는 전극을 가지며, 은(Ag) 페이스트로 접착 고정된 LED칩을 가진다. LED칩은 금(Au)와 이어에 의해 전극에 전기적으로 접속되고 있다. 도시된 바와 같이 LED칩은 홀컵 내에 수용되어 있다. 이와 같이 구성된 홀컵에 실시예 1에 따른 oxide계 형광체와 상용화된 다른 청, 녹색 형광체 및 실리콘 레진을 1:1의 중량비로 혼합한 혼합물을 주입하여 150 ℃에서 1시간 경화시키면 백색 LED제품이 제조되는데, 상기와 같은 방식으로 여기파장 395 nm LED chip을 갖는 백색 LED를 제조하였다.
As shown in the figure, the white light emitting diode has an electrode and an LED chip adhered and fixed with silver (Ag) paste. The LED chip is electrically connected to the electrode by gold (Au) and wire. As shown, the LED chip is accommodated in the hole cup. The mixture of the oxide-based phosphor according to Example 1 and other blue, green phosphor and silicone resin mixed at a weight ratio of 1: 1 was injected into the thus-configured hole cup and cured at 150 ° C for 1 hour to produce a white LED product , A white LED having an excitation wavelength 395 nm LED chip was manufactured in the same manner as described above.

실험예 4Experimental Example 4

실시예 3에서 제조된 백색 LED에 20-120 mA를 인가하였을 때의 발광 스펙트럼을 관찰하고 그 결과를 도 7에 도시하였다.The emission spectrum of the white LED manufactured in Example 3 was observed when 20-120 mA was applied, and the result is shown in FIG.

도 7로부터 본 발명의 실시예1에서 얻어진 형광체1이 약 400 nm 여기 하에서 우수한 광 특성을 보이는 것을 알 수 있다. 제조된 백색 LED에 20 mA를 인가하였을 때 (0.26,0.35)의 CIE 좌표를 얻을 수 있으며, 77의 연색지수(CRI)와 3.2 Im/W의 발광효율(luminous efficacy)를 가진다. 이것은 추가적인 실험을 통해 최적화함으로써, White LEDs로의 응용에 있어서 향상된 효율을 가질 수 있음을 보여준다.
7, it can be seen that the phosphor 1 obtained in Example 1 of the present invention exhibits excellent optical characteristics under about 400 nm excitation. CIE coordinates can be obtained when 20 mA is applied to the manufactured white LED (0.26, 0.35), and it has a color rendering index (CRI) of 77 and luminous efficacy of 3.2 Im / W. This shows that by optimizing through further experimentation, it can have improved efficiency in applications to white LEDs.

이상의 실험결과들로부터 본 발명의 oxide계 형광체1 및 형광체2를 포함하는 백색발광소자는 우수한 광 특성을 갖는 것을 알 수 있다. From the above experimental results, it can be seen that the white light emitting device including the oxide-based fluorescent material 1 and the fluorescent material 2 of the present invention has excellent optical characteristics.

따라서, 본 발명의 oxide계 형광체1 및 형광체2는 청색 LED 및 near-UV LED와 조합되어 고 효율의 백색 LED를 구현할 수 있는 적색형광체로 작용할 수 있음이 명백하다. Accordingly, it is apparent that the oxide-based fluorescent material 1 and the fluorescent material 2 of the present invention can be combined with a blue LED and a near-UV LED to function as a red fluorescent material capable of realizing a high-efficiency white LED.

그 결과, 본 발명의 백색발광소자는 발광다이오드, 레이저다이오드, 면발광 레이저다이오드, 무기 일렉트로루미네선스 소자, 또는 유기 일렉트로루미네센스 소자를 포함하여 다양한 고효율 백색광원을 구현할 수 있을 것이다.
As a result, the white light emitting device of the present invention can realize various high efficiency white light sources including a light emitting diode, a laser diode, a surface emitting laser diode, an inorganic electroluminescence device, or an organic electroluminescence device.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

Claims (7)

하기 화학식 1의 백색발광소자용 옥사이드(oxide)계 형광체.
[화학식 1]
CaY1-xAl3O7:Rx
상기 화학식1에서 R은 Eu 및 Pr 중 어느 하나의 희토류(rare earth)이온이며,0.01≤x≤0.4이다.
An oxide-based phosphor for a white light emitting device according to claim 1,
[Chemical Formula 1]
CaY 1-x Al 3 O 7 : R x
In the above formula (1), R is any one of rare earth ions of Eu and Pr, and 0.01? X? 0.4.
제 1 항에 있어서,
상기 화학식 1 중 R로 선택된 이온에 따라 형광체의 발광 파장이 상이한 것을 특징으로 하는 백색발광소자용 옥사이드계 형광체.
The method according to claim 1,
Wherein the light emitting wavelength of the phosphor differs depending on the ion selected as R in the formula (1).
390 ~ 460nm의 여기광원; 및
제1항 또는 제2항의 옥사이드계 형광체를 포함하는 백색발광소자.
An excitation light source of 390 to 460 nm; And
A white light emitting device comprising the oxide-based phosphor of claim 1 or 2.
제 3 항에 있어서,
상기 여기광원은 450 ~ 460nm의 여기광원인 것을 특징으로 하는 백색발광소자.
The method of claim 3,
Wherein the excitation light source is an excitation light source of 450 to 460 nm.
제 3 항에 있어서,
상기 390 ~ 460nm의 여기광원에서 상기 옥사이드계 형광체가 490 ~ 630 nm 파장의 빛을 방출하는 것을 특징으로 하는 백색발광소자.
The method of claim 3,
Wherein the oxide-based fluorescent material emits light having a wavelength of 490 to 630 nm in the excitation light source of 390 to 460 nm.
제 3 항에 있어서,
상기 형광체는 실리콘레진과 1:1의 중량비로 혼합되어 사용되는 것을 특징으로 하는 백색발광소자.
The method of claim 3,
Wherein the phosphor is mixed with silicon resin in a weight ratio of 1: 1.
제 3 항에 있어서,
상기 백색발광소자는 발광다이오드, 레이저다이오드, 면발광 레이저다이오드, 무기 일렉트로루미네선스 소자, 또는 유기 일렉트로루미네센스 소자를 포함하는 것을 특징으로 하는 백색발광소자.
The method of claim 3,
Wherein the white light emitting device comprises a light emitting diode, a laser diode, a surface emitting laser diode, an inorganic electroluminescence device, or an organic electroluminescence device.
KR1020120079909A 2012-07-23 2012-07-23 Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications KR101451169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120079909A KR101451169B1 (en) 2012-07-23 2012-07-23 Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120079909A KR101451169B1 (en) 2012-07-23 2012-07-23 Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications

Publications (2)

Publication Number Publication Date
KR20140017713A KR20140017713A (en) 2014-02-12
KR101451169B1 true KR101451169B1 (en) 2014-10-20

Family

ID=50266100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120079909A KR101451169B1 (en) 2012-07-23 2012-07-23 Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications

Country Status (1)

Country Link
KR (1) KR101451169B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063382B (en) * 2020-08-06 2022-02-15 华南理工大学 Mechanoluminescence material without need of pre-irradiation and capable of realizing instant self-recovery of luminescence and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256449A (en) * 2008-04-16 2009-11-05 National Institute Of Advanced Industrial & Technology Stress-luminescent material and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256449A (en) * 2008-04-16 2009-11-05 National Institute Of Advanced Industrial & Technology Stress-luminescent material and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J Fluoresc (2011) 21, 313-320 *
Journal of The Electrochemical Society, 155 , J128-J131, 2008 *

Also Published As

Publication number Publication date
KR20140017713A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN105814699B (en) White light emitting device with high color rendering
KR20210003720A (en) Near-infrared light emitting phosphor, phosphor mixture, light emitting element, and light emitting device
US10340426B2 (en) Phosphor and illumination device utilizing the same
WO2012165032A1 (en) Light-emitting device
KR101496718B1 (en) Phosphor and light emitting device
JP2005179498A (en) Red phosphor material, white light-emitting diode using the same, and illuminator using the white light-emitting diode
KR101176212B1 (en) Alkali-earth Phosporus Nitride system phosphor, manufacturing method thereof and light emitting devices using the same
AU2015284080B2 (en) Oxyfluoride phosphor compositions and lighting apparatus thereof
KR101334802B1 (en) Oxy-fluoride phosphor and white light emitting diodes including oxy-fluoride phosphor for solid-state lighting applications
CN107163943B (en) Spectrum-adjustable fluorescent powder suitable for near ultraviolet excitation and preparation method thereof
KR101451169B1 (en) Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications
KR101072572B1 (en) Red phosphor and its forming method for use in solid state lighting
EP1996674B1 (en) Thiogallate phosphor and white light emitting device employing the same
KR101430585B1 (en) Rare earth doped oxy-fluoride phosphor and white light emitting diodes including oxy-fluoride phosphor for solid-state lighting applications
KR100654539B1 (en) Thiogallate phosphor and white light emitting device employing the same
KR101642474B1 (en) Britholite phosphor and light emitting diodes comprising the britholite phosphor for solid-state lighting applications
JP6640753B2 (en) Phosphor composition and lighting fixture comprising the same
KR101633421B1 (en) Garnet-based phosphor cerium doped, manufacturing method thereof and light-emitting diode using the same
KR101793518B1 (en) Red phosphor and light emitting device comprising the red phosphor
KR20180003523A (en) Garnet phosphor and light emitting diodes comprising the garnet phosphor for solid-state lighting applications
KR101469011B1 (en) Rare earth doped phosphor and white light emitting diodes including halide phosphor for solid-state lighting applications
KR20170125218A (en) Garnet phosphor and light emitting diodes comprising the garnet phosphor for solid-state lighting applications
KR100906923B1 (en) Phosphor, phosphor composition, method for a phosphor and light emitting device
TWI428428B (en) Phosphors and light emitting device using the same
TW201444953A (en) Phosphor material and the manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180919

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 6