KR101441563B1 - Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof - Google Patents

Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof Download PDF

Info

Publication number
KR101441563B1
KR101441563B1 KR1020110147527A KR20110147527A KR101441563B1 KR 101441563 B1 KR101441563 B1 KR 101441563B1 KR 1020110147527 A KR1020110147527 A KR 1020110147527A KR 20110147527 A KR20110147527 A KR 20110147527A KR 101441563 B1 KR101441563 B1 KR 101441563B1
Authority
KR
South Korea
Prior art keywords
silicone resin
present
thermosetting silicone
film
multifunctional
Prior art date
Application number
KR1020110147527A
Other languages
Korean (ko)
Other versions
KR20130078529A (en
Inventor
김기홍
이승훈
Original Assignee
영창케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영창케미칼 주식회사 filed Critical 영창케미칼 주식회사
Priority to KR1020110147527A priority Critical patent/KR101441563B1/en
Publication of KR20130078529A publication Critical patent/KR20130078529A/en
Application granted granted Critical
Publication of KR101441563B1 publication Critical patent/KR101441563B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/133Rod-like building block
    • C08G2261/1336Ladder-type, e.g. ladder-poly-p-phenylenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silicon Polymers (AREA)

Abstract

본 발명은 반사율이 작고, 투과율이 높은 우수한 반사방지막을 가질 뿐만 아니라 반도체 공정을 단순화하기 위한 반도체 회로 형성 시 감광제의 하부층으로 사용되는 실리콘을 포함하는 다기능 반사방지막과 이를 포함하는 열경화성 실리콘 수지를 제공한다.
특히, 본 발명은 반도체 공정에 사용되는 패턴 공정에 본 발명에 의해 만들어진 열경화성 실리콘 수지를 이용하여 피식각층 상부에 스핀 온 카본층을 형성하고, 그 상부에 다기능 반사방지막을 형성한 다음, 상기 식각 마스크 패턴을 이용하여 스핀 온 카본층을 식각함으로써, 비용 절감 및 회로의 미세화에 따른 반도체 공정을 단순화할 수 있다.
또한, 실리콘 화합물 화학식 1 의 화합물 중 1개 또는 그들의 혼합물의 몰당 실리콘 화합물 2의 0.01 내지 0.1몰의 비를 포함하는 반응 화합물을 산 촉매하에서 축합시켜서 얻을 수 있는 폴리실록산 화합물과 용매를 함유하는 것을 특징으로 하는 열경화성 실리콘 수지의 농도가 1 내지 50 중량%가 되도록 제조하고, 형성된 폴리실록산 용액을 코팅하여 코팅막을 형성하고, 최적의 온도에서 코팅막을 열경화함으로써, 실리콘이나 유리, 플라스틱 기판에 부착된 것으로 형성된 반사방지 박막을 포함하여 제공한다.
The present invention provides a multifunctional antireflection film comprising silicon used as a lower layer of a photosensitive agent in forming a semiconductor circuit to have an excellent antireflection film having a low reflectance and a high transmittance and simplifying a semiconductor process and a thermosetting silicone resin containing the same .
Particularly, in the present invention, a spin-on carbon layer is formed on the etching layer using a thermosetting silicone resin produced by the present invention in a patterning process used in a semiconductor process, a multifunctional antireflection film is formed thereon, By etching the spin-on carbon layer using a pattern, the semiconductor process due to cost reduction and miniaturization of the circuit can be simplified.
Further, it is characterized in that it contains a polysiloxane compound and a solvent which can be obtained by condensing a reaction compound containing an acid-catalyzed reaction compound containing 0.01 to 0.1 mol ratio of the silicon compound 2 per one mole of the compound of the formula 1 or the mixture thereof A polysiloxane solution is formed by coating a polysiloxane solution to form a coating film and thermally curing the coating film at an optimal temperature to form a reflection Prevention film.

Description

실리콘을 포함하는 다기능 반사방지막 제조용 열경화성 실리콘 수지 및 이 수지를 사용하여 제조된 반사방지막{Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof}TECHNICAL FIELD [0001] The present invention relates to a thermosetting silicone resin for the production of a multi-functional antireflection film containing silicon, and an antireflection film produced using the resin.

본 발명은 실리콘을 다량(40중량% 이상) 포함하는 실리콘 수지의 합성과 이 수지를 사용하여 제조된 다기능 반사방지막을 형성함으로써 반도체 공정을 단순화한 것이다.The present invention simplifies the semiconductor process by synthesizing a silicone resin containing a large amount of silicon (40 wt% or more) and forming a multifunctional antireflection film produced using the resin.

최근에 반도체 회로가 점점 미세화 되어감에 따라 감광제로 회로를 형성하는 과정에서 회로가 쓰러지는(collapse) 현상 즉, 웨어퍼에 감광제를 도포하고 현상하고 식각하면서 반도체 회로를 만들어 가는 과정에서 형성된 패턴이 붕괴된다는 문제가 필연적으로 수반되고 있다. 그로 인해, 감광제(Photoresist) 코팅막의 두께는 낮추어가야 하는데 후속 공정인 식각(Etching)공정에서 감광제가 버티지 못해 회로 형성에 큰 어려움을 수반한다. 이를 보완하기 위해 도 2에서와 같은 다층 구조를 가지고 갈 수밖에 없다. 여기서 유기 반사방지막은 조사된 빛이 난반사되는 것을 방지하여 회로가 잘 형성되도록 하는데 그 목적이 있다. 유기 반사방지막 밑의 SiON과 SixNy는 하부층과의 선택비를 높일 목적으로 사용된다. 비정질 탄소층은 실리콘 포함하는 물질에 대한 식각 선택비가 뛰어나므로 사용된다. SiON이나 비정질 탄소층은 증착(deposition)공정으로 막을 형성한다. 도 2에 도시된 바와 같이, 종래의 다층 기판의 구조는 가장 위층에 포토레지스트(24)를 가지고, 그 하부에 유기 반사방지막(24), SiON 또는 SixNy(23), 비정질 탄소층(amorphous carbon) 또는 SOC(spin on coating carbon)(22), SiO2 또는 Si 기판(21)으로 구성된다. 여기서 SOC(spin on coating carbon)는 카본을 코팅하는 스핀을 말한다. 즉, 종래의 이와 같은 구조는 증착 공정용 재료비도 비쌀 뿐 아니라 증착 장비의 생산성(throughput)이 스핀코팅(spin coating)에 비해 현저히 떨어지므로 하기 도1과 같은 공정은 아주 값비싼 공정이 된다. 또한 증착장비가 여러 대 필요하므로 반도체 제조를 위해 더 큰 면적이 필요하다는 단점이 있다. Recently, as the semiconductor circuit becomes finer, the circuit collapses in the process of forming the circuit with the photosensitive agent. That is, the pattern formed in the process of applying the photosensitive agent to the wafer and developing and etching the semiconductor circuit is collapsed It is inevitably accompanied. As a result, the thickness of the photoresist coating film must be lowered, but the photoresist can not be retained in a subsequent etching process. In order to compensate for this, the multi-layer structure shown in FIG. Herein, the organic antireflection film is intended to prevent irregular reflection of irradiated light, thereby forming a circuit well. SiON and Si x N y under the organic antireflection film are used for increasing the selectivity to the lower layer. The amorphous carbon layer is used because it has an excellent etch selectivity for silicon containing materials. The SiON or amorphous carbon layer forms a film by a deposition process. 2, the structure of a conventional multilayer substrate has a photoresist 24 on the uppermost layer, and an organic antireflection film 24, SiON or Si x N y (23), an amorphous carbon layer ( amorphous carbon or SOC (spin on coating carbon) 22, SiO 2 or Si substrate 21. Here, spin on coating carbon (SOC) refers to a spin coating carbon. That is, the conventional structure as described above is not only expensive in terms of the material cost for the deposition process but also significantly reduces the throughput of the deposition equipment compared with the spin coating, so that the process as shown in FIG. 1 is a very expensive process. In addition, since a plurality of deposition equipment is required, a larger area is required for semiconductor manufacturing.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명은 반도체 공정을 단순화할 수 있는 열경화성 실리콘 수지, 이 열경화성 실리콘 수지를 사용하여 제조된 다기능 반사방지막에 관한 것이다. 즉, 반도체 공정에 사용되는 패턴 공정에 본 발명의 열경화성 실리콘 수지를 이용하여 다기능 반사방지막을 형성함으로써, 비용 절감 및 회로의 미세화에 따른 반도체 공정을 단순화할 수 있다. The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a thermosetting silicone resin which can simplify a semiconductor process, and a multifunctional antireflection film produced using the thermosetting silicone resin. That is, by forming the multi-functional antireflection film using the thermosetting silicone resin of the present invention in the patterning process used in the semiconductor process, it is possible to simplify the semiconductor process due to cost reduction and miniaturization of the circuit.

또한 스핀코팅(spin coating)에 의해 반사방지 성능 및 식각 선택비가 높은 실리콘을 포함하는 다기능 반사방지막에서 더 나아가 열경화 온도를 최적화 함으로써 LCD, LED 또는 터치패널에 사용되는 절연성 투명 기판 등의 장치에 응용이 가능하면서 내구성 및 투과율이 우수한 반사방지 유리막을 제공하는 것을 목적으로 한다.It is also applicable to devices such as insulating transparent substrates used in LCDs, LEDs or touch panels by optimizing the thermosetting temperature in multi-functional antireflection films including silicon with high antireflection performance and high etching selectivity by spin coating And an antireflection glass film excellent in durability and transmittance.

본 발명은 상기 목적을 이루기 위해 반응식 1 및 2의 메카니즘에 의해 유기용매에 용해도가 좋은 열경화성 실리콘 수지를 합성한다. In order to achieve the above object, the present invention synthesizes a thermosetting silicone resin having high solubility in an organic solvent by the mechanism of the reaction schemes 1 and 2.

이하, 첨부 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 열경화성 실리콘 수지를 이용한 반도체 공정에 사용되는 다층 구조를 가진 기판의 패턴 공정 개략도이다. 본 발명의 열경화성 실리콘 수지를 이용한 다층 기판 구조는 가장 위층에 포토레지스트(4)를 가지고, 그 하부에 Si-ARC(Si-Antireflective coating)(3), 아몰퍼스 카본(amorphous carbon) 또는 SOC(spin on coating carbon)(2), SiO2 또는 Si 기판(Substrate)(1)으로 구성된다. 즉, 종래의 유기 반사방지막과 SiON 또는 SixNy으로 이루어진 2개의 층을 본 발명의 열경화성 실리콘 수지를 이용하여 대체할 수 있다. BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic view of a patterning process of a substrate having a multilayer structure used in a semiconductor process using the thermosetting silicone resin of the present invention. FIG. The multi-layer substrate structure using the thermosetting silicone resin of the present invention has a photoresist 4 on the uppermost layer and a Si-antireflective coating (Si-ARC) 3, amorphous carbon or SOC coating carbon (2), SiO 2 or Si substrate (1). That is, the conventional organic antireflection film and two layers made of SiON or Si x N y can be replaced with the thermosetting silicone resin of the present invention.

본 발명은 화학식 1 또는/및 2의 화합물로부터 합성된 열경화성 실리콘 수지를 이용하여 공정이 단순화된 회로 형성이 가능하므로, 비용 절감 및 회로의 면적의 크기를 줄 일 수 있다. 또한 실리콘 함량이 높은 내구성 및 투과율이 우수한 반사방지 유리막을 스핀 코팅에 의해 형성하고 240℃의 낮은 온도에서 경화함으로써 제공할 수 있다.The present invention makes it possible to form a circuit with a simplified process using a thermosetting silicone resin synthesized from the compound of the formula (1) or (2), thereby reducing the cost and the circuit area. It is also possible to provide an anti-reflection glass film having a high silicon content and excellent durability and transmittance by spin coating and curing at a low temperature of 240 캜.

도 1은 본 발명의 실리콘 수지를 이용하여 도 2와 같은 다층구조의 반도체 공정을 단순화시킨 다층 기판의 패턴 공정 개략도.
도 2는 종래의 반도체 공정에 사용되는 다층구조를 가진 다층 기판의 패턴 형성도.
도 3은 본 발명의 실시예 1에 따른 실리콘 수지에 대해 FT-IR을 사용하여 분석한 도면.
도 4는 본 발명의 실시예 1에 따른 실리콘 수지에 대해 TGA(열중량분석)를 분석한 도면.
FIG. 1 is a schematic view of a patterning process of a multilayer substrate in which a semiconductor process of a multilayer structure as shown in FIG. 2 is simplified by using the silicone resin of the present invention.
2 is a pattern formation view of a multi-layer substrate having a multi-layer structure used in a conventional semiconductor process.
Fig. 3 is a diagram showing FT-IR analysis of the silicone resin according to Example 1 of the present invention. Fig.
FIG. 4 is a view showing a TGA (thermogravimetric analysis) analysis of the silicone resin according to Example 1 of the present invention. FIG.

본 발명의 열경화성 실리콘 수지는 우선 화학식 1 또는/및 2의 모노머를 이용하여 하기 메커니즘에서 설명된 바와 같이 합성된 폴리실록산 및 유기용매를 포함한다.
The thermosetting silicone resin of the present invention comprises a polysiloxane synthesized as described in the following mechanism using monomers of formula (1) and / or (2) and an organic solvent.

[반응식 1][Reaction Scheme 1]

CH3-Si(OCH3)3 + Ra-Si(OCH3)3

Figure 112014047451471-pat00012

<화학식 1> <화학식 2> <화학식 3>
상기 식에서 Ra는 페닐기이며, m 및 n은 1∼100의 정수이다.CH 3 -Si (OCH 3 ) 3 + Ra-Si (OCH 3 ) 3
Figure 112014047451471-pat00012

&Lt; Formula 1 >< EMI ID =
In the above formula, Ra represents a phenyl group, and m and n are integers of 1 to 100.

상기와 같이, 반응식 1을 기본 메카니즘으로 하여 R', R"의 종류에 따라 하기와 같이 반응이 진행될 수 있다.
As described above, the reaction can be carried out as follows according to the type of R 'and R "using the reaction formula 1 as a basic mechanism.

[반응식 2][Reaction Scheme 2]

Figure 112014047451471-pat00013

상기 식에서 Ra는 페닐기이며, m 및 n은 1∼100의 정수이다.
Figure 112014047451471-pat00013

In the above formula, Ra represents a phenyl group, and m and n are integers of 1 to 100.

상기와 같이, 반응식 2는 열처리에 의해 반응식 1에서 가교반응을 나타내고 있다.
As described above, Scheme 2 shows a cross-linking reaction in Scheme 1 by heat treatment.

삭제delete

상기 반응시 사용하는 용매(Solvent)로는 벤젠(Benzene), 톨루엔(Toluene), 자이렌(Xylene), 다이에틸에테르(Diethylether), 헥산(Hexane), 에틸아세테이트(Ethyl Acetate), 사이크로헥산(Cyclohexane), 메틸에틸케톤(Methylethylketone), 메틸이소부틸케톤(Methylisobutylketone)등 다양하게 사용될 수 있다.Examples of the solvent used in the reaction include benzene, toluene, xylene, diethylether, hexane, ethylacetate, cyclohexane, ), Methyl ethyl ketone, methyl isobutyl ketone, and the like.

<화학식 1>&Lt; Formula 1 >

CH3-Si(OR')3
CH 3 -Si (OR ') 3

<화학식2>(2)

Ra-Si(OR")3 Ra-Si (OR ") 3

상기 화학식 1에서 R′는 193nm 영역에서 흡수도가 거의 없는 H 또는 C1~C5의 알킬, 아릴알킬그룹이고 화학식 2에서 Ra는 193nm 영역에서 흡수도가 큰 이중결합을 가지거나 또는 벤젠링을 포함하는 C1~C15의 비닐, 아릴알킬 그룹 또는 퍼플루오르알킬그룹이며 R"는 H 또는 C1~C5의 알킬, 아릴알킬그룹을 나타낸다. In the above formula (1), R 'is H or a C 1 to C 5 alkyl or arylalkyl group having almost no absorption in the region of 193 nm, and Ra in the formula (2) has a double bond having a high absorbance in the region of 193 nm, includes C 1 ~ C 15 vinyl, aryl alkyl group or perfluoroalkyl group and of which R "represents an alkyl, an arylalkyl group of H or C 1 ~ C 5.

이처럼, 상기 화학식 1 및 2의 재료들은 열경화성 실리콘 수지 합성시 n(굴절율), k(흡수도)값의 조정과 가교 밀도의 조정을 위해 반응 몰 비율을 자유롭게 조정이 가능하다. 합성 시 화학식 1의 화합물의 몰비가 높으면 k값을 줄 일수 있고 상온에서 반응이 빨리 진행된다. 합성 시 화학식2의 화합물을 많이 넣으면 k값이 높아지고 PGMEA(Propylene Glycol Methyl Ether Acetate)나 에틸아세테이트(Ethyl Acetate), 사이크로헥사논(Cyclohexanone)등의 널리 사용되는 유기 용매에 대한 용해도가 증가하는 경향을 보인다. 그리고, 후속 식각 공정에서 선택비를 높이기 위해 적당량의 Si 함량(40중량% 이상)이 필요하다. 화학식 1이 많을 경우는 가교화가 많이 일어나며 열경화성 실리콘 수지를 코팅 후 후속 열처리 공정에서 가교가 잘 일어나게 된다. 그러나 너무 많이 넣을 경우 겔화가 진행되어 PGMEA, 에틸아세테이트, 사이클로헥사논 등의 유기 용매에 대한 용해도가 떨어지는 문제점을 보인다. 따라서 상기 사항을 고려하여 적절한 비율로 섞어 합성하여야 한다.As described above, the materials of Formulas 1 and 2 can freely adjust the reaction molar ratio for adjusting n (refractive index), k (absorbance) value and crosslinking density in the synthesis of thermosetting silicone resin. When the molar ratio of the compound of formula (1) is high in the synthesis, the k value can be reduced and the reaction proceeds rapidly at room temperature. When the compound of the formula (2) is added in a large amount, the k value becomes high and the solubility in widely used organic solvents such as PGMEA (Propylene Glycol Methyl Ether Acetate), ethyl acetate (Ethyl Acetate) and Cyclohexanone . An appropriate amount of Si (40 wt% or more) is required to increase the selectivity in the subsequent etching process. When the number of the compounds represented by the formula (1) is large, crosslinking occurs frequently and crosslinking occurs well in a subsequent heat treatment process after coating the thermosetting silicone resin. However, when the amount is too large, the gelation proceeds and the solubility in organic solvents such as PGMEA, ethyl acetate, cyclohexanone and the like is low. Therefore, it is necessary to mix them in appropriate ratio considering the above points.

상기 메커니즘에서 제시된 바와 같이 합성된 열경화성 실리콘 수지는 PGMEA, 에틸아세테이트, 사이클로헥사논(Cyclohexanone), 메틸에틸케톤(MEK, Methylethylketone), 메틸이소부틸케톤(MIBK, Methylisobutylketon)등에 녹여 열경화성 실리콘 수지로 제조된다. 경우에 따라 경화조건을 개선하기 위해 열산발생제 (TAG, Thermal Acid Generator) 또는 광산 발생제 (PAG, Photo Acid Generator)를 첨가하기도 한다. The thermosetting silicone resin synthesized as shown in the above mechanism is dissolved in PGMEA, ethyl acetate, cyclohexanone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), methylisobutylketone) and is made of a thermosetting silicone resin . In some cases, a thermal acid generator (TAG) or a photoacid generator (PAG) may be added to improve the curing conditions.

열경화성 실리콘 수지 조성물에서 용매의 조성비는 1~10wt% : 90~99wt%인 것이 바람직하다. PAG 이나 TAG를 첨가시 첨가량은 조성물양의 20wt% 이내로 한다. 본 발명에 따른 조성물은 상기 조성의 혼합용액을 0.2㎛ 여과기로 여과함으로써 제조될 수 있다. 즉, 이러한 본 발명의 조성물은 다기능 반사방지막으로 이용가능하다. The composition ratio of the solvent in the thermosetting silicone resin composition is preferably 1 to 10 wt%: 90 to 99 wt%. When PAG or TAG is added, the addition amount should be within 20 wt% of the composition amount. The composition according to the present invention can be prepared by filtering a mixed solution of the above composition with a 0.2 mu m filter. That is, the composition of the present invention can be used as a multi-functional antireflection film.

이하, 상기와 같은 본 발명을 실시예에 의거하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail with reference to examples.

합성예 1 : 본 발명에 따른 열경화성 실리콘 수지의 합성Synthesis Example 1: Synthesis of thermosetting silicone resin according to the present invention

트리메톡시메틸실란(Trimethoxymethylsilane) 30부, 페닐트리에톡시실란 (Phenyltriethoxysilane) 5.3부, 메틸이소부틸케톤(MIBK) 40부를 반응플라스크에 첨가하고 교반하며 드롭핑 펀널(dropping funnel)을 이용하여 10부피%의 질산수용액 11부를 산촉매로 10~30분에 걸쳐 플라스크에 연속적으로 적하하였다(Dropwise). 반응온도는 30℃를 넘지 않도록 유지하며 초과할 시 얼음물(Ice bath)을 이용하여 반응온도를 조절하였다. 상온에서 15 내지 18시간 교반 후 암모니아수를 이용하여 중화하고 물로 수회 세척하여 졸 겔 반응에 의한 20% 농도의 폴리실록산용액 50g을 수득하였다. 얻어진 화합물의 평균 분자량은 3,100으로 겔투과크로마토그래피(GPC)로 분석하여 확인하였으며, 최종 조성물을 제조했을 때, 실온에서 1년이 경과하여도 겔화는 진행되지 않았다.
30 parts of trimethoxymethylsilane, 5.3 parts of phenyltriethoxysilane and 40 parts of methyl isobutyl ketone (MIBK) were added to the reaction flask, and stirred and added dropwise with a dropping funnel in 10 volumes % Nitric acid aqueous solution (11 parts) was added dropwise continuously to the flask over 10 to 30 minutes with an acid catalyst (Dropwise). The reaction temperature was maintained at not more than 30 ° C, and the reaction temperature was controlled by using an ice bath. The mixture was stirred at room temperature for 15 to 18 hours, neutralized with ammonia water, and washed several times with water to obtain 50 g of a 20% concentration polysiloxane solution by sol-gel reaction. The average molecular weight of the obtained compound was 3,100 and confirmed by gel permeation chromatography (GPC). When the final composition was prepared, gelation did not progress even after one year at room temperature.

합성예 2~5 : 본 발명에 따른 열경화성 실리콘 수지의 합성Synthesis Examples 2 to 5: Synthesis of thermosetting silicone resin according to the present invention

트리메톡시메틸실란(Trimethoxymethylsilane) 30부, 페닐트리에톡시실란 (Phenyltriethoxysilane) 실시예에 나타낸 중량부, 메틸이소부틸케톤(MIBK) 40부를 반응플라스크에 첨가하고 교반하며 드롭핑 펀널(dropping funnel)을 이용하여 질산수용액을 산촉매로 10~30분에 걸쳐 플라스크에 연속적으로 적하하여 합성예 1과 동일한 방법으로 폴리실록산 용액을 수득하였다.(표 1 참조)
30 parts of trimethoxymethylsilane, 40 parts of phenyltriethoxysilane shown in the examples and 40 parts of methyl isobutyl ketone (MIBK) were added to the reaction flask, stirred and added dropping funnel A nitric acid aqueous solution was continuously added dropwise to the flask over 10 to 30 minutes with an acid catalyst to obtain a polysiloxane solution in the same manner as in Synthesis Example 1. (See Table 1)

실시예 1 : 본 발명에 따른 박막의 제조Example 1: Preparation of thin film according to the present invention

합성예 1에서 얻어진 열경화성 실리콘 수지 10부를 총중량이 100부가 되도록 MIBK에 녹인 후 혼합용액을 0.2㎛ 여과기로 여과하여 용액을 제조하고, 스핀코터로 막두께가 90~100nm가 되도록 스핀코터에서 도포하여 핫플레이트에서 경화되는 온도를 측정하였다. 이렇게 경화된 SiO2 박막은 FT-IR을 사용하여 구조를 확인하였으며(도 3참조), 엘립소미터를 사용하여 최종두께(50~80nm)와 굴절률(n) 및 흡광계수(k)를 측정하였다. 도 4는 열중량분석기를 사용하여 600℃까지 승온 시에도 중량 변화가 5% 이내로 경화됨을 분석한 것이다.
10 parts of the thermosetting silicone resin obtained in Synthesis Example 1 was dissolved in MIBK so that the total weight was 100 parts. The mixed solution was filtered with a 0.2 mu m filter to prepare a solution, and the solution was applied by a spin coater in a spin coater so as to have a film thickness of 90 to 100 nm The temperature at which the plate was cured was measured. The final thickness (50 to 80 nm), refractive index (n) and extinction coefficient (k) of the SiO 2 thin film thus cured were measured using an ellipsometer . FIG. 4 is a graph showing that even when the temperature is increased up to 600 ° C. by using a thermogravimetric analyzer, the weight change is cured within 5%.

실시예 2 : 본 발명에 따른 박막의 제조Example 2: Preparation of thin film according to the present invention

합성예 2에서 얻어진 열경화성 실리콘 수지 10부를 총중량이 100부가 되도록 MIBK에 녹인 후 혼합용액을 0.2㎛ 여과기로 여과하여 용액을 제조하고, 스핀코터로 막두께가 90~100nm가 되도록 스핀코터에서 도포하고 핫플레이트에서 경화되는 온도를 확인하였다. 이렇게 경화된 SiO2 박막은 엘립소미터를 이용하여 최종두께 50~80nm와 굴절률(n) 및 흡광계수(k)를 측정하였다.
10 parts of the thermosetting silicone resin obtained in Synthesis Example 2 was dissolved in MIBK so as to have a total weight of 100 parts. The mixed solution was filtered with a 0.2 mu m filter to prepare a solution. The solution was applied by a spin coater in a spin coater so as to have a film thickness of 90 to 100 nm The temperature at which the plate was cured was determined. The cured SiO 2 thin film was measured for its ultimate thickness of 50 to 80 nm, refractive index (n) and extinction coefficient (k) using an ellipsometer.

실시예 3 : 본 발명에 따른 박막의 제조Example 3: Preparation of thin film according to the present invention

합성예 3에서 얻어진 열경화성 실리콘 수지 10부를 총중량이 100부가 되도록 MIBK에 녹인 후 혼합용액을 0.2㎛ 여과기로 여과하여 용액을 제조하고, 스핀코터로 막두께가 90~100nm가 되도록 스핀코터에서 도포하고 핫플레이트에서 경화되는 온도를 확인하였다. 이렇게 경화된 SiO2 박막은 엘립소미터를 이용하여 최종두께 50~80nm와 굴절률(n) 및 흡광계수(k)를 측정하였다.
10 parts of the thermosetting silicone resin obtained in Synthesis Example 3 were dissolved in MIBK so that the total weight was 100 parts. The mixed solution was filtered with a 0.2 mu m filter to prepare a solution. The solution was applied by a spin coater in a spin coater so as to have a film thickness of 90 to 100 nm The temperature at which the plate was cured was determined. The cured SiO 2 thin film was measured for its ultimate thickness of 50 to 80 nm, refractive index (n) and extinction coefficient (k) using an ellipsometer.

실시예 4 : 본 발명에 따른 박막의 제조Example 4: Preparation of thin film according to the present invention

합성예 4에서 얻어진 열경화성 실리콘 수지 10부를 총중량이 100부가 되도록 MIBK에 녹인 후 혼합용액을 0.2㎛ 여과기로 여과하여 용액을 제조하고, 스핀코터로 막두께가 90~100nm가 되도록 스핀코터에서 도포하고 핫플레이트에서 경화되는 온도를 확인하였다. 이렇게 경화된 SiO2 박막은 엘립소미터를 이용하여 최종두께 50~80nm와 굴절률(n) 및 흡광계수(k)를 측정하였다.
10 parts of the thermosetting silicone resin obtained in Synthesis Example 4 was dissolved in MIBK so that the total weight was 100 parts. The mixed solution was filtered with a 0.2 mu m filter to prepare a solution. The solution was applied by a spin coater in a spin coater so as to have a film thickness of 90 to 100 nm The temperature at which the plate was cured was determined. The cured SiO 2 thin film was measured for its ultimate thickness of 50 to 80 nm, refractive index (n) and extinction coefficient (k) using an ellipsometer.

실시예 5 : 본 발명에 따른 박막의 제조Example 5: Preparation of thin film according to the present invention

합성예 5에서 얻어진 열경화성 실리콘 수지 10g을 총중량이 100이 되도록 MIBK에 녹인 후 혼합용액을 0.2㎛ 여과기로 여과하여 용액을 제조하고, 스핀코터로 막두께가 90~100nm가 되도록 스핀코터에서 도포하고 핫플레이트에서 경화되는 온도를 확인하였다. 이렇게 경화된 SiO2 박막은 엘립소미터를 이용하여 최종두께 50~80nm와 굴절률(n) 및 흡광계수(k)를 측정하였다.
10 g of the thermosetting silicone resin obtained in Synthesis Example 5 was dissolved in MIBK so that the total weight was 100, and the mixed solution was filtered with a 0.2 탆 filter to prepare a solution. The solution was applied by a spin coater in a spin coater so as to have a film thickness of 90 to 100 nm The temperature at which the plate was cured was determined. The cured SiO 2 thin film was measured for its ultimate thickness of 50 to 80 nm, refractive index (n) and extinction coefficient (k) using an ellipsometer.

《특성 평가 방법》&Quot; Characteristic evaluation method &

상기 실시예의 조성물들을 이용하여 동일한 조건에서 얻어진 코팅막의 두께, 굴절률, 흡광계수, 경화온도, 경도 및 투과율을 측정하였다. 결과는 표 1에 나타내었다.The thickness, refractive index, extinction coefficient, curing temperature, hardness and transmittance of the coating film obtained under the same conditions were measured using the compositions of the above examples. The results are shown in Table 1.

<막 두께, 굴절률, 흡광계수의 측정>&Lt; Measurement of film thickness, refractive index and extinction coefficient >

Horiba 제조, Ellipsometer UVISEL을 사용하여 193nm 파장에서 두께, 굴절률 및 흡광계수를 측정하였다. Thickness, refractive index and extinction coefficient were measured at 193 nm wavelength using a Horiba-manufactured, Ellipsometer UVISEL.

<경화온도의 측정>&Lt; Measurement of curing temperature &

핫플레이트의 온도를 100℃, 90초를 기준으로 10℃간격으로 승온시키며 1차로 메틸아이소부틸케톤을 드롭핑하고 2차로 천 와이퍼를 이용하여 경화막이 제거되지 않는 온도를 측정하였다. The temperature of the hot plate was raised at an interval of 10 DEG C at 100 DEG C for 90 seconds, and methyl isobutyl ketone was firstly dropped and the temperature at which the cured film was not removed was measured using a cloth wiper.

<연필 경도의 측정>&Lt; Measurement of pencil hardness &

JIS K5400 규격에 의해 연칠 긁기 시험기를 사용하여 경화막의 연필 경도를 5회 측정하였다.The pencil hardness of the cured film was measured five times using a scratching tester according to JIS K5400 standard.

<투과율의 측정><Measurement of transmittance>

Otsuka Electronics 제조, MCPD-3700을 사용하여 유리기판상 경화막의 파장 350 내지 700nm 영역에 해당하는 투과율을 측정하였다. Using MCPD-3700 manufactured by Otsuka Electronics, the transmittance corresponding to the wavelength range of 350 to 700 nm of the glass plate-shaped cured film was measured.

Figure 112011105567808-pat00003
Figure 112011105567808-pat00003

1. SiO2 또는 Si 기판(substrate)
2. 비정질 탄소층(Amorphous carbon) 또는 SOC(Spin on coating carbon)
3. 실리콘 포함 다기능 반사방지막(Si-ARC)
4. 포토레지스트(Photoresist, PR)
1-1. SiO2 또는 Si substrate 패턴
2-1. SOC 패턴
3-1. 실리콘 포함 다기능 반사방지막 패턴
4-1. 포토레지스트 패턴
21. SiO2 또는 Si 기판(substrate)
22. 비정질 탄소층(Amorphous carbon) 또는 SOC(Spin on coating carbon)
23. SiON 또는 SixNy
24. 유기반사방지막
25. 포토레지스트
1. SiO 2 or Si substrate
2. Amorphous carbon or Spin on coating carbon (SOC)
3. Multifunctional antireflection coating with silicon (Si-ARC)
4. Photoresist (PR)
1-1. SiO 2 or Si substrate pattern
2-1. SOC pattern
3-1. Multifunctional antireflective film pattern with silicon
4-1. Photoresist pattern
21. SiO 2 or Si substrate
22. Amorphous carbon or Spin on coating carbon (SOC)
23. SiON or Si x N y
24. Organic anti-reflective coating
25. Photoresist

Claims (5)

하기 <화학식 3>의 열경화성 실리콘 수지.
<화학식 3>
Figure 112014047451471-pat00014

상기 식에서 Ra는 페닐기이며, m 및 n은 1∼100의 정수이다.
A thermosetting silicone resin according to the following formula (3).
(3)
Figure 112014047451471-pat00014

In the above formula, Ra represents a phenyl group, and m and n are integers of 1 to 100.
삭제delete 삭제delete 삭제delete <화학식 3>의 열경화성 실리콘 수지를 용매에 용해시켜서 실리콘, 유리 또는 플라스틱 기판의 표면상에 코팅막을 형성하고 열경화시켜서 제조된 SiO2 반사방지 박막.
<화학식 3>
Figure 112014047451471-pat00015

상기 식에서 Ra는 페닐기이며, m 및 n은 1∼100의 정수이다.
An SiO 2 antireflection thin film prepared by dissolving the thermosetting silicone resin of formula (3) in a solvent to form a coating film on the surface of a silicon, glass, or plastic substrate and thermally curing.
(3)
Figure 112014047451471-pat00015

In the above formula, Ra represents a phenyl group, and m and n are integers of 1 to 100.
KR1020110147527A 2011-12-30 2011-12-30 Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof KR101441563B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110147527A KR101441563B1 (en) 2011-12-30 2011-12-30 Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110147527A KR101441563B1 (en) 2011-12-30 2011-12-30 Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof

Publications (2)

Publication Number Publication Date
KR20130078529A KR20130078529A (en) 2013-07-10
KR101441563B1 true KR101441563B1 (en) 2014-09-18

Family

ID=48991458

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110147527A KR101441563B1 (en) 2011-12-30 2011-12-30 Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof

Country Status (1)

Country Link
KR (1) KR101441563B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102077797B1 (en) 2016-02-19 2020-02-14 주식회사 엘지화학 Photocurable coating composition for forming low refractive layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070006534A (en) * 2005-07-08 2007-01-11 후지쯔 가부시끼가이샤 Silica film forming material, silica film and method of manufacturing the same, multilayer wiring structure and method of manufacturing the same, and semiconductor device and method of manufacturing the same
KR20070093303A (en) * 2006-03-13 2007-09-18 제일모직주식회사 Organosilane composition, hardmask composition coated under photoresist and process of producing integrated circuit devices using thereof
KR20070095736A (en) * 2006-03-22 2007-10-01 제일모직주식회사 Hardmask composition coated under photoresist comprising organosilane polymer and process of producing integrated circuit devices using thereof
KR20080040927A (en) * 2006-11-06 2008-05-09 제일모직주식회사 Coating composition for anti-reflection film, anti-reflection film using the same and image displaying device comprising said anti-reflection film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070006534A (en) * 2005-07-08 2007-01-11 후지쯔 가부시끼가이샤 Silica film forming material, silica film and method of manufacturing the same, multilayer wiring structure and method of manufacturing the same, and semiconductor device and method of manufacturing the same
KR20070093303A (en) * 2006-03-13 2007-09-18 제일모직주식회사 Organosilane composition, hardmask composition coated under photoresist and process of producing integrated circuit devices using thereof
KR20070095736A (en) * 2006-03-22 2007-10-01 제일모직주식회사 Hardmask composition coated under photoresist comprising organosilane polymer and process of producing integrated circuit devices using thereof
KR20080040927A (en) * 2006-11-06 2008-05-09 제일모직주식회사 Coating composition for anti-reflection film, anti-reflection film using the same and image displaying device comprising said anti-reflection film

Also Published As

Publication number Publication date
KR20130078529A (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP7050137B2 (en) Stable metal compounds as hard masks and filling materials, their compositions, and how to use them
TWI393746B (en) Siloxane resin composition and the method for manufacturing the same
US7833696B2 (en) Method for forming anti-reflective coating
KR100796047B1 (en) Hardmask composition coated under photoresist, process of producing integrated circuit devices using the same and semiconductor device produced by the process
EP1798599B1 (en) Antireflection film composition, patterning process and substrate using the same
KR101097963B1 (en) Antireflective film-forming composition, method for manufacturing the same, and antireflective film and pattern formation method using the same
KR100639862B1 (en) Composition for forming antireflection coating
US8129491B2 (en) Siloxane resin coating
JP4244315B2 (en) Resist pattern forming material
US8263312B2 (en) Antireflective coating material
US8241707B2 (en) Silsesquioxane resins
US9284455B2 (en) Hybrid inorganic-organic polymer compositions for anti-reflective coatings
KR20140117769A (en) Under-layer composition of resist and method for forming pattern using the the same
KR20140039423A (en) High etch-resistant carbon hard mask condensasion polymer and anti-reflection hard mask composition including same, and pattern-forming method of semiconductor device using same
JP2004341479A5 (en)
US20090203839A1 (en) Carbosilane polymer compositions for anti-reflective coatings
KR100760522B1 (en) Hardmask composition coated under photoresist and process of producing integrated circuit devices using thereof
TW202020024A (en) Resin composition and cured film obtained therefrom
KR20110079194A (en) Photoresist underlayer composition and method of manufacturing semiconductor device by using the same
KR101590809B1 (en) Monomer for hardmask composition and hardmask composition including the monomer and method of forming patterns using the hardmask composition
JP2009280666A (en) Silicone polymer having naphthalene ring and composition of the same
KR101441563B1 (en) Thermosetting Silicon Resin for Multifunctional Antireflective Coating and Antireflective Coating manufactured thereof
KR101920642B1 (en) Photo-sensitive Composition, Cured Film Prepared Therefrom, and Device Incoporating the Cured Film
KR102510788B1 (en) A composition of anti-reflective hardmask
KR20140038810A (en) Solubility-improved high etch-resistant condensation polymer for carbon hard mask and carbon hard mask composition including same, method for forming pattern of semiconductor device using same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170628

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 6