KR101437175B1 - Lens meter - Google Patents

Lens meter Download PDF

Info

Publication number
KR101437175B1
KR101437175B1 KR1020080018177A KR20080018177A KR101437175B1 KR 101437175 B1 KR101437175 B1 KR 101437175B1 KR 1020080018177 A KR1020080018177 A KR 1020080018177A KR 20080018177 A KR20080018177 A KR 20080018177A KR 101437175 B1 KR101437175 B1 KR 101437175B1
Authority
KR
South Korea
Prior art keywords
measurement
lens
optical characteristic
optical
index
Prior art date
Application number
KR1020080018177A
Other languages
Korean (ko)
Other versions
KR20080080048A (en
Inventor
다다시 가지노
Original Assignee
가부시키가이샤 니데크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니데크 filed Critical 가부시키가이샤 니데크
Publication of KR20080080048A publication Critical patent/KR20080080048A/en
Application granted granted Critical
Publication of KR101437175B1 publication Critical patent/KR101437175B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • G01M11/0235Testing optical properties by measuring refractive power by measuring multiple properties of lenses, automatic lens meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • G01N2021/9583Lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

(과제) 렌즈의 광학 특성을 안정적이고 고정밀도로 얻을 수 있는 렌즈 미터를 제공한다. [PROBLEMS] To provide a lens meter capable of obtaining an optical characteristic of a lens stably and with high accuracy.

(해결 수단) 피검 렌즈의 광학 특성을 측정하는 렌즈 미터는, [MEANS FOR SOLVING PROBLEMS] A lens meter for measuring optical characteristics of a lens to be inspected,

측정 광학계 (측정 광학계는, 측정 광축을 중심으로 소정의 패턴으로 배치된 다수의 측정 지표 (측정 지표는, 측정 광축에 가까운 제 1 영역에 있는 제 1 측정 지표와, 제 1 영역의 외측의 제 2 영역에 있는 제 2 측정 지표를 적어도 갖는다) 를 갖는 지표판과, 피검 렌즈를 통과한 측정 광속을 수광하는 수광 소자를 갖는다) 와, 광학 특성을 연산하는 연산 수단 (연산 수단은, 상기 수광 소자에 의한 제 1 측정 지표의 검출 결과에 기초하여 렌즈의 제 1 광학 특성을 연산하는 제 1 연산 수단과, 제 1 측정 지표 및 제 2 측정 지표의 검출 결과에 기초하여 렌즈의 제 2 광학 특성을 연산하는 제 2 연산 수단을 갖는다) 과, The measurement optical system (the measurement optical system includes a plurality of measurement indices arranged in a predetermined pattern around the measurement optical axis (the measurement index includes a first measurement index in a first region close to the measurement optical axis and a second measurement index in a second region outside the first region, (Which has at least a second measurement index in the area of the light receiving element), and a light receiving element for receiving the measurement light flux that has passed through the lens to be examined, and calculation means for calculating optical characteristics A first calculation means for calculating a first optical characteristic of the lens based on the detection result of the first measurement index by the first measurement index and a second measurement index of the lens based on the detection result of the first measurement index and the second measurement index Second calculating means)

표시 제어 수단 (표시 제어 수단은, 그 제 1 연산 수단에 의한 연산 결과 또는 상기 수광 소자에 의한 검출 결과가 소정의 조건을 만족시킬 때에 제 2 광학 특성을 피검 렌즈의 광학 특성으로서 상기 소정의 조건을 만족시키지 않을 때에는 제 1 광학 특성을 피검 렌즈의 광학 특성으로서 표시 수단에 표시시킨다) 을 구비한다. When the calculation result by the first calculation means or the detection result by the light-receiving element satisfies the predetermined condition, the display control means (display control means) sets the second optical characteristic as the optical characteristic of the lens to be examined, The first optical characteristic is displayed on the display means as the optical characteristic of the lens to be examined).

Description

렌즈 미터 {LENS METER}Lens Meter {LENS METER}

본 발명은 피검 렌즈의 광학 특성을 측정하는 렌즈 미터에 관한 것이다. The present invention relates to a lens meter for measuring optical characteristics of a lens to be examined.

피검 렌즈에 측정 광속을 투광하여, 피검 렌즈를 투과한 측정 광속을 수광 소자에 의해 검출하여, 그 검출 결과에 기초하여 피검 렌즈의 광학 특성 (구면 도수 (sphere power) (S), 주면 도수 (cylinder power) (C) 및 주면축 각도 (astigmatic axial angle) (A)) 를 얻는 측정 광학계를 갖는 렌즈 미터가 알려져 있다. 이 종의 종래의 렌즈 미터는, 측정 광축을 중심으로 한 4 개의 측정 지표 (원리적으로는 3 개의 측정 지표) 를 1 조로 하여 수광 소자에 의해 검출되는 측정 지표의 편위에 기초하여 피검 렌즈의 광학 특성을 측정하는 구성으로 되어 있었다 (예를 들어, 일본 공개특허공보 소60-17335, US3880525 (일본 공개특허공보 소50-145249) 를 참조). 또, 피검 렌즈의 광학 특성의 분포나 누진 렌즈의 원용부 (猿用部), 근용부 (近用部) 를 용이하게 측정하기 위해서, 노우즈 피스 (nosepiece) 내에 배치된 다수의 측정 지표를 사용하는 렌즈 미터도 제안되어 있다 (예를 들어, US6972837 (일본 공개특허공보 2003-75296) 을 참조). 어느 렌즈 미터에서도, 단초점 렌즈의 측정에 있어서는, 측정 지표가 측정 광축으로부터 멀어 질수록 수차의 영향이 커지기 때문에, 기본적으로는 측정 광축을 중심으로 직경 2 ∼ 3㎜ 의 원주 상에 배치된 측정 지표를 사용하여 측정이 행해진다. (The sphere power (S) and the cylinder power (S) of the lens to be inspected based on the detection result, and the measurement light flux is transmitted through the objective lens power (C) and an astigmatic axial angle (A)) are known. The conventional lens meter of this class has a configuration in which four sets of measurement indexes (principally, three measurement indexes) around the measurement optical axis are grouped, and based on the deviation of the measurement index detected by the light receiving element, (See, for example, Japanese Unexamined Patent Application Publication No. 60-17335 and US3880525 (Japanese Unexamined Patent Publication No. 50-145249)). Further, in order to easily measure the distribution of the optical characteristics of the lens to be examined, the distance portion of the progressive lens, and the near portion, a plurality of measurement indices arranged in the nose piece are used A lens meter is also proposed (see, for example, US6972837 (Japanese Patent Application Laid-Open No. 2003-75296)). In any of the lens meters, in the measurement of the short focal lens, since the influence of the aberration increases as the measurement index is further away from the measurement optical axis, basically, measurement indexes arranged on the circumference with a diameter of 2 to 3 mm The measurement is carried out.

그러나, 측정 광축 부근의 측정 지표를 기본으로 한 측정에서는, 렌즈 도수나 렌즈면 상태에 의해 광학 특성의 측정이 불안정해져, 측정 정밀도의 신뢰성이 열등한 경우가 있다. 즉, 렌즈의 굴절력이 약도수인 경우, 광축 부근의 지표의 편위가 적기 때문에, 측정값이 불안정해지기 쉽다. 특히, 주면 도수가 약도수인 경우에는, 그것에 의한 주면축 각도의 편차가 커지고, 측정 결과가 불안정해져서, 그 측정 정밀도가 악화된다. 또, 측정 광축 부근의 지표를 사용한 측정에서는, 그 측정 영역에 흠집이나 오염이 있는 경우에도 측정값이 안정되지 않아, 측정 정밀도의 신뢰성이 열등하다. However, in the measurement based on the measurement index in the vicinity of the measurement optical axis, the measurement of the optical characteristic is unstable depending on the number of lenses and the lens surface state, and the reliability of the measurement accuracy is sometimes inferior. In other words, when the refractive power of the lens is the approximate number, the deviation of the index in the vicinity of the optical axis is small, so that the measured value tends to become unstable. Particularly, when the main surface dioptric power is a certain number of degrees, the deviation of the main surface axis angle by this increases, the measurement result becomes unstable, and the measurement accuracy deteriorates. In the measurement using the index near the measurement optical axis, the measurement value is not stable even when there is scratch or dirt in the measurement area, and the reliability of the measurement accuracy is inferior.

본 발명은 렌즈의 광학 특성을 안정적이고 고정밀도로 얻을 수 있는 렌즈 미터를 제공하는 것을 기술 과제로 한다. The present invention provides a lens meter capable of obtaining the optical characteristics of the lens stably and with high accuracy.

상기 과제를 해결하기 위해서, 본 발명은 이하와 같은 구성을 구비하는 것을 특징으로 한다. In order to solve the above problems, the present invention is characterized by having the following configuration.

피검 렌즈의 광학 특성을 측정하는 렌즈 미터는, 측정 광학계 (측정 광학계는 측정 광축을 중심으로 소정의 패턴으로 배치된 다수의 측정 지표 (측정 지표는, 측정 광축에 가까운 제 1 영역에 있는 제 1 측정 지표와, 제 1 영역의 외측의 제 2 영역에 있는 제 2 측정 지표를 적어도 갖는다) 를 갖는 지표판과, 피검 렌즈를 통과한 측정 광속을 수광하는 수광 소자를 갖는다) 와, 광학 특성을 연산하는 연산 수단 (연산 수단은, 상기 수광 소자에 의한 제 1 측정 지표의 검출 결과에 기초하여 렌즈의 제 1 광학 특성을 연산하는 제 1 연산 수단과, 제 1 측정 지표 및 제 2 측정 지표의 검출 결과에 기초하여 렌즈의 제 2 광학 특성을 연산하는 제 2 연산 수단을 갖는다) 과, 표시 제어 수단 (표시 제어 수단은, 그 제 1 연산 수단에 의한 연산 결과 또는 상기 수광 소자에 의한 검출 결과가 소정의 조건을 만족시킬 때에 제 2 광학 특성을 피검 렌즈의 광학 특성으로서 상기 소정의 조건을 만족시키지 않을 때에는 제 1 광학 특성을 피검 렌즈의 광학 특성으로서 표시 수단에 표시시킨다) 을 구비한다. The lens meter for measuring the optical characteristics of the lens to be inspected is characterized in that the measurement optical system includes a plurality of measurement indicators arranged in a predetermined pattern around the measurement optical axis (the measurement index is a first measurement in a first region close to the measurement optical axis (Which has at least an index and a second measurement index in a second region outside the first region) and a light receiving element that receives a measurement light flux passing through the lens to be examined) The calculation means includes first calculation means for calculating a first optical characteristic of the lens based on the detection result of the first measurement index by the light receiving element and second calculation means for calculating the second optical index of the lens based on the detection results of the first measurement index and the second measurement index And a second calculation means for calculating a second optical characteristic of the lens on the basis of the calculation result of the second calculation means) And when the detection result does not satisfy the predetermined condition as the optical characteristic of the lens to be tested when the detection condition satisfies the predetermined condition, the first optical characteristic is displayed on the display means as the optical characteristic of the lens to be tested .

그리고, 상기 표시 제어 수단은, 상기 제 1 연산 수단에 의해 연산된 주면 도수, 또는 주면 도수 및 구면 도수가 소정의 약도수 이하일 때에, 상기 제 2 연산 수단에 의한 연산 결과를 피검 렌즈의 광학 특성으로서 표시 수단에 표시시키는 렌즈 미터이다. The display control means controls the display means to display the result of the calculation by the second calculating means as the optical characteristic of the lens to be examined when the frequency of the main surface calculated by the first calculating means or the frequency of the main surface and the sphericity is equal to or smaller than the predetermined approximate number And is displayed on the display means.

상기 표시 제어 수단은, 상기 제 1 연산 수단에 의해 연산된 주면 도수, 또는 주면 도수 및 구면 도수가 소정의 약도수 이하일 때로서, 추가로 제 1 연산 수단에 의해 연산된 광학 특성과 제 2 연산 수단에 의해 연산된 광학 특성을 비교하여, 양자가 소정의 허용 오차 내일 때, 상기 제 2 연산 수단에 의한 연산 결과를 피검 렌즈의 광학 특성으로서 표시 수단에 표시시키는 렌즈 미터이다.Wherein the display control means controls the display means to display the optical characteristic calculated by the first calculating means and the second calculating means when the main surface frequency calculated by the first calculating means or the main frequency and the sphere frequency are equal to or less than the predetermined frequency, And displays the result of the calculation by the second calculating means on the display means as the optical characteristics of the lens to be examined.

상기 표시 제어 수단은, 상기 제 1 연산 수단에 의해 연산된 광학 특성과 제 2 연산 수단에 의해 연산된 광학 특성을 비교하여, 양자가 소정의 허용 오차 내일 때, 상기 제 2 연산 수단에 의한 연산 결과를 피검 렌즈의 광학 특성으로서 표시 수단에 표시시키는 렌즈 미터이다.Wherein the display control means compares the optical characteristic calculated by the first calculation means with the optical characteristic calculated by the second calculation means so that when both of them are within the predetermined tolerance, Is displayed on the display means as the optical characteristic of the lens to be inspected.

상기 표시 제어 수단은, 상기 수광 소자에 의해 정상적으로 검출된 제 1 영역의 측정 지표의 수가 일정 비율 또는 소정 수를 만족시키는지 아닌지의 여부를 판정하여, 측정 지표의 수가 일정 비율 또는 소정 수를 만족시키지 않을 때에는 상기 제 2 연산 수단에 의한 연산 결과를 피검 렌즈의 광학 특성으로서 표시 수단에 표시시키는 렌즈 미터이다.Wherein the display control means judges whether or not the number of the measurement indices of the first region normally detected by the light receiving element satisfies a predetermined ratio or a predetermined number and determines whether the number of measurement indices satisfies a predetermined ratio or a predetermined number And displays the calculation result by the second calculation means on the display means as the optical characteristics of the lens to be examined.

상기 지표판에는 다른 측정 지표와는 구별되는 형상의 제 3 측정 지표를 갖고, 제 3 측정 지표는 측정 광축 상의 제 4 측정 지표와 제 4 측정 지표로부터 등 거리에 있는 제 5 측정 지표로 이루어지는 렌즈 미터이다.Wherein the index plate has a third measurement index of a shape differentiated from other measurement indexes and the third measurement index is a lens metric of a fourth measurement index on the measurement optical axis and a fifth measurement index equidistance from the fourth measurement index, to be.

상기 지표판에는 다른 측정 지표와는 구별되는 형상의 제 3 측정 지표를 갖고, 제 3 측정 지표는 제 1 측정 지표의 지표와 겸용되는 렌즈 미터이다.The index plate has a third measurement index having a shape differentiated from other measurement indexes, and the third measurement index is a lens meter which is also used as an index of the first measurement index.

본 발명의 실시형태를 도면에 기초하여 설명한다. 도 1 은 실시형태의 렌즈 미터의 외관을 나타낸 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS Fig. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an appearance of a lens meter according to an embodiment. FIG.

(1) 은 렌즈 미터 본체이다. LCD 등으로 구성된 디스플레이 (2) 는, 측정 결과나 얼라이먼트의 타겟 (target) 등의 측정에 필요한 정보가 표시된다. 입력용의 스위치 (3) 중에서, 디스플레이 (2) 에 표시되는 스위치 표시에 대응한 것이 눌려짐으로써, 측정 모드의 전환 등의 필요한 입력 지시를 행한다. 노우즈 피스 (4) 에는 피검 렌즈 (LE) 가 놓여져, 측정시의 기점이 된다. 렌즈 고정대 (5) 가 아래로 내려짐으로써 노우즈 피스 (4) 에 실린 피검 렌즈 (LE) 를 안정적으로 유지할 수 있다. (1) is a lens meter body. In the display 2 composed of an LCD or the like, information necessary for measurement such as a measurement result or a target of alignment is displayed. In response to the switch indication displayed on the display 2, the switch 3 for input is depressed to perform necessary input instructions such as switching of the measurement mode. A lens LE to be examined is placed on the nose piece 4 and serves as a starting point for measurement. It is possible to stably maintain the lens LE to be placed on the nose piece 4 by lowering the lens holder 5 downward.

전후 방향으로 이동 가능한 렌즈 대 (6) 는, 안경 프레임에 들어간 렌즈의 측정에 있어서 프레임의 하부 (안경 착용 상태에 있어서의 하부) 에 맞닿게 하여 안정시킴으로써 Axis (주면축 각도) 측정의 기준을 만든다. 인점 기구 (7) 는, 렌즈 (LE) 에 인점을 실시하는 경우에 사용된다. READ 스위치 (8) 는, 피검 렌즈 (LE) 의 광학 특성 데이터를 판독할 때에 사용된다. READ 스위치 (8) 가 눌림으로써, 측정값이 디스플레이 (2) 에 홀드 표시됨과 함께 장치 내부에 기억된다. The lens base 6 which can be moved in the longitudinal direction makes reference to the Axis (main surface axis angle) measurement by making the lens base 6 abut on the lower portion of the frame . The in-point mechanism 7 is used when an in-point is applied to the lens LE. The READ switch 8 is used to read the optical characteristic data of the lens LE to be examined. By pressing the READ switch 8, the measured value is displayed on the display 2 and is stored in the device.

도 2 는 광학계와 제어계를 나타내는 도면이다. (L1) 은 측정 광학계 (20) 의 측정 광축이다. 측정 광학계 (20) 는, 광축 (L1) 상에 배치된 LED 등의 측정 광원 (21), 콜리메이팅 렌즈 (22), 측정 지표가 형성된 그리드판 (23), 수광 소자로서의 2 차원의 이미지 센서 (24) 를 구비한다. 광축 (L1) 은 노우즈 피스 (4) 가 갖는 개구 (4a) 의 중심을 통과하고, 또한 개구 (4a) 의 개구 평면에 대하여 수직으로 배치되어 있다. 그리드판 (23) 은 노우즈 피스 개구 (4a) 의 근방에 배치되어 있다. 이미지 센서 (24) 와 노우즈 피스 (4) 의 상단 (렌즈 (LE) 의 후정점) 의 간격은, 렌즈 (LE) 의 측정 범위 내의 최소 초점 거리보다 작게 설계되어 있다. 2 is a view showing an optical system and a control system. (L1) is the measurement optical axis of the measurement optical system 20. The measurement optical system 20 includes a measurement light source 21 such as an LED disposed on the optical axis L1, a collimating lens 22, a grid plate 23 on which a measurement index is formed, a two- 24). The optical axis L1 passes through the center of the opening 4a of the nose piece 4 and is arranged perpendicular to the opening plane of the opening 4a. The grid plate 23 is disposed in the vicinity of the nose piece opening 4a. The distance between the image sensor 24 and the upper end of the nose piece 4 (the posterior peak of the lens LE) is designed to be smaller than the minimum focal distance within the measurement range of the lens LE.

또한, 그리드판 (23) 의 배치는, 노우즈 피스 (4) 에 탑재되는 피검 렌즈 (LE) 보다 광원 (21) 측으로 해도 된다. 또, 그리드판 (23) 과 동일한 측정 광속을 얻도록, 광원 (21) 을 이차원 배치하여 측정 지표를 구성해도 된다. The arrangement of the grid plate 23 may be closer to the light source 21 than the lens LE to be mounted on the nose piece 4. Further, the light source 21 may be arranged in two dimensions so as to obtain the same measurement luminous flux as the grid plate 23, thereby constituting a measurement index.

그리드판 (23) 이 갖는 측정 지표의 지표 패턴을 도 3 에 나타낸다. 이 예에서는, 기하학적으로 배치된 다수의 측정 지표로서의 원형의 구멍 (25) (도트 지표) 이, 0.5㎜ 의 간격으로 격자상으로 배치되어 있다. 구멍 (25) 은 9×9 의 배열이지만, 노우즈 피스 (4) 의 개구를 측정광이 통과하는 범위에서 보다 많은 구멍 (25) 을 배치해도 된다. 또, 이 예에서는, 구멍 (25) 의 중심간의 거리가 0.5㎜ 의 등간격으로 되어 있지만, 소정의 기하학적인 배열이면 이것에 한정되지 않는다. 구멍 (25) 중에서, 광축 (L1) 상에 있는 구멍 (H5) 과, 이 구멍 (H5) 을 중심으로 하는 1 변의 길이가 2㎜ 인 정방형의 코너에 위치하는 구멍 (H1, H2, H3, H4) 은 직경 0.5㎜ 로 형성되어 있다. 구멍 (H1 ∼ H5) 이외의 구멍 (25) 은 직경 0.2㎜ 로 형성되어 있다. 중심 구멍 (H5) 및 구멍 (H5) 과 일정한 관계로 배치된 구멍 (H1 ∼ H4) 은, 사이즈가 상이한 다른 구멍 (25) 에 대하여 구별되어 검출된다. 중심 구멍 (H5) 은, 이미지 센서 (24) 에 의해 수광되는 각 구멍 (25) 의 편위의 기준 위치 검출에 사용된다. 또, 렌즈 (LE) 상의 상처나 오염에 의해 중심 구멍 (H5) 이 정상적으로 검출되지 않는 경우에는, 구멍 (H1 ∼ H4) 을 대체 사용할 수 있다. 또, 구멍 (H1 ∼ H4) 의 조는, 콘택트 렌즈용의 소량 직경의 노우즈 피스 사용시에도 측정 가능한 영역으로 된다. Fig. 3 shows the index pattern of the measurement index of the grid plate 23. Fig. In this example, circular holes 25 (dot indices) as a plurality of geometrically arranged measurement indexes are arranged in a lattice pattern at intervals of 0.5 mm. Although the holes 25 are arranged in a 9 × 9 arrangement, more holes 25 may be arranged in the range where the measurement light passes through the opening of the nose piece 4. In this example, although the distance between the centers of the holes 25 is 0.5 mm, the distance is not limited to the predetermined geometrical arrangement. Holes H1, H2, H3, and H4 located at corners of a square having a length of one side of 2 mm around the hole H5 on the optical axis L1 Is formed to have a diameter of 0.5 mm. The holes 25 other than the holes H1 to H5 are formed to have a diameter of 0.2 mm. The holes H1 to H4 arranged in a constant relationship with the center hole H5 and the hole H5 are detected separately for the different holes 25 of different sizes. The center hole H5 is used for detecting the reference position of the deviation of each hole 25 received by the image sensor 24. [ When the center hole H5 is not normally detected due to scratches or contamination on the lens LE, the holes H1 to H4 may be alternatively used. The group of holes H1 to H4 is a measurable area even when a nose piece having a small diameter for a contact lens is used.

광원 (21) 으로부터의 광속은 콜리메이팅 렌즈 (22) 에 의해 평행 광속으로 되어 렌즈 (LE) 에 투광된다. 그 투과 광속 중에서, 그리드판 (23) 의 구멍 (25) 을 통과한 광속이 이미지 센서 (24) 상에 도달한다. 이미지 센서 (24) 로부터의 출력 신호는 제어부 (40) 에 입력된다. 제어부 (40) 에는, 연산 결과를 기억하기 위한 메모리 (41), 연산 결과 등의 정보를 디스플레이 (2) 에 표시하기 위한 표시 회로 (42) 가 접속되어 있다. The light flux from the light source 21 is collimated by the collimating lens 22 and is projected onto the lens LE. The light flux passing through the hole 25 of the grid plate 23 reaches the image sensor 24 in the transmitted light flux. The output signal from the image sensor 24 is input to the control unit 40. [ The control section 40 is connected with a memory 41 for storing the calculation results and a display circuit 42 for displaying information such as the calculation results on the display 2. [

또한 제어부 (40) 는, 렌즈 (LE) 가 없는 경우의 그리드판 (23) 을 통과하여 이미지 센서 (24) 에 도달한 구멍 (25) 의 이미지 (측정 지표) 의 위치를 기준으로, 굴절력을 갖는 렌즈 (LE) 를 놓은 때에 얻어지는 측정 지표의 위치 편위로부터, 렌즈 (LE) 의 광학 특성 (구면 도수 (S), 주면 도수 (C), 주면축 각도 (A), 프리즘 도수 (prism diopter)) 을 연산한다. 기본적으로는, 구면 도수만을 갖는 렌즈 (LE) 가 놓여진 경우, 렌즈 (LE) 가 없는 경우에 대하여, 각 구멍 이미지는 렌즈 (LE) 의 광학 중심으로부터 원형상으로 확대 또는 축소된다. 이 확대 또 는 축소의 편위에 기초하여 구면 도수 (S) 가 구해진다. 주면 도수 (C) 만을 갖는 렌즈 (LE) 가 놓여진 경우, 각 구멍 이미지는 렌즈 (LE) 의 주면축 중심으로부터 확대 또는 축소되어 편위한다. 이 확대 또는 축소의 편위에 의해 주면 도수 (C) 가 구해진다. 주면축 각도 (A) 는, 편위의 중심축으로서 구해진다. 또, 프리즘 도수는 구멍 (H5) 또는 그 부근의 구멍의 평행 이동량에 의해 구해진다. 구면 도수, 주면 도수를 갖는 렌즈 (LE) 는 이들의 복합으로서 생각하면 된다 (일본 공개특허공보 소60-17335호, US3880525 (일본 공개특허공보 소50-145249호) 등에 기재된 구하는 법과 동일한 방법을 사용할 수 있다). The control unit 40 also controls the position of the image (measurement index) of the hole 25 that has passed through the grid plate 23 when the lens LE is absent and reaches the image sensor 24, (Spherical diopter S, main surface diopter C, main surface axis angle A, prism diopter) of the lens LE from the positional deviation of the measurement index obtained when the lens LE is placed . Basically, when a lens LE having only a spherical power is placed, each hole image is enlarged or reduced in a circular shape from the optical center of the lens LE in the absence of the lens LE. The spherical power S is obtained based on the deviation of the magnification or reduction. When the lens LE having only the main surface C is placed, each hole image is enlarged or reduced from the center axis of the main surface of the lens LE and deviated. By this deviation of magnification or reduction, the principal plane frequency C is obtained. The principal plane axis angle A is obtained as the center axis of the deviation. In addition, the prism power is obtained by the parallel movement amount of the hole H5 or a hole in the vicinity thereof. (LE) having a spherical power and a surface dioptric power may be considered as a combination of these lenses (see JP-A 60-17335 and US3880525 (JP-A-50-145249) .

다수의 측정 지표를 사용하는 경우에는, 측정 광축 (L1) 을 중심으로 한 직경 2 ∼ 3㎜ 에 있는 5×5 (25 개), 7×7 (49 개) 등의 지표를 사용하여, 동일 원주 상에 있고, 바람직하게는 인접하는 4 개 또는 3 개의 지표를 1 조로 하여 얻어지는 모든 조의 광학 특성을 평균화하는 연산에 의해, 단초점 렌즈의 광학 특성을 고정밀도로 얻을 수 있다. 또, 5×5 (25 개), 7×7 (49 개) 등의 지표에 대하여, 각 시표의 편위의 검출 결과를 기본으로 광선 추적법을 이용하여, 최소 이승법을 적용하여 가장 피팅되는 (S, C, A) 의 회귀 평면을 구함으로써, 광학 특성을 연산하는 방법이어도 된다. 종래의 4 개 또는 3 개의 지표에 의한 1 조만의 광학 특성의 연산에 대하여, 그것보다 많은 다수의 지표를 사용함으로써, 단초점 렌즈의 광학 특성을 고정밀도로 구할 수 있다. In the case of using a plurality of measurement indexes, an index such as 5x5 (25 points) and 7x7 (49 points) having a diameter of 2 to 3 mm around the measurement optical axis L1 is used, The optical characteristics of the single-focal lens can be obtained with high accuracy by a calculation that averages the optical characteristics of all the troughs obtained by forming one set of four or three adjacent troughs. In addition, for the indices such as 5 × 5 (25) and 7 × 7 (49), based on the detection result of the deviation of each target, using the ray tracing method, S, C, and A) to determine the returning plane. The optical characteristics of the short focal lens can be obtained with high accuracy by using a large number of indexes for calculation of only one trillion optical characteristics by the conventional four or three indexes.

또한, 누진 렌즈를 측정하는 경우, 인접하는 4 개 (적어도 3 개) 의 지표 (구멍 (25)) 를 1 조로 하여 광학 특성을 연산함으로써, 누진 렌즈의 미소 부분에 있어서의 광학 특성의 분포가 얻어진다. 즉, 노우즈 피스 (4) 의 개구 내에 있어서의 광학 특성의 분포가 얻어진다. 이로써, 누진 렌즈의 측정에 있어서는, 현재의 측정 위치가 원용부에 있는지의 여부를 효율적으로 판정할 수 있고, 동일하게 현재의 측정 위치가 근용부에 있는지의 여부를 효율적으로 판정할 수 있다. Further, when the progressive lens is measured, the distribution of the optical characteristics in the minute portion of the progressive lens is obtained by calculating the optical characteristics of four adjoining (at least three) indexes (holes 25) Loses. That is, the distribution of optical characteristics in the opening of the nose piece 4 is obtained. Thus, in the measurement of the progressive lens, whether or not the current measurement position is in the distance use portion can be efficiently determined, and it is possible to efficiently determine whether or not the current measurement position is present in the near portion.

여기에서, 단초점 렌즈의 광학 특성을 측정하는 경우, 측정 지표인 구멍 (25) 이 측정 광축 (L1) 으로부터 멀어질수록 수차의 영향이 커진다. 이 때문에, 기본적으로는 측정 광축 (L1) 이 위치하는 중심 구멍 (H5) 부근의 소영역 (직경 2 ∼ 3㎜ 의 영역 내) 에 배치된 적어도 3 개의 측정 지표를 사용하여 렌즈 (LE) 의 광학 특성을 연산한다 (제 1 연산). 예를 들어, (H5) 를 중심으로 한 5×5 의 25 개, 또는 7×7 의 49 개의 지표의 검출 결과에 기초하여 광학 특성을 연산한다. 그러나, 측정 광축 (L1) 부근의 지표를 사용한 측정에서는, 렌즈 (LE) 의 굴절력이 약한 경우에는 지표의 편위가 적기 때문에, 각 측정값이 불안정해지기 쉬워, 측정 정밀도의 신뢰성이 열등하다. 특히 주면 도수 (C) 가 약도수인 경우에는, 주면축 각도의 연산 결과가 불안정해져서 측정 정밀도의 신뢰성도 악화된다. Here, when the optical characteristics of the short focal lens are measured, the more the aperture 25, which is the measurement index, is away from the measurement optical axis L1, the larger the influence of the aberration becomes. Therefore, basically, by using at least three measurement indexes disposed in a small region (within a range of 2 to 3 mm in diameter) near the center hole H5 where the measurement optical axis L1 is located, (First operation). For example, optical characteristics are calculated based on detection results of 25 indexes of 5x5 or 49 indexes of 7x7 centering on (H5). However, in the measurement using the index near the measurement optical axis L1, when the refractive power of the lens LE is weak, since the deviation of the index is small, each measurement value tends to become unstable, and reliability of measurement accuracy is inferior. In particular, when the main surface frequency C is a map number, the calculation result of the main surface axis angle becomes unstable and the reliability of the measurement accuracy deteriorates.

그래서, 본 장치에서는, 주면 도수 (C) 가 소정의 약도수 이하일 때에는, 측정 광축 (L1) 부근의 소영역 (직경 2 ∼ 3㎜ 의 영역 내) 에 대하여 측정 영역 및 측정 지표의 수를 확대 (증가) 시켜 광학 특성을 연산한다 (제 2 연산). 주면 도수 (C) 가 약도수일 때에는, 측정 광축 (L1) 으로부터의 측정 영역의 범위가 넓어져도, 그것에 의한 수차의 영향은 적기 때문에, 측정 지표의 수가 증가함에 따른 주면축 각도의 측정 정밀도의 향상과 안정성이 도모된다. 이하, 그 동작예를 도 4 의 플로우 차트에 기초하여 설명한다. Therefore, in the present apparatus, the number of measurement areas and the number of measurement indices are enlarged (in the area of 2 to 3 mm in diameter) in the vicinity of the measurement optical axis L 1 (when the main surface frequency C is less than the predetermined approximate number) And the optical characteristic is calculated (second calculation). Even if the range of the measurement area from the measurement optical axis L 1 is large, the influence of the aberration caused by the measurement range of the measurement optical axis L 1 is small. Therefore, Stability is achieved. Hereinafter, an example of the operation will be described based on the flowchart of Fig.

장치의 측정 모드에는, 단초점 렌즈를 측정하는 모드와 누진 렌즈를 측정하는 모드가 있는데, 여기에서는 단초점 렌즈의 측정 모드를 선택한다. 검사자는 디스플레이 (2) 에 표시되는 렌즈의 좌우 선택을 지정하는 스위치를 눌러, 측정하는 렌즈의 좌우를 선택한다. In the measurement mode of the apparatus, there are a mode for measuring a short focal lens and a mode for measuring a progressive lens. Here, the measurement mode of the short focal lens is selected. The inspector selects the right and left of the lens to be measured by pressing a switch designating the left and right selection of the lens displayed on the display 2. [

렌즈 (LE) 가 노우즈 피스 (4) 상에 실리면, 제어부 (40) 는, 이미지 센서 (24) 에 의해 검출되는 다수의 지표 이미지 (구멍 (25) 의 이미지) 중에서, 광축 (L1) 을 중심으로 배치된 7×7 (49 개) 의 지표 이미지의 편위에 기초하여 각 측정값 (S, C, A, 프리즘 도수) 을 연산한다 (S-1). 도 5A 는 이 때의 디스플레이 (2) 에 표시되는 얼라이먼트 (alignment) 의 화면예이다. (50) 은 얼라이먼트용의 레티클 (reticle), 측정값 표시부 (51, 52) 는 좌우 각각의 측정값을 표시한다. 그리고, 마크 (53) 의 표시에 의해 현재, 오른쪽 렌즈가 측정되고 있는 것을 나타낸다. 이 때 얻어진 각 측정값은 오른쪽 측정값 표시부 (51) 에 표시된다. 또, 렌즈 (LE) 의 광축 (L1) 에 대한 광학 중심의 편위 방향과 그 엇갈림량인 프리즘 도수에 기초하여 링 타겟 (54) 이 디스플레이 (2) 에 표시된다. 또, 구멍 (H1 ∼ H5) 의 검출 결과에 기초하여 링 타겟 (54) 의 표시 위치를 구하여, 얼라이먼트를 행하도록 해도 된다. When the lens LE is placed on the nose piece 4, the control unit 40 selects the center of the optical axis L1 from among the plurality of index images (the image of the hole 25) detected by the image sensor 24, (S, C, A, prism diopter) based on the deviation of the 7 × 7 (49) index images arranged in the order of (S-1). 5A is an example of an alignment screen displayed on the display 2 at this time. The reticle 50 for the alignment and the measured value display parts 51 and 52 display the left and right measured values. The display of the mark 53 indicates that the right lens is currently being measured. Each measurement value obtained at this time is displayed on the right measurement value display section 51. The ring target 54 is displayed on the display 2 on the basis of the deviation direction of the optical center with respect to the optical axis L1 of the lens LE and the prism dioptric power which is the amount of shift. It is also possible to determine the display position of the ring target 54 based on the detection results of the holes H1 to H5 to perform alignment.

렌즈 (LE) 가 이동되어, 프리즘 도수 (Δ) 가 0.5Δ 미만에 들어가면, 링 타겟 (54) 이 십자선상 (cross-lined) 타겟 (55) 으로 전환된다 (도 5B 참조). 도수를 측정하는 것뿐이라면, 이 상태에서 READ 스위치 (8) 를 누름으로써 측정값이 홀드된다. 렌즈 (LE) 에 인점을 실시하는 경우에는, 더욱 정확한 얼라이먼트를 위해서, 레티클 (50) 의 중심으로 십자 타겟 (55) 이 향하도록 렌즈 (LE) 를 이동하고, 프리즘 도수가 0.1Δ 미만이 되면, 십자 타겟 (55) 은 대십자 타겟 (57) 으로 전환된다. 이로써, 검사자는 정밀한 얼라이먼트가 완료된 것을 알 수 있다. When the lens LE is moved so that the prism degree DELTA falls below 0.5 DELTA, the ring target 54 is switched to the cross-lined target 55 (see Fig. 5B). If only the frequency is to be measured, the measured value is held by depressing the READ switch 8 in this state. The lens LE is moved so that the cross target 55 faces the center of the reticle 50. When the prism degree becomes less than 0.1 DELTA, The cross target 55 is switched to the large cross target 57. [ Thus, the inspector can know that the precise alignment is completed.

이와 같은 단초점 렌즈의 측정에 있어서, 제어부 (40) 에 의한 광학 특성의 연산은 일정한 시간 간격으로 연속적으로 행해지고 있다. 이 때, 제어부 (40) 는, 광축 (L1) 을 중심으로 배치된 7×7 (49 개) 의 지표 이미지의 편위에 기초하여 얻어진 광학 특성 중에서, 주면 도수가 소정의 약도수 δcD (및 구면 도수가 εsD, D : 디옵터) 이하인지 아닌지를 판정한다 (S-2). 예를 들어, δcD 는, 주면 도수를 마이너스 읽기로 하여, -0.5D 이하의 약도수로 한다. In the measurement of such a short focal lens, the calculation of optical characteristics by the control unit 40 is continuously performed at a constant time interval. At this time, among the optical characteristics obtained based on the deviation of the 7 × 7 (49) land surface images arranged around the optical axis L 1, the control unit 40 determines that the principal plane frequency is the predetermined number of degrees δcD (? SD, D: diopter) or not (S-2). For example, δcD is the number of digits of -0.5D or less, assuming that the main dioptric power is minus reading.

주면 도수가 δcD (및 구면 도수가 εsD) 이하인 경우, 측정 영역 및 지표의 수를 확대시켜도, 그것에 의한 수차의 영향은 적기 때문에, 측정값의 안정성과 주면축 각도의 정밀도 향상을 도모하기 위해, 통상적인 7×7 (49 개) 의 측정 영역 및 지표의 수를 확대시켜 광학 특성을 연산한다. 제어부 (40) 는, 7×7 개의 구멍 (25) 에 의한 광학 특성의 연산과는 별도로, 그것보다 측정 영역을 확대시킴으로써 측정 지표의 수를 증가시켜, 중심 구멍 (H5) 을 중심으로 한 9×9 개 (81 개) 의 지표 이미지에 의한 광학 특성을 연산한다 (S-3). In order to improve the stability of the measured value and the accuracy of the main surface axis angle, the influence of the aberration caused by the increase of the number of the measurement areas and the indexes is small when the main surface power is δcD (and the spherical power is εsD) (49) measurement areas and the number of indices are increased to calculate optical characteristics. The control unit 40 increases the number of measurement indices by enlarging the measurement area in addition to the calculation of the optical characteristics by the 7 占 7 holes 25 and thereby obtains the measurement result of 9 占 중심 The optical characteristics of nine (81) surface images are calculated (S-3).

여기에서, 바람직하게는, 추가로 다음과 같은 판정 조건을 형성한다 (또, 다 음의 판정 조건을 단일한 조건으로 할 수도 있다). 제어부 (40) 는, 7×7 개로 연산한 각 측정값과 9×9 개로 연산한 측정값을 비교한다. 각 측정값을 비교한 결과, 각각이 허용 오차의 범위 내에 들어가는지 아닌지를 판정한다 (S-4). 본 실시형태에 있어서는, 구면 도수 및 주면 도수의 차가 함께 허용차 ±0.06D 이내이면, 측정 영역 및 측정 지표의 수를 확대시킨 것에 의한 수차의 영향이 적고, 9×9 개의 지표 이미지로부터 연산하는 편이 신뢰성이 높은 측정값이 얻어지는 것으로 하여, 제어부 (40) 는 9×9 개의 지표 이미지에 기초하는 측정 결과를 디스플레이 (2) 에 표시한다 (S-5). 그리고, READ 스위치 (8) 가 눌리면, 제어부 (40) 는 측정값을 홀드하여, 메모리 (41) 에 기억한다 (S-6). Here, preferably, the following judgment condition is further formed (and the following judgment condition may be a single condition). The control unit 40 compares each measurement value calculated by 7.times.7 with a measurement value calculated by 9.times.9. As a result of comparing the measured values, it is determined whether or not each of them falls within the tolerance range (S-4). In the present embodiment, when the difference between the spherical dioptric power and the dioptric power is within a tolerance of ± 0.06D, the effect of aberration caused by enlarging the number of measurement areas and measurement indices is small, and calculation from 9 × 9 index images is more reliable The control unit 40 displays the measurement result based on the 9 × 9 index images on the display 2 (S-5). Then, when the READ switch 8 is pressed, the control unit 40 holds the measured value and stores it in the memory 41 (S-6).

한편, 단계 (S-4) 에서, 7×7 개와 9×9 개에 의한 측정값을 비교한 결과, 구면 도수 또는 주면 도수의 차가 허용 오차의 범위를 벗어나 있었던 경우, 측정값의 안정성의 향상을 기대할 수 없는 것으로 하여, 제어부 (40) 는 7×7 개의 지표 이미지에 의한 연산 결과를 측정값으로 한다 (S-7). On the other hand, in the step (S-4), when the measurement values of 7 × 7 and 9 × 9 are compared, if the difference between the spherical dioptric power or the dioptric power is out of the tolerance range, The control unit 40 regards the calculation result of the 7 × 7 index images as a measurement value (S-7).

앞의 단계 (S-2) 에 있어서, 주면 도수가 소정의 약도수 δcD 보다 강도인 경우, 광축 (L1) 을 중심으로 배치된 9×9 개의 지표 이미지를 포함하면 수차의 영향이 강해져, 7×7 개의 지표 이미지에 의한 측정 결과에서도 정밀도의 신뢰성을 확보할 수 있으므로, 그 자체로 7×7 개의 지표 이미지에 의한 연산 결과를 측정 결과로 하여 표시한다 (S-7). In the case where the main surface power is higher than the predetermined number of paths? CD in the preceding step (S-2), the influence of the aberration becomes stronger if the 9x9 index image arranged around the optical axis L1 is included, Since the reliability of the accuracy can be secured even with the measurement results of the seven index images, the calculation results of the 7 × 7 index images themselves are displayed as the measurement results (S-7).

또한, 상기의 단계 (S-4) 의 판정에 있어서는, 7×7 개의 연산과 9×9 개의 연산을 행하는 처리를 각각 복수회 (예를 들어, 3 회) 실시한 결과를 기본으로 전 환하도록 해도 된다. 그리고, 1 회마다의 양자의 차가 허용차 ±0.06D 이내이고, 연속해서 3 회 측정된 각 측정값의 편차도 ±0.06D 이면, 측정값의 안정화와 주면축 각도의 정밀도가 기대되는 것으로, 이후 9×9 개로 연산된 측정 결과로 전환한다. 그리고, 상기의 조건을 벗어난 경우에는, 그 자체로 7×7 개의 연산 결과를 측정 결과로 하는 처리를 계속한다. 이것은, 렌즈가 크게 이동했을 때 (프리즘 도수의 변화로부터 알 수 있다), 또는 새로운 렌즈가 노우즈 피스 (4) 에 실릴 때까지 계속하지만, 렌즈의 이동이 없는 경우에도 몇 초마다 재확인하여 판정하도록 해도 된다. In the determination of the above-described step (S-4), it is also possible to switch on the basis of the results of performing the 7 × 7 arithmetic operation and the 9 × 9 arithmetic operation plural times (for example, three times) do. If the difference between the measured values is within ± 0.06D and the deviation between the measured values measured three times in succession is ± 0.06D, stabilization of the measured value and accuracy of the main axis angle are expected. × 9. If the above condition is not satisfied, processing of 7? 7 calculation results as the measurement result itself is continued. This is continued until the lens has largely moved (as can be seen from the change in the prism frequency) or until the new lens is loaded on the nosepiece 4, but even if there is no lens movement, do.

또, 본 발명의 실시형태는 상기에 한정되는 것은 아니다. 단계 (S-2) 의 판정에 사용하는 주면 도수나, 단계 (S-4) 의 판정에 사용하는 기준은, 적절히 변경해도 된다. 또, 측정 대상으로 하는 지표 이미지의 개수는, 광축 (L1) 을 중심으로 7×7 개와 9×9 개의 사이에서 전환하는 방식을 설명했는데, 이들의 개수에 한정되는 것은 아니다. 예를 들어, 측정 광축 (L1) 에 위치하는 구멍 (H5) 을 중심으로 한 5×5 개의 지표를 통상적인 측정 대상으로 하여, 주면 도수가 δcD 이하인 경우에 그것보다 영역을 확대시킴으로써 측정 지표의 개수를 늘리도록 전환한다. 또, 측정 광축 (L1) 을 중심으로 한 직경 2㎜ 의 동일 원주 상에 있는 지표를 통상적인 측정 대상으로 하여, 주면 도수가 δcD 이하인 경우로 확대시킨 직경의 내부에 위치하는 지표로 전환하도록 해도 된다. 또, 주면 도수에 따라 5×5 개, 7×7 개, 9×9 개로 복수 단계에서 전환 구성이어도 된다. The embodiment of the present invention is not limited to the above. The frequency used in the determination of the step S-2 and the criterion used for the determination of the step S-4 may be appropriately changed. The number of index images to be measured is switched between 7x7 and 9x9 around the optical axis L1, but the number of index images is not limited to this. For example, if a 5x5 index centered on the hole H5 located on the measurement optical axis L1 is a typical measurement target and the area is enlarged in the case where the principal plane frequency is? CD or less, the number of measurement indexes . An index on the same circumference of 2 mm in diameter centering on the measuring optical axis L1 may be switched to an index located inside the enlarged diameter when the circumference is? . In addition, depending on the frequency of the main surface, 5 × 5, 7 × 7, and 9 × 9 may be arranged in a plurality of stages.

이상은, 렌즈 (LE) 의 도수에 따라 측정 영역 및 측정 지표의 수를 확대시키 는 연산 (제 2 연산) 을 사용하는 것으로 했으나, 렌즈 (LE) 에 상처나 오염이 있는 경우에도 이 제 2 연산을 적용하면 효과적이다. 즉, 렌즈 (LE) 에 상처나 오염이 있고, 측정 광축 (L1) 부근의 소영역 (7×7 개) 의 지표 이미지 중에서, 광량 부족이나 지표 이미지의 형상 불량에 의해, 정상적으로 검출된 지표 이미지의 수가 소정 수 또는 일정 비율 (4 할, 5 할 등) 에 만족되지 않는 경우, 측정 결과가 흐트러지기 쉬워져, 측정 정밀도의 신뢰성도 부족해진다. 이 경우, 제어부 (40) 는 9×9 개의 지표에 기초하는 제 2 연산에 의해 얻어진 측정 결과를 디스플레이 (2) 에 표시한다. 이 경우, 정상적으로 검출되는 지표 이미지가 증가됨으로써, 측정 결과의 안정성의 향상이 도모된다. 또, 측정 정밀도의 향상도 기대할 수 있다. 정상적으로 검출된 지표 이미지의 수가 소정 수 또는 일정 비율을 만족시킬 때에는, 제어부 (40) 는 그 자체로 7×7 개의 지표 이미지의 연산에 의해 얻어진 측정 결과를 디스플레이 (2) 에 표시한다. As described above, the calculation (second calculation) for enlarging the number of measurement areas and measurement indices is used according to the dioptric power of the lens LE. However, even when the lens LE has scratches or contamination, Is effective. In other words, the lens LE is scratched or stained, and in the index image of the small area (7 x 7) in the vicinity of the measurement optical axis L1, the index image of the normally detected index image If the number is not satisfied with a predetermined number or a certain ratio (4, 5, 5, or the like), the measurement result tends to be disturbed and the reliability of measurement accuracy becomes insufficient. In this case, the control section 40 displays the measurement result obtained by the second calculation based on the 9 × 9 indexes on the display 2. In this case, the index image normally detected is increased, thereby improving the stability of the measurement result. In addition, an improvement in measurement accuracy can be expected. When the number of index images normally detected satisfies a predetermined number or a predetermined ratio, the control unit 40 displays the measurement result obtained by the operation of the 7 × 7 index image itself on the display 2.

또한, 각 측정값의 연산시에, 각 측정값의 표준 편차를 구함으로써, 값이 갖추어진 지표만을 선택하는 것도 가능하다. 지표 이미지의 검출 처리에 비해, 광학 특성의 연산은 얼마 안되는 시간에 처리할 수 있기 때문에, 1 회의 측정 지표의 검출 후에, 채용/불채용의 지표를 선택해나가, 표준 편차가 필요로 하는 레벨로 개선될 때까지 이것을 반복한다. 이로써, 측정 시간의 연장을 수반하지 않고, 안정적인 측정 결과가 얻어진다. It is also possible to select only the index with the values obtained by calculating the standard deviation of each measured value at the time of calculation of each measured value. The calculation of the optical characteristic can be processed in a short time compared with the detection processing of the surface image. Therefore, after the detection of one measurement index, the index of adoption / non-adoption is selected and the standard deviation is improved to the required level Repeat until this is done. Thereby, stable measurement results can be obtained without the extension of the measurement time.

또한, 상기의 7×7 개의 지표에 의한 측정 결과로부터 9×9 개의 지표에 의한 측정 결과에 대한 전환에 대해서는, 렌즈 메이커 등에서의 사용에 있어서는 반 드시 적합하지 않은 경우도 있다. 이 때문에, 이 전환 기능을 적용할지, 지금까지와 같은 7×7 개의 지표에 의한 측정 결과인 채로 할지를, 디스플레이 (2) 에 설치된 선택 스위치로 선택 가능하게 해두는 것이 바람직하다. In addition, the conversion from the measurement results of the above 7 × 7 indexes to the measurement results of 9 × 9 indexes may not necessarily be suitable for use in a lens maker or the like. For this reason, it is desirable to make it possible to select whether the switching function is to be applied or the measurement result of the 7 × 7 indexes so far to be selected by the selection switch provided on the display 2.

상기의 실시형태의 제 2 연산은, 측정 영역 및 측정 지표의 수를 함께 확대 (증가) 시켜 광학 특성을 연산하는 것으로 했으나, 그 중 어느 일방이어도 된다. 예를 들어, 통상적인 제 1 연산에서는 측정 광축 (L1) 부근의 소영역에 있는 7×7 개의 49 개를 대상으로 하고, 제 2 연산에서는 9×9 개의 측정 영역으로 확대시키지만, 연산 처리 시간을 길게 하지 않기 위해, 확대시킨 9×9 개의 모두를 대상으로 하지 않고, 1 개 간격을 두는 등, 제 1 연산과 같은 49 개의 측정 지표를 대상으로 하여 연산한다. 또, 측정 지표의 수만을 확대시키는 예로서 통상적인 제 1 연산에서는 연산 처리 시간을 짧게 하기 위해서 7×7 개의 측정 영역 중에서, 1 개 간격을 둔 25 개의 측정 지표를 대상으로 하여 연산한다. 한편, 제 2 연산에서는, 7×7 개의 측정 영역에 있는 모든 측정 지표를 대상으로 하여 연산한다. 제 2 연산은, 앞의 실시형태와 같이 측정 영역 및 측정 지표의 수의 확대를 함께 행하는 것이 바람직하지만, 일방만으로도 종래의 제 1 연산에 대하여 안정적인 결과가 얻어진다. In the second calculation in the above embodiment, the number of measurement areas and the number of measurement indices are both increased (increased) to calculate optical characteristics, but either one of them may be used. For example, in a typical first calculation, 49 x 7 7 samples in a small region near the measurement optical axis L 1 are targeted and in a second calculation, 9 x 9 measurement regions are enlarged. However, In order not to lengthen the calculation, the calculation is carried out with respect to 49 measurement indices such as the first calculation, such that all the enlarged 9 × 9 pixels are not targeted but one interval is provided. As an example of enlarging the number of measurement indices, in order to shorten the calculation processing time in the usual first calculation, 25 measurement indices having one interval among 7 占 7 measurement areas are calculated. On the other hand, in the second calculation, all measurement indices in the 7 x 7 measurement areas are calculated. As for the second calculation, it is preferable to increase the number of measurement areas and the number of measurement indices at the same time as in the previous embodiment, but with only one of them, a stable result can be obtained with respect to the first calculation.

도 1 은 실시형태의 렌즈 미터의 외관을 설명하는 도면이다. BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a view for explaining an appearance of a lens meter according to an embodiment. FIG.

도 2 는 실시형태의 광학계와 제어계를 설명하는 도면이다. 2 is a view for explaining an optical system and a control system of the embodiment.

도 3 은 측정 지표의 지표 패턴을 설명하는 도면이다. 3 is a view for explaining an indicator pattern of a measurement index.

도 4 는 실시형태의 동작예를 설명하는 도면이다. Fig. 4 is a view for explaining an operation example of the embodiment. Fig.

도 5A ∼ 도 5C 는 얼라이먼트의 표시 화면을 설명하는 도면이다. 5A to 5C are views for explaining a display screen of alignment.

Claims (7)

피검 렌즈의 광학 특성을 측정하는 렌즈 미터는, 측정 광축을 중심으로 소정의 패턴으로 배치된 다수의 측정 지표를 갖는 지표판과, 피검 렌즈를 통과한 측정 광속을 수광하는 수광 소자를 갖는 측정 광학계와,The lens meter for measuring the optical characteristics of the lens to be inspected has an index plate having a plurality of measurement indexes arranged in a predetermined pattern around the measurement optical axis and a measurement optical system having a light receiving element for receiving the measurement light flux passing through the lens to be examined , 상기 수광 소자에 의해 수광된 상기 측정 지표에 기초하여 피검 렌즈인 단초점 렌즈의 광학 특성을 연산하는 연산 수단과,Calculating means for calculating an optical characteristic of a short focal lens serving as a to-be-examined lens based on the measurement index received by the light receiving element; 상기 연산 수단에 의해 연산된 피검 렌즈의 광학 특성을 표시 수단에 표시시키는 표시 제어 수단을 구비하고,And display control means for displaying the optical characteristic of the lens to be examined, which is calculated by the calculation means, on the display means, 상기 지표판은, 측정 광축을 중심으로 한 제 1 영역에 있는 제 1 측정 지표와 상기 제 1 영역의 외측의 제 2 영역에 있는 제 2 측정 지표를 갖고,Wherein the indicator plate has a first measurement index in a first region centered on a measurement optical axis and a second measurement index in a second region outside the first region, 상기 연산 수단은, 상기 수광 소자에 의한 상기 제 1 측정 지표의 검출 결과에 기초하여 피검 렌즈의 제 1 광학 특성을 연산하고, 상기 제 1 측정 지표 및 제 2 측정 지표의 검출 결과에 기초하여 피검 렌즈의 제 2 광학 특성을 연산하고,Wherein the calculation means calculates the first optical characteristic of the lens to be examined based on the detection result of the first measurement index by the light receiving element, and calculates, based on the detection results of the first measurement index and the second measurement index, Lt; RTI ID = 0.0 > a < / RTI & 상기 표시 제어 수단은, 상기 제 1 광학 특성 또는 상기 수광 소자에 의한 상기 제 1 측정 지표의 검출 결과가 소정의 조건을 만족시킬 때에는 상기 제 2 광학 특성을 피검 렌즈의 광학 특성으로서 상기 표시 수단에 표시시키고, 상기 제 1 광학 특성 또는 상기 수광 소자에 의한 상기 제 1 측정 지표의 검출 결과가 상기 소정의 조건을 만족시키지 않을 때에는 상기 제 1 광학 특성을 피검 렌즈의 광학 특성으로서 상기 표시 수단에 표시시키는 것을 특징으로 하는 렌즈 미터.And the display control means displays the second optical characteristic as the optical characteristic of the lens to be examined on the display means when the detection result of the first measurement characteristic or the first measurement characteristic by the light receiving element satisfies a predetermined condition And when the detection result of the first optical characteristic or the first measurement index by the light receiving element does not satisfy the predetermined condition, the first optical characteristic is displayed on the display means as the optical characteristic of the lens to be tested Features a lens meter. 제 1 항에 있어서, The method according to claim 1, 상기 제 1 광학 특성 및 제 2 광학 특성에는 각각 구면 도수, 주면 도수 및 주면축 각도가 포함되고,Wherein the first optical characteristic and the second optical characteristic each include a spherical power, a principal plane power, and a principal axis angle, 상기 표시 제어 수단은, 상기 제 1 광학 특성의 주면 도수, 또는 주면 도수 및 구면 도수가 소정의 도수 이하일 때에, 상기 제 2 광학 특성을 피검 렌즈의 광학 특성으로서 상기 표시 수단에 표시시키고, 상기 제 1 광학 특성의 주면 도수, 또는 상기 제 1 광학 특성의 주면 도수 및 구면 도수가 소정의 도수보다 강도일 때에, 상기 제 1 광학 특성을 피검 렌즈의 광학 특성으로서 상기 표시 수단에 표시시키는 렌즈 미터.Wherein the display control means causes the display means to display the second optical characteristic as the optical characteristic of the lens to be tested when the main surface frequency or the main surface frequency and the spherical power of the first optical characteristic are equal to or less than a predetermined frequency, Wherein the first optical characteristic is displayed on the display means as the optical characteristic of the lens to be examined when the main surface frequency of the optical characteristic or the main surface frequency and the spherical power of the first optical characteristic are higher than the predetermined frequency. 제 2 항에 있어서, 3. The method of claim 2, 상기 표시 제어 수단은, 상기 연산 수단에 의해 연산된 상기 제 1 광학 특성의 주면 도수, 또는 주면 도수 및 구면 도수가 소정의 도수 이하일 때로서, 추가로 상기 제 1 광학 특성의 구면 도수 및 주면 도수와 상기 제 2 광학 특성의 구면 도수 및 주면 도수를 비교하여, 구면 도수 및 주면 도수의 각각의 차가 소정의 허용 오차 내일 때, 상기 제 2 광학 특성을 피검 렌즈의 광학 특성으로서 상기 표시 수단에 표시시키는 렌즈 미터. Wherein the display control means is further configured to calculate the spherical power of the first optical characteristic and the power of the main optical power of the first optical characteristic when the main surface power of the first optical characteristic calculated by the calculation means, or the main power and the spherical power, And a second lens for comparing the spherical dioptric power of the second optical characteristic and the dioptric power of the second optical characteristic so that when the difference between the spherical dioptric power and the dioptric power is within a predetermined tolerance, Meter. 제 2 항 또는 제 3 항에 있어서, The method according to claim 2 or 3, 상기 소정의 도수는 상기 제 2 측정 지표를 사용하는 것에 의한 수차의 영향이 적은 것으로서 설정된 도수인 렌즈 미터. Wherein the predetermined dioptric power is a diopter set with a small influence of aberration by using the second measurement index. 삭제delete 삭제delete 삭제delete
KR1020080018177A 2007-02-28 2008-02-28 Lens meter KR101437175B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2007-00050813 2007-02-28
JP2007050813 2007-02-28
JPJP-P-2008-00025638 2008-02-05
JP2008025638A JP5202011B2 (en) 2007-02-28 2008-02-05 Lens meter

Publications (2)

Publication Number Publication Date
KR20080080048A KR20080080048A (en) 2008-09-02
KR101437175B1 true KR101437175B1 (en) 2014-09-03

Family

ID=39891097

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080018177A KR101437175B1 (en) 2007-02-28 2008-02-28 Lens meter

Country Status (3)

Country Link
JP (1) JP5202011B2 (en)
KR (1) KR101437175B1 (en)
CN (1) CN101256114B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862139B2 (en) * 2010-09-30 2016-02-16 株式会社ニデック Lens meter and single focus lens evaluation program
KR101244637B1 (en) * 2011-04-08 2013-03-18 주식회사 휴비츠 Apparatus and method for measuring UV transmittance of eyeglass lens
JP2014199303A (en) 2013-03-29 2014-10-23 株式会社ニデック Spectacle lens measuring device, method of discriminating top and bottom of spectacle lens, and dot adapter disposed on the spectacle lens measuring device
JP6536029B2 (en) * 2014-12-12 2019-07-03 株式会社ニデック Lens meter and calculation program
JP6984163B2 (en) 2016-07-05 2021-12-17 株式会社ニデック Lens meter
EP3290892B1 (en) 2016-08-30 2021-03-31 Nidek Co., Ltd Lens measurement device
EP3438635A3 (en) 2017-07-31 2019-06-12 Nidek Co., Ltd. Glasses measurement apparatus
KR101964214B1 (en) * 2017-11-17 2019-04-01 주식회사 포텍 Measuring method of lens meter using damaged multi-light tracing
JP7087366B2 (en) 2017-12-05 2022-06-21 株式会社ニデック Axis setting device, spectacle lens processing system, and spectacle lens processing method
JP7143652B2 (en) 2018-07-02 2022-09-29 株式会社ニデック Eyeglass measurement system and eyeglass measurement program
JP6980303B2 (en) * 2019-09-27 2021-12-15 株式会社レクザム Lens optical characteristic measuring device, lens optical characteristic measuring method, program, and recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124662A (en) * 1999-10-25 2001-05-11 Topcon Corp Lens meter
US20030030789A1 (en) * 2001-08-09 2003-02-13 Nidek Co., Ltd. Lens meter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188030A (en) * 1999-12-28 2001-07-10 Topcon Corp Lens meter
EP1251401A1 (en) * 2001-04-20 2002-10-23 Infineon Technologies SC300 GmbH & Co. KG Method of measuring the aberration of a projection lens
JP4421332B2 (en) * 2004-02-27 2010-02-24 株式会社ニデック Lens meter
JP4646017B2 (en) * 2004-04-23 2011-03-09 株式会社ニデック Lens meter
JP4756828B2 (en) * 2004-04-27 2011-08-24 株式会社ニデック Lens meter
FR2880118B1 (en) * 2004-12-23 2007-03-02 Essilor Int METHOD AND APPARATUS FOR LOCALLY MEASURING THE REFRACTIVE CHARACTERISTICS OF A LENS IN ONE OR MORE SPECIFIC POINTS OF THIS LENS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124662A (en) * 1999-10-25 2001-05-11 Topcon Corp Lens meter
US20030030789A1 (en) * 2001-08-09 2003-02-13 Nidek Co., Ltd. Lens meter

Also Published As

Publication number Publication date
JP2008241694A (en) 2008-10-09
CN101256114B (en) 2012-08-08
KR20080080048A (en) 2008-09-02
JP5202011B2 (en) 2013-06-05
CN101256114A (en) 2008-09-03

Similar Documents

Publication Publication Date Title
KR101437175B1 (en) Lens meter
US7609371B2 (en) Lens meter
EP1589331A2 (en) Lens meter
JPH0466834A (en) Automatic lens meter
JP2003075296A (en) Lens meter
KR101213994B1 (en) lens meter
KR20060043277A (en) Lens meter
US7733468B2 (en) Lens meter
JP4646014B2 (en) Lens meter
KR101848093B1 (en) Lens meter
KR101213993B1 (en) Measuring Apparatus for the lens of the glasses
JP4756828B2 (en) Lens meter
JP4781705B2 (en) Lens meter
JP2006292650A (en) Lens meter
JP4699006B2 (en) Lens meter
JP2010085278A (en) Lens meter
KR101964214B1 (en) Measuring method of lens meter using damaged multi-light tracing
KR100618280B1 (en) Lensmeter
JP2006226736A (en) Lens meter
JPH0712682A (en) Measuring apparatus for refractive index of lens
JP2006201186A (en) Lens specifying device
JP2004205438A (en) Lens measuring instrument
JP2018063136A (en) Lens meter
JPH06235677A (en) Refractive index measuring equipment for lens

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 5