KR101436367B1 - Cellulose magnet produced by solvothermal method and method for producing the same - Google Patents

Cellulose magnet produced by solvothermal method and method for producing the same Download PDF

Info

Publication number
KR101436367B1
KR101436367B1 KR1020130037318A KR20130037318A KR101436367B1 KR 101436367 B1 KR101436367 B1 KR 101436367B1 KR 1020130037318 A KR1020130037318 A KR 1020130037318A KR 20130037318 A KR20130037318 A KR 20130037318A KR 101436367 B1 KR101436367 B1 KR 101436367B1
Authority
KR
South Korea
Prior art keywords
cellulose
solvent
magnet
present
carbon
Prior art date
Application number
KR1020130037318A
Other languages
Korean (ko)
Inventor
이철의
조현진
이규원
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020130037318A priority Critical patent/KR101436367B1/en
Application granted granted Critical
Publication of KR101436367B1 publication Critical patent/KR101436367B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/066Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by liquid dynamic compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • H01F1/375Flexible bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties

Abstract

Disclosed is a cellulose magnet produced by a solvothermal method and a producing method thereof. The cellulose magnet is produced by heating a reactor in which cellulose powder and a solvent are inserted and by the solvothermal method. According to the present invention, the cellulose magnet can be produced at relatively low temperature and pressure by using the solvothermal method. Properties of the cellulose magnet can be adjusted according to a solvothermal treatment period.

Description

용매열 방법에 의한 셀룰로오즈 자석 및 그 제조 방법 {Cellulose magnet produced by solvothermal method and method for producing the same}[0001] The present invention relates to a cellulose magnet produced by a solvent heating method and a method for producing the same,

본 발명은 탄소 자석 및 그 제조 방법에 관한 것으로, 보다 상세하게는, 셀룰로오즈(cellulose) 자석 및 그 제조 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon magnet and a manufacturing method thereof, and more particularly, to a cellulose magnet and a manufacturing method thereof.

탄소는 유기 물질이나 생체 물질의 근간을 이루는 가장 기본적인 원소이며 인류 역사 발전과 현대 과학기술 발전에서 중대한 역할을 발휘해오고 있다. 고체탄소의 존재 형태로는 다이아몬드와 흑연(graphite)이 대표적이었으나 풀러렌(fullerene, C60) 발견 이후 탄소나노튜브(carbon nano tube, CNT), 그래핀 등과 같은 탄소 물질에 대한 연구도 활발하다. 기존에는 탄소 물질이 가진 기계적, 전기적 특성을 이용한 연구 위주로 진행이 되어 왔으나 최근에는 자성 및 발광 재료로서의 탄소 물질에 대한 연구도 이슈가 되고 있다. Carbon is the most basic element that forms the basis of organics and biomaterials and has played a crucial role in human history development and modern science and technology development. The existence of solid carbon is a typical example of diamond and graphite. However, after the discovery of fullerene (C60), research on carbon materials such as carbon nano tube (CNT) and graphene is also active. In the past, studies on the mechanical and electrical properties of carbon materials have been mainly carried out, but in recent years, studies on carbon materials as magnetic and light emitting materials have also become issues.

2001년, 고온 고압에서 형성된 풀러렌 고분자의 상온 강자성이 보고된 이후, 풀러렌 자석을 포함한 탄소 자석에 대한 관심이 폭발적으로 증가하면서 새로운 탄소 자석 연구 또한 꾸준히 진행되어 왔다. 기존에는 특수한 고압 장치를 이용해 분말 상태의 글래시 카본(glassy carbon)을 고온(1200 ℃)과 고압(5 GPa)으로 처리한 시료에서 저온(10 K)과 상온(300 K) 강자성이 보고된 바 있다. 하지만 이 기술에서는 특수한 고압 장치를 이용한 상당한 고온과 고압 처리 조건이 요구된다.Since the report of the room temperature ferromagnetism of fullerene polymers formed at high temperature and high pressure in 2001, new carbon magnet research has been carried out steadily as the interest in carbon magnets including fullerene magnets has been explosively increased. Previously, low temperature (10 K) and room temperature (300 K) ferromagnetism have been reported in specimens treated with high temperature (1200 ° C) and high pressure (5 GPa) of powdered glassy carbon using a special high pressure device have. However, this technology requires considerably high temperature and high pressure processing conditions using special high pressure equipment.

본 발명이 이루고자 하는 기술적 과제는, 기존에 알려진 고온과 고압 처리 방법을 대체하여 상대적 저온과 저압에서 탄소 자석을 제조할 수 있는 방법 및 그 방법으로 제조한 탄소 자석을 제공함에 있다. SUMMARY OF THE INVENTION The present invention provides a method of manufacturing a carbon magnet at a relatively low temperature and a low pressure in place of a known high temperature and high pressure treatment method, and a carbon magnet manufactured by the method.

상기의 기술적 과제를 달성하기 위한, 본 발명에서는 셀룰로오즈 자석 및 그 제조 방법을 제공한다.In order to accomplish the above object, the present invention provides a cellulose magnet and a method of manufacturing the same.

본 발명에 따른 셀룰로오즈 자석은, 셀룰로오즈 분말과 용매의 혼합 용액을 가열 처리하여 용매열(solvothermal) 방법으로 제조된다. The cellulose magnet according to the present invention is produced by a solvothermal method by heat treating a mixed solution of a cellulose powder and a solvent.

상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 셀룰로오즈 자석의 제조 방법은, 셀룰로오즈 분말과 용매를 혼합하여 혼합 용액을 제조하는 단계; 및 상기 혼합 용액을 가열 처리하는 단계를 포함한다. According to an aspect of the present invention, there is provided a method for manufacturing a cellulose magnet, comprising: preparing a mixed solution by mixing a cellulose powder and a solvent; And heat treating the mixed solution.

본 발명에 따르면, 용매열 방법을 이용하여 셀룰로오즈 자석을 제조할 수 있다. 본 발명에 따른 방법은 기존에 탄소 자석을 만드는 것으로 알려진 고온과 고압의 처리 방법을 대체하는 동시에, 비교적 간단하게 저온과 저압에서 셀룰로오즈 자석을 제조할 수 있으며 처리 기간에 따라 셀룰로오즈 자석의 특징을 조절할 수 있다. According to the present invention, a cellulose magnet can be produced by using a solvent heating method. The method according to the present invention can replace the treatment method of high temperature and high pressure, which are known to make carbon magnets, and at the same time, the cellulose magnets can be manufactured relatively easily at a low temperature and a low pressure and the characteristics of the cellulose magnets can be controlled have.

본 발명에 따르면, 비교적 간단한 용매열 방법에 의해 강자성의 셀룰로오즈를 얻을 수 있다. 따라서, 셀룰로오즈 자석의 제조 공정이 단순화되고 원가 절감이 가능해지며 대량 생산에 보다 유리하다. According to the present invention, ferromagnetic cellulose can be obtained by a relatively simple solvent heating method. Therefore, the manufacturing process of the cellulose magnet can be simplified and the cost can be reduced, which is more advantageous for mass production.

도 1은 셀룰로오즈의 구조를 보여주는 도면이다.
도 2는 셀룰로오즈의 모폴러지(morphology)를 나타내는 SEM 이미지이다.
도 3은 본 발명 실험예에 따른 셀룰로오즈 버진(virgin) 시료에서 측정한 저온(5 K에서 측정) 자기 모먼트를 자기장의 함수로 보여주는 도면이다.
도 4는 본 발명 실험예에 따라 7일 동안 에탄올 용매열 처리한 셀룰로오즈에서 측정한 저온(5 K) 자기 모먼트를 자기장의 함수로 보여주는 도면이다.
1 is a view showing the structure of cellulose.
2 is a SEM image showing the morphology of cellulose.
3 is a graph showing the low temperature (measured at 5 K) magnetic moment measured in a cellulose virgin sample according to the experimental example of the present invention as a function of the magnetic field.
FIG. 4 is a graph showing a low temperature (5K) magnetic moment measured in cellulose subjected to heat treatment of an ethanol solvent for 7 days according to the experimental example of the present invention as a function of the magnetic field.

이하에서 첨부된 도면들을 참조하여 본 발명에 따른 용매열 방법에 의한 셀룰로오즈 자석 및 그 제조 방법의 바람직한 실시예에 대해 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, preferred embodiments of a cellulose magnet according to the present invention and a method of manufacturing the same will be described in detail with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. It is provided to let you know.

셀룰로오즈는 고분자 다당류의 한 종류로서 β-D-글루코오스가 β-글루코시드결합(1-4 글루코시드결합)으로 곧은 사슬 모양으로 결합한 고분자 화합물이다. 순수한 상태의 셀룰로오즈는 발광하는 광학적 성질을 띠지만 반자성의(diamagnetic) 자기적 성질을 갖는다. 셀룰로오즈는 여러 글루코오즈가 결합하여 있고 그 사이 사이에 탄소가 박혀있는 결합 구조이기 때문에 글루코오즈나 탄소와의 유사한 특성이 있을 것으로 예상되나 뚜렷한 증거는 없다. Cellulose is a kind of polymer polysaccharide and is a polymer compound in which β-D-glucose is bound in a straight chain form with β-glucosidic bonds (1-4 glucosidic bonds). Cellulose in a pure state has a luminescent optical property but a diamagnetic magnetic property. Cellulose is expected to have similar properties to glucose and carbon because it is a bonding structure in which several glucoses are bound and carbon is embedded between them, but there is no clear evidence.

도 1은 셀룰로오즈의 구조를 보여주는 도면이다. 셀룰로오즈는 도 1(a)에 나타낸 분자식이 반복되는 것, 즉 ((C6H10O5)n)이며, 도 1(b)에서와 같은 분자 구조를 가진다. 도 1에 도시한 바와 같이, 셀룰로오즈는 여러 당류의 복합체로 구성되어 있다. 셀룰로오즈는 냄새가 없는 백색 고체이며 물에 녹지 않는다. 알칼리에는 상당히 강하나 산에서는 가수분해되어 글루코오스가 된다. 1 is a view showing the structure of cellulose. Cellulose has a molecular structure as shown in FIG. 1 (a), that is, ((C 6 H 10 O 5 ) n ) and has a molecular structure as shown in FIG. 1 (b). As shown in Fig. 1, cellulose is composed of a complex of various saccharides. Cellulose is a white, odorless solid and does not dissolve in water. It is very strong in alkali but hydrolyzed in acid to become glucose.

본 발명에 따른 셀룰로오즈 자석을 제조하기 위해서는, 먼저 셀룰로오즈 분말과 용매를 혼합하여 혼합 용액을 제조한 후, 이 혼합 용액을 가열 처리한다.To prepare the cellulose magnets according to the present invention, a mixed solution is first prepared by mixing a cellulose powder and a solvent, and then the mixed solution is heat-treated.

구체적으로, 셀룰로오즈 분말은 상업적으로 판매하는 것을 구입하여 준비할 수 있다. 용매는 셀룰로오즈를 분산시킬 수 있으면서 가열에 의한 열에너지를 셀룰로오즈에 효과적으로 전달하는 적절한 것을 선택하도록 한다. 바람직하게, 상기 용매는 에탄올이다. Specifically, the cellulose powder can be prepared by purchasing a commercially available product. The solvent is selected so as to be capable of dispersing cellulose and effectively transfer heat energy to cellulose by heating. Preferably, the solvent is ethanol.

셀룰로오즈 분말과 용매의 혼합비는 적절히 조절될 수 있으며, 용매가 에탄올인 경우 셀룰로오즈 분말 0.5g에 대하여 에탄올 20 ml 비율로 할 수 있다. 이러한 혼합비에서 혼합 용액은 점성을 가진 유동성의 액체이다. The mixing ratio of the cellulose powder and the solvent can be appropriately adjusted. When the solvent is ethanol, the amount of the ethanol may be 20 ml per 0.5 g of the cellulose powder. At this mixing ratio, the mixed solution is a viscous, fluid liquid.

셀룰로오즈 분말과 용매를 혼합하여 제조한 혼합 용액은 일반적인 반응기 안에 담겨 가열 처리될 수 있다. 이 때 이용되는 반응기는 진공기밀의 테플론 용기와 같은 압력 용기일 수도 있으나 고압 조건이 필요하지 않으므로 압력 용기가 아닌 일반적인 용기여도 된다. 예를 들어, 도가니에 뚜껑을 덮은 간단한 용기를 이용하여도 된다. The mixed solution prepared by mixing the cellulose powder and the solvent may be heat-treated in a general reactor. The reactor used here may be a pressure vessel such as a vacuum hermetic Teflon vessel, but since it is not necessary to have a high-pressure condition, it may be a general application, not a pressure vessel. For example, a simple container having a lid on a crucible may be used.

혼합 용액의 가열은 예를 들어 30 ~ 300 ℃와 같이 비교적 저온으로 할 수 있으며, 용매가 에탄올인 경우 바람직하게 180 ℃로 가열한다. 30 ~ 300 ℃ 온도 조건에서, 압력 용기를 사용하지 않은 경우 반응기 안의 압력은 수 MPa 정도가 되며, 별도의 가압 과정이 필요없고, 상대적으로 저압 조건이 된다. The heating of the mixed solution can be performed at a relatively low temperature, for example, 30 to 300 DEG C, and preferably 180 DEG C if the solvent is ethanol. When the pressure vessel is not used at a temperature of 30 to 300 ° C, the pressure in the reactor becomes about a few MPa, and there is no need for a separate pressurization process, and the pressure is relatively low.

가열 온도가 30 ℃보다 낮으면 자성을 띄게 하도록 셀룰로오즈의 분자 구조가 변화되는 시간이 길어져 대량 생산에 문제점이 있고, 온도가 300 ℃보다 높으면 시간은 짧아지나 압력 용기 등이 필요하기 때문에 이 또한 대량 생산에 바람직하지 못하다. 가열 처리는 1일 이상 수행될 수 있다. 반응 시간이 너무 짧으면 충분한 자성을 얻기 힘들고 너무 길면 공정의 효율상 불리하다. 필요에 따라 혼합 용액을 교반할 수도 있는데 반응 과정 중 일부 구간(반응 초기)에서만 선택적으로 교반할 수도 있다. If the heating temperature is lower than 30 ° C, the time for changing the molecular structure of the cellulose is increased so as to increase the magnetic property, and there is a problem in mass production. When the temperature is higher than 300 ° C, the time is shortened. . The heat treatment can be carried out for more than one day. If the reaction time is too short, it is difficult to obtain sufficient magnetism. If the reaction time is too long, the efficiency of the process is deteriorated. If necessary, the mixed solution may be stirred, but it may be selectively stirred only during a certain period of the reaction (initial reaction).

<실험예><Experimental Example>

상업적으로 판매하는 셀룰로오즈 분말을 구입한 다음, 셀룰로오즈 분말 0.5g에 에탄올 20 ml를 섞어 직경 7 cm, 두께 3 cm의 셀에 넣어, 180 ℃의 온도에서 기간을 달리하여 용매열 처리를 하였다. 용매로서 에탄올을 사용하는 경우와 비교하기 위하여 증류수를 사용한 예도 실시하였다. 사용한 셀룰로오즈 분말은 시그마 알드리치사의 α-셀룰로오즈(상품명 : C8002, 밀도 : 0.600 g/cm3)이다. Commercially available cellulosic powder was purchased. Then, 0.5 g of cellulose powder was mixed with 20 ml of ethanol and placed in a cell having a diameter of 7 cm and a thickness of 3 cm, followed by solvent heat treatment at 180 ° C for a period of time. Distilled water was also used for comparison with the case of using ethanol as a solvent. The cellulose powder used was? -Cellulose (trade name: C8002, density: 0.600 g / cm 3 ) of Sigma Aldrich Co.

도 2는 셀룰로오즈의 모폴러지(morphology)를 나타내는 SEM 이미지이다. 셀룰로오즈 분말들은 동그란 알갱이 모양을 띠고 있어 섬유와 같은 이방성 구조를 갖지 않으므로, 섬유와는 다른 거동을 보이는 물질이다. 2 is a SEM image showing the morphology of cellulose. Cellulosic powders have a circular grain shape and do not have an anisotropic structure like fibers, so they exhibit a behavior different from that of fibers.

표 1은 셀룰로오즈 분말에 섞은 용매의 종류, 양과 가해준 온도, 용매열 처리 기간을 나타낸 표이다. Table 1 is a table showing kinds, amount, added temperature and solvent heat treatment period of the solvent mixed with the cellulose powder.

Figure 112013029772128-pat00001
Figure 112013029772128-pat00001

표 1을 참조하면, 본 발명의 실시를 위한 실험은 체크된 영역의 특성을 갖는 기간동안 용매열 처리를 수행하였다. 즉, 셀룰로오즈 분말 0.5g에 에탄올 20 ml를 섞은 버진(virgin) 시료를 1일, 3일, 5일, 7일로 처리 기간을 변화시키면서 용매열 처리를 수행하였다. 또한 용매로서 에탄올을 사용하는 경우와 비교하기 위하여 증류수를 사용한 경우, 즉, 셀룰로오즈 분말 0.5g에 증류수 20 ml를 섞은 버진 시료를 1일, 3일, 5일, 7일로 처리 기간을 변화시키면서 용매열 처리를 수행하였다. Referring to Table 1, an experiment for practicing the present invention performed solvent heat treatment for a period of time having characteristics of the checked area. That is, solvent heat treatment was performed while changing the treatment time to 1 day, 3 days, 5 days, and 7 days with a virgin sample containing 0.5 g of cellulose powder and 20 ml of ethanol. For comparison with the case of using ethanol as a solvent, a case in which distilled water was used, that is, a virgin sample in which 0.5 g of cellulose powder and 20 ml of distilled water were mixed was subjected to treatment for 1 day, 3 days, 5 days, Treatment.

1일 처리한 것은 버진 시료보다는 농도가 짙은 액체 상태로 얻어졌으며, 2일 처리한 것 이후부터는 분말 상태로 얻어졌다. One day treatment was obtained in a liquid state with a higher concentration than a virgin sample, and a powder state was obtained after 2 days treatment.

도 3은 본 발명 실험예에 따른 셀룰로오즈 버진 시료에서 측정한 저온(5 K에서 측정) 자기 모먼트를 자기장의 함수로 보여주는 도면이다. 아무런 처리를 하지 않은 버진 상태에서는 셀룰로오즈가 자성을 띠지 않는다.FIG. 3 is a graph showing the low temperature (measured at 5 K) magnetic moments measured by a cellulose virgin sample according to the experimental example of the present invention as a function of the magnetic field. Cellulose does not become magnetized in the virgin state without any treatment.

그리고, 표 1에서와 같이 처리 기간을 달리하여 시료를 얻은 후 실험을 하였을 때 7 일짜리 에탄올 용매열 처리 시료를 저온(5 K)에서 측정하였을 때 가장 큰 자성을 다음과 같이 관찰할 수 있었다. 다른 조건의 실험예에서는 자성이 관찰되지 않았다. As shown in Table 1, when the samples were heated at a low temperature (5 K) after 7 days heat treatment of the ethanol solvent, the largest magnetic property was observed as follows. No magnetism was observed in the experimental example of other conditions.

도 4는 본 발명 실험예에 따라 7일 동안 에탄올 용매열 처리한 셀룰로오즈에서 측정한 저온(5 K) 자기 모먼트를 자기장의 함수로 보여주는 도면이다.FIG. 4 is a graph showing a low temperature (5K) magnetic moment measured in cellulose subjected to heat treatment of an ethanol solvent for 7 days according to the experimental example of the present invention as a function of the magnetic field.

도 4를 참조하면, 용매열 방법 후에는 자기장이 증가하면서 자기 모먼트가 급격히 포화되는 것을 볼 수 있으며, 이는 셀룰로오즈 분자가 강자성을 띈다는 증거이다. 즉 용매열 방법에 의해 셀룰로오즈 자석이 형성된 것이다. 본 발명에 따른 셀룰로오즈 자석은 Hc가 100G 정도가 되며 Ms는 0.0005emu/g 정도가 되는 것으로 측정되었다. 또한 수 개월이 지난 후에 자성 측정을 하였어도 그대로 자성이 유지되는 결과로부터 경시변화가 적다는 것을 알 수 있었다. Referring to FIG. 4, after the solvent heating method, the magnetic moment is rapidly saturated with the increase of the magnetic field, which is evidence that the cellulose molecule is ferromagnetic. That is, a cellulose magnet is formed by a solvent heating method. The cell magnet according to the present invention was measured to have Hc of about 100 G and Ms of about 0.0005 emu / g. It was also found that, even after the magnetism measurement was performed after a few months, the magnetism was kept as it is, and the change with time was small.

본 발명에서는 용매열 방법을 통해, 고온과 고압 조건 필요없이 180 ℃ 정도의 가열 조건으로 셀룰로오즈 자석을 제조할 수 있다. 용매열 방법, 즉 용매를 통해 가열에 의한 열에너지를 셀룰로오즈에 효과적으로 전달하는 경우에는 셀룰로오즈를 전체적으로 흑연화할 필요없이 sp3와 같이 자성을 띠는 구조로 만들어 셀룰로오즈 자석을 제조할 수 있다는 것이 큰 발견이다. According to the present invention, the cellulose magnets can be produced under the heating conditions of about 180 ° C without the necessity of the high temperature and high pressure conditions through the solvent heating method. It is a great discovery that cellulose magnets can be produced by making the structure magnetized like sp3 without needing to graphitize the cellulose as a whole when the solvent heat transfer method, that is, the heat energy by heating through the solvent, is effectively transferred to the cellulose.

이와 같이 용매열 방법을 이용한 셀룰로오즈 제조 방법은 기존의 고온, 고압 조건을 획기적으로 변경한 것으로, 압력 용기나 압력 장치와 같은 고가의 장비가 필요하지 않고 셀룰로오즈 자석을 저렴하게 대량 생산하기에 적합한 방법이다. As described above, the method of producing cellulose by the solvent heating method is a remarkably modified high-temperature and high-pressure condition, and is suitable for mass production of cellulose magnets at low cost without expensive equipments such as pressure vessel and pressure device .

기존 다른 자성 재료에 비하여 탄소를 이용한 자석은 더욱 안정적이고 기능화와 산업화를 실현하는 데 용이하며 경량이며 독성이 없고 개발하기가 간단하고 저렴하다. 따라서, 본 발명과 같은 탄소 자석은 녹색 및 환경 친화 산업, 바이오 의학 등 분야에서 새로운 발전 가능성을 제공해 줄 것으로 전망된다. 특히 셀룰로오즈는 자연계에서 석탄에 이어 다량으로 존재하는 유기 화합물이며, 공업적으로 중요한 자원이다. 셀룰로오즈는 기존 탄소 재료인 CNT 등보다도 훨씬 저렴하므로 자석 제조시 가격 경쟁력이 있다. Compared to other magnetic materials, carbon-based magnets are more stable, easy to realize functionalization and industrialization, lightweight, non-toxic, easy to develop and cheap. Therefore, the carbon magnet according to the present invention is expected to provide new development possibilities in the fields of green, environment-friendly industry, and biomedicine. In particular, cellulose is an organic compound that exists in large quantities following coal in nature, and is an industrially important resource. Cellulose is much cheaper than conventional carbon materials such as CNT, so it is cost competitive when manufacturing magnets.

이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation in the embodiment in which said invention is directed. It will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the scope of the appended claims.

Claims (6)

셀룰로오즈 분말과 용매를 넣은 반응기를 가열 처리하여 용매열 방법으로 제조되는 것을 특징으로 하는 용매열 방법에 의한 셀룰로오즈 자석.A cellulose magnet according to a solvent heating method, characterized in that it is produced by a solvent heating method by heat treating a reactor containing a cellulose powder and a solvent. 제1항에 있어서,
상기 용매는 에탄올인 것을 특징으로 하는 용매열 방법에 의한 셀룰로오즈 자석.
The method according to claim 1,
Wherein the solvent is ethanol.
제1항에 있어서,
상기 가열 처리는 180℃에서 7 일동안 수행하는 것을 특징으로 하는 용매열 방법에 의한 셀룰로오즈 자석.
The method according to claim 1,
Wherein the heat treatment is performed at 180 DEG C for 7 days.
반응기에 셀룰로오즈 분말과 용매를 넣는 단계; 및
상기 반응기를 가열 처리하는 단계를 포함하는 용매열 방법에 의한 셀룰로오즈 자석의 제조 방법.
Placing a cellulose powder and a solvent in a reactor; And
And heat treating the reactor. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제4항에 있어서,
상기 용매는 에탄올인 것을 특징으로 하는 용매열 방법에 의한 셀룰로오즈 자석의 제조 방법.
5. The method of claim 4,
Wherein the solvent is ethanol. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제4항에 있어서,
상기 가열 처리는 180℃에서 7 일동안 수행하는 것을 특징으로 하는 용매열 방법에 의한 셀룰로오즈 자석의 제조 방법.
5. The method of claim 4,
Wherein the heat treatment is performed at 180 DEG C for 7 days. &Lt; RTI ID = 0.0 &gt; 15. &lt; / RTI &gt;
KR1020130037318A 2013-04-05 2013-04-05 Cellulose magnet produced by solvothermal method and method for producing the same KR101436367B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130037318A KR101436367B1 (en) 2013-04-05 2013-04-05 Cellulose magnet produced by solvothermal method and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130037318A KR101436367B1 (en) 2013-04-05 2013-04-05 Cellulose magnet produced by solvothermal method and method for producing the same

Publications (1)

Publication Number Publication Date
KR101436367B1 true KR101436367B1 (en) 2014-09-02

Family

ID=51758988

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130037318A KR101436367B1 (en) 2013-04-05 2013-04-05 Cellulose magnet produced by solvothermal method and method for producing the same

Country Status (1)

Country Link
KR (1) KR101436367B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917675A (en) * 1995-06-26 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of sintered rare earth permanent magnet
KR20090103949A (en) * 2007-01-19 2009-10-01 바스프 에스이 Method for the production of structured, electrically conductive surfaces
KR101232715B1 (en) * 2012-02-07 2013-02-13 고려대학교 산학협력단 Glassy carbon magnet produced by solvothermal method and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917675A (en) * 1995-06-26 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of sintered rare earth permanent magnet
KR20090103949A (en) * 2007-01-19 2009-10-01 바스프 에스이 Method for the production of structured, electrically conductive surfaces
KR101232715B1 (en) * 2012-02-07 2013-02-13 고려대학교 산학협력단 Glassy carbon magnet produced by solvothermal method and method for producing the same

Similar Documents

Publication Publication Date Title
Zhang et al. Graphene‐based electrochemical glucose sensors: Fabrication and sensing properties
Niu et al. Ultralight and hyperelastic nanofiber‐reinforced mxene–graphene aerogel for high‐performance piezoresistive sensor
Wang et al. PVA/SA/MXene dual‐network conductive hydrogel for wearable sensor to monitor human motions
Jiang et al. New strategy for synthesis and functionalization of carbon nanoparticles
CN107973283B (en) Elastic carbon aerogel and preparation method and application thereof
Yang et al. Phenyl groups in supramolecular nanofibers confer hydrogels with high elasticity and rapid recovery
Ikram et al. Recent advances in chitin and chitosan/graphene-based bio-nanocomposites for energetic applications
Fu et al. Multifunctional biomass composite aerogel co-modified by MXene and Ag nanowires for health monitoring and synergistic antibacterial applications
CN105314621A (en) Synthesis method for preparing water-soluble biomass-based fluorescent carbon dot and application
Khan et al. Exploitation of nanobifiller in polymer/graphene oxide–carbon nanotube, polymer/graphene oxide–nanodiamond, and polymer/graphene oxide–montmorillonite composite: A review
CN102963938A (en) Spinel ferrite/CNx nanocomposite and preparation method thereof
Jin et al. Multifunctional carbon dots for live cell staining and tissue engineering applications
Zheng et al. Preparation and properties of highly electroconductive and heat-resistant CMC/buckypaper/epoxy nanocomposites
Saheeda et al. Investigation on the pH‐independent photoluminescence emission from carbon dots impregnated on polymer matrix
Li et al. A biodegradable Fe-fertilizer with high mechanical property and sustainable release for potential agriculture and horticulture applications
Lv et al. Preparation of bacterial cellulose/carbon nanotube nanocomposite for biological fuel cell
KR101238931B1 (en) Quantum Dot Encapsulated PS-PSMA Nanofibers and a use of the same
CN103483589A (en) Two-dimensional polyphosphazene nanosheet layer and preparation and application method
Zhou et al. Multiwalled carbon nanotube/polyacrylonitrile composite fibers prepared by in situ polymerization
Senapati et al. Chitosan-based emissive carbon nanosheets and their solid-state temperature-dependent photoluminescent study
Spizzirri et al. Functional gelatin-carbon nanotubes nanohybrids with enhanced antibacterial activity
Amna et al. Electrospun nanofibers of ZnO‐TiO2 hybrid: characterization and potential as an extracellular scaffold for supporting myoblasts
Nair et al. Insights into enzymatic degradation of physically crosslinked hydrogels anchored by functionalized carbon nanofillers
KR101436367B1 (en) Cellulose magnet produced by solvothermal method and method for producing the same
CN107325282B (en) A kind of material for promotion biomethanation performance in Anaerobic wastewater treatment

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170707

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180723

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190808

Year of fee payment: 6