KR101436299B1 - Antifouling paints composition - Google Patents

Antifouling paints composition Download PDF

Info

Publication number
KR101436299B1
KR101436299B1 KR1020130044481A KR20130044481A KR101436299B1 KR 101436299 B1 KR101436299 B1 KR 101436299B1 KR 1020130044481 A KR1020130044481 A KR 1020130044481A KR 20130044481 A KR20130044481 A KR 20130044481A KR 101436299 B1 KR101436299 B1 KR 101436299B1
Authority
KR
South Korea
Prior art keywords
antifouling
enzyme
porous carrier
antifouling enzyme
porous
Prior art date
Application number
KR1020130044481A
Other languages
Korean (ko)
Other versions
KR20130124194A (en
Inventor
김중배
이병수
연경민
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of KR20130124194A publication Critical patent/KR20130124194A/en
Application granted granted Critical
Publication of KR101436299B1 publication Critical patent/KR101436299B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D189/00Coating compositions based on proteins; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명의 방오효소-다공성 담체 복합체를 포함하는 방오용 도료 조성물은 지나치게 낮은 방오효소의 활성으로 산업적용의 제한을 받았던 기존의 방오효소-기질 복합체에 비하여 향상된 방오 성능을 얻을 수 있어 산업 적용 가능성을 높일 뿐만 아니라, 단가가 저렴한 지지체를 이용하여 경제성 문제도 해결할 수 있다.
또한, 페인트 물질로 널리 사용되고 있는 각종 폴리머 물질과 혼합하여 도료 물질로 개발 후 사용하게 되면, 방오 물질이 사용되는 각종 산업분야(해운 항만 산업, 유체 운송 산업, 수질 처리 산업 등)에 효과적인 적용이 가능하여 환경오염으로 문제가 되어 사용이 제한되고 있는 기존의 화학적 방오물질을 대체하는 물질로 사용이 가능하다.
The antifouling coating composition comprising the antifouling enzyme-porous carrier composite of the present invention has an antifouling performance higher than that of the conventional antifouling enzyme-substrate composite, And economical problems can be solved by using a support having a low unit cost.
In addition, it can be effectively applied to various industrial fields (marine port industry, fluid transportation industry, water treatment industry, etc.) where the antifouling material is used if it is used after being developed as a coating material by mixing with various polymer materials widely used as paint materials It is possible to use it as a substitute for existing chemical fouling materials which are restricted in use due to environmental pollution.

Description

방오용 도료 조성물{Antifouling paints composition}[0001] Antifouling paints composition [0002]

본 발명은 방오용 도료 조성물에 관한 것으로, 보다 상세하게는 종래의 방오효소를 포함하는 방오 조성물에 비하여 훨씬 많은 양의 방오효소가 담지된 방오용 도료 조성물에 관한 것이다More particularly, the present invention relates to an antifouling coating composition containing a much larger amount of an antifouling enzyme than an antifouling composition containing a conventional antifouling enzyme

방오도료 조성물은 해수 침적 도막의 표면 오염을 유발하는 해양 생물의 부착과 성장을 방지하거나 제어하는 것을 그 목적으로 한다. 선체 바닥(선저부), 수중 구조물 등은 장기간 수중에 노출되는 경우 조개, 굴, 갑각홍합 및 삿갓조개와 같은 동물류, 파래(해초)와 같은 식물류 및 수중 박테리아와 같은 각종 수서 생물이 표면에 부착, 증식하여 외관이 불량해지거나 그 기능을 상실하게 된다. 특히 선저부에 이러한 수서 생물이 부착하여 증식하면 선박 외판 전체의 표면 조도가 증가하여 선속이 저하되거나 연료 소비가 증가할 수 있다. 수서 생물을 선저부로부터 제거하기 위해서는 필요 이상의 노력과 오랜 작업 시간이 필요하다. 또한 수중 구조물에 부착하여 번식하는 박테리아 위에 점액(진흙 물질)이나 슬라임(slime) 등이 부착하여 박테리아를 부패시키는 경우나, 점착성을 갖는 대형 생물이 수중 구조물(예:철강 구조물)에 부착, 번식하여 수중 구조물의 부식 방지 도막을 손상시키는 경우, 수중 구조물의 강도나 기능을 저하시켜 수명을 현저히 단축시키는 문제점이 있다.The antifouling paint composition is intended to prevent or control the attachment and growth of marine organisms causing surface contamination of the seawater-deposited coating film. When exposed to water for a long period of time, various kinds of aquatic organisms, such as seashells, oysters, mussels such as shellfishes and shellfishes, plants such as seaweeds, and aquatic bacteria, And the appearance becomes poor or its function is lost. Particularly, when these aquatic organisms adhere to the bottom of the ship and proliferate, surface roughness of the entire outer shell of the ship may increase, leading to deterioration of linear velocity or fuel consumption. Removing aquatic organisms from the bottom requires more than necessary effort and long working time. In addition, when bacteria adhere to a submerged structure attached to an underwater structure and mucus (slime material) or slime adheres to it, or when large-scale adherent creatures adhere to an underwater structure (such as a steel structure) In the case of damaging the corrosion-resistant coating film of an underwater structure, there is a problem that the strength or function of an underwater structure is lowered and the service life is remarkably shortened.

이러한 문제를 방지하기 위하여, 선저부에는 방오성이 뛰어난 방오도료로서 트리부틸주석메타크릴레이트, 메틸메타크릴레이트 등의 공중합체 및 아산화구리(Cu2O)를 포함하는 방오도료 조성물을 도장하는 것이 일반적이다.In order to prevent such a problem, it is general practice to coat an antifouling coating composition containing copper (tributyltin methacrylate, methyl methacrylate, etc.) and copper oxide (Cu 2 O) as an antifouling paint excellent in antifouling property on the bottom part to be.

이 방오도료 조성물을 구성하는 공중합체는 해수 중에서 가수분해되어, 비스트리부틸주석옥사이드(Bu3Sn-OSnBu3(Bu는 부틸기)) 또는 트리부틸주석할로겐화물(Bu3SnX(X는 할로겐 원자))과 같은 유기 주석 화합물을 방출하여 방오효과를 나타낸다. 또한 상기 공중합체는 가수분해성 자기연마형(self-polishing) 도료이기 때문에, 가수분해된 공중합체 자체도 수용성으로 바뀌어 해수 중에 용해됨으로써, 선저부 도막 표면에는 수지 잔류물이 남지 않고 지속적으로 활성을 갖는 표면을 유지한다.The copolymer constituting the antifouling paint composition is hydrolyzed in seawater and is converted into bistributyltin oxide (Bu 3 Sn-OSnBu 3 (Bu is butyl group)) or tributyltin halide (Bu 3 SnX (X is halogen atom )), Thereby exhibiting an antifouling effect. Since the copolymer is a hydrolyzable self-polishing paint, the hydrolyzed copolymer itself is also converted into water-soluble and dissolved in seawater, so that the resin remains on the surface of the bottom coating film and remains active Keep the surface.

그러나 전술한 유기 주석 화합물은 그 독성이 매우 강하고 해양 오염, 기형 어류 또는 기형 조개의 발생, 먹이사슬을 통한 수중 생태계의 파괴 등을 일으킬 가능성이 높다. 이러한 문제점으로 인하여 종래의 유기 주석계 방오도료를 대체할 수 있는 비주석계(tin free) 방오도료의 개발이 요구되었다. However, the abovementioned organic tin compounds are very toxic and highly likely to cause marine pollution, malformed fish or malformed clams, and destruction of aquatic ecosystems through the food chain. Due to these problems, it has been required to develop a tin-free antifouling paint which can replace the conventional organotin-based antifouling paints.

최근, 주석을 대체하기 위하여 아연, 구리, 실릴, 실리콘, 이산화동 등 다양한 물질과 마모성이 좋은 재료 등이 사용되고 있다. 기존의 도료는 산기 함유 고분자에 금속아세테이트와 같이 메탈 에스테르 화합물을 혼합하여 부분적으로 겔화된 바인더를 이용하는 것이다. 이러한 바인더는 필름 형성 능력 및 저장성 등이 나빠 크랙이 발생하거나 연마성이 떨어지고 고점도화로 적용이 어려운 면이 있었다. 또한 종래의 아크릴 고분자에 아크릴산 아연과 같이 메탈 에스테르 화합물을 혼합하여 부가중합한 타입은 마모도 조절이 양호하지 않아 장기 마모성에서 불안하다는 문제점이 있었다.In recent years, various materials such as zinc, copper, silyl, silicon, and copper dioxide and abrasion-resistant materials have been used to replace tin. Conventional paints use a binder partially gelled by mixing a metal ester compound such as metal acetate with an acid group-containing polymer. Such a binder has poor film-forming ability and storage stability to cause cracking, poor abrasiveness, and difficulty in application as a high viscosity. In addition, conventional acrylic polymers such as zinc acrylate mixed with a metal ester compound have a problem in that they are not well controlled in abrasion and are insecure in long-term abrasion.

또한 결정적으로 이들 물질들 역시 중금속 등을 포함하고 있어 생태계에 악영향을 미치는 것으로 보고되고 있다.In addition, these substances have also been reported to adversely affect the ecosystem, including heavy metals.

이에, 한국특허출원 제2001-7010883호에서는 에폭시 또는 유리섬유에 방오효소 또는 이를 생산하는 미생물을 포함하는 선박 방오용 조성물을 개시하였다. 또한 한국특허출원 2002-7012611호에서는 로진과 방오효소를 포함하는 방오용 조성물을 개시하고 있으며 로진은 방오효소의 고정화 효과를 가지며 방오효소가 외부로 배출하는 것을 방지하는 역할을 수행한다. 그러나, 이들 종래기술들은 모두 지지체에 고정되는 방오효소의 양이 극히 적어 방오효과가 낮을 뿐 아니라 아니라 시간이 경과하면 방오효소가 외부로 쉽게 유출되어 방오효과가 급격히 떨어지는 문제가 있었다.Korean Patent Application No. 2001-7010883 discloses a composition for shipwash prevention comprising an antifouling enzyme or a microorganism producing the same in an epoxy or glass fiber. Korean Patent Application No. 2002-7012611 discloses an anti-staining composition comprising rosin and an antifouling enzyme, and the rosin has an effect of immobilizing the antifouling enzyme and preventing the antifouling enzyme from being discharged to the outside. However, all of these prior arts have a problem that the amount of antifouling enzyme fixed on the support is extremely small and the antifouling effect is low, and when the time passes, the antifouling enzyme easily flows out to the outside and the antifouling effect is drastically deteriorated.

상술한 바와 같이 기존의 방오효소를 포함하는 방오용 도료조성물은 지나치게 낮은 활성으로 인해 실제 산업에 적용하였을 때 방오 성능이 현저하게 낮을 뿐 아니라 오랜 시간이 경과하는 경우 방오 효과가 급격하게 떨어지는 문제점이 있었다. As described above, the anticorrosive coating composition containing the antifouling enzyme has a problem that the antifouling performance is remarkably low when it is applied to an actual industry due to an extremely low activity, and the antifouling effect is drastically decreased when a long time passes .

이에, 본 발명은 상술한 문제를 극복하기 위해 안출된 것으로, 본 발명의 해결하려는 과제는 종래의 방오효소를 포함하는 방오용 조성물에 비하여 현저하게 많은 양의 방오효소를 포함하며 시간이 경과하여도 방오효소가 외부로 거의 유출되지 않는 방오용 조성물을 포함하는 방오용 도료 조성물을 제공하는 것이다.SUMMARY OF THE INVENTION Accordingly, the present invention has been made to overcome the above-mentioned problems, and an object of the present invention is to provide a composition containing an antifouling enzyme, which contains a considerably large amount of antifouling enzyme as compared with a conventional composition containing an antifouling enzyme, And an anti-fouling composition in which the antifouling enzyme hardly flows out to the outside.

본 발명은 상술한 문제를 해결하기 위해 안출된 것으로, 본 발명의 해결하려는 과제는 다공성 담체 및 상기 담체의 기공 내부에 담지되는 방오효소를 포함하는 방오효소-다공성 담체 복합체를 제공한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an antifouling enzyme-porous carrier composite comprising a porous carrier and an antifouling enzyme carried inside the pores of the carrier.

본 발명에 따른 일 구체예로서, 본 발명은 방오효소-다공성 담체를 도료에 혼합한 도료 조성물을 제공한다.As one embodiment of the present invention, the present invention provides a coating composition comprising an antifouling enzyme-porous carrier mixed with a coating material.

여기서, 상기 방오효소는 다공성 담체 내부에 담지되어 가교결합에 의하여 복합체를 형성할 수 있다.Here, the antifouling enzyme may be carried on the inside of the porous carrier to form a complex by cross-linking.

상기 다공성 담체는 실리카, 알루미나, 니오비움, 탄탈륨, 지르코늄, 카본, 마그네슘, 및 티타늄으로 구성되는 군으로부터 선택될 수 있다. The porous carrier may be selected from the group consisting of silica, alumina, niobium, tantalum, zirconium, carbon, magnesium, and titanium.

상기 방오효소는 아실라제, 락토나제, 프로테아제, 퍼옥시데아제, 아미노펩티다아제, 포스파타아제, 트렌스아미나아제, 세린-엔도펩티다아제, 시스테인-엔도펩티다아제 및 메탈로엔도펩티다아제로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있다. Wherein the antifouling enzyme is selected from the group consisting of acylase, lactonase, protease, peroxidase, aminopeptidase, phosphatase, transaminase, serine-endopeptidase, cysteine-endopeptidase and metalloendopeptidase It can be more than one.

본 발명의 다른 일실시예에 따르면, 상기 다공성 담체는 자성나노입자를 포함할 수 있다.According to another embodiment of the present invention, the porous carrier may include magnetic nanoparticles.

본 발명의 바람직한 일실시예에 따르면 상기 다공성 담체 내부의 기공크기는 1 ~ 1000nm 일 수 있다.According to a preferred embodiment of the present invention, the pore size of the inside of the porous carrier may be 1 to 1000 nm.

본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 다공성 담체는 내부에 효소와 공유결합할 수 있는 작용기를 포함할 수도 있고, 포함하지 않을 수도 있다.According to another preferred embodiment of the present invention, the porous carrier may or may not contain a functional group capable of covalently bonding with the enzyme in the porous carrier.

본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 방오효소-다공성 담체 복합체는 전체 도료조성물에 대하여 0.01 ~ 50 중량% 포함될 수 있다.According to another preferred embodiment of the present invention, the antioxidant-porous carrier complex may be contained in an amount of 0.01 to 50% by weight based on the total coating composition.

본 발명의 일 실시예에 따른 도료 조성물을 제조하는 방법은 다음의 단계를 포함한다: A method of making a coating composition according to one embodiment of the present invention comprises the steps of:

(1) 다공성 담체의 기공내부에 방오효소를 흡착시키는 단계; (1) adsorbing an antifouling enzyme in pores of a porous carrier;

(2) 상기 방오효소가 흡착된 다공성 담체에 가교결합제를 첨가하여 방오효소간에 가교결합을 형성하여 다공성 담체-방오효소 복합체를 형성하는 단계; 및 (2) adding a cross-linking agent to the porous support on which the antifouling enzyme is adsorbed to form cross-linking between the antifouling enzymes to form a porous support-antifouling enzyme complex; And

(3) 상기 다공성 담체-방오효소 복합체를 도료와 혼합하는 단계(3) mixing the porous carrier-antifouling enzyme complex with a coating material

상기에서 방오효소 복합체는 그 직경이 다공성 담체 기공의 입구크기보다 클 수 있다. 따라서, 다공성 담체의 기공으로부터 쉽게 탈출하지 못하고 담체 내에 안정적으로 고정화될 수 있다. The antifouling enzyme complex may have a diameter larger than the inlet size of the porous carrier pores. Therefore, it can be stably immobilized in the carrier without easily escaping from the pores of the porous carrier.

또는, 본 발명의 다른 구체예로서, 상기 (1) 단계에서 다공성 담체에 효소와 가교결합제를 동시에 첨가하여 방오효소 복합체를 제조할 수도 있다. Alternatively, as another embodiment of the present invention, an antifouling enzyme complex may be prepared by simultaneously adding an enzyme and a crosslinking agent to the porous carrier in the step (1).

상기 가교결합제는 디이소시아네이트, 디안히드라이드, 디에폭사이드, 디알데하이드, 디이미드, 1-에틸-3-디메틸 아미노프로필카보디이미드, 글루타르알데하이드, 비스(이미도 에스테르), 비스(석신이미딜 에스테르) 및 디애시드 클로라이드로 구성되는 군으로부터 선택되는 하나 또는 그 이상일 수 있다.
The crosslinking agent is selected from the group consisting of diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethylaminopropylcarbodiimide, glutaraldehyde, bis (imidoesters) Esters) and diacid chlorides. ≪ / RTI >

본 발명의 방오효소-다공성 담체 복합체를 포함하는 방오용 도료 조성물은 지나치게 낮은 방오효소의 활성으로 산업적용의 제한을 받았던 기존의 방오효소-기질 복합체에 비하여 향상된 방오 성능을 얻을 수 있어 산업 적용 가능성을 높일 뿐만 아니라, 단가가 저렴한 지지체를 이용하여 경제성 문제도 해결할 수 있다.The antifouling coating composition comprising the antifouling enzyme-porous carrier composite of the present invention has an antifouling performance higher than that of the conventional antifouling enzyme-substrate composite, And economical problems can be solved by using a support having a low unit cost.

또한, 페인트 물질로 널리 사용되고 있는 각종 폴리머 물질과 혼합하여 도료 물질로 개발 후 사용하게 되면, 방오 물질이 사용되는 각종 산업분야(해운 항만 산업, 유체 운송 산업, 수질 처리 산업 등)에 효과적인 적용이 가능하여 환경오염으로 문제가 되어 사용이 제한되고 있는 기존의 화학적 방오물질을 대체하는 물질로 사용이 가능하다.In addition, it can be effectively applied to various industrial fields (marine port industry, fluid transportation industry, water treatment industry, etc.) where the antifouling material is used if it is used after being developed as a coating material by mixing with various polymer materials widely used as paint materials It is possible to use it as a substitute for existing chemical fouling materials which are restricted in use due to environmental pollution.

도 1은 구형 다공성 실리카를 자성-다공성 실리카로 만든 후 방오효소를 고정화시키는 공정을 나타내는 모식도 이다.
도 2는 상업적으로 구매가 가능한 구형 다공성 실리카 물질(좌)과 자성나노입자를 화학적으로 부착시킨 자성-다공성 실리카(우)의 이미지를 나타낸 것이다.
도 3은 방오효소-자성-다공성 실리카 방오물질을 자석에 의해 형성된 자기장을 이용하여 용액에서 분리되는 모습을 촬영한 사진이다.
도 4는 형광-분광광도계를 이용한 방오효소(Free AC), 방오효소가 흡착된 자성-다공성 실리카 복합체(ADS-AC/Mag-S-MPS), 방오효소가 흡착 후 가교결합된 자성-다공성 실리카 복합체(NER-AC/Mag-S-MPS)의 초기 활성(initial rate)을 측정한 값을 나타낸 것이다.
도 5는 바이오필름이 형성되는 조건하에서 방오효소가 흡착 후 가교결합된 자성-다공성 실리카 복합체(NER-AC/Mag-S-MPS)의 방오작용을 확인하기 위해 진행한 실험으로, 오염이 그대로 진행되는 조건(a, wastewater + S. Aeruginosa), 오염이 진행되는 조건에 자성-다공성 실리카 물질을 넣은 조건(b, wastewater + S. Aeruginosa + Mag-S-MPS), 오염이 진행되는 조건에 방오효소-자성-다공성 실리카 물질을 넣은 조건(c, wastewater + S. Aeruginosa + NER-AC/Mag-S-MPS)을 비교한 결과이다. 그래프는 각각의 조건에서 오염이 유도된 분리막 필터(membrane filter)의 투수도를 확인하여 초기 투수도 값에 대해 시간에 따른 상대 투수도 값을 나타낸 것이다.
도 6은 투수도 측정을 위해 설치한 장비 모식도 이다.
도 7은 도 5에 나타난 각각의 조건을 통해 오염이 유도된 분리막의 표면을 공초점 주사 현미경을 통해 관찰한 결과 이미지를 나타낸 것이다.
도 8은 일정 유량으로 분리막 필터를 통과하는 흐름을 유도하였을 때, 바이오필름 형성에 의해 변화하는 투과 압력(trans-membrane pressure, TMP)을 측정하기 위한 장치를 나타낸 모식도이다.
도 9는 도료만을 분리막 필터에 도포한 조건과 방오효소-자성-다공성 실리카와 도료의 혼합물을 분리막 필터에 도포한 조건의 바이오필름 형성에 따른 투과압력(trens membrane pressure, TMP)을 측정한 실험 결과이다.
1 is a schematic view showing a step of immobilizing an antifouling enzyme after making spherical porous silica into magnetic-porous silica.
2 shows an image of a commercially available spherical porous silica material (left) and a magnetic-porous silica (right) chemically attached with magnetic nanoparticles.
Fig. 3 is a photograph showing a state in which the antifouling enzyme-magnetic-porous silica antifouling material is separated from the solution by using a magnetic field formed by a magnet.
FIG. 4 is a graph showing the results of measurement of antifouling enzyme (Free AC) using a fluorescence-spectrophotometer, magnetic-porous silica complex adsorbed with antifouling enzyme (ADS-AC / Mag-S-MPS) (NER-AC / Mag-S-MPS).
FIG. 5 is an experiment conducted to confirm the antifouling effect of a magnetic-porous silica composite (NER-AC / Mag-S-MPS) crosslinked after adsorption of an antifouling enzyme under the condition that a biofilm is formed. (B, wastewater + S. aeruginosa + Mag-S-MPS) containing the magnetic-porous silica material under the conditions of the progress of the contamination, (C, wastewater + S. aeruginosa + NER-AC / Mag-S-MPS) containing the magnetic-porous silica material. The graph shows the relative permeability over time for the initial permeability value by checking the permeability of the membrane filter induced contamination under each condition.
6 is a schematic diagram of the equipment installed for measuring the permeability.
FIG. 7 shows an image obtained by observing the surface of the separation membrane from which pollution was induced through a confocal scanning microscope through the respective conditions shown in FIG.
FIG. 8 is a schematic view showing an apparatus for measuring a trans-membrane pressure (TMP) which is changed by biofilm formation when a flow passing through a membrane filter is induced at a constant flow rate.
9 is a graph showing the results of experiments in which the permeation pressure (trens membrane pressure) (TMP) of biofilm formation was measured under the condition that only the coating material was applied to the separation membrane filter and the mixture of the antifouling enzyme-magnetic-porous silica and the coating material was applied to the separation membrane filter to be.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

용어 '방오효소(antifouling enzyme)'라 함은 방오 조성물에 포함되어 생물학적 방오 작용을 통해 물질의 표면에 오염물질이 부착 및 성장하는 것을 방지하는 효소를 의미한다. 예를 들어, 생물학적 오염물질의 표면 부착 및 성장은 독특한 신호전달 체계(quorum sensing system)에 의해 진행되며 신호전달 물질(quorum sensing materials)은 N-acyl homoserine lactone (AHL) 계열의 화합물인데 방오효소는 이 화합물을 가수분해 하여 신호전달을 불능화(quorum quenching) 시키는 작용을 한다. 한편, 한국특허출원 제2001-7010883호 및 한국특허출원 2002-7012611호에 개시된 방오효소는 본 발명에 포함될 수 있다.The term " antifouling enzyme " refers to an enzyme contained in an antifouling composition to prevent adhesion and growth of contaminants on the surface of a substance through biological antifouling. For example, surface attachment and growth of biological contaminants is driven by a unique quorum sensing system, while quorum sensing materials are compounds of the N-acyl homoserine lactone (AHL) family, This compound acts to hydrolyze and quorum quenching the signal. Meanwhile, the antifouling enzyme disclosed in Korean Patent Application No. 2001-7010883 and Korean Patent Application No. 2002-7012611 can be included in the present invention.

용어 '다공성 담체'라 함은 내부에 1 ~ 1000nm 크기의 다수의 기공을 갖는 담체를 의미하며 기공의 크기에 따라 마이크로포러스(microporous, pore < 2 nm), 메조포러스(mesoporous, 2 nm < pore < 50 nm), 메크로포러스(macroporous, pore > 50 nm) 물질로 구분할 수 있다. The term 'porous carrier' refers to a carrier having a plurality of pores having a size of 1 to 1000 nm in the interior, and may include microporous (pore <2 nm), mesoporous (2 nm <pore < 50 nm), and macroporous (pore> 50 nm) materials.

도 1은 다공성 담체의 기공 내부에 효소를 담지하는 단계를 나타내는 모식도이다. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a step of supporting an enzyme in pores of a porous carrier. FIG.

먼저 다공성 담체의 기공 내부에 나노자성입자를 담지한 후 효소를 다공성 담체의 내부로 충진한다. 그러면 도 1의 우측 하단과 같이 다공성 담체의 기공 내부에 효소들이 흡착된다. 그러나 다공성 담체의 내부에 흡착된 일부 효소들을 제외하고 나머지 효소들은 별다른 결합없이 기공내부에 포함된 상태이므로 외부에서 액체가 유입되거나 외압이 가해지는 경우에는 흡착된 일부효소를 제외하고 나머지 효소들은 다공성 담체의 외부로 유출하게 된다. 또한 흡착된 일부효소들 역시 시간이 지날수록 흡착력이 감소하여 결국 외부로 유출하게 된다. 이로 인해, 다공성 담체의 효소의 안정성이 떨어지게 되는 것이다.First, the nano magnetic particles are supported in the pores of the porous carrier, and then the enzyme is filled into the porous carrier. Then, the enzymes are adsorbed in the pores of the porous carrier as shown in the lower right of FIG. However, except for some enzymes adsorbed inside the porous carrier, the remaining enzymes are contained in the pores without any bonding. Therefore, when the liquid is introduced from the outside or external pressure is applied, the remaining enzymes, except for some adsorbed enzymes, As shown in FIG. In addition, some of the adsorbed enzymes also decrease in adsorption power over time and eventually leak out. As a result, the stability of the enzyme of the porous carrier is deteriorated.

이에 대하여, 기공내부에 포함된 효소들에 대하여 가교결합제를 첨가하면 기공내부에 흡착된 효소들 및 흡착되지 않은 효소들간에 가교결합이 형성되어 효소복합체가 형성된다. 그 결과 가교결합된 효소복합체는 다공성 담체의 기공 입구의 크기보다 더 커지게 되며 그 결과 현저하게 많은 양의 효소가 다공성 담체의 내부에 담지될 수 있을 뿐 아니라 시간이 경과하여도 상기 기공 내부에 방오효소 집합체가 위치하게 되므로 다공성 담체의 내부를 효소와 공유결합할 수 있는 작용기를 형성하도록 개질하지 않아 다공성 담체와 방오효소간의 공유결합과 같은 직접적인 결합관계가 형성되지 않는다 하더라도 방오효소 집합체가 다공성 담체 내부에 장기간 구비될 수 있는 것이다.On the other hand, when a cross-linking agent is added to the enzymes contained in the pores, cross-linking is formed between the enzymes adsorbed in the pores and the non-adsorbed enzymes to form an enzyme complex. As a result, the crosslinked enzyme complex becomes larger than the size of the pore openings of the porous carrier. As a result, not only a remarkably large amount of enzyme can be carried on the inside of the porous carrier, Since the enzyme aggregate is located, the inside of the porous carrier is not modified to form a functional group capable of covalently bonding with the enzyme, so that even if a direct binding relationship such as a covalent bond between the porous carrier and the antifouling enzyme is not formed, For a long period of time.

먼저, 본 발명에 사용되는 다공성 담체를 설명한다. 통상적으로 효소를 담지하는데 사용되는 다공성 담체라면 제한없이 사용될 수 있다. 바람직하게는 상기 다공성 담체는 실리카, 알루미나, 니오비움, 탄탈륨, 지르코늄, 카본, 마그네슘, 및 티타늄으로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있으며 MPS (mesoporous silica), MCM (mobil composition of matter), SBA (Santa Barbara materials), CNS (MPS with cyano-funtional groups), OMC (ordered mesoporous carbon), MCF-C (mesocellular carbon foam) 또는 SCMS (supplementary cementitious materials)의 형태로 사용할 수 있으며, 바람직하게는 MCF (mesocellular foam)일 수 있다.First, the porous carrier used in the present invention will be described. Usually, any porous carrier used to support the enzyme can be used without limitation. Preferably, the porous carrier may be at least one selected from the group consisting of silica, alumina, niobium, tantalum, zirconium, carbon, magnesium and titanium, and may be selected from the group consisting of mesoporous silica (MPS), mobile composition of matter It can be used in the form of SBA (Santa Barbara materials), CNS (MPS with cyano-funtional groups), ordered mesoporous carbon (OMC), mesocellular carbon foam (MCF-C) or supplementary cementitious materials (SCMS) or mesocellular foam.

한편, 본 발명에 사용될 수 있는 방오효소는 다공성 담체 내부에 담지되어 도료 내에서 방오효과를 발생시킬 수 있는 것이면 제한없이 사용될 수 있으며, 바람직하게는 아실라제, 락토나제, 프로테아제, 퍼옥시데아제, 아미노펩티다아제, 포스파타아제, 트렌스아미나아제, 세린-엔도펩티다아제, 시스테인-엔도펩티다아제 및 메탈로엔도펩티다아제로 구성되는 군으로부터 선택되는 어느 하나 또는 혼합하여 사용할 수 있으나 이에 제한되지 않는다.On the other hand, the antifouling enzyme which can be used in the present invention can be used without limitation as long as the antifouling enzyme can be carried on the inside of the porous carrier to cause an antifouling effect in the coating. Preferably, the antifouling enzyme is selected from acylase, lactonase, But are not limited to, any one selected from the group consisting of aminopeptidase, phosphatase, transaminase, serine-endopeptidase, cysteine-endopeptidase, and metalloendopeptidase.

[준비예][Preparation example]

자성-다공성 실리카 물질 제조Manufacture of Magnetic-Porous Silica Material

방오효소 고정화를 위한 자성-다공성 실리카는 다공성 실리카 물질에 화학적 흡착법(chemical deposition)을 이용하여 자성나노입자(magnetic nanoparticle)를 고정하는 방법을 사용하였다. 1 g의 구형 메소포러스 실리카(spherical mesoporous silica)와 0.5 g의 Fe(NO3)39H2O를 20 ml의 에탄올에 녹여 준비하였다. 상온 조건에서 에탄올 용액이 다 증발될 때까지 교반을 하고 남은 샘플을 100 ℃에서 400 ℃까지 분당 3 ℃를 올려 주면서 완전 건조 시키면 자성-다공성 실리카를 준비하였다.Magnetic-porous silica for immobilization of antioxidant enzyme was prepared by immobilizing magnetic nanoparticles on a porous silica material using chemical adsorption. 1 g of spherical mesoporous silica and 0.5 g of Fe (NO 3 ) 3 9H 2 O were dissolved in 20 ml of ethanol and prepared. The mixture was stirred until the ethanol solution was completely evaporated at room temperature, and the remaining sample was completely dried at 100 ° C to 400 ° C at a rate of 3 ° C per minute to prepare magnetic-porous silica.

[비교예][Comparative Example]

방오효소Antifouling enzyme 흡착방법을 이용한  Using adsorption method 방오효소Antifouling enzyme 고정방법( Fixation method ( EnzymeEnzyme adsorptionadsorption , , ADSADS )에 따라 )Depending on the 방오효소Antifouling enzyme -자성-다공성 복합체 제조- Magnetic-Porous Composite Manufacturing

실시예 1에서 제조된 자성-다공성 실리카와 방오효소(아실라아제, acylase, AC)를 혼합하여 방오효소가 흡착(enzyme adsorption)된 자성-다공성 실리카를 합성하였다. 구체적으로 상기 실시예 1에서 제조된 자성-다공성 실리카 10 mg과 1.5 ml 의 방오효소를 2 ml의 centrifuge tube에서 혼합해 주며, 이때 방오효소는 100 mM의 인산완충액에 2 mg/ml의 농도로 준비하여 사용하였다. 준비된 방오효소-자성-다공성 실리카 혼합물은 상온에서 30분 동안 교반기를 이용하여 50 rpm으로 교반하여 주었다. 이 과정을 통해 방오효소는 자성-다공성 실리카 공극 표면에 흡착을 하게 된다. 미 부착된 방오효소를 제거하고 고분자 나노섬유에 남아있는 미 반응 방오효소 부착 작용기를 캡핑(capping) 해주기 위해, 원심 분리 후 상등액을 제거하고 100 mM 트리스 완충액을 이용하여 30분 동안 교반기를 이용하여 200 rpm 으로 교반시켜 주었다. 캡핑 반응 종료 후, 남은 트리스 완충액을 제거하기 위해 100mM 인산완충액을 이용하여 씻어 주었다. Porous silica was prepared by mixing the magnetic porous silica prepared in Example 1 with an antifouling enzyme (acylase, AC) to obtain enzyme adsorbed enzyme-adsorbed enzyme. Specifically, 10 mg of the magnetic-porous silica prepared in Example 1 and 1.5 ml of antifouling enzyme were mixed in a 2 ml centrifuge tube. The antifouling enzyme was prepared at a concentration of 2 mg / ml in 100 mM phosphate buffer Respectively. The prepared antifouling enzyme-magnetic-porous silica mixture was stirred at 50 rpm using a stirrer at room temperature for 30 minutes. Through this process, the antifouling enzyme is adsorbed on the surface of the magnetic-porous silica pores. The supernatant was removed by centrifugation, and the supernatant was removed by using a 100 mM Tris buffer solution for 30 minutes using a stirrer to remove the unbound antioxidant enzyme and to cap the remaining unreacted antifouling enzyme-adhering functional groups on the polymer nanofibers. rpm. After completion of the capping reaction, the remaining Tris buffer solution was washed with 100 mM phosphate buffer solution.

방오효소Antifouling enzyme 흡착 후  After adsorption 가교결합방법을The cross-linking method 이용한  Used 방오효소Antifouling enzyme -자성-다공성 실리카 복합체 제조- Preparation of magnetic-porous silica composite

실시예 1에서 제조된 자성-다공성 실리카와 방오효소(아실라아제, acylase, AC)를 혼합하여 방오효소가 흡착 후 가교결합시키는 방법을 이용한 방오효소고정방법(nanoscale enzyme reactor, NER)으로 복합체를 합성하였다. 구체적으로 상기 준비예에서 제조된 자성-다공성 실리카와 방오효소(아실라아제, acylase, AC)를 혼합하여 방오효소가 흡착(enzyme adsorption)된 자성-다공성 실리카를 합성하였다. 구체적으로 상기 제조예에서 제조된 자성-다공성 실리카 10 mg과 1.5 ml 의 방오효소를 2 ml의 centrifuge tube에서 혼합해 주며, 이때 방오효소는 100 mM의 인산완충액에 2 mg/ml의 농도로 준비하여 사용하였다. 준비된 방오효소-자성-다공성 실리카 혼합물은 상온에서 30분 동안 교반기를 이용하여 50 rpm으로 교반하여 주었다. 이 과정을 통해 방오효소는 자성-다공성 실리카 공극 표면에 흡착을 하게 된다. 이후 흡착된 방오효소간의 공유결합을 통한 가교결합을 유도하기 위해 가교결합제인 글루타알데히드를 전체부피의 0.1 %가 되도록 첨가해 주었다. 충분한 가교결합을 위해 상온 조건에서 2시간동안 로커를 이용하여 50rpm으로 교반시켜 주었다. 미 부착된 방오효소를 제거하고 자성-다공성 실리카에 남아있는 미 반응 방오효소 부착 작용기를 캡핑(capping) 해주기 위해, 원심 분리 후 상등액을 제거하고 100 mM 트리스 완충액을 이용하여 30분 동안 교반기를 이용하여 200 rpm 으로 교반시켜 주었다. 캡핑 반응 종료 후, 남은 트리스 완충액을 제거하기 위해 100mM 인산완충액을 이용하여 씻어 주었다. 이러한 과정을 통해 제조된 방오효소가 흡착 후 나노효소반응기 방법을 이용한 방오효소-자성-다공성 실리카 복합체 (NER-AC/Mag-S-MPS)는 사용시까지 4℃에 보관하면 활성의 감소 없이 사용시까지 보관이 가능하다.The nanoscale enzyme reactor (NER) was used to mix the magnetic-porous silica prepared in Example 1 with an antifouling enzyme (acylase, acylase, AC) Were synthesized. Specifically, magnetic-porous silica having enzyme adsorption was synthesized by mixing the magnetic-porous silica prepared in the preparation example with an antifouling enzyme (acylase, AC). Specifically, 10 mg of the magnetic-porous silica and 1.5 ml of the antifouling enzyme prepared in the above Preparation Example were mixed in a 2 ml centrifuge tube. The antifouling enzyme was prepared at a concentration of 2 mg / ml in 100 mM phosphate buffer Respectively. The prepared antifouling enzyme-magnetic-porous silica mixture was stirred at 50 rpm using a stirrer at room temperature for 30 minutes. Through this process, the antifouling enzyme is adsorbed on the surface of the magnetic-porous silica pores. Then, glutaraldehyde, which is a crosslinking agent, was added in an amount of 0.1% of the total volume in order to induce cross-linking through covalent bonds between adsorbed antifouling enzymes. For sufficient crosslinking, the mixture was stirred at room temperature for 2 hours using a rocker at 50 rpm. The supernatant was removed by centrifugation and the supernatant was removed by using a 100 mM Tris buffer solution for 30 minutes using a stirrer to remove unbound antifouling enzyme and capping the unreacted antifouling enzyme- The mixture was stirred at 200 rpm. After completion of the capping reaction, the remaining Tris buffer solution was washed with 100 mM phosphate buffer solution. The antifouling enzyme-magnetic-porous silica composite (NER-AC / Mag-S-MPS) using the nano-enzyme reaction method after the adsorption of the antifouling enzyme prepared by this process is stored at 4 ° C until use, Storage is possible.

방오효소Antifouling enzyme -자성-다공성 실리카 복합체의 -Magnetic-porous silica composite 방오효소Antifouling enzyme 활성 및 안정성 측정 Activity and stability measurement

상기 실시예 1 및 비교예를 통해 제조된 방오효소가 흡착된 자성-다공성 실리카 복합체(ADS-AC/Mag-S-MPS), 방오효소 흡착 후 나노효소반응기(nanoscale enzyme reactor, NER) 방법(가교결합)을 이용한 방오효소-자성-다공성 실리카 복합체(NER-AC/Mag-S-MPS)의 방오효소 활성을 형광-분광광도계 (Spectrofluorophotometer , Shimadzu RF-5301)를 이용하여 측정하였다. (ADS-AC / Mag-S-MPS) adsorbed with an antifouling enzyme prepared by the above Example 1 and Comparative Example, a nanoscale enzyme reactor (NER) method The antifouling enzyme activity of the antifouling enzyme-magnetic-porous silica composite (NER-AC / Mag-S-MPS) was measured using a fluorescence spectrophotometer (Shimadzu RF-5301).

구체적으로 4℃에서 보관중이던 방오효소-고분자 나노섬유 복합체를 100 mM 인산완충액을 이용하여 자성-다공성 실리카 무게 기준 0.5 mg/ml로 희석시켜 준비하였다. 그리고 반응 용액으로 10 mM의 N-아세틸-L-메티오닌을 준비하며 이때의 용액 조성은 1.9125 mg의 N-아세틸-L-메티오닌을 100mM 인산완충액에 용해시켜 사용한다. 이렇게 만들어진 두 가지 용액을 이용하여 방오효소의 활성을 측정하였다. 방오효소의 활성을 측정하기 위해 1 ml의 방오효소-자성-다공성 실리카 복합체와 1 ml의 10 mM의 N-아세틸-L-메티오닌 용액을 혼합하여 정해진 시간동안 교반 조건에서 N-아세틸-L-메티오닌의 분해반응을 진행하였다. N-아세틸-L-메티오닌은 방오효소에 의해 아세트산과 L-메티오닌으로 분해되고, 분해된 L-메티오닌은 0.1 mg의 o-프탈알데히드(OPA)를 50 mM 나트륨 보레이트 완충액에 녹인 OPA 용액과 반응하여 형광을 띄게 된다. 시간에 따라 OPA물질과 결합이 가능한 L-메티오닌의 양이 많아지며 이에 따라 형광-분광광도계 상에서 나타나는 형광값 또한 증가한다.Specifically, the antifouling enzyme-polymer nanofiber composite, which was stored at 4 ° C, was prepared by diluting to 0.5 mg / ml based on the weight of magnetic-porous silica using 100 mM phosphate buffer. Then, 10 mM N-acetyl-L-methionine is prepared as a reaction solution, and 1.9125 mg of N-acetyl-L-methionine is dissolved in 100 mM phosphate buffer. The activity of the antifouling enzyme was measured using the two solutions thus prepared. To measure the activity of the antifouling enzyme, 1 ml of an antifouling enzyme-magnetic-porous silica complex and 1 ml of a 10 mM N-acetyl-L-methionine solution were mixed and stirred for a fixed period of time under N-acetyl-L-methionine Decomposition reaction. N-acetyl-L-methionine is decomposed into acetic acid and L-methionine by an antifouling enzyme, and the decomposed L-methionine is reacted with OPA solution in which 0.1 mg of o-phthalaldehyde (OPA) is dissolved in 50 mM sodium borate buffer Fluorescence. The amount of L-methionine that can bind to the OPA material increases with time, and thus the fluorescence value displayed on the fluorescence-spectrophotometer also increases.

도 4는 Free AC, ADS-AC/Mag-S-MPS, NER-AC/Mag-S-MPS 샘플의 활성을 측정한 결과를 활성 확인 첫 날의 활성값을 100으로 했을 때 활성의 상대값을 그래프로 나타낸 것이다. Figure 4 shows the results of measuring the activity of Free AC, ADS-AC / Mag-S-MPS and NER-AC / Mag-S-MPS samples. As shown in the graph.

도 4를 통해 확인할 수 있듯이, 방오효소 흡착 후 가교결합 방법을 이용한 방오효소-자성-다공성 실리카 복합체(NER-AC/Mag-S-MPS)가 방오효소 활성 안정성이 가장 뛰어난 것으로 확인이 되었다. 방오효소-고분자 나노섬유 복합체를 실온조건 100mM 인산완충액에서 교반기를 이용하여 200rpm으로 지속적으로 교반시켜 주면서 활성을 측정한 결과, free AC, ADS-AC의 활성반감기는 각각 1일, 5일 미만인 것으로 확인 되었지만 NER-AC는 33일이 지난 시점까지 활성이 80% 이상 유지되어 안정화된 활성을 보여주고 있다.As shown in FIG. 4, it was confirmed that the antifouling enzyme-magnetic-porous silica composite (NER-AC / Mag-S-MPS) using the cross-linking method after the adsorption of the antifouling enzyme had the highest antifouling enzyme activity stability. The antioxidant-polymer nanofiber composites were continuously agitated in a 100 mM phosphate buffer solution at 200 rpm using a stirrer. The activity half-lives of free AC and ADS-AC were found to be less than 1 day and less than 5 days, respectively . However, NER-AC showed activity stabilized more than 80% after 33 days.

오염이 유도된 분리막 필터의 투수도 확인을 통한 Through the confirmation of the permeability of the membrane filter 방오효소Antifouling enzyme -자성-다공성 실리카 복합체의 바이오필름 형성 억제 성능 확인.- Confirmation of inhibition of biofilm formation of magnetic - porous silica composites.

상기 실시예 1을 통해 제조된 방오효소-자성-다공성 실리카 복합체(NER-AC/Mag-S-MPS)의 방오효소 활성을 분리막 필터에 오염이 유도되는 조건을 조성한 뒤 분리막 필터 표면에 발생한 바이오필름에 의해 결정되는 투수도의 변화를 관찰 하였다.The antifouling enzyme activity of the antifouling enzyme-magnetic-porous silica composite (NER-AC / Mag-S-MPS) prepared in Example 1 was conditioned to induce contamination in the membrane filter, The change in permeability was determined by.

구체적으로 오염이 그대로 진행되는 조건(a, wastewater (39.5 ml) + S. Aeruginosa (0.5 ml)), 오염이 진행되는 조건에 자성-다공성 실리카 물질을 넣은 조건(b, wastewater (38.7 ml) + S. Aeruginosa (0.5 ml) + Mag-S-MPS (0.8 ml of 0.5 mg/ml)), 오염이 진행되는 조건에 방오효소-자성-다공성 실리카 물질을 넣은 조건(c, wastewater (38.7 ml) + S. Aeruginosa (0.5 ml) + NER-AC/Mag-S-MPS (0.8 ml of 0.5 mg/ml))의 샘플을 준비하여 1일 간격으로 분리막 필터를 회수하였다. 회수한 분리막은 도 6에 나타난 장치를 이용하여, 10 kPa의 압력에 의해 10 ml의 증류수가 분리막을 통과하는 시간을 측정하였다. 도 5를 통해 나타낸 그래프는 각각의 조건에서 오염이 유도된 분리막 필터(membrane filter)의 투수도를 확인하여 초기 투수도 값에 대해 시간에 따른 상대 투수도 값을 나타낸 것이다. 투수도를 측정한 결과, 오염이 그대로 진행되는 조건(a, wastewater (39.5 ml) + S. Aeruginosa (0.5 ml)), 오염이 진행되는 조건에 자성-다공성 실리카 물질을 넣은 조건(b, wastewater (38.7 ml) + S. Aeruginosa (0.5 ml) + Mag-S-MPS (0.8 ml of 0.5 mg/ml))은 3일 이후 초기 값의 50 % 미만 상대 투수도를 보여주었으나 오염이 진행되는 조건에 방오효소-자성-다공성 실리카 물질을 넣은 조건(c, wastewater (38.7 ml) + S. Aeruginosa (0.5 ml) + NER-AC/Mag-S-MPS (0.8 ml of 0.5 mg/ml))은 일주일 이상 50 %이상의 상대 투수도를 유지 하였으며, 도 5의 다른 샘플에서 나타난 급격한 흐름의 감소가 관찰되지 않았다. 이러한 결과는 NER-AC/Mag-S-MPS 샘플의 뛰어난 방오 효과를 나타내는 것이다.(39.5 ml) + S. aeruginosa (0.5 ml)), and the conditions of progressive contamination (b, wastewater (38.7 ml) + S (C), wastewater (38.7 ml) + S (0.5 ml) was added to the conditions under which the contamination proceeded, followed by addition of the antifouling enzyme-magnetic-porous silica material (0.5 ml) and NER-AC / Mag-S-MPS (0.8 ml of 0.5 mg / ml) were prepared and the membrane filters were collected at intervals of one day. Using the apparatus shown in FIG. 6, the recovered membrane was measured by passing 10 ml of distilled water through the membrane by a pressure of 10 kPa. The graph shown in FIG. 5 shows the permeability of the membrane filter in which contamination was induced under each condition, and the relative permeability value with time with respect to the initial permeability value. The permeability was measured under the condition that the contamination proceeded as it is (a, wastewater (39.5 ml) + S. aeruginosa (0.5 ml)), condition in which the magnetic- 38.7 ml) + S. aeruginosa (0.5 ml) + Mag-S-MPS (0.8 ml of 0.5 mg / ml)) showed a relative permeability of less than 50% of the initial value after 3 days, (C), wastewater (38.7 ml) + S. aeruginosa (0.5 ml) + NER-AC / Mag-S-MPS (0.8 ml of 0.5 mg / ml) Greater than or equal to 50% relative permeability was maintained, and a sharp decrease in flow as seen in the other samples of FIG. 5 was not observed. These results show excellent antifouling effect of NER-AC / Mag-S-MPS sample.

오염이 유도된 분리막 필터의 바이오필름 확인을 통한 Through biofilm identification of contaminated membrane filters 방오효소Antifouling enzyme -자성-다공성 실리카 복합체의 바이오필름 형성 억제 성능 확인.- Confirmation of inhibition of biofilm formation of magnetic - porous silica composites.

상기 실시예 1을 통해 제조된 방오효소-자성-다공성 실리카 복합체(NER-AC/Mag-S-MPS)의 방오효소 활성을 분리막 필터에 오염이 유도되는 조건을 조성한 뒤 분리막 필터 표면에 발생한 바이오필름의 표면을 CLSM (confocal laser scanning microscope) 이미지를 확인하였다.The antifouling enzyme activity of the antifouling enzyme-magnetic-porous silica composite (NER-AC / Mag-S-MPS) prepared in Example 1 was conditioned to induce contamination in the membrane filter, The confocal laser scanning microscope (CLSM) image was confirmed on the surface of the sample.

구체적으로 오염이 그대로 진행되는 조건(a, wastewater (39.5 ml) + S. Aeruginosa (0.5 ml)), 오염이 진행되는 조건에 자성-다공성 실리카 물질을 넣은 조건(b, wastewater (38.7 ml) + S. Aeruginosa (0.5 ml) + Mag-S-MPS (0.8 ml of 0.5 mg/ml)), 오염이 진행되는 조건에 방오효소-자성-다공성 실리카 물질을 넣은 조건(c, wastewater (38.7 ml) + S. Aeruginosa (0.5 ml) + NER-AC/Mag-S-MPS (0.8 ml of 0.5 mg/ml))의 샘플을 준비하여 1일 간격으로 분리막 필터를 회수하여 CLSM (confocal laser scanning microscope) 이미지를 확인하였고 그 결과를 도 7에 나타내었다.(39.5 ml) + S. aeruginosa (0.5 ml)), and the conditions of progressive contamination (b, wastewater (38.7 ml) + S (C), wastewater (38.7 ml) + S (0.5 ml) was added to the conditions under which the contamination proceeded, followed by addition of the antifouling enzyme-magnetic-porous silica material (0.8 ml of 0.5 mg / ml) was prepared and the filter was collected at 1-day intervals to obtain confocal laser scanning microscope (CLSM) images. And the results are shown in FIG.

도 7에서 확인할 수 있듯이, 방오효소 흡착 후 나노효소반응기(nanoscale enzyme reactor, NER) 방법을 이용한 방오효소-자성-다공성 실리카 복합체(NER-AC/Mag-S-MPS)가 포함된 샘플에서는 CLSM 이미지에서 녹색으로 표현되는 바이오필름의 색 농도와 색 분포 비교를 통해 바이오필름 형성이 억제 되는 것이 관찰되었다. As shown in FIG. 7, in the sample containing the antifouling enzyme-magnetic-porous silica composite (NER-AC / Mag-S-MPS) using the nanoscale enzyme reactor (NER) It was observed that the biofilm formation was inhibited by comparing the color distribution and the color distribution of the biofilm expressed in green in the test.

분리막 필터의 표면에 On the surface of the membrane filter 방오효소Antifouling enzyme -자성-다공성 실리카 복합체가 혼합된 도료 조성물을 도포하여 바이오필름 형성 억제 성능 확인.- Magnetic - Porous silica composite was applied to confirm biofilm formation inhibition performance.

상기 실시예 1을 통해 제조된 방오효소-자성-다공성 실리카 복합체(NER-AC/Mag-S-MPS)를 도료에 혼합하여 분리막 필터의 표면에 도포한 뒤, 분리막 필터에 오염이 유도되는 조건을 조성한 뒤 일정 유량으로 분리막 필터를 투과하는 조건에서 바이오필름 형성 유무에 따라 변화하는 압력을 측정하였다.The antifouling enzyme-magnetic-porous silica composite (NER-AC / Mag-S-MPS) prepared in Example 1 was mixed with the paint and applied to the surface of the membrane filter, The pressure was varied depending on the presence or absence of the biofilm formation under the condition that the membrane filter was permeated at a constant flow rate.

구체적으로 도 8의 장치를 이용하여 분리막 필터에 일정 유량으로 흐름을 형성시켜주면, 분리막 필터 표면에 발생하는 바이오필름에 의해 저하되는 유량의 흐름을 초기 설정 유량으로 유지시켜 주기 위한 압력(trans-membrane pressure, TMP)이 증가하게 된다. 도 9의 실험 결과를 통해 도료만 도포된 분리막 필터의 경우 시간이 지남에 따라 형성되는 바이오필름에 의해 TMP가 증가되는 것이 관찰된 반면, 방오효소-자성-다공성 실리카가 혼합된 도료를 도포한 분리막 필터의 경우 바이오필름 형성이 억제되어 TMP 증가 추세가 둔화되는 결과를 확인할 수 있었다.
Specifically, if a flow is formed in the membrane filter at a constant flow rate using the apparatus of FIG. 8, a pressure to maintain the flow rate of the membrane, which is generated by the biofilm on the surface of the membrane filter, pressure, and TMP). 9, it was observed that the TMP was increased by the biofilm formed over time in the case of the membrane filter coated with only the paint, whereas the membrane coated with the coating material containing the antifouling enzyme-magnetic-porous silica was observed In the case of the filter, the formation of biofilm was inhibited and the trend of TMP increase was slowed down.

본 발명의 방오용 도료 조성물은 생물의 부착과 성장을 방지하거나 제어하는데 유용하게 활용될 수 있다.
INDUSTRIAL APPLICABILITY The paint composition for preventing abrasion of the present invention can be useful for preventing or controlling the attachment and growth of living things.

Claims (14)

다공성 담체 및 상기 담체의 기공 내부에 담지되는 방오효소를 포함하는 방오효소-다공성 담체 복합체로서, 상기 방오효소는 아실라제, 락토나제, 프로테아제, 퍼옥시데아제, 아미노펩티다아제, 포스파타아제, 트렌스아미나아제, 세린-엔도펩티다아제, 시스테인-엔도펩티다아제 및 메탈로엔도펩티다아제로 구성되는 군으로부터 선택되는 어느 하나 또는 이것들의 혼합인 것을 특징으로 하는 방오효소-다공성 담체 복합체.An antifouling enzyme-porous carrier complex comprising a porous carrier and an antifouling enzyme carried on the inside of pores of the carrier, wherein the antifouling enzyme is selected from the group consisting of acylase, lactonase, protease, peroxidase, aminopeptidase, phosphatase, Wherein the antifouling enzyme-porous carrier composite is any one selected from the group consisting of acase, serine-endopeptidase, cysteine-endopeptidase, and metalloendopeptidase, or a mixture thereof. 제1항에 있어서, 상기 다공성 담체는 자성 나노입자를 포함하는 것을 특징으로 하는 방오효소-다공성 담체 복합체.The antifouling enzyme-porous carrier composite according to claim 1, wherein the porous carrier comprises magnetic nanoparticles. 제1항에 있어서, 상기 다공성 담체는 실리카, 알루미나, 니오비움, 탄탈륨, 지르코늄, 카본, 마그네슘, 및 티타늄으로 구성되는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 방오효소-다공성 담체 복합체.The antifouling enzyme-porous carrier composite according to claim 1, wherein the porous carrier is any one selected from the group consisting of silica, alumina, niobium, tantalum, zirconium, carbon, magnesium, and titanium. 삭제delete 제1항 내지 제3항 중 어느 한 항에 따른 방오효소-다공성 담체 복합체를 포함하는 방오용 도료조성물.An antifouling paint composition comprising an antifouling enzyme-porous carrier composite according to any one of claims 1 to 3. 제5항에 있어서, 상기 방오효소-다공성 담체 복합체를 0.01~50 중량%로 포함하는 것을 특징으로 하는 방오용 도료 조성물. [6] The anticorrosive coating composition according to claim 5, wherein the antifouling enzyme-porous carrier composite is contained in an amount of 0.01 to 50% by weight. 제 5항에 있어서, 상기 도료는 아크릴, 에폭시, 우레탄, 실리케이트 및 폴리에스테르로 구성되는 군으로부터 선택되는 어느 하나 또는 이것들의 혼합인 것을 특징으로 하는 방오용 도료 조성물.The coating composition according to claim 5, wherein the coating material is any one selected from the group consisting of acrylic, epoxy, urethane, silicate, and polyester or a mixture thereof. 방오효소-다공성 담체 복합체를 포함하는 방오용 도료 조성물을 제조하는 방법에 있어서,
(1) 다공성 담체의 기공내부에 방오효소를 흡착시키는 단계;
(2) 상기 방오효소가 흡착된 다공성 담체에 가교결합제를 첨가하여 방오효소간에 가교결합을 형성하여 방오효소-다공성 담체 복합체를 형성하는 단계;
(3) 상기 방오효소-다공성 담체 복합체를 도료와 혼합하는 단계
를 포함하는 것을 특징으로 하는 방오용 도료 조성물을 제조하는 방법.
A method for producing an anti-stain coating composition comprising an antifouling enzyme-porous carrier composite,
(1) adsorbing an antifouling enzyme in pores of a porous carrier;
(2) adding a cross-linking agent to the porous support on which the antifouling enzyme is adsorbed to form cross-linking between the antifouling enzymes to form an antifouling enzyme-porous support complex ; And
(3) mixing the antifouling enzyme-porous carrier composite with a coating material
Wherein the coating composition is a coating composition.
제8항에 있어서, 다공성 담체에 자성나노입자를 담지하는 단계를 전처리로 더 포함하는 것을 특징으로 하는 방오용 도료 조성물을 제조하는 방법.The method according to claim 8, further comprising pretreating the magnetic nanoparticles on the porous carrier. 제8항에 있어서, 상기 가교결합제는 디이소시아네이트, 디안히드라이드, 디에폭사이드, 디알데하이드, 디이미드, 1-에틸-3-디메틸 아미노프로필카보디이미드, 글루타르알데하이드, 비스(이미도 에스테르), 비스(석신이미딜 에스테르) 및 디애시드 클로라이드로 구성되는 군으로부터 선택되는 하나 또는 그 이상인 것을 특징으로 하는 방오용 도료 조성물을 제조하는 방법. 9. The composition of claim 8, wherein the crosslinking agent is selected from the group consisting of diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl- , Bis (succinimidyl ester), and diacid chloride. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt; 제8항에 있어서, 상기 다공성 담체는 실리카, 알루미나, 니오비움, 탄탈륨, 지르코늄, 카본, 마그네슘, 및 티타늄으로 구성되는 군으로부터 선택되는 것을 특징으로 하는 방오용 도료 조성물을 제조하는 방법.The method of claim 8, wherein the porous carrier is selected from the group consisting of silica, alumina, niobium, tantalum, zirconium, carbon, magnesium, and titanium. 제8항에 있어서, 상기 방오효소는 아실라제, 락토나제, 프로테아제, 퍼옥시데아제, 아미노펩티다아제, 포스파타아제, 트렌스아미나아제, 세린-엔도펩티다아제, 시스테인-엔도펩티다아제 및 메탈로엔도펩티다아제로 구성되는 군으로부터 선택되는 어느 하나 또는 이것들의 혼합인 것을 특징으로 하는 방오용 도료 조성물을 제조하는 방법.The antifouling agent according to claim 8, wherein the antifouling enzyme is composed of acylase, lactonase, protease, peroxidase, aminopeptidase, phosphatase, transaminase, serine-endopeptidase, cysteine-endopeptidase and metalloendopeptidase Or a mixture thereof. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt; 제8항에 있어서, 상기 방오효소-다공성 담체 복합체를 0.01~50 중량%로 포함하는 것을 특징으로 하는 방오용 도료 조성물을 제조하는 방법.The method according to claim 8, wherein the antifouling enzyme-porous carrier composite is contained in an amount of 0.01 to 50 wt%. 제8항에 있어서, 상기 도료는 아크릴, 에폭시, 우레탄, 실리케이트, 폴리에스테르로 구성되는 군으로부터 선택되는 어느 하나 또는 이것들의 혼합인 것을 특징으로 하는 방오용 도료 조성물을 제조하는 방법.

9. The method according to claim 8, wherein the coating material is any one selected from the group consisting of acrylic, epoxy, urethane, silicate, and polyester, or a mixture thereof.

KR1020130044481A 2012-05-03 2013-04-22 Antifouling paints composition KR101436299B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120046693 2012-05-03
KR20120046693 2012-05-03

Publications (2)

Publication Number Publication Date
KR20130124194A KR20130124194A (en) 2013-11-13
KR101436299B1 true KR101436299B1 (en) 2014-09-02

Family

ID=49853231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130044481A KR101436299B1 (en) 2012-05-03 2013-04-22 Antifouling paints composition

Country Status (1)

Country Link
KR (1) KR101436299B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144374A1 (en) * 2015-09-17 2017-03-22 University College Dublin National University Of Ireland, Dublin Enzyme-functionalised nanobeads for anti-biofouling purposes
JP6970311B2 (en) * 2019-01-31 2021-11-24 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Enzyme-porous carbon complex
CN109897459B (en) * 2019-03-15 2021-04-06 海南恒翔佳节能科技有限公司 Supported photocatalytic diatom ooze coating and preparation method thereof
KR102280812B1 (en) * 2019-12-12 2021-07-23 주식회사 이제이텍 Sensor casing device for offshore structures with antifouling properties
CN117186770B (en) * 2023-11-02 2024-04-12 天津永续新材料有限公司 Antifouling coating of nano enzyme synergistic biomass material, preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110033575A (en) * 2009-09-25 2011-03-31 한국과학기술원 Mesoporous silica conjugate integrating magnetic nano particles having peroxidase activity and enzymes and method for manufacturing the same
KR20110128128A (en) * 2010-05-20 2011-11-28 고려대학교 산학협력단 Complex of enzyme-3 dimensional structure of fiber matrix, manufacturing method and use thereof
KR20110128606A (en) * 2010-05-24 2011-11-30 한국과학기술원 Magnetic nanoparticles-platinum nanoparticles-mesoporous carbon complex and method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110033575A (en) * 2009-09-25 2011-03-31 한국과학기술원 Mesoporous silica conjugate integrating magnetic nano particles having peroxidase activity and enzymes and method for manufacturing the same
KR101097882B1 (en) 2009-09-25 2011-12-23 한국과학기술원 Mesoporous Silica Conjugate Integrating Magnetic Nano Particles Having Peroxidase Activity and Enzymes and Method for Manufacturing the Same
KR20110128128A (en) * 2010-05-20 2011-11-28 고려대학교 산학협력단 Complex of enzyme-3 dimensional structure of fiber matrix, manufacturing method and use thereof
KR20110128606A (en) * 2010-05-24 2011-11-30 한국과학기술원 Magnetic nanoparticles-platinum nanoparticles-mesoporous carbon complex and method for preparing the same

Also Published As

Publication number Publication date
KR20130124194A (en) 2013-11-13

Similar Documents

Publication Publication Date Title
KR101436299B1 (en) Antifouling paints composition
EP2551309B1 (en) Antifouling coating composition and use for same
Javadi et al. PVDF membranes embedded with PVP functionalized nanodiamond for pharmaceutical wastewater treatment
Galiano et al. A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion
JP2003502473A (en) Self-polishing marine antifouling coating composition comprising silicon-containing copolymer and fiber
Abiraman et al. Synthesis and characterization of large-scale (< 2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating
US20140242403A1 (en) Self-polishing antifouling paint composition comprising solid particles of entrapped or encapsulated rosin constituents
WO2011046086A1 (en) Antifouling coating composition, antifouling film, composite film, and in-water structure
Thamaraiselvan et al. Superhydrophobic candle soot as a low fouling stable coating on water treatment membrane feed spacers
CN112426888B (en) Modified ultrafiltration membrane for combined inhibition of membrane biological pollution and preparation method and application thereof
CN102089249A (en) Anti-biofouling materials and methods of making the same
CN110621747A (en) Composite resin containing silver nanoparticles
Cheng et al. Understanding the antifouling mechanisms related to copper oxide and zinc oxide nanoparticles in anaerobic membrane bioreactors
JP3451786B2 (en) Paint composition
KR102093432B1 (en) The composition and preparation method of quorum quenching media of core-shell structure for anti-biofouling strategy
US20230046027A1 (en) Microbe-based systems, compositions, and methods thereof
JP2006213861A (en) Coating agent for fluid contact surface and material body equipped with coating agent for fluid contact surface
WO2019033199A1 (en) Coating compositions and methods for preventing the formation of biofilms on surfaces
JP2005255858A (en) Antifouling resin and method for producing the same, and antifouling coating material
KR101350016B1 (en) Antifouling composites and paints and manufacturing method thereof
Qin et al. Bioinspired Self-Adhesive Lubricating Copolymer with Bacteriostatic and Bactericidal Synergistic Effect for Marine Biofouling Prevention
US20200029558A1 (en) Biocidal Microcapsules for Biofouling Control
KR102141764B1 (en) Resin composition for metal type self-polishing an antifouling paint
KR20190025221A (en) Manufacturing method of water treatment filter media for biofilm prevention
JP2005068191A (en) Stainproof resin, its manufacturing method and stainproof coating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20170707

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180723

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190808

Year of fee payment: 6