KR101435305B1 - Location aware recommendation engine - Google Patents

Location aware recommendation engine Download PDF

Info

Publication number
KR101435305B1
KR101435305B1 KR1020127022008A KR20127022008A KR101435305B1 KR 101435305 B1 KR101435305 B1 KR 101435305B1 KR 1020127022008 A KR1020127022008 A KR 1020127022008A KR 20127022008 A KR20127022008 A KR 20127022008A KR 101435305 B1 KR101435305 B1 KR 101435305B1
Authority
KR
South Korea
Prior art keywords
path
search results
time
location
pedestrian environment
Prior art date
Application number
KR1020127022008A
Other languages
Korean (ko)
Other versions
KR20120120347A (en
Inventor
사우미트라 모한 다스
라자르시 굽타
베루즈 코라샤디
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20120120347A publication Critical patent/KR20120120347A/en
Application granted granted Critical
Publication of KR101435305B1 publication Critical patent/KR101435305B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Traffic Control Systems (AREA)

Abstract

본 명세서에서 개시된 요지는 위치 인식 추천 엔진에 관한 것이다. 추천 요청에 응답하여, 관련된 추천들은 사용자의 현재 위치, 엔티티와 관련된 위치, 및/또는 액세스가능성 기준에 기반하여 랭크될 수 있다. The subject matter disclosed herein relates to a location awareness recommendation engine. In response to the recommendation request, the associated recommendation may be ranked based on the user's current location, the location associated with the entity, and / or the accessibility criteria.

Description

위치 인식 추천 엔진{LOCATION AWARE RECOMMENDATION ENGINE}{LOCATION AWARE RECOMMENDATION ENGINE}

35 U.S.C.§119 하에서의 우선권 주장 Priority claim under 35 USC §119

본 특허 출원은 2010년 1월 22일에 출원된 "Location-aware Ordering of Search Results"라는 명칭의 특허 가출원 제 61/297,666 호를 우선권 주장하며, 상기 가출원은 본 양수인에게 양도되어 본 명세서에 참조로서 통합된다.This patent application claims the benefit of U.S. Provisional Patent Application No. 61 / 297,666 entitled " Location-aware Ordering of Search Results "filed on January 22, 2010, which is assigned to the assignee hereof and incorporated herein by reference .

기술 분야Technical field

일반적으로, 본 명세서에서 개시되는 요지는 위치 인식 추천 엔진에 관련된다. Generally, the subject matter disclosed herein relates to a location awareness recommendation engine.

정보:Information:

셀 폰, 태블릿, 개인휴대 정보단말 (PDA), 이북 리더기 (e-book reader), 스마트북, 넷북, 또는 임의의 다른 이동국과 같은 이동국 (MS) 의 위치를 결정하기 위하여 상이한 방법들이 이용될 수도 있다. 예를 들어, 어떤 MS들은 그들의 위치를 결정하기 위해 글로벌 포지셔닝 시스템 (GPS) 과 같은 위성 포지셔닝 시스템 (SPS), 또는 SPS 와 셀룰러 기지국들의 조합을 이용할 수도 있다. Different methods may be used to determine the location of a mobile station (MS), such as a cell phone, tablet, personal digital assistant (PDA), e-book reader, smartbook, netbook, or any other mobile station have. For example, some MSs may use a Satellite Positioning System (SPS) such as Global Positioning System (GPS), or a combination of SPS and cellular base stations to determine their location.

많은 이동국들은 예를 들어, 웹 기반 검색 엔진 또는 매핑 애플리케이션을 통하여 장소에 대한 검색을 수행할 능력을 갖는다. 검색 엔진에 의하여 리턴된 검색 결과들은 관련성 (relevancy) 의 순서로 디스플레이될 수 있다. 예를 들어 "패스트푸드" 라는 검색 문자열은, KFC의 공식 웹 주소 및 사용자의 광역 도시 지역에 있는 몇 개의 패스트푸드 식당과 같은 패스트푸드 식당들에 대한 일반적인 정보를 리턴할 수도 있다. 이러한 정보는 쇼핑몰 또는 놀이 공원 내에 위치하면서 점심 시간에 먹을 음식을 찾으려고 하는 보행자에게는 바로 도움이 되지 않을 수도 있다. 매핑 애플리케이션은 사용자의 현재 위치를 맵상에 표시하고, 예를 들어, 사용자로부터 2 마일 내에 위치한 패스트푸드 식당들을 제공할 수도 있는데, 여기서 특정 패스트푸드 식당과 사용자 간의 거리는 식당의 위치와 사용자의 위치 간의 직선 거리를 이용하여 결정된다. 마찬가지로, 이러한 결과들은, 예를 들어, 공항 내에 있으며 비행편에 탑승하기 위하여 10 분 내에 음식을 먹으려고 하는 사람과 같은 보행자에게는 도움이 되지 않을 수도 있다. Many mobile stations have the ability to perform a search for a place, for example, through a web-based search engine or a mapping application. The search results returned by the search engine may be displayed in order of relevancy. For example, the search string "fast food" might return general information about fast food restaurants such as KFC's official web address and a few fast-food restaurants in your metropolitan area. Such information may not be immediately available to pedestrians seeking food at lunchtime, as they are located within shopping malls or amusement parks. The mapping application may display the user's current location on the map and provide, for example, fast food restaurants located within two miles of the user, where the distance between the particular fast food restaurant and the user is a straight line between the location of the restaurant and the location of the user It is determined using the distance. Likewise, these results may not be of benefit to pedestrians, for example, those who are in the airport and are trying to eat food within 10 minutes to board a flight.

특정한 설계예에서, 보행자 환경을 위한 추천들을 랭크하기 위한 방법이 제공된다. 검색 요청이 수신될 수 있다. 검색 요청에 응답하여, 보행자 환경과 연관된 하나 이상의 검색 결과들이 결정될 수도 있고; 검색 요청과 연관된 이동국의 위치가 결정될 수도 있고; 이동국의 위치, 및 하나 이상의 검색 결과들의 적어도 일부와 연관된 위치 및/또는 액세스가능성 기준 중 적어도 하나에 적어도 부분적으로 기반하여, 하나 이상의 검색 결과들의 적어도 일부가 랭크될 수 있다. 그러나, 이것은 단지 예시적인 설계예일 뿐이고 청구되는 요지는 이러한 측면에 한정되지 않는다는 점이 이해되어야 한다. In a particular design example, a method is provided for ranking recommendations for a pedestrian environment. A search request may be received. In response to the search request, one or more search results associated with the pedestrian environment may be determined; The location of the mobile station associated with the search request may be determined; At least a portion of the one or more search results may be ranked, based at least in part on at least one of a location of the mobile station and a location and / or accessibility criteria associated with at least a portion of the one or more search results. It should be understood, however, that this is merely exemplary design practice and that the subject matter claimed is not limited in this respect.

비한정적이며 비전면적인 (non-exhaustive) 특징들이 다음 도면들을 참조하여 논의될 것인데, 여기서 유사한 도면부호는 다양한 도면들 전체를 통하여 유사한 부재들을 가리킨다.
도 1a 는 실내 쇼핑 현장 (venue) 의 1 층 (지상층) 및 이동국을 소지하고 있는 사용자가 현장 내에서 이동하는 것을 예시한다.
도 1b 는 도 1a 의 실내 쇼핑 현장의 2 층을 예시한다.
도 2 는 쇼핑 현장 안의 그리고 근처의 엔티티들, 및 이러한 엔티티들에 대한 정보를 나열하는 데이터베이스를 예시한다.
도 3 은 실내 쇼핑 현장에 대한 추천들의 위치 인식 정렬 (location aware ordering) 을 디스플레이하는 이동국을 예시한다.
도 4 는 도 3 의 추천들의 위치 인식 정렬을 생성하기 위한 방법을 예시한다.
도 5 는 추천들의 위치 인식 정렬에 대한 다른 예를 디스플레이하는 이동국을 예시한다.
도 6 은 추천들의 위치 인식 정렬에 대한 또 다른 예를 디스플레이하는 이동국을 예시한다.
도 7 은 추천들의 위치 인식 정렬을 생성하기 위한 예시적인 흐름도이다.
도 8 은 이동국과 통신하기 위한 시스템의 블록도를 예시한다.
Non-exhaustive and non-exhaustive features will be discussed with reference to the following drawings, wherein like reference numerals refer to like elements throughout the various views.
Figure 1A illustrates one floor (ground floor) of an indoor shopping venue and a user carrying a mobile station moving within the site.
FIG. 1B illustrates two layers of the indoor shopping scene of FIG. 1A.
Figure 2 illustrates the entities in and near the shop floor and a database listing information about these entities.
Figure 3 illustrates a mobile station displaying location aware ordering of recommendations for an indoor shopping scene.
Figure 4 illustrates a method for generating a location aware alignment of the suggestions of Figure 3;
Figure 5 illustrates a mobile station displaying another example of location awareness alignment of recommendations.
Figure 6 illustrates a mobile station displaying another example of location awareness alignment of recommendations.
Figure 7 is an exemplary flow chart for generating a location aware alignment of recommendations.
8 illustrates a block diagram of a system for communicating with a mobile station.

본 명세서 전체를 통하여, "하나의 예", "하나의 특징", "일 예", 또는 "일 특징"이라는 언급은, 해당 특징 및/또는 예와 관련된 설명이 청구된 요지의 적어도 하나의 특징 및/또는 예에 포함될 수도 있다는 것을 의미한다. 그러므로, 이러한 문구들이 본 명세서의 다양한 위치에서 나타나더라도 반드시 동일한 특징 및/또는 예를 가리키는 것은 아니다. 특징들, 예들, 및/또는 기능들에 대한 특정한 설명들은 하나 이상의 특징들, 예들, 및/또는 기능들에서 결합될 수도 있다. 이 명세서에서, "위치" 및 "포지션" 이라는 용어는 상호 교환 가능하게 이용될 수도 있다. 이 명세서에서, "검색 요청" 및 "추천 요청" 이라는 용어들은 상호 교환 가능하게 이용될 수도 있으며, "검색 결과" 및 "추천 결과" 라는 용어들도 상호 교환 가능하게 이용될 수도 있다. Reference throughout this specification to "one example", "one feature", "instance", or "feature" means that a feature associated with that feature and / or example And / or < / RTI > example. Therefore, these phrases appearing in various places in this specification do not necessarily indicate the same features and / or examples. Specific descriptions of features, examples, and / or functions may be combined in one or more of the features, examples, and / or functions. In this specification, the terms "position" and "position" may be used interchangeably. In this specification, the terms "search request" and "recommendation request" may be used interchangeably, and the terms "search result" and "recommendation result" may also be used interchangeably.

보행자 환경이란 보행자에 의하여 접근될 수 있는 환경 또는 지역을 의미할 수도 있다. 예를 들어, 보행자가 보행하거나, 달리거나, 휠체어나 자전거를 타거나, 또는 이와 달리 한 위치로부터 다른 위치로 물리적으로 이동할 수 있는 지역이 보행자 환경을 포함할 수도 있다. 보행자 환경들의 예들은 실내 환경들 및 실외 환경들을 포함할 수도 있다. 실내 보행자 환경들의 예들은, 수많은 가능한 예들 중 몇 개를 들자면 오피스 빌딩, 호텔, 쇼핑 몰들, 창고, 청과물 가게, 카지노, 박물관, 교통 터미널 (예를 들어, 공항, 지하철역, 페리호/크루즈 터미널, 등), 컨벤션 센터, 및 스포츠 스타디움들과 같은 폐쇄된 구조물들을 포함한다. 실외 보행자 환경들의 예들은, 수많은 가능한 예들 중 몇 개를 들자면 해변, 대로 (boardwalks), 놀이 공원, 동물원, 실외 쇼핑 몰/스트립 (shopping malls/strips), 야외 시장, 공원, 및 보행자에 의하여 접근될 수 있는 경로, 이를 테면 보도를 가지는 지역들을 포함한다. The pedestrian environment may mean an environment or area that can be accessed by pedestrians. For example, a pedestrian environment may include an area where a pedestrian may walk, run, wheelchair, ride a bicycle, or otherwise physically move from one location to another. Examples of pedestrian environments may include indoor and outdoor environments. Examples of indoor pedestrian environments include office buildings, hotels, shopping malls, warehouses, green grocery stores, casinos, museums, transportation terminals (e.g., airports, subway stations, ferries / cruise terminals, etc.) , Convention centers, and sports stadiums. Examples of outdoor pedestrian environments include a number of possible examples, such as beaches, boardwalks, amusement parks, zoos, outdoor shopping malls / strips, outdoor markets, parks, and pedestrians Including areas that have a pathway, such as a sidewalk.

실내 환경 내에 있는 보행자를 위한 네비게이션은, 차량의 운전자를 위한 네비게이션 서비스와는 상이한 접근법을 요구한다. 예를 들어, 실내 구조물 안이거나 (예를 들어, 쇼핑몰, 공항, 오피스 빌딩 등의 안이거나), 또는 미드타운 맨하탄 (midtown Manhattan) 과 같이 이러한 신호들의 송신기들에 대한 명확한 시야가 차단될 수 있는 실외 도심지 협곡 (outdoor urban canyon) 에서는, GPS 신호들 또는 셀룰러 신호들과 같은 신호들이 열화되고 신뢰할 수 없게 될 수 있다. 또한, 보행자 현장에는 흔히 계단, 엘리베이터, 및 에스컬레이터와 같은 장애물들, 및 액세스가 제한된 구역들과 같은 장벽들이 존재하는데, 이들이 네비게이션에 복잡함을 더할 수도 있다. 계단, 엘리베이터, 및 에스컬레이터는 보행자의 경로에 물리적인 장애물을 제공하는 것뿐 아니라, 보행자를 그의/그녀의 현재 층/위치 콘텍스트 (context) 밖으로 데리고 나가고 그를/그녀를 신규하며 친숙하지 않을 수 있는 층/위치 콘텍스트에 놓이게 할 수 있는 층 변경 (floor change) 도 나타낸다. 차량에 비하여 보행자의 이동 범위가 제한되기 때문에, 식당, 상점, 극장, 화장실, 또는 보행자가 어느 시점에 접근할 수 있는 다른 엔티티들과 같은 관심 포인트들 (points of interests, POIs) 의 양은 손쉬운 보행 거리 내에 있는 지역으로 한정될 수도 있다. 그러므로, 보행자가 그의/그녀의 이동국상의 검색 애플리케이션 내에 검색 요청을 입력하면, 검색 결과들 내의 POI들을 손쉬운 보행 거리 (또는 보행자가 휠체어를 타고 있다면 이동 거리) 내에 속하는 것들로 한정하고, 예를 들면 검색 결과들을 액세스가능성의 용이함의 순서로 랭크하는 것이 도움이 될 수도 있다. Navigation for pedestrians in an indoor environment requires a different approach from navigation services for the driver of a vehicle. For example, in an outdoor environment where a clear view of the transmitters of these signals may be blocked, such as in an interior structure (for example, in a shopping mall, an airport, an office building, etc.) or in midtown Manhattan In an outdoor urban canyon, signals such as GPS signals or cellular signals may deteriorate and become unreliable. Also, pedestrian sites often have obstacles such as stairs, elevators, and escalators, and barriers such as restricted access areas, which may add to the complexity of navigation. Stairs, elevators and escalators not only provide physical obstacles to the pedestrian's path but also take pedestrians out of his / her current floor / location context and make him / her new and unfamiliar / It also shows the floor changes that can be placed in the location context. The amount of points of interest (POIs), such as restaurants, shops, theaters, restrooms, or other entities that pedestrians can access at any point in time, is limited by the ease of walking And may be limited to the area within. Therefore, if a pedestrian enters a search request in a search application on his / her mobile station, the POIs in the search results are limited to those that fall within easy walking distance (or travel distance if the pedestrian is in a wheelchair) It may be helpful to rank the results in the order of ease of accessibility.

도 1a 는 실내 쇼핑몰의 1 층 및 이동국 (100) 을 소지하고 몰 내에서 이동중인 보행자 사용자를 예시한다. 도 1b 는 해당 쇼핑몰의 2 층을 예시한다. GPS와 같은 SPS 로부터의 네비게이션 신호는 몰 내에서는 이용가능하지 않을 수 있다. SPS 신호가 이용가능하지 않은 지역 내에서 이동국 (100) 의 위치가 결정될 수 있는 방법들이 존재할 수도 있다. 그 지역 내에 위치하며, 알려진 고정 위치들을 가지는 장치들이 존재할 수 있다. 예를 들어, 고정되고 알려진 위치를 가지는 무선 장치들이 도 1a 및 1b 의 몰 전체에 분산되어 있을 수도 있다. 이러한 무선 장치들이 신호들을 송신할 수 있고, 이동국의 위치는 이러한 신호들에 기반한 삼변 측량 기법을 이용하여 결정될 수 있다. 예를 들어, SPS 신호들이 이용가능하지 않은 지역에서는, 이동국은 인접 무선 장치들을 수반하는 신호들을 이용함으로써 자신의 위치를 추정할 수도 있다. 예를 들어, 이러한 신호들은 IEEE (Institute of Electrical and Electronics Engineers) 802.11-순응 Wi-Fi 신호들, 및 펨토셀들 (femtocells) 과 관련되는 신호들, 블루투스 (Bluetooth) 신호들 등을 포함할 수도 있다. FIG. 1A illustrates a pedestrian user carrying a mobile station 100 and a first floor of an indoor shopping mall. 1B illustrates the second floor of the shopping mall. Navigation signals from SPS, such as GPS, may not be available in the mall. There may be ways in which the location of the mobile station 100 can be determined within an area where the SPS signal is not available. There may be devices within the area that have known fixed locations. For example, wireless devices having fixed and known locations may be distributed throughout the moles of FIGS. 1A and 1B. These wireless devices can transmit signals, and the position of the mobile station can be determined using trilateration techniques based on these signals. For example, in an area where SPS signals are not available, the mobile station may estimate its location by using signals involving nearby wireless devices. For example, these signals may include Institute of Electrical and Electronics Engineers (IEEE) 802.11-compliant Wi-Fi signals, and signals associated with femtocells, Bluetooth signals, and the like.

보행자 현장 오퍼레이터들은 Wi-Fi 액세스 포인트들 또는 펨토셀들과 같은 무선 장치들을 점점 많이 설치함으로써 셀룰러 건물 신호들 (cellular tower signals) 에 대한 확장 또는 이에 대한 대체로서 음성 또는 데이터 네트워크로의 접속을 제공할 수도 있는데, 이러한 신호들은 실내 보행자 환경에서는 열화되거나 신뢰할 수 없게 될 수 있다. 예를 들어, Wi-Fi 액세스 포인트들 (도 1a 및 1b 에는 도시되지 않음) 이 쇼핑몰 전체에 설치될 수도 있다. 사용자의 이동국의 포지션 (또한 그 결과 사용자의 포지션) 은 예를 들어 Wi-Fi 신호들을 이용한 삼변 측량 기법을 이용하여 결정될 수 있다. 이동국 (100) 은, 예를 들어 스스로 연산을 수행하거나, 위치 결정 요청을 서버로 전송하고 서버로부터 연산된 위치를 수신함으로써, 자신의 위치를 결정할 수도 있다. 사용자가 몰에 입장하면, 이동국 (100) 은 몰 내의 Wi-Fi 액세스 포인트들과 통신을 개시할 수 있으며, Wi-Fi 신호들을 이용하는 포지션 결정을 통하여 해당 MS (100) 가 몰 내에 위치하고 있다는 것을 표시할 수 있다. MS (100) 가 몰 내에 위치한다는 결정이 있으면, 사용자가 위치한 층의 맵 (예를 들어, 도 1a) 이 MS (100) 에 의하여 얻어지거나 MS (100) 로 보내지고, MS (100) 의 스크린상에 디스플레이될 수 있다. 대안적으로, 예를 들어, 사용자가 몰에 입장하기 이전에 맵이 MS (100) 상에 사전 로딩될 수도 있다. 몰 내에서의 사용자의 위치는 MS (100) 의 스크린상의 맵에 실루엣 그림에 의하여 표시될 수도 있다 (예를 들어, 도 1a). 도 1a 에서 사용자는 엘리베이터의 방향으로 이동하는 중이다. Pedestrian field operators may provide access to voice or data networks as an alternative to or as an extension to cellular cellular signals by installing more and more wireless devices such as Wi-Fi access points or femtocells These signals can degrade or become unreliable in an indoor pedestrian environment. For example, Wi-Fi access points (not shown in FIGS. 1A and 1B) may be installed throughout the shopping mall. The position of the user's mobile station (and hence the user's position) may be determined using, for example, trilateration techniques using Wi-Fi signals. The mobile station 100 may determine its location, for example, by performing an operation on its own, by transmitting a location request to the server and receiving the calculated location from the server. When the user enters the mall, the mobile station 100 may initiate communication with the Wi-Fi access points in the mall and indicate through the position determination using the Wi-Fi signals that the MS 100 is located within the mall can do. If a determination is made that the MS 100 is located in the mall, a map (e.g., FIG. 1A) of the layer in which the user is located is obtained by the MS 100 or sent to the MS 100, Lt; / RTI > Alternatively, for example, the map may be preloaded on MS 100 before the user enters the mall. The location of the user in the mall may be indicated by a silhouette picture on a map on the screen of the MS 100 (e.g., FIG. 1A). In Figure 1A, the user is moving in the direction of the elevator.

몰 내의 엔티티들 및 구조물들의 위치는 로컬 좌표계이거나 또는 GPS와 함께 이용되는 WGS84 좌표계와 같은 일반화된 글로벌 좌표계일 수 있는 좌표계에 의하여 표시될 수도 있다. 간결하게 설명하기 위하여, 도 1a 및 1b 에서는 로컬 좌표계가 이용되고, 좌표계는 (x, y, z) 포맷을 가지는데, 여기서 x 는 도 1a 및 1b 의 수평축을 따른 엔티티, 구조물 등의 포지션을 나타내고, y 는 도 1a 및 1b 의 수직축을 따른 엔티티 또는 구조물의 포지션을 나타내며, z 는 쇼핑몰의 층을 나타내는데, 1 은 1 층 (지상층) 을 나타내고 2 는 2 층을 나타낸다. 예를 들어, 사용자의 포지션은 (18, 9, 1) 로 표시될 수 있고, 몰의 입구/출구 1 (Entrance/Exit 1) 는 (18, 10, 1) 로 표시될 수 있으며, 몰의 1 층에 위치한 스바로 (SBARRO) 매장의 입구/출구는 (7, 9, 1) 로 표시될 수 있고, 1 층 및 2 층을 연결하는 에스컬레이터 2 의 입구/출구 포인트들은 1 층에서는 (8, 3, 1) 로 표시되고 2 층에서는 (8, 3, 2) 로 표시될 수 있으며, 몰의 2 층에 위치한 피자헛 (PIZZA HUT) 매장의 입구/출구는 (18, 7, 2) 로 표시될 수 있다. 예를 들어, (7, 3, 1) 과 같은 진입로/진출로들 및 복도의 교차점들이 경로 그래프의 교차점들로서 기능할 수 있으며, 이러한 교차점들 간의 거리가 예를 들어 경로 그래프의 에지로서 기능할 수 있다. The location of entities and structures within the mall may be represented by a coordinate system, which may be a local coordinate system or a generalized global coordinate system, such as the WGS84 coordinate system used with GPS. 1a and 1b, the coordinate system has an (x, y, z) format, where x represents the position of an entity, structure, etc. along the horizontal axis of Figs. 1a and 1b , y represents the position of the entity or structure along the vertical axis of Figs. 1a and 1b, and z represents the layer of the shopping mall, where 1 represents one layer (ground layer) and 2 represents two layers. For example, the user's position can be displayed as (18, 9, 1) and the entrance / exit 1 of the mall can be represented as (18, 10, 1) The entrance / exit of the SBARRO store at the floor can be indicated by (7, 9, 1), and the entrance / exit points of the escalator 2 connecting the 1st and 2nd floors can be represented by 8, 3 (1, 2) on the second floor, and the entrance / exit of the PIZZA HUT store on the second floor of the mall is indicated by (18, 7, 2) . For example, the intersection of entry and exit paths and corridors such as (7, 3, 1) can function as the intersections of the path graph, and the distance between these intersections can serve as the edge of the path graph have.

도 2 는 쇼핑몰 내에 존재하거나 쇼핑몰에 인접한 엔티티들 및 구조물들 및 이러한 엔티티 및 구조물들에 대한 정보를 나열하는 데이터베이스 (200) 를 예시한다. 예를 들어, 이러한 데이터베이스는 쇼핑몰에 의하여 제어되는 서버 상에 저장될 수 있다. 데이터베이스 (200) 는 일 설계예에 따르면 사용자의 MS (100) 로 송신될 수 있다. 데이터베이스 (200) 의 제 1 열은 엔티티 또는 구조물의 명칭을 나타낸다. 데이터베이스 (200) 의 제 2 열은 제 1 열에 있는 엔티티들 및 구조물들에 대응되는 카테고리들을 나타낸다. 제 3 열은 대응하는 엔티티들 및 구조물들의 임의의 하부-카테고리들을 나타낸다. 제 4 열은 대응하는 엔티티들 및 구조물들의 입구들/출구들의 위치를 나타낸다. 제 5 열은 대응하는 엔티티들 및 구조물들의 모든 다른 속성들을 나타낸다. Figure 2 illustrates a database 200 listing entities and structures that exist in or near a shopping mall and information about such entities and structures. For example, such a database may be stored on a server controlled by a shopping mall. The database 200 may be transmitted to the user's MS 100 according to one design example. The first column of the database 200 represents the name of the entity or structure. The second column of database 200 represents the categories corresponding to the entities and structures in the first column. The third column represents any sub-categories of corresponding entities and structures. The fourth column shows the location of the entrances / exits of the corresponding entities and structures. The fifth column represents all other attributes of the corresponding entities and structures.

예를 들어, 바하 프레시 (BAJA FRESH) 는 "음식" 카테고리 및 "패스트푸드" 및 "멕시코 음식" 라는 하부-카테고리들에 속한다. 그 입구/출구는 도 2b 에서 (6, 3, 2) 에 위치한다. 엘리베이터는 "구조물" 카테고리 및 "층 변경" 하부-카테고리에 속한다. 그 입구들/출구들은 1 층에서는 (18, 14, 1) 에 위치하고, 2 층에서는 (18, 14, 2) 에 위치한다. "다른 속성들" 열에 표시되는 것과 같이, 여기에는 장애인이나 휠체어가 액세스 가능하다. 몰 내의 가장 큰 엔티티들에 대해서는 (아이스 스케이팅 링크, 영화관, 및 시어즈 (SEARS) 에 대해서는), "다른 속성들" 열은 이러한 엔티티들의 경계를 마킹하는 좌표들을 포함한다. 화장실 3 은 "위치" 열에 의하여 표시되는 바와 같이 영화관 내부에 위치하며, "다른 속성들" 열에 의하여 표시되는 바와 같이 접근이 제한되어 영화 관객들에 의해서만 이용가능하다. 화장실 4 는 "위치" 열에 의하여 표시되는 바와 같이 시어즈 (몰의 2 층) 내에 위치하고, "다른 속성들" 열에 의하여 표시되는 바와 같이 한 번에 한 명만이 들어갈 수 있는 1인용 화장실만을 포함한다. 시어즈는 "다른 속성들" 열에 의하여 표시되는 다양한 물건들을 판매한다. 영화관 또는 시어즈와 같은 대형 엔티티들은, 사용자가 영화관 또는 시어즈에 진입할 때 MS (100) 로 송신될 수 있는 그들 소유의 맵들을 포함할 수도 있다. 스테이크 하우스 (Steak House) 는 "하부-카테고리" 열에 의하여 표시되는 바와 같이 파인 다이닝을 제공하며, "다른 속성들" 열에 표시되는 바와 같이 몰의 영업 시간과는 상이한 특정한 영업 시간을 가진다. 데이터베이스 (200) 는 도 2 에 도시된 정보보다 더 많거나 더 적거나, 또는 이와 상이한 정보를 포함할 수도 있다. 예를 들어, 데이터베이스 (200) 는 식당의 메뉴 선택/가격에 대한 상세한 정보 및 상점의 재고 아이템들/가격들에 대한 상세한 정보를 포함할 수 있다. POI 속성들이 변경되면 (예를 들어, 어느 상점이 몰에서 퇴점하고 다른 상점이 입점하거나; 어느 상점이 영업 시간을 연휴 기간 동안에 연장하거나 하는 등), 데이터베이스 (200) 는 업데이트되어 신규 정보를 반영할 수도 있다. 데이터베이스 (200) 의 현재 버전 또는 데이터베이스 (200) 로의 링크 또는 포인터는, 사용자가 몰에 진입할 때마다 MS (100) 로 송신될 수 있다 (예를 들어, Wi-Fi를 통하여 송신될 수 있다). 데이터베이스 (200) 는 단일 데이터베이스/데이터 구조이거나 또는 데이터베이스들/데이터 구조들의 조합일 수도 있다. For example, BAJA FRESH belongs to the "food" category and the sub-categories "fast food" and "Mexican food". The inlet / outlet is located at (6, 3, 2) in Figure 2b. The elevator belongs to the "structure" category and the "floor change" sub-category. The inlets / outlets are located at (18, 14, 1) in the first floor and at (18, 14, 2) in the second floor. As shown in the "Other Attributes" column, disabled or wheelchair is accessible here. For the largest entities in the mall (for ice skating links, cinemas, and SEARS), the "Other Attributes" column contains the coordinates marking the boundaries of these entities. Restroom 3 is located inside the movie theater as indicated by the "location" column, and access is restricted as indicated by the "Other Attributes" column and is only available to movie audiences. Toilets 4 include only one toilets located within the Sears (second floor of the mall) as indicated by the "Location" column, and only one at a time, as indicated by the column "Other Properties". Sears sells a variety of items displayed by the "Other Attributes" column. Large entities such as cinemas or Sears may include their own maps that may be transmitted to the MS 100 when the user enters a movie theater or sears. The Steak House provides fine dining as indicated by the "sub-category" column and has a specific business hours that are different from the business hours of the mall as shown in the "other properties" column. The database 200 may contain more or less information than the information shown in FIG. 2, or may contain different information. For example, the database 200 may include detailed information on menu selection / pricing of the restaurant and detailed information on inventory items / prices of the store. If the POI properties are changed (e.g., a store goes out of the mall and another store enters, or a store extends its business hours during the holiday season, etc.), the database 200 is updated to reflect the new information It is possible. The current version of the database 200 or a link or pointer to the database 200 may be transmitted to the MS 100 whenever the user enters the mall (e.g., may be transmitted over Wi-Fi) . The database 200 may be a single database / data structure or a combination of databases / data structures.

도 3 은 쇼핑몰 에 대한 추천들의 위치 인식 정렬을 디스플레이하는 이동국을 예시한다. MS (100) 의 디스플레이 (302) 는 윈도우 (304) 에서 사용자 입력을 수신하고 그 응답으로서 위치 인식 추천들의 랭크된 목록을 제공하는 위치 인식 추천 애플리케이션을 도시한다. 다른 설계예에서, 위치 인식 추천 인터페이스는 종래의 검색 엔진 인터페이스 내에 통합될 수도 있다. 사용자는 키보드 (316) 를 통하거나, 온-스크린 키보드 (미도시) 를 통하거나, 또는 MS (100) 의 음성-텍스트 피쳐 등을 통하여 윈도우 (304) 내에 추천 요청을 입력할 수도 있다. 검색 요청을 입력한 이후에, 사용자는 리턴 키를 타이핑하거나 또는 예를 들어 디스플레이 (302) 상의 "추천" 단어를 클릭함으로써 추천 프로세스를 활성화할 수도 있다. 다른 설계예에서, 자동화된 추천 요청이 수신될 수도 있다. 예를 들어, MS (100) 또는 서버가 전술된 바와 같이 MS (100) 가 몰 내에 존재한다고 결정하고, 달력 애플리케이션에 액세스하고 지금이 연휴 기간이라는 것을 발견할 수도 있으며, "연휴 선물" 에 대한 추천 요청을 자동으로 입력할 수도 있다. Figure 3 illustrates a mobile station displaying a location awareness alignment of recommendations for a shopping mall. The display 302 of the MS 100 illustrates a location awareness recommendation application that receives user input in the window 304 and provides a ranked list of location awareness recommendations as a response. In other design examples, the location awareness recommendation interface may be incorporated within a conventional search engine interface. The user may enter a recommendation request in window 304 via the keyboard 316, via an on-screen keyboard (not shown), or through voice-text features of the MS 100, After entering the search request, the user may activate the recommendation process by typing the return key or by clicking on the "recommend" word on display 302, for example. In another design example, an automated recommendation request may be received. For example, the MS 100 or the server may determine that the MS 100 is in the mall as described above, access the calendar application and discover that it is now a holiday season, You can also enter requests automatically.

도 3 에 도시된 예에서, 현재 시각은 디스플레이 (302) 에 표시된 바와 같이 1:15 pm 이고, "치즈버거" 라는 추천 요청이 입력된 바 있다. 이에 응답하여, 위치 인식 추천 엔진은 사용자의 손쉬운 보행 거리 내에 있는 치즈버거를 판매할 수 있는 식당들의 목록을 제공하는데, 여기서 이 목록은 사용자의 현재 위치, 식당들과 관련된 위치들, 및/또는 액세스가능성 기준에 기반하여 액세스가능성의 순서대로 (예를 들어, 가장 접근하기 용이한 것으로부터 가장 접근하기 곤란한 것으로) 랭크되어 있다. In the example shown in Fig. 3, the current time is 1:15 pm as indicated on the display 302, and a recommendation request of "cheeseburger" has been entered. In response, the location awareness recommendation engine provides a list of restaurants that can sell cheeseburgers within easy walking distance of the user, where the list includes the user's current location, locations associated with restaurants, and / or access Are ranked in order of accessibility (e.g., from the most accessible to the least accessible) based on likelihood criteria.

액세스가능성 기준 (accessibility criteria) 은 목적지까지의 경로의 길이, 경로의 복잡도, 목적지까지의 경로에 계단, 엘리베이터, 또는 에스컬레이터와 같은 장애물의 개입, 되돌아오거나 (turn around) /역방향으로 진행할 필요성, 경로의 혼잡도 (congestion), 경로가 영업용으로 개방되었는지 또는 액세스가 제한되는지 여부, 목적지에서 요구되는 시간 또는 돈, 및 경로가 현재 현장 (venue) 을 떠나는 것과 관련되는지 등을 포함할 수도 있다. 도 3 에 도시된 추천들의 위치 인식 정렬을 생성하기 위한 방법이 도 4 와 관련하여 상세히 설명될 것이다. Accessibility criteria include the length of the route to the destination, the complexity of the route, the need to intervene, turn around, or reverse in the path to the destination, such as stairs, elevators, or escalators, Congestion, whether the route is open for business or limited access, the time or money required at the destination, and whether the route is related to leaving the venue at the current time. A method for generating a location aware alignment of the recommendations shown in FIG. 3 will be described in detail with respect to FIG.

도 3 을 계속 살펴보면, 디스플레이 (302) 상의 다양한 아이콘들에 대한 설명이 계속된다. 이 예에서, 버거킹 (BURGER KING) 이 치즈버거에 대한 최적 추천 (top recommendation) 으로서 랭크되고, MS (100) 의 방향에 대하여 순방향인 화살표를 가지는 아이콘 (306) 은 사용자에게 그가/그녀가 그의/그녀의 현재 위치로부터 버거킹까지의 경로에서 계속 전진 이동하여야 한다는 것을 표시한다. 두 번째로 랭크된 웬디스 (WENDY'S) 는 몰의 2 층에 존재하기 때문에, 웬디스까지의 경로에서 계단의 사용을 나타내는 아이콘 (308) 및 웬디스까지의 경로에서 엘리베이터의 사용을 나타내는 아이콘 (310) 이 디스플레이된다. 비록 사용자가 에스컬레이터를 통하여 2 층에 도착할 수도 있지만 에스컬레이터에 대한 아이콘은 디스플레이되지 않는데, 그 이유는 사용자에게 가장 가까운 에스컬레이터인 에스컬레이터 1 이 시어즈 내에 있고 여기에 가려면 시어즈를 관통하여 길을 찾아가야 하는 복잡함을 동반할 수 있기 때문이다. 그러므로, 계단 및 엘리베이터가 가장 접근하기 용이한 옵션으로서 표시된다. 세 번째로 랭크된 맥도날드 (McDONALD'S) 는 몰의 1 층에 있지만, 경로가 아이콘 (312) 에 의하여 표시되는 바와 같이 사용자의 현재 방향을 반전시키는 것과 관련된다. 예를 들어, 사용자의 현재 방향은 가속도계 (accelerometer) 와 같은 MS (100) 내의 하나 이상의 센서들을 통하여 검출될 수도 있다. 예를 들어, MS (100) 에 의해 제안된 목적지로의 걷는 방향에 기반한 경로가 사용자의 현재 방향으로부터 +/- 15 도의 범위 내에 있다면, 이 경로는 사용자의 현재 경로와 동일한 방향을 가진다고 간주될 수도 있다. 네 번째로 랭크된 소닉 (SONIC) 은 몰 바깥에 존재하기 때문에, 아이콘 (314) 이 디스플레이되어 이것이 현재 현장 외부에 있다는 것을 나타낸다. 위에서부터 네 개의 식당 추천들 다음에 아이콘들 (318) 은 그들이 합리적인 선택들이라는 것을 표시한다. 다섯 번째로 랭크된 스테이크 하우스 (Steak House) 는, 데이터베이스 (200) 내의 정보에 기반할 때 현재 시각에는 닫혀있으며, 따라서, 아이콘 (320) 이 스테이크 하우스는 비합리적 선택이라는 것을 나타낸다. 비록 스테이크 하우스가 현재는 닫혀 있지만 이것이 목록에는 포함되는데, 그 이유는 목록이 사용자에게 장래에 치즈버거에 대한 다른 옵션을 제시할 수도 있고, 사용자는 영업 시간과 같은 스테이크 하우스에 대한 추가적 정보를 디스플레이 (302) 상의 스테이크 하우스 링크를 클릭함으로써 찾아낼 수도 있기 때문이다. Continuing with FIG. 3, a description of the various icons on the display 302 continues. In this example, the BURGER KING is ranked as the top recommendation for the cheeseburger, and the icon 306 with the forward arrow with respect to the direction of the MS 100 tells the user that he / / Indicates that she should continue to move forward on her path from her current position to the Burger King. Since the second ranked Wendy's are on the second floor of the mall, an icon 308 indicating the use of the stairs in the path to Wendy's and an icon 310 indicating the use of the elevator in the path to Wendy's are displayed do. Although the user may arrive on the second floor through the escalator, the icon for the escalator is not displayed because the escalator 1, the closest escalator to the user, is in Sears and the complexity of navigating through the sears It can be accompanied. Therefore, the stairs and the elevator are displayed as the easiest accessible options. The third-ranked McDonald's is on the first floor of the mall, but its path is related to reversing the user's current direction, as indicated by the icon 312. For example, the current direction of the user may be detected through one or more sensors within the MS 100, such as an accelerometer. For example, if the path based on the walking direction to the destination suggested by the MS 100 is within +/- 15 degrees from the user's current direction, then this path may be considered to have the same direction as the user's current path have. Because the fourth ranked SONIC is outside the mall, an icon 314 is displayed indicating that it is currently outside the scene. After four restaurant recommendations from above, the icons 318 indicate that they are reasonable choices. The fifth ranked Steak House is closed at the current time based on the information in the database 200 and thus the icon 320 indicates that the steakhouse is an irrational choice. Although the steakhouse is now closed, this is included in the list because the list may present the user with other options for the cheeseburger in the future, and the user may display additional information about the steakhouse, such as business hours 302 by clicking on the steakhouse link.

합리적인 선택들 각각에 대한 추가적 정보를 찾기 위하여, 사용자는 대응되는 식당 명칭 링크를 디스플레이 (302) 상에서 클릭할 수도 있다. 이러한 식당들 중 하나의 메뉴를 살펴보기 위하여, 이러한 식당들 중 하나를 호출하기 위하여, 또는 이러한 식당들 중 하나로의 맵/보행 안내 (map/walking directions) 를 불러오기 위하여, 사용자는 디스플레이 (302) 상에서 대응 링크를 클릭할 수 있다. 예를 들어, 버거킹에 대한 맵/보행 안내 링크를 클릭하면, 도 1a 와 같은 맵이 제공될 수 있는데, 예를 들어, 사용자의 현재 위치가 실루엣 그림으로 표시된 상태로 디스플레이 (302) 상에 제공될 수 있다. 버거킹까지의 경로는 위치 인식 추천 엔진을 이용하여 결정될 수 있으며, 예를 들어, 도 4 와 관련하여 하기의 논의에 기반하여 결정될 수 있다. 네비게이션 안내가 제공될 수도 있다. 예를 들어, 해당 경로는 황색과 같이 시인성이 높은 색상을 이용하여, 해당 경로를 점등 및 점멸시킴으로써, 버거킹까지의 경로에 따라 배치된 일련의 흐름 화살표들 등에 의하여 강조될 수 있다. 다른 예로서, "계속 똑바로 걸으세요", "교차로에서 좌회전 하세요", "계속 똑바로 걸으세요", "화장실 1에서 좌회전 하세요", "계속 똑바로 걸으세요", 및 "우회전하여 버거킹으로 들어가세요" 와 같은 네비게이션 명령들이 역시 제공될 수도 있으며, 이들은 예를 들어 디스플레이 (302) 를 통하여 시각적으로 제공되거나, 및/또는 MS (100) 의 스피커 장치를 통하여 청각적으로 제공될 수 있다. 만일 사용자가 디스플레이 (302) 상에 추천 스크린이 제공된 이후에 어떤 선택도 하지 않는다면, MS (100) 는 디폴트로써 가장 높게 랭크된 추천이 목적지인 것으로 간주할 수도 있는데, 이 경우에, 가장 높은 순위는 버거킹이다. 그러므로, 사용자가 몰에서 이동함에 따라서, 버거킹에 도달하는 경로를 따라가기 위하여 사용자가 이동하여야 하는 방향을 가리키기 위하여 아이콘 (306) 에 표시된 화살표는 방향을 변경할 수도 있다. 그러나, 사용자가 선택을 하지 않으면서 검색 요청을 입력했던 위치로부터 많은 거리를 이동한다면, 추천 결과들의 순위는 동적으로 재정렬됨으로써 추천된 엔티티들의 위치에 대한 이동국 (100) 의 변경된 위치를 반영할 수도 있다 (그리고 이에 따라서 사용자의 변경된 위치를 반영할 수도 있다). In order to find additional information on each of the reasonable choices, the user may click on the display 302 with a corresponding restaurant name link. In order to look at one of these restaurants, to call one of these restaurants, or to retrieve the map / walking directions to one of these restaurants, The corresponding link can be clicked on. For example, clicking on the map / walking link for the Burger King may provide a map as shown in FIG. 1A, for example, providing the user's current location on the display 302 in a silhouette- . The path up to the Burger King may be determined using a location awareness recommendation engine and may be determined based on, for example, the following discussion with respect to FIG. Navigation guidance may be provided. For example, the path may be highlighted by a series of flow arrows arranged along the path to the Burger King by lighting and flickering the path using high visibility colors such as yellow. As another example, "Walk straight", "Turn left at the intersection", "Continue straight", "Turn left in bathroom 1", "Keep straight", and "Turn right into Burger King" May also be provided, which may be visually provided, for example, via display 302, and / or may be provided audibly through a speaker device of MS 100. [ If the user does not make any selection after the recommendation screen is provided on the display 302, the MS 100 may assume that the highest ranked recommendation by default is the destination, in which case the highest ranking is Burger King. Therefore, as the user moves in the mall, the arrow displayed on the icon 306 may change direction to indicate the direction in which the user must move to follow the path to reach the Burger King. However, if the user moves a large distance from the location from which the search request was entered without making a selection, the ranking of the recommendation results may be dynamically reordered to reflect the changed location of the mobile station 100 relative to the location of the recommended entities (And may thus reflect the user's changed location).

치즈 버거에 대한 추천 요청이 수신되면, 보행자 환경과 연관된 하나 이상의 검색 결과들을 결정하기 위하여 검색이 실행 (invoke) 될 수도 있다. 이 예에서, 위치 인식 추천 엔진은 추천들이 치즈 버거를 판매하는 식당에 대해서 이루어져야 하고 보행자가 그의/그녀의 현재 위치에 기초하여 편하게 액세스할 수 있어야 한다는 것을 결정할 수도 있다. MS (100) 의 현재 위치 (따라서 사용자의 현재 위치) 가 몰 내에 있는 것으로 결정되기 때문에, 검색이 실행되어 치즈 버거를 판매할 수 있으며 몰 내에 위치하거나 몰에 인접한 하나 이상의 엔티티들의 관련 목록을 결정할 수도 있다. 이러한 검색은, 어떤 엔티티들이 치즈 버거의 판매와 관련되는지를 결정하기 위하여 데이터베이스 (200) 내의 정보를 이용할 수 있는 (예를 들어, 종래의 검색 엔진에 의하여 채택되는) 관련성 검색 알고리즘을 이용하여 수행될 수도 있다. 위치 인식 추천 엔진은 몰과 관련된 하나 이상의 검색 결과들을 (예를 들어, 관련성 검색 알고리즘을 실행함으로써) 결정하고, 위치 인식 기준을 검색 결과들에 적용함으로써 랭크된 결과들의 목록을 디스플레이 (302) 에 도시된 것과 같이 생성해 낼 수도 있다. 관련성 검색 알고리즘은 검색 요청의 속성들을 결정할 수도 있다. 예를 들어, 검색 요청 "치즈버거" 의 속성들은, "패스트푸드", "햄버거", 등인 것으로 결정될 수 있다. 관련성 검색 알고리즘은 검색 요청의 결정된 속성들을 보행자 환경과 연관된 하나 이상의 엔티티들의 속성들과 매칭시키고 (예를 들어, 데이터베이스 (200) 내의 정보를 이용함으로써 매칭시킨다), 매칭된 각 엔티티를 하나 이상의 검색 결과들의 목록에 입력한다. 이러한 예에서, 관련성 검색 알고리즘은 버거킹, 맥도날드, 소닉, 스테이크 하우스, 및 웬디스를 포함하는 매칭된 엔티티들의 목록을 리턴할 수 있다. 관련성 검색 알고리즘은 가장 관련성이 높은 것으로서 버거킹, 맥도날드, 소닉, 및 웬디스를 랭크할 수 있는데, 그 이유는 이러한 엔티티들이 패스트푸드 햄버거 식당들이기 때문이며, 스테이크 하우스는 부분적으로 관련된 것으로 랭크할 수 있는데, 그 이유는 이것이 고급 식당이고 햄버거를 판매하는 것은 스테이크 하우스의 주된 사업 분야가 아닐 수도 있기 때문이다. 그러므로, 관련성 검색은 버거킹, 맥도날드, 소닉, 및 웬디스가 관련성 측면에서는 동일한 순위를 가지는 것으로 결정할 수 있고, 이들을 검색 결과에서 스테이크 하우스 이전에 명칭의 알파벳 순서대로 삽입할 수 있다. 예를 들어, 만일 "스시"에 대한 추천 요청이 "햄버거" 대신에 입력되었다면, 관련성 검색은 해당 검색 요청의 속성들이 "스시" 및 "일본 음식" 이라고 결정할 수 있고, 스시 또는 일본 음식을 제공하는 엔티티들이 몰 내에서나 현재 몰 근처에는 존재하지 않는다고 결정할 수도 있다. 이것은 스시에 대해서 매칭된 결과가 발견되지 않는다는 것을 나타내는 검색 결과를 제공할 수 있으며, 이러한 검색 결과에 기반하여, 추천 엔진은 디스플레이 (302) 상에 "이 현장에서는 스시가 이용가능하지 않습니다" 라는 결과가 디스플레이되도록 제공할 수도 있다. 이러한 경우에, 제공되는 네비게이션 안내는 "적용가능한 맵/안내가 존재하지 않습니다" 라는 것이 될 수 있다. 예를 들어, 만일 "스테이크"에 대한 추천 요청이 "치즈버거" 대신에 입력되었다면, 관련성 검색은 현재의 몰 내에서 또는 몰 근처에서 스테이크 하우스가 유일한 관련성이 있는 엔티티라고 결정할 수 있고, 추천 엔진은 (예를 들어, 도 4 와 관련하여 논의되는 것과 같이) 스테이크 하우스에 대한 전체 경로 비용 결정을 스킵하고, 스테이크 하우스를 최상위 추천으로서 랭크할 수 있다. When a recommendation request for a cheeseburger is received, a search may be invoked to determine one or more search results associated with the pedestrian environment. In this example, the location awareness recommendation engine may determine that recommendations should be made for restaurants selling cheeseburgers and that pedestrians should be comfortable accessible based on his / her current location. Since the current location of the MS 100 (and therefore the user's current location) is determined to be within the mall, a search may be performed to sell the cheeseburger and determine the relevant list of one or more entities that are located in or adjacent to the mall have. This search may be performed using a relevance search algorithm (e.g., employed by a conventional search engine) that can use the information in the database 200 to determine which entities are associated with the sale of cheeseburgers It is possible. The location awareness recommendation engine may determine one or more search results (e.g., by executing a relevance search algorithm) associated with the mall, and display (302) a list of ranked results by applying location aware criteria to the search results It can also be generated as it is. The relevance search algorithm may determine the attributes of the search request. For example, the attributes of the search request "cheeseburger" may be determined to be "fast food", "hamburger", and the like. The relevance search algorithm matches the determined attributes of the search request with the attributes of one or more entities associated with the pedestrian environment (e.g., by matching information using the information in the database 200) and associates each matched entity with one or more search results Quot; In this example, the relevance search algorithm may return a list of matching entities including Burger King, McDonald, Sonic, Steak House, and Wendy's. The relevance search algorithm can rank Burger King, McDonald, Sonic, and Wendy as the most relevant ones because these entities are fast-food hamburger restaurants and steakhouses can rank as partially relevant, The reason is that this is a fine restaurant and selling hamburgers may not be the main business area of the steak house. Therefore, relevance searches can determine that Burger King, McDonald, Sonic, and Wendy have the same rank in relevance, and can insert them in alphabetical order before the stake house in the search results. For example, if a recommendation for "sushi" is entered instead of "burger", the relevance search can determine that the attributes of the search request are "sushi" and "japanese food" It may decide that entities do not exist in or near the current mall. This may provide a search result indicating that a match for sushi is not found, and based on this search result, the recommendation engine may display "no sushi is available at this site" on display 302 May be displayed. In this case, the provided navigation guidance may be "no applicable map / guidance exists ". For example, if a recommendation for a "steak" is entered instead of a "cheeseburger ", then the relevance search may determine that the stake house is the only relevant entity within or near the current mall, Skip the overall path cost determination for the steak house (e.g., as discussed in connection with FIG. 4), and rank the steakhouse as the top recommendation.

관련성 검색으로부터의 검색 결과들의 목록에 위치 인식 기준을 적용하는 것이 이제 도 4 와 관련하여 논의되는데, 도 4 는 도 3 에 도시된 추천들의 위치 인식 정렬을 생성하는 방법을 예시한다. 이러한 방법은 검색 결과들 내의 엔티티로 가는 최단 경로를 결정할 수 있고, 예를 들어 경로의 특정 세그먼트 또는 전체 경로에 가중치를 적용할 수도 있다. 최단 경로는, 예를 들어 사용자의 현재 위치를 시작 포인트로서 이용하고 원하는 엔티티의 입구 위치를 목적지로서 이용하는 종래 기술에 의한 최단 경로 알고리즘에 기반하여 결정될 수도 있다. 예를 들어, 다익스트라 알고리즘 (Dijkstra's algorithm) 이 이용될 수도 있다. 논의된 바와 같이, 사용자의 현재 위치는 예를 들어 Wi-Fi 액세스 포인트 또는 펨토셀들과 같은 신호 소스들에 기반하여 삼변 측량 기법을 이용하여 결정될 수도 있다. 적용되는 가중치들은 다양한 액세스가능성 기준에 기반할 수 있는데, 이들에는 경로 이동 시간 기준, 경로 복잡도 기준, 및/또는 이용가능성 기준이 포함될 수도 있다. Applying a location recognition criterion to a list of search results from a relevance search is now discussed in connection with FIG. 4, which illustrates a method of generating a location aware alignment of the recommendations shown in FIG. This method may determine the shortest path to an entity in the search results, and may, for example, apply a weight to a particular segment or path of the path. The shortest path may be determined, for example, based on a prior art shortest path algorithm that uses the user's current location as a starting point and uses the entrance location of the desired entity as the destination. For example, a Dijkstra's algorithm may be used. As discussed, the current location of the user may be determined using trilateration techniques based on signal sources such as, for example, Wi-Fi access points or femtocells. Applicable weights may be based on various accessibility criteria, which may include path movement time criteria, path complexity criteria, and / or availability criteria.

경로 이동 시간 기준은, 이동국의 위치 및 검색 결과들 각각과 관련된 위치 간의 경로 거리; 이동 속도; 경로상의 혼잡도; 계단에서의 시간; 에스컬레이터에서의 시간; 및/또는 엘리베이터에서의 시간 중 적어도 하나를 포함할 수 있다. The path travel time reference may be a path distance between a location of the mobile station and a location associated with each of the search results; speed; Congestion on the path; Time on stairs; Time on the escalator; And / or time in the elevator.

경로 복잡도 기준은, 경로가 계단을 포함하는지 여부; 경로가 에스컬레이터를 포함하는지 여부; 경로가 엘리베이터를 포함하는지 여부; 현재 이동 방향; 및/또는 상기 경로가 현재 현장을 떠나는 것을 포함하는지 여부 중 적어도 하나를 포함할 수 있다. Path complexity criteria include whether the path includes a step; Whether the path includes an escalator; Whether the path includes an elevator; Current direction of movement; And / or whether or not the path includes leaving the current scene.

이용가능성 기준은, 보행자 환경과 연관된 엔티티가 열리거나 닫혔는지 여부; 엔티티가 액세스 제한되는지 여부; 엔티티에서 요구되는 시간 및/또는 엔티티에서 요구되는 돈 중 적어도 하나를 포함할 수 있다. 각 개별 기준에는 가중값이 할당될 수 있다. 가중값들은 경로 길이와 결합되어 전체 경로 비용을 결정할 수도 있다. 추천들은 각 추천의 전체 경로 비용에 기반하여 랭크될 수 있다. 몇 가지 경우에서, 사용자의 현재 방향으로부터 엔티티로 가는 하나 이상의 경로들이 최단 경로와 유사하거나 최단 경로에 가까운 경로를 가지는 것으로 결정될 수도 있다. 일 설계예에서, 전체 경로 비용은 이러한 대안적인 경로들 각각에 대하여 결정될 수 있고, 가장 낮은 전체 경로 비용을 가지는 경로가 검색 결과들의 위치 인식 랭크에서 이용될 것이다. 다른 설계예에서, 유사한 전체 경로 비용을 가지는 적합한 개수의 대안적인 경로들 (예를 들어, 두 개 또는 세 개의 경로들) 이 검색 결과들의 위치 인식 랭크에서 이용될 수도 있다. The availability criteria include whether the entity associated with the pedestrian environment is open or closed; Whether the entity is access restricted; The time required at the entity, and / or the amount of money required at the entity. Each individual criterion can be assigned a weight value. The weights may be combined with the path length to determine the total path cost. Recommendations can be ranked based on the total path cost of each referral. In some cases, one or more paths from an user's current direction to an entity may be determined to have a path that is similar to or closest to the shortest path. In one design example, the total path cost may be determined for each of these alternative paths, and the path with the lowest overall path cost will be used in the location recognition rank of the search results. In other designs, a suitable number of alternative paths (e.g., two or three paths) with similar overall path costs may be used in the location recognition rank of the search results.

버거킹에 대하여, 데이터베이스 (200) 는 버거킹의 유일한 입구가 (7, 7, 1) 에 있다는 것을 나타낸다. 도 1a 의 현재 사용자 위치인 (18, 9, 1) 로부터 (7, 7, 1) 까지의 최단 경로는, 도 1a 의 로컬 좌표 맵을 이용하고 시작 포인트를 (18, 9, 1) 로 하고 끝 포인트를 (7, 7, 1) 로 하여 종래의 최단 경로 알고리즘을 적용함으로써 결정될 수도 있다. 이러한 경로는 (18, 9, 1) -> (18, 12, 1) -> (13, 12, 1) -> (7, 12, 1) -> (7, 7, 1) 라고 결정될 수 있다. 경로 세그먼트의 길이는 (18, 9, 1) 및 (18, 12, 1) 사이에서는 3 유닛이고, (18, 12, 1) 및 (13, 12, 1) 사이에서는 5 유닛이며, (13, 12, 1) 및 (7, 12, 1) 사이에서는 6 유닛이고, (7, 12, 1) 및 (7, 7, 1) 사이에서는 5 유닛이다. 이용되는 좌표계에 따라서, 1 유닛은 예를 들어 모든 적합한 거리의 측정치일 수 있는데, 예를 들어, 1 미터, 10 미터, 1 야드, 10 야드, 1 피트, 10 피트 등일 수 있다. 경로의 길이는 세그먼트들의 길이들의 합으로서 결정될 수도 있는데, 이 예에서는 19 이다. 가중치는 각 세그먼트 또는 전체 경로에 적용될 수도 있다. 이 예에서, 사용자의 현재 위치로부터 버거킹의 입구까지의 경로는, 예를 들어 계단, 엘리베이터, 에스컬레이터, 혼잡함, 몰을 떠남, 액세스 제한 등을 포함하지 않으며, 따라서 가중치에 대한 적합한 기본 값 (예를 들어 1) 이 각 세그먼트에 적용될 수도 있다. 예를 들어, 계단 또는 혼잡도를 포함하는 세그먼트에는 기본 값보다 큰 적합한 가중값이 할당될 수도 있다 (예를 들어, 계단에 대해서는 20 이 할당되고 혼잡도에 대해서는 15 가 할당될 수 있다). 계단도 있고 혼잡도도 있는 세그먼트에는 계단에 대한 가중값 및 혼잡도에 대한 가중값의 합인 가중치가 할당될 수 있다 (여기서는, 35 가 할당될 수 있다). 반면에, (공항에서 탑승객들을 위한 전동 컨베이어 벨트들과 같이) 보행자의 이동을 돕기 위한 구조물들을 포함하는 세그먼트에는 기본 값보다 더 작은 가중값이 할당될 수도 있다 (예를 들어, 0 또는 -1 이 할당될 수 있다). 이러한 버거킹 예에서, 가중치를 각 세그먼트에 적용하는 것은 각 세그먼트의 길이에 가중값을 승산하는 것을 포함하지만, 가중치를 적용하기 위한 모든 적합한 연산들이 이용될 수도 있다. 가중값의 적용을 포함하는 결과로서 얻어지는 전체 경로 비용은, 3*WBK1 + 5*WBK2 + 6*WBK3 + 5*WBK4 = 3*1 + 5*1 + 6*1 + 5*1 = 19 일 수 있다 (여기서, WBK1 은 버거킹까지의 경로 중 세그먼트 1 의 가중값을 나타내고, WBK2 은 버거킹까지의 경로 중 세그먼트 2 의 가중값을 나타내는 등으로 표시된다). For Burger King, the database 200 indicates that the only entry of the Burger King is at (7, 7, 1). The shortest path from the current user position (18, 9, 1) to (7, 7, 1) in FIG. 1A uses the local coordinate map of FIG. 1A and sets the start point as (18, 9, 1) May be determined by applying the conventional shortest path algorithm with points (7, 7, 1). This path can be determined to be (18, 9, 1) -> (18, 12, 1) -> (13,12,1) -> (7,12,1) -> (7,7,1) . The length of the path segment is 3 units between (18, 9, 1) and (18, 12, 1) and 5 units between (18, 12, 1) and (13, 12, 1) 12, 1) and (7, 12, 1), and 5 units between (7, 12, 1) and (7, 7, 1). Depending on the coordinate system used, one unit may be, for example, a measure of any suitable distance, for example, 1 meter, 10 meters, 1 yard, 10 yards, 1 foot, 10 feet, The length of the path may be determined as the sum of the lengths of the segments, which is 19 in this example. The weights may be applied to each segment or the entire path. In this example, the path from the user's current location to the entrance of the Burger King does not include, for example, steps, elevators, escalators, crowds, malls leaving, access restrictions, For example, 1) may be applied to each segment. For example, a segment containing a stair or congestion may be assigned a suitable weight greater than the default value (e.g., 20 for stairways and 15 for congestion). Segments with stairways and congestion may be assigned a weight that is the sum of the weight for the stair and the weight for the congestion (in this case, 35 can be assigned). On the other hand, segments that include structures for assisting the movement of pedestrians (such as motorized conveyor belts for passengers at airports) may be assigned a weight value that is smaller than the default value (e.g., 0 or -1 is assigned . In this Burger King example, applying the weights to each segment includes multiplying the length of each segment by the weights, but all appropriate operations for applying the weights may be used. The resulting overall path cost, including the application of the weight, is: 3 * W BK 1 + 5 * W BK 2 + 6 * W BK 3 + 5 * W BK 4 = 3 * 1 + 5 * 1 + 6 * 1 + 19, where W BK1 represents the weight of segment 1 in the path up to Burger King, and W BK2 represents the weight of segment 2 in the path up to Burger King, etc.).

맥도날드에 관련하여 살펴보면, 사용자의 현재 위치로부터의 최단 경로는 (18, 9, 1) -> (18, 3, 1) -> (10, 3, 1) 인 것으로 결정되고, 이 경로의 길이는 6 + 8 = 14 인 것으로 결정된다 (도 4 를 참조한다). 비록 맥도날드까지의 거리가 버거킹까지의 거리보다 짧지만, (18, 9, 1) 로부터 (18, 3, 1) 까지의 세그먼트는 되돌아가기 및 사용자가 현재 이동하는 방향과 반대 방향으로 이동하는 것과 관련된다. 보행자의 이동은 많은 관광 및 윈도우 쇼핑 같은 특징을 가질 수 있다. 방향의 반전은 보행자 환경에서는 이상적이지 않을 수 있는데, 그 이유는 방향을 반전하면 사용자는 그가/그녀가 방금 이동한 것과 동일한 경로로 다시 되돌아가고 그가/그녀가 방금 목격한 것과 동일한 장면 및 상점들을 목격해야 하기 때문이다. 방향의 반전에 부여되는 가중값은 10 이 할당될 수도 있다. 이동국 (100) 은 사용자가 방금 (18, 3, 1) 로부터 (18, 9, 1) 로 이동했다고 결정할 수도 있는데, 예를 들어, 이동국 (100) 이 몰에 진입한 이후에 이동한 경로를 저장하는 기능에 기반하여 결정할 수도 있다. 그러므로, (18, 9, 1) 부터 (18, 3, 1) 까지의 세그먼트에는 10 의 가중값이 할당될 수 있다. (18, 3, 1) 로부터 (10, 3, 1) 까지의 세그먼트의 가중값에는 1 의 기본 값이 할당될 수도 있다 (버거킹과 관련하여 이미 논의된 바와 같다). 그러므로, 맥도날드에 대한 결과적인 전체 경로 비용은, 6*10 + 8*1 = 68 이 된다. 다른 설계예에서, 세그먼트 길이 6 에 가중값 10 을 승산하는 대신에, 적합한 가중값이 방향의 반전에 대한 페널티로서 전체 경로 비용에 추가될 수도 있다. (18, 9, 1) -> (18, 3, 1) -> (10, 3, 1) from the current location of the user, and the length of this path is 6 + 8 = 14 (see FIG. 4). Although the distance to McDonald's is shorter than the distance to the Burger King, the segments from (18, 9, 1) to (18, 3, 1) move backwards and in the opposite direction . The movement of the pedestrian can have many attractions and features such as window shopping. The reversal of direction may not be ideal in the pedestrian environment because reversing the direction causes the user to go back to the same path he / she just moved and to see the same scenes and stores he / she has just witnessed This is because we have to. The weight value given to the inversion of direction may be assigned 10. The mobile station 100 may determine that the user has just moved from (18, 3, 1) to (18, 9, 1), for example, store the traveled path after the mobile station 100 has entered the Mall Based on the function to be performed. Therefore, a weight of 10 can be assigned to segments from (18, 9, 1) to (18, 3, 1). A weighted value of a segment from (18, 3, 1) to (10, 3, 1) may be assigned a base value of 1 (as already discussed in connection with Burger King). Therefore, the resulting overall path cost for McDonalds is 6 * 10 + 8 * 1 = 68. In another design example, instead of multiplying the segment length 6 by the weight 10, a suitable weighting value may be added to the overall path cost as a penalty for reversing the direction.

SONIC 에 대해서 살펴보면, 사용자의 현재 위치로부터의 최단 거리는 (18, 9, 1) -> (18, 10, 1) -> (21, 10, 1) -> (21, 7, 1) 인 것으로 결정되고, 경로 길이는 1 + 3 + 3 = 7 인 것으로 결정된다 (도 4 를 참조한다). 비록 소닉까지의 경로 길이는 상대적으로 짧지만, (18, 10, 1) 으로부터 (21, 10, 1) 까지의 세그먼트는 소닉이 몰 외부에 있기 때문에 몰을 벗어나는 것과 관련된다. 이렇게 사용자의 현재 현장으로부터 벗어나는 것은 보행자 환경에서는 이상적이지 않은데, 그 이유는 사용자가 익숙할 수 있는 현장을 떠나 외부의 상이할 수 있는 기후 조건에 직면해야 하기 때문이다. 현재 현장을 벗어나는 것에 대한 가중값에는 30 이 할당될 수도 있다. 그러므로, (18, 10, 1) 로부터 (21, 10, 1) 까지의 세그먼트에 30 의 가중치가 할당될 수도 있다. 다른 세그먼트들에 대한 가중값들에는 1 의 기본 값이 할당될 수도 있다 (버거킹과 관련하여 이미 논의된 것과 같다). 결과적으로 얻어지는 전체 경로 비용은, 1*1 + 3*30 + 3*1 = 94 이다. In SONIC, it is decided that the shortest distance from the user's current position is (18, 9, 1) -> (18,10,1) -> (21,10,1) -> (21,7,1) , And the path length is determined to be 1 + 3 + 3 = 7 (see FIG. 4). Although the path length to Sonic is relatively short, the segments from (18, 10, 1) to (21, 10, 1) are related to escaping the mall because Sonic is outside the mall. Thus, departing from the user's current scene is not ideal in pedestrian environments, because the user must leave the site where he or she may be accustomed and face climatic conditions that can be different from the outside. A weight of 30 for exiting the current site may be assigned. Therefore, a weight of 30 may be assigned to segments from (18, 10, 1) to (21, 10, 1). The weights for the other segments may be assigned a default value of 1 (as discussed above in connection with Burger King). The resulting overall path cost is 1 * 1 + 3 * 30 + 3 * 1 = 94.

웬디스에 대하여 살펴보면, 사용자의 현재 위치로부터의 최단 경로는 (18, 9, 1) -> (18, 12, 1) -> (13, 12, 1) -> (13, 12, 2) -> (11, 12, 2) 인 것으로 결정되고, 경로 길이는 3 + 5 + 1 + 2 = 11 인 것으로 결정된다 (도 4를 참조한다). 비록 웬디스까지의 경로 길이는 상대적으로 짧지만, 웬디스가 몰의 2 층에 위치하고 있기 때문에 (13, 12, 1) 로부터 (13, 12, 2) 까지의 세그먼트는 계단과 관련된다. 계단은 보행자 환경에는 장애물을 제공할 수 있는데, 그 이유는 육체적인 노력이 수반되기 때문이고, 특히 쇼핑몰의 경우에 사용자가 쇼핑백을 소지하고 있는 경우에는 더욱 그러하다. 계단에 할당되는 가중값은 20 일 수 있고, 예를 들어 계단의 단수에 따라서 변경될 수도 있다. 데이터베이스 (200) 는 계단이 40 개의 단수를 가지는 것을 나타낸다. 이와 같이 단수가 많으면, 30 과 같이 상대적으로 높은 가중값이 할당될 수 있다. 그러므로, (13, 12, 1) 로부터 (13, 12, 2) 까지의 세그먼트에는 30 의 가중값이 할당될 수 있다 (사용자가 휠체어를 타고 있는 경우에는, 계단의 가중값에는 예를 들어 100 과 같이 매우 큰 값이 할당될 수도 있다). 다른 세그먼트들의 가중값들에는 1 의 기본 값이 할당될 수도 있다 (버거킹과 관련하여 이미 논의된 바와 같다). 결과적으로 얻어지는 전체 경로 비용은, 3*1 + 5*1 + 1*30 + 2*1 = 40 이다. (18, 9, 1) -> (18, 12, 1) -> (13, 12, 1) -> (13, 12, 2) -> The shortest path from the user's current position is (11, 12, 2), and the path length is determined to be 3 + 5 + 1 + 2 = 11 (see FIG. 4). Although the path length to Wendith is relatively short, the segments from (13, 12, 1) to (13, 12, 2) are related to the stairs because Wendith is located on the second floor of the mall. The stairs can provide obstacles to the pedestrian environment, because of the physical effort involved, especially when the user has a shopping bag in the case of a shopping mall. The weight assigned to the stair may be 20, and may be changed according to the number of stages of the stair, for example. The database 200 indicates that the stairs have 40 numbers. If the number of stages is large, a relatively high weight value such as 30 can be assigned. Therefore, a weight of 30 can be assigned to the segment from (13, 12, 1) to (13, 12, 2) (if the user is in a wheelchair, A large value may be assigned). The weights of the other segments may be assigned a default value of 1 (as already discussed with respect to Burger King). The resulting overall path cost is 3 * 1 + 5 * 1 + 1 * 30 + 2 * 1 = 40.

웬디스에 대하여 살펴보면, 역시 상대적으로 짧은, 사용자의 현재 위치로부터의 대안적인 경로가 존재한다. 이 경로는 (18, 9, 1) -> (18, 14, 1) -> (18, 14, 2) -> (18, 12, 2) -> (11, 12, 2) 인 것으로 결정되고, 경로 길이는 5 + 1 +2 + 7 = 15 인 것으로 결정된다 (도 4 를 참조한다). 비록 웬디스까지의 대안적인 경로의 경로 길이가 상대적으로 짧지만, (18, 14, 1) 로부터 (18, 14, 2) 까지의 세그먼트는 엘리베이터와 관련된다. 엘리베이터는 보행자 환경에서 장애물을 제공할 수 있는데, 그것은 예를 들어 엘리베이터를 대기하는데 관련되는 지연들 때문이다. 엘리베이터에 할당된 가중값은 20 일 수도 있다. 그러므로, (18, 14, 1) 로부터 (18, 14, 2) 까지의 세그먼트에는 20 의 가중치가 할당될 수 있다. 그러나, 사용자가 휠체어를 타고 있는 경우에는, 엘리베이터가 층을 바꿀 수 있는 유일한 실질적인 수단일 수 있기 때문에, 이 경우에는 엘리베이터의 가중값으로서 낮은 값 (예를 들어, 10 ) 이 할당될 수도 있다. 웬디스까지의 이러한 대안적인 경로에서 다른 세그먼트들의 가중값으로는 1 의 기본 값이 할당될 수도 있다 (버거킹과 관련하여 이미 논의된 것과 유사하다). 결과적으로 얻어지는 전체 경로 비용은, 5*1 + 1*20 + 2*1 + 7*1 = 34 이다. 이러한 대안적인 경로의 전체 경로 비용이 최단 경로 길이를 가지는 경로보다 더 적기 때문에, 이것이 사용자에게 옵션으로서 제공될 수 있다. 만일 사용자가 웬디스에 대한 맵/보행 안내를 선택하면, 계단과 관련된 경로에 대한 옵션 그리고 엘리베이터와 관련된 경로에 대한 옵션이 제공될 수도 있다. Looking at Wendy's, there is also an alternative path from the user's current location, which is also relatively short. This path is determined to be (18, 9, 1) -> (18,14,1) -> (18,14,2) -> (18,12,2) , The path length is determined to be 5 + 1 + 2 + 7 = 15 (see FIG. 4). The segments from (18, 14, 1) to (18, 14, 2) are related to the elevator, although the path length of alternative paths up to Wendith is relatively short. An elevator can provide an obstacle in the pedestrian environment, for example, due to delays associated with waiting an elevator. The weight assigned to the elevator may be 20. Therefore, a segment from (18, 14, 1) to (18, 14, 2) can be assigned a weight of 20. However, in the case where the user is riding a wheelchair, a lower value (for example, 10) may be assigned as the weight of the elevator in this case, since the elevator may be the only practical means by which the floor can be changed. In this alternative path up to Wendith, the weight of the other segments may be assigned a default value of 1 (similar to that already discussed in connection with Burger King). The resulting overall path cost is 5 * 1 + 1 * 20 + 2 * 1 + 7 * 1 = 34. This can be provided as an option to the user, since the overall path cost of this alternative path is less than the path with the shortest path length. If the user selects the map / walk guidance for Wendith, options for the stairway related path and options for the elevator related path may be provided.

스테이크 하우스에 대하여 살펴보면, 데이터베이스 (200) 는 이곳의 영업 시간은 오후 5 시부터 오후 10 시까지 (월요일부터 토요일까지) 라는 것을 나타내며, 현재 시각이 오후 1 시 15 분이기 때문에, 스테이크 하우스는 닫혀 있으며 앞으로도 한참 동안 열리지 않을 것이라는 것을 나타낸다. 그러므로, 위치 인식 추천 엔진은 전체 경로 비용 결정을 스킵하고, 예를 들어 최고의 가능한 전체 경로 비용을 스테이크 하우스에 간단히 할당할 수도 있다 (예를 들어, 무한대의 비용을 할당할 수 있다). 다른 설계예에서, 위치 인식 추천 엔진은 스테이크 하우스의 전체 경로 비용 결정을 모두 스킵하고 이것을 랭크될 추천들의 목록으로부터 삭제할 수도 있다. 다른 예에서는, 현재의 날짜/시간이 토요일 오후 4 시 50 분이라면 (스테이크 하우스가 개점하기 10 분 전이라면), 위치 인식 추천 엔진은 스테이크 하우스에 대한 전체 경로 비용 결정을 계속하여 수행하고 스테이크 하우스가 오후 5 시에 개점할 것이라는 것을 디스플레이 (302) 에 표시할 수도 있다. As for the steakhouse, the database 200 indicates that the business hours of this place are from 5:00 pm to 10:00 pm (Monday to Saturday), and since the current time is 1:15 pm, the steak house is closed It will not open for a long time. Therefore, the location awareness recommendation engine may skip the whole path cost determination and may simply (e.g., allocate an infinite cost) to the steakhouse, for example, the highest possible total path cost. In another design example, the location awareness recommendation engine may skip the entire path cost determination of the steak house and delete it from the list of recommendations to be ranked. In another example, if the current date / time is 4:50 PM on Saturday (ten minutes before the stakehouse opens), the location awareness recommendation engine continues to determine the full path cost for the stake house and the stakehouse It may be displayed on the display 302 that it will open at 5 pm.

관련성 검색에 의하여 리턴된, 사용자의 현재 위치로부터 각 엔티티까지의 경로 길이는: 버거킹 (18), 맥도날드 (14), 소닉 (7), 웬디스 (11); 및 스테이크 하우스 (적용 불가능: 식당이 닫혔음) 이다. 도 4 와 연관하여 논의된 방법들에 기반하여 액세스가능성 기준을 고려한 이후에, 각 결과에 대한 전체 경로 비용은, 버거킹 (18), 맥도날드 (68), 소닉 (94), 웬디스 (계단에 대해서는 40; 엘리베이터에서는 34); 스테이크 하우스 (무한대) 이다. 이러한 전체 경로 비용에 기반하여, 위치 인식 추천 엔진은 그 결과들을 가장 적은 전체 경로 비용으로부터 가장 큰 전체 경로 비용의 순서로 랭크하고 (즉, 버거킹, 웬디스, 맥도날드, 소닉, 스테이크 하우스의 순서로 랭크된다), 이러한 랭크된 목록을 예를 들어 디스플레이 (302) 상에 디스플레이되도록 제공할 수도 있다. 설계예에 따라서, 도 4 와 연관되어 논의된 기능들 및 본 명세서에서 논의되는 다른 기능들이 MS (100), 하나 이상의 서버들 (예를 들어, MS (100) 와 직접 또는 간접 통신 상태인 서버), 또는 MS (100) 및 하나 이상의 서버들과의 결합에 의하여 수행될 수도 있다. The path lengths from the user's current location to each entity, as returned by the relevance search are: Burger King 18, McDonald's 14, Sonic 7, Wendy's 11; And steakhouse (not applicable: restaurant closed). After considering the accessibility criteria based on the methods discussed in connection with FIG. 4, the overall path cost for each result is determined by the Burger King 18, McDonald's 68, Sonic 94, Wendy's 40 in the elevator; It is a steakhouse (infinity). Based on this overall path cost, the location awareness recommendation engine ranks the results in order of least overall path cost to largest overall path cost (i.e., in order of Burger King, Wendy's, McDonald's, Sonic, , And may provide such a ranked list to be displayed on display 302, for example. Depending on the design example, the functions discussed in connection with FIG. 4 and other functions discussed herein may be used by the MS 100, one or more servers (e.g., a server that is in direct or indirect communication with the MS 100) , Or by association with the MS 100 and one or more servers.

도 5 는 추천들의 위치 인식 정렬의 다른 예를 디스플레이하는 이동국을 예시한다. 이 예에서, 현재의 날짜/시간은 토요일 오후 6 시 15 분이며, 사용자는 몰 내의 위치 (18, 9, 1) 에 있다 (도 1a 를 참조한다). 사용자는 테니스 라켓을 구입하고 오후 7 시의 영화를 보기 이전에 저녁을 먹어야 한다. 그는/그녀는 추천 요청 "오후 7시 영화 이전에 테니스 라켓 구입, 식사"를 위치 인식 추천 애플리케이션의 윈도우 (502) 에 입력한다. 추천 엔진은, 예를 들어 종래의 검색 엔진에 의하여 이용되는 파스 알고리즘 (parsing algorithm) 을 이용하여 입력 정보를 분석할 수 있으며, 사용자가 테니스 라켓을 구입하기 위한 장소 및 음식을 먹기 위한 장소에 대한 추천들과 관련하여 시간에 민감한 요청을 한다고 결정할 수 있다. 추천 엔진은 현재 시각이 오후 6 시 15 분이며, 사용자는 테니스 라켓 및 저녁을 사기 위하여 오직 45 분만을 가지고 있다고 결정할 수 있다. 관련성 검색이 "테니스 라켓" 에 대하여 수행되고, 그 결과는 테니스 라켓이 판매되는 엔티티들로서 스포츠 샬레 (SPORT CHALET) 및 시어즈 (SEARS) 를 포함한다. 이미 논의된 바와 같이, 관련성 검색은 데이터베이스 (200) 내의 정보에 기반할 수도 있다. 관련성 검색은, 스포츠 샬레가 스포츠 용품을 전문으로 취급하고 있으며 더 많은 테니스 라켓들과 더 양호한 구매 조언을 제공할 수도 있기 때문에 스포츠 샬레를 시어즈보다 더 관련성이 높다고 결정할 수도 있다. Figure 5 illustrates a mobile station displaying another example of location awareness alignment of recommendations. In this example, the current date / time is 6:15 PM on Saturday, and the user is at location 18, 9, 1 in the mall (see FIG. 1A). The user must buy a tennis racket and have dinner before watching the movie at 7 pm. He / she enters the recommendation request "Purchase tennis racket before movie at 7 pm movie, meal" into window 502 of the location recognition recommendation application. The recommendation engine may analyze input information using, for example, a parsing algorithm used by a conventional search engine, and may provide a recommendation for a place for a user to purchase a tennis racket and a place for eating food Time-sensitive requests with respect to time. The recommendation engine is now at 6:15 PM and the user can decide that he only has 45 minutes to buy a tennis racket and dinner. A relevance search is performed for a "tennis racket ", the result of which includes the sports chalet (SPORT CHALET) and the Sears (SEARS) as entities for sale of the tennis racket. As discussed above, the relevance search may be based on information in the database 200. The relevance search may determine that a sports chalet is more relevant than Sears because the sports chalet specializes in sporting goods and may offer more tennis racquets and better buying advice.

그러나, 시간 제약 (time constraint) 이 주어지면, 추천 엔진은 현재 사용자 위치로부터 스포츠 샬레까지의 최단 경로 길이가 너무 많은 이동 시간을 소요할 것이라고 결정할 수도 있는데, 예를 들어 MS (100) 의 만보계 특징에 의하여 결정될 수 있는 사용자의 평균 이동 속도에 기반하여 이와 같이 결정할 수도 있다. 도 4 와 관련하여 전술된 바와 같은 방법이 이동 시간을 고려할 수 있는데, 예를 들어 스포츠 샬레에 대한 전체 경로 비용 결정의 종료시 적합한 값을 추가 페널티로서 부가함으로써, 시간에 민감한 속성의 요청이 주어진 경우에는 스포츠 샬레가 불리하다는 것을 강조할 수 있다. 이 방법은, 사용자의 현재 위치까지의 근접성에 기반하여, 시어즈를 테니스 라켓을 구입하기 위한 제 1 추천으로서 랭크하고, 이를 아이콘 (504) 을 이용하여 디스플레이 (302) 상에 디스플레이할 수 있는데, 아이콘 (504) 은 사용자에게 그가/그녀가 좌회전을 해서 시어즈에 도착할 수 있다는 것을 표시하는 왼쪽을 가리키는 화살표를 도시한다. 시어즈 추천 옆의 아이콘 (318) 은 시어즈가 합리적인 선택이라는 것을 나타낸다. 디스플레이 (302) 는 테니스 라켓을 사기 위하여 스포츠 샬레를 후속 추천으로서 디스플레이할 수 있다. 스포츠 샬레 추천 옆에 있는 아이콘 (320) 은 스포츠 샬레가 합리적인 선택이 아니라는 것을 나타낼 수도 있고, 아이콘 (506) 은 사용자에게 그가/그녀가 스포츠 샬레에 가고자 한다면 서둘러야 한다는 것을 나타낼 수 있다. 시어즈 및 스포츠 샬레 추천들 모두의 밑에 존재하는 "테니스 라켓" 링크는 개별 상점들에 있는 테니스 라켓들에 대한 더 많은 정보가 해당 링크를 선택함으로써 액세스될 수 있다는 것을 나타낼 수도 있다. 테니스 라켓 및 몰 내의 엔티티들에서 이용할 수 있는 다른 아이템들에 대한 정보에는, (이러한 정보가 적용될 수 있다면) 브랜드, 모델, 사진, 가격 등이 포함될 수 있으며, 데이터베이스 (200) 내에 저장될 수도 있다. 이 예에서는 시간 제약이 없기 때문에, 위치 인식 추천 엔진은 스포츠 샬레를 시어즈보다 더 높게 랭크할 수 있다 (예를 들어, 스포츠 샬레의 관련성이 더 높기 때문에 더 높게 랭크할 수 있다). 다른 예에서, "5 $ 짜리 음식" 에 대한 추천 요청과 같이, 추천 요청은 재정적 제약 (monetary constraint) 와 관련될 수도 있다. 이러한 경우에, 추천 엔진은 데이터베이스 (200) 의 패스트푸드 하부-카테고리 내에 있는 식당들이 관련성이 있다고 결정할 수도 있다. 패스트푸드 하부-카테고리 내에 없는 식당들에 대하여, 추천 엔진은 예를 들어 데이터베이스 (200) 내에 있는 메뉴/가격 정보에 기반하여 이러한 식당들에서 요구되는 금액을 결정할 수도 있다. 만일 이러한 식당들 중 하나가, 예를 들어 5 $ 이거나 그 미만인 합리적인 개수의 메뉴에 관한 선택들을 포함하고 있다면, 추천 엔진은 해당 식당이 주어진 추천 요청과 관련성을 가진다고 결정할 수도 있다. 추천 엔진은 관련 있는 식당들을, 예를 들어 도 4 와 관련하여 논의된 방법에 기반하여 랭크하고, 랭크된 결과들이 MS (100) 에서 디스플레이되도록 제공할 수 있다. 추천 엔진은 다른 추천 요청들 및 추천 요청들의 조합 (예를 들어, "50 $ 미만의 테니스 라켓, 오후 7 시 영화 이전에 가능한 5 $ 짜리 음식" 등) 을 처리할 수 있으며, 청구된 요지는 이러한 측면에 한정되지 않는다. However, given a time constraint, the recommendation engine may determine that the shortest path length from the current user location to the sports chalet will take too much travel time, for example, And may be determined based on the average moving speed of the user that can be determined by the user. The method as described above with reference to FIG. 4 can take into account the travel time, for example, by adding a suitable value as an additional penalty at the end of the overall path cost determination for the sports chalet, if a request for a time- It can be emphasized that the sports chalet is disadvantageous. The method may rank Sears as a first recommendation for purchasing a tennis racket and display it on the display 302 using the icon 504 based on proximity to the user's current location, (504) shows the user the arrow pointing to the left indicating that he / she can turn left and reach Sears. The icon 318 next to the Sears recommendation indicates that Sears is a reasonable choice. Display 302 may display a sports chalet as a subsequent recommendation to buy a tennis racket. The icon 320 next to the sport chalet recommendation may indicate that the sports chalet is not a reasonable choice and the icon 506 may indicate to the user that he / she should hurry to go to the sports chalet. The "tennis racquet" link that exists under both Sears and Sports Chalet recommendations may indicate that more information about tennis rackets in individual stores can be accessed by selecting the link. Information about other items available in the tennis rackets and entities within the mall may include brands, models, pictures, prices, etc. (if such information is applicable) and may be stored in the database 200. Since there is no time constraint in this example, the location awareness recommendation engine can rank the sports chalet higher than the Sears (e.g., it can rank higher because the sport chalet is more relevant). In another example, a referral request may be associated with a monetary constraint, such as a recommendation for a "$ 5 meal". In this case, the recommendation engine may determine that the restaurants within the fast food sub-category of the database 200 are relevant. For restaurants that are not in the fast food sub-category, the recommendation engine may determine the amount required in these restaurants based on the menu / price information in the database 200, for example. If one of these restaurants includes choices about a reasonable number of menus, for example, $ 5 or less, then the recommendation engine may determine that the restaurant is relevant to the given recommendation request. The recommendation engine may rank related restaurants, for example, based on the method discussed with respect to FIG. 4, and provide for ranked results to be displayed at the MS 100. The recommendation engine may process a combination of other referral requests and recommendation requests (e.g., "tennis rackets less than $ 50, food available for $ 5 at 7 pm, etc." But is not limited to the side surface.

도 5 에 도시된 예에 대하여 계속 살펴보면, 음식에 대한 관련성 검색은 다양한 엔티티들이 모두 몰에서 음식을 판매하고 있기 때문에 동일한 관련성의 다수의 엔티티들을 리턴할 수도 있다. 음식을 먹은 뒤에 사용자에게 다른 목적지 (영화관) 가 있는 경우에는, 추천 엔진은 도 4 와 관련하여 논의된 전체 경로 비용 방법을 상이한 방식으로 적용할 수도 있다. 여기서, 사용자의 위치를 원점으로 이용하고 식당의 위치를 목적지로 이용하는 방법을 적용하는 대신에, 식당의 위치를 원점으로서 이용하고 영화관의 위치를 목적지로서 이용하는 방법을 적용할 수도 있는데, 그 이유는 예를 들어 사용자의 최종 목적지인 영화관으로의 가장 적은 전체 경로 비용을 가지는 식당으로 사용자를 유도하는 것이 시간을 가장 효율적으로 사용하는 것일 터이기 때문이다. 오후 7 시라는 시간 제약이 없다면, 방법을 이와 같이 특정하게 적용하면 스테이크 하우스가 현재 열려있으며 웬디스 및 스테이크 하우스가 영화관으로의 최저 전체 경로 비용을 가진다고 결정할 수도 있다. 시간 제약에 응답하여, 이 방법은 스테이크 하우스가 파인 다이닝 식당이며 음식을 스테이크 하우스에서 먹기 위해서는 너무 오랜 시간이 소요될 수 있다고 추가적으로 결정할 수도 있다. 이 방법은 스테이크 하우스의 전체 경로 비용에 적절한 가중값을 페널티로서 적용시킴으로써 음식을 먹는데 더 긴 시간이 소요된다는 것을 반영할 수도 있다. 예를 들어, 이러한 가중값은 이용가능성 기준의 일부로서 적용될 수도 있는데, 그 이유는 소비자에 의하여 스테이크 하우스에서 더 긴 시간이 요구된다는 사실이 스테이크 하우스를 웬디스보다 덜 이용 가능하도록 만들기 때문이다. 그러므로, 추천 엔진은 웬디스를 영화 시청 이전에 음식을 먹기 위한 첫 번째 선택으로서 추천할 수 있다. 아이콘 (508) 은 사용자의 현재 위치로부터 웬디스에 도착하는 과정이 계단을 이용하는 것과 관련된다는 것을 나타낼 수 있다. 디스플레이 (302) 상의 아이콘 (318) 이 웬디스가 합리적인 선택이라는 것을 나타낼 수 있다. 디스플레이 (302) 상의 아이콘 (320) 이 스테이크 하우스가 합리적인 선택이 아니라는 것을 나타낼 수 있다. 아이콘 (510) 은 스테이크 하우스가 파인 다이닝 식당이고, 따라서 시간이 많이 소요된다는 것을 나타낼 수도 있다. Continuing with the example shown in FIG. 5, the relevance search for food may return multiple entities of the same relevance, since various entities are all selling food in the mall. If the user has a different destination (movie theater) after eating the food, the recommendation engine may apply the full path cost method discussed in connection with FIG. 4 in a different manner. Here, instead of using the location of the user as the origin and using the location of the restaurant as the destination, a method of using the location of the restaurant as the origin and using the location of the movie theater as the destination may be applied, Because it is the most efficient use of time to guide the user to a restaurant that has the lowest overall path cost to the user's final destination, the cinema. Unless there is a time limit of 7 pm, this particular application of the method may determine that the stake house is currently open and that Wendy's and steakhouse have the lowest total path cost to the movie theater. In response to time constraints, this method may additionally determine that the steak house is a fine dining restaurant and that it may take too long to eat the food in the steak house. This method may reflect that it takes longer to eat food by applying the appropriate weight to the total path cost of the steakhouse as a penalty. For example, such a weight may be applied as part of the availability criteria, since the fact that consumers require a longer time in the steak house makes the steak house less available than Wendy's. Therefore, the recommendation engine can recommend Wendy's as the first choice for eating food before watching a movie. The icon 508 may indicate that the process of arriving at Wendith from the user's current location is related to using the stairs. The icon 318 on the display 302 may indicate that Wendy is a reasonable choice. The icon 320 on the display 302 may indicate that the steakhouse is not a reasonable choice. The icon 510 may indicate that the steakhouse is a fine dining restaurant, and thus is time consuming.

도 6 은 추천들의 위치 기반 정렬의 다른 예를 디스플레이하는 이동국을 예시한다. 이 예에서, 사용자는 몰의 위치 (18, 9, 1) 에 있으며 (도 1a), 화장실을 이용할 필요가 있다. 사용자는 주위를 둘러보고 근처에서 화장실을 발견하지 못하면, 그는/그녀는 위치 인식 추천 애플리케이션의 윈도우 (602) 에 "화장실"을 입력한다. 추천 엔진은 입력 정보를 분석하고, 사용자가 가장 가까운 화장실을 찾고 있다고 결정하며, 이런 요청을 시간에 민감한 요청이라고 암시적으로 해석할 수도 있다. 관련성 검색 결과들에는 화장실로서 모두 동일한 관련성을 가지는, 몰 내의 네 개의 화장실들이 포함될 수 있다. 추천 엔진은 도 4 와 관련하여 논의된 바 있는 전체 경로 비용 방법을 관련성 검색 결과들의 목록에 적용할 수 있다. Figure 6 illustrates a mobile station displaying another example of a location based sort of recommendations. In this example, the user is at the mall location 18, 9, 1 (Fig. 1A) and needs to use the toilet. If the user looks around and does not find a toilet nearby, he / she enters "toilet" in the window 602 of the location awareness recommendation application. The recommendation engine analyzes the input information, determines that the user is looking for the nearest toilet, and implicitly interprets the request as a time-sensitive request. The relevance search results may include four toilets within the mall, all of which have the same relevance as a toilet. The recommendation engine may apply the full path cost method discussed in connection with FIG. 4 to the list of relevance search results.

화장실 1까지의 최단 경로는 (18, 9, 1) -> (18, 12, 1) -> (7, 12, 1) 이며 경로 길이는 3 + 11 = 14 인 것으로 결정될 수 있다. 이 예에서, 화장실 1 (7, 12, 1) 로의 입구 근처에 사람들이 모여 있으며, MS (100) 는 (7, 12, 1) 근처에 추정된 포지션을 가지는 이동국들의 수 (및 따라서 사람 수)에 의하여 표시되는 바와 같이 화장실 1 로의 입구 근처에 혼잡도가 있다고 결정할 수도 있다. MS (100) 는 이 정보를 MS 가 통신하는 중인 무선 액세스 포인트를 통하여 서버로부터 수신할 수도 있다. 그러므로, 위치 인식 추천 엔진은 화장실 1 에 대하여 대기줄이 있다고 결정하고, 혼잡도에 대한 적절한 가중값을 화장실 1 에 대한 전체 경로 비용 결정에 추가할 수도 있다. 화장실 1 에서의 이와 같은 혼잡도 이외에는, 가중값이 화장실 1 에 대한 전체 경로 비용에 적용될 수 있는 추가적인 액세스가능성 기준이 존재하지 않는다. 예를 들어, 혼잡도에 대한 페널티로서 적절한 가중값 (예를 들어, 50) 이 추가될 수 있으며, 화장실 1 에 대한 전체 경로 비용은 3*1 + 11*1 + 50 = 64 인 것으로 결정될 수도 있다. 상이한 예에서, 사용자가 위치 (18, 9, 1) 에 있을 때 멕시코 음식에 대한 추천 요청이 입력될 수 있다. 관련성 검색은 루비오스 (RUBIO'S) 및 바하 프레시 (BAJA FRESH) 가 멕시코 음식에 동일하게 관련된다고 결정할 수도 있다. 시기가 연휴 시즌일 수 있으며, 아이스 스케이팅 공연을 보기 위하여 아이스 스케이팅 링크 주위에 모여든 많은 군중들이 존재할 수도 있다. 위치 인식 추천 엔진은, 아이스 스케이팅 링크 주위의 이러한 혼잡이 루비오스로 가는 경로를 간섭한다고 결정하고, 이러한 혼잡도에 대한 페널티로서 적절한 가중값을 적용할 수 있다. 비록 바하 프레시가 2 층에 존재하고 여기에 도착하려면 층 변경을 수반하지만, 이 경우에는 바하 프레시가 최적의 추천으로 결정될 수도 있다. The shortest path to the toilet 1 can be determined to be (18, 9, 1) -> (18, 12, 1) -> (7, 12, 1) and the path length is 3 + 11 = In this example, people are gathered near the entrance to toilet 1 (7, 12, 1) and MS 100 has the number of mobile stations (and thus the number of people) with estimated positions near (7, 12, It may be determined that there is congestion near the entrance to the toilet 1 as indicated by < RTI ID = 0.0 > The MS 100 may receive this information from the server via the wireless access point with which the MS is communicating. Therefore, the location awareness recommendation engine may determine that there is a queue for toilet 1 and may add an appropriate weight for congestion to the overall path cost determination for toilet 1. Except for such congestion in toilet 1, there is no additional accessibility criterion that can be applied to the overall path cost for toilet 1. For example, an appropriate weighting value (e.g., 50) may be added as a penalty for congestion, and the total path cost for toilet 1 may be determined to be 3 * 1 + 11 * 1 + 50 = 64. In a different example, a recommendation request for Mexican food may be entered when the user is at location 18, 9, 1. Relevance searches may determine that RUBIO'S and BAJA FRESH are equally related to Mexican food. The season may be a holiday season, and there may be many crowds gathering around ice skating links to see ice skating performances. The location awareness recommendation engine may determine that such congestion around the ice skating link interferes with the route to Rubio's and apply appropriate weighting as a penalty for such congestion. Although Baja Fresh is on the second floor and requires a layer change to arrive here, Baja Fresh may be determined as an optimal recommendation in this case.

도 6 에 도시된 화장실을 이용한 예로 다시 돌아가면, 화장실 2 로 가는 최단 경로는 계단을 포함하는 경로인 (18, 9, 1) -> (18, 12, 1) -> (13, 12, 1) -> (13, 12, 2) -> (7, 12, 2) 이며 경로 길이가 3 + 5 + 1 + 6 = 15 인 것으로 결정될 수도 있다. 앞서, 도 4 와 관련하여 논의된 바와 같이, 계단에 대한 가중값은 30 일 수 있다. 그러므로, 이 경로에 대한 전체 경로 비용은 3*1 + 5*1 + 1*30 + 6*1 = 44 일 수 있다. 엘리베이터를 포함하는 경로를 선택한다면, 그 경로는 (18, 9, 1) -> (18, 14, 1) -> (18, 14, 2) -> (18, 12, 2) -> (7, 12, 2) 이며 경로 길이가 5 + 1 + 2 + 11 = 19 인 것으로 결정될 수도 있다. 도 4 와 관련하여 논의된 바와 같이, 엘리베이터에 대한 가중값은 20 일 수 있다. 그러므로, 이 경로에 대한 전체 경로 비용은 5*1 + 1*20 + 2*1 + 11*1 = 38 일 수 있다. 그러나, 엘리베이터와 관련된 경로는 엘리베이터에 대한 예측 불가능한 대기 시간을 포함할 수 있으며, 이러한 추천 요청의 시간에 민감한 속성을 고려하면, 추천 엔진은 엘리베이터와 관련된 화장실 2 까지의 해당 경로를 제시하지 않을 수도 있는데, 그 이유는 약간만 더 높은 전체 경로 비용을 가지지만 더 예측 가능한 이동 시간을 가지는 화장실 2 까지의 다른 경로 (계단을 통한 경로) 가 존재하기 때문이다. 6, the shortest route to the toilet 2 is a route including steps (18, 9, 1) -> (18, 12, 1) -> (13, 12, 1 ) -> (13, 12, 2) -> (7, 12, 2) and the path length is 3 + 5 + 1 + 6 = 15. As previously discussed with respect to FIG. 4, the weight for the staircase may be 30. Therefore, the total path cost for this path may be 3 * 1 + 5 * 1 + 1 * 30 + 6 * 1 = 44. If you select a route that includes an elevator, the route is (18, 9, 1) -> (18, 14, 1) -> (18, 14, 2) -> , 12, 2) and the path length may be determined to be 5 + 1 + 2 + 11 = 19. As discussed with respect to FIG. 4, the weight for the elevator may be 20. Therefore, the total path cost for this path may be 5 * 1 + 1 * 20 + 2 * 1 + 11 * 1 = 38. However, the path associated with the elevator may include an unpredictable waiting time for the elevator and, given the time-sensitive nature of this recommendation request, the recommendation engine may not show the corresponding path to the toilet 2 associated with the elevator , Because there are other paths (paths through the stairs) to toilet 2 that have a slightly higher overall path cost but have a more predictable travel time.

화장실 3 에 대해서 살펴보면, 데이터베이스 (200) 는 화장실 3 이 영화관 안에 위치하며 영화 관람객들만이 접근할 수 있다는 것을 나타낸다. 그러므로, 위치 인식 추천 엔진은 화장실 3 에 대한 전체 경로 비용 결정을 스킵하고, 단순하게 최고 가능한 경로 비용 (예를 들어, 무한대의 값) 을 화장실 3 에 할당할 수 있다. 다른 예에서, 위치 인식 추천 엔진이 사용자가 후속 목적지를 가지고 있으며 이것이 영화관이라고 (예를 들어, 사용자가 영화를 볼 계획이라고) 결정한다면, 엔진은 화장실 3 에 대한 전체 경로 비용 결정을 계속 수행할 수 있다. 또 다른 예에서, 데이터베이스 (200) 는 화장실이 청소를 위하여 폐쇄되는 시간을 표시할 수도 있다. 만일 화장실이 현재 청소를 위해 폐쇄된 상태라고 추천 엔진이 결정하면, 엔진은 화장실에 대한 전체 경로 비용 결정을 스킵하고, 단순하게 최고 가능한 경로 비용 (예를 들어, 무한대의 값) 을 화장실에 할당하고 이 화장실이 폐쇄되었다는 것을 나타내기 위한 적합한 아이콘을 디스플레이 (302) 에 디스플레이할 수 있다. 이와 유사하게, 데이터베이스 (200) 는 엔티티들 중 하나 (예를 들어, 엘리베이터 또는 에스컬레이터 2) 가 고장이라는 것을 표시할 수도 있고, 추천 엔진은 고장난 엔티티를 이용하는 경로들을 피할 수도 있다. Looking at bathroom 3, database 200 indicates that bathroom 3 is located within the movie theater and is accessible only to movie viewers. Therefore, the location awareness recommendation engine may skip the entire path cost determination for toilet 3 and simply assign the highest possible path cost (e.g., a value of infinity) to toilet 3. In another example, if the location awareness recommendation engine determines that the user has a subsequent destination and that this is a movie theater (e.g., the user is planning to watch the movie), the engine can continue to determine the full path cost for toilet 3 have. In another example, the database 200 may indicate the time when the toilet is closed for cleaning. If the recommendation engine determines that the toilet is currently closed for cleaning, the engine skips the entire path cost determination for the toilet and simply assigns the highest possible path cost (e.g., a value of infinity) to the toilet May display on the display 302 an appropriate icon to indicate that this toilet has been closed. Similarly, the database 200 may indicate that one of the entities (e.g., elevator or escalator 2) is faulty, and the recommendation engine may avoid routes using the failed entity.

화장실 4까지의 최단 경로는 시어즈 내로 들어가는 것 및 시어즈 내에서 에스컬레이터 1 을 이용하는 것을 포함하는 경로인 것으로 결정될 수 있다. 이 예에서, 시어즈는 로컬 좌표들로 매장의 내부에 대한 맵을 디스플레이할 수 있는 자체 서버를 가진다. 그러므로, 데이터베이스 (200) 는 화장실 4 로의 입구의 좌표 없이 화장실 4 이 몰의 2 층에 있는 시어즈에 있고 이것이 1인용 화장실이라는 정보만을 갖는다. 여기서, 위치 인식 추천 엔진은 데이터베이스 (200) 에 의하여 표시되는 바와 같이 시어즈의 경계에 기반하여 화장실 4까지의 경로 길이를 추정할 수도 있다. 데이터베이스 (200) 에 기반하면, 시어즈의 1 층은 좌표들 (13, 12, 1), (18, 12, 1), (18, 3, 1) 및 (13, 3, 1) 을 가지는 사각형에 의하여 경계가 구분되고, 시어즈의 2 층은 좌표들 (13, 12, 2), (18, 12, 2), (18, 3, 2), 및 (13, 3, 2) 를 가지는 사각형에 의하여 경계가 구분된다. 이러한 경계 좌표들에 기반하여, 시어즈는 9 유닛 길이와 5 유닛 폭으로 추정될 수 있다. 그러므로, 시어즈 내에서 이동하는 중에 최악의 시나리오는 시어즈의 한쪽 코너에서부터 출발하여 대각선 코너로 가는 것이며, 최악의 경우의 경로 길이는 9 + 5 = 14 일 수 있다 (시어즈의 전체 길이를 따라 이동하고 그 이후에 다시 전체 폭을 따라 이동하는 것이다). 이 예에서의 최단 경로는 (18, 9, 1) -> (18, 8, 1) -> [(시어즈 1 층) -> (에스컬레이터 1) -> (시어즈 2 층) ] = 1 + [시어즈 내부에서의 이동] 인 것으로 결정될 수도 있다. 이 예에서, 최단 경로는 사용자를 시어즈의 길이에서 대략 중심 포인트에 위치하는 위치 (18, 8, 1) 에서의 입구를 통하여 시어즈에 진입하도록 유도할 수 있다. 그러므로, 이 사용자가 시어즈 내의 임의의 포인트까지 가는 최악의 이동 거리는 1/2 * (시어즈의 길이) + (시어즈의 폭) = 1/2 * 9 + 5 ≒ 11 인 것으로 추정될 수 있다. 1 층에 있는 사용자의 현재 위치로부터 시어즈의 2 층에 있는 화장실 4까지 이동하는 것은 에스컬레이터 1 과 에스컬레이터 1 과 관련된 가중값을 수반한다. 이 예에서, 에스컬레이터 1 에는 수반되는 층 변경에 대한 페널티로서 10 의 가중값이 할당될 수 있다. 에스컬레이터의 가중값은 계단 및 엘리베이터의 가중값보다는 작을 수 있는데, 그 이유는 계단을 오르기 또는 엘리베이터를 대기하는 것과 같은 육체적 노력을 수반하지 않기 때문이다. 또한, 시어즈와 같은 대형 엔티티 내부를 통하여 네비게이팅해야하는 복잡도에 대한 페널티로서 적절한 가중값 (예를 들어 10) 이 부가될 수 있다. 그러므로, 화장실 4 에 대하여 추정된 전체 경로 비용은 11 + 10 + 10 = 31 인 것으로 결정될 수 있다. 사용자가 시어즈에 들어가면, 시어즈의 맵이 디스플레이 (302) 에 디스플레이됨으로써, 화장실 4까지의 매 회전마다의 방향을 제공할 수도 있다. The shortest path up to toilet 4 can be determined to be a path that includes entering the sheath and using the escalator 1 within the sheath. In this example, Sears has its own server that can display a map for the interior of the store in local coordinates. Therefore, the database 200 has only the information that the toilet 4 is in Sears on the second floor of the mall, without the coordinates of the entrance to the toilet 4, and that this is a toilet for one person. Here, the location recognition recommendation engine may estimate the path length to the toilet 4 based on the boundaries of the sears, as shown by the database 200. Based on the database 200, the first layer of the Shearz is a rectangle having coordinates (13, 12, 1), (18, 12, 1), (18,3,1) and The second layer of Sears is divided by the rectangle with coordinates (13, 12, 2), (18, 12, 2), (18, 3, 2) The boundaries are distinguished. Based on these boundary coordinates, Sears can be estimated to be 9 unit length and 5 unit width. Thus, the worst-case scenario while moving within Sears is to go from one corner of the Sears to the diagonal corner, and the worst case path length can be 9 + 5 = 14 (move along the full length of the sears, And then move along the entire width again). The shortest path in this example is (18, 9, 1) -> (18, 8, 1) -> [(Sears first floor) -> (Escalator 1) Movement inside]. In this example, the shortest path may lead the user to enter the shear through the entrance at position 18,8, 1 located approximately at the center point in the length of the sear. Hence, the worst travel distance that this user travels to any point in the sheath can be estimated to be 1/2 * (length of sears) + (width of sears) = 1/2 * 9 + 5? 11. Moving from the user's current location on the first floor to the toilets 4 on the second floor of Sears entails weighting related to escalator 1 and escalator 1. In this example, escalator 1 may be assigned a weight of 10 as a penalty for subsequent layer change. The weight of the escalator may be less than the weight of the stairs and the elevator because the physical effort such as climbing the stairs or waiting for the elevator is not involved. In addition, an appropriate weighting factor (e.g., 10) may be added as a penalty for the complexity that must be navigated through a large entity such as Sears. Therefore, the estimated total path cost for toilet 4 can be determined to be 11 + 10 + 10 = 31. When the user enters the Sears, a map of Sears may be displayed on the display 302 to provide directions for each turn to the toilet 4. [

화장실 1 에 대한 전체 경로 비용 (64), 화장실 2 에 대한 전체 경로 비용 (44), 화장실 3 에 대한 전체 경로 비용 (무한대), 및 화장실 4 에 대한 전체 경로 비용 (31) 에 기반하여, 위치 인식 추천 엔진은 화장실들을 최저 전체 경로 비용부터 최고 전체 경로 비용까지의 순서로 랭크할 수 있는데, 그 결과는 화장실 4, 화장실 2, 화장실 1, 및 화장실 3 이 되고, 여기서 화장실 4 가 가장 최적인 것으로 추천된다. 이와 같은 검색 결과들의 위치 인식 랭크된 목록이 디스플레이 (302) 에 제공될 수 있다. 디스플레이 (302) 의 아이콘 (604) 가 화장실 4까지의 경로가 에스컬레이터를 포함한다고 표시할 수 있다. 아이콘 (318) 은 화장실 4 가 합리적인 선택이라고 표시할 수 있다. 아이콘 (608) 은 화장실 2 까지의 경로가 계단을 포함한다고 표시할 수 있다. 아이콘 (606) 은, 시간에 민감한 속성의 추천 요청이 주어질 경우 사용자가 화장실 2 로 서둘러 가야 할 수 있다는 것을 표시할 수 있다. 아이콘 (320) 은 화장실 2 가 합리적인 선택이 아니라는 것을 표시할 수 있다. 아이콘 (610) 은 화장실 1 에서 또는 화장실 1 까지의 경로에서 혼잡도가 있다는 것을 표시할 수 있다. 아이콘 (320) 은 화장실 1 이 합리적인 선택이 아니라는 것을 나타낼 수 있다. 아이콘 (612) 은 화장실 3 이 액세스가 제한된다는 것을 표시할 수 있다. 아이콘 (320) 은 화장실 3 이 합리적인 선택이 아니라는 것을 표시할 수 있다. Based on the total path cost (64) for toilet 1, the total path cost 44 for toilet 2, the total path cost (infinity) for toilet 3, and the total path cost 31 for toilet 4, The recommendation engine can rank the toilets in order from the lowest overall path cost to the highest overall path cost, resulting in a toilet 4, a toilet 2, a toilet 1, and a toilet 3, where toilet 4 is the most optimal do. A ranked, ranked list of such search results may be provided on display 302. The icon 604 of the display 302 may indicate that the path to the toilet 4 includes an escalator. The icon 318 may indicate that toilet 4 is a reasonable choice. The icon 608 may indicate that the path to toilet 2 includes a stairway. The icon 606 may indicate that the user may have to hurry to the toilet 2 given a recommendation for a time-sensitive attribute. Icon 320 may indicate that toilet 2 is not a reasonable choice. Icon 610 may indicate that there is congestion on the path from toilet 1 to toilet 1. Icon 320 may indicate that toilet 1 is not a reasonable choice. The icon 612 may indicate that the toilet 3 is restricted in access. Icon 320 may indicate that toilet 3 is not a reasonable choice.

몇 가지 설계예들에서, 위치 인식 추천 엔진은 예를 들어 사용자 애플리케이션 내의 구성 메뉴 (configuration menu) 를 통하거나, MS (100) 또는 서버에 의한 자동 구성 등을 통하여 구성될 수도 있다. 예를 들어, 휠체어를 타고 있는 사용자는 그가/그녀가 휠체어를 타고 있다는 것을 나타낼 수 있다. 이에 응답하여, 추천 엔진은 사용자와 동일한 층 (level/floor) 에 있는 엔티티들을, 층 변경을 요구할 수 있는 엔티티들보다 더 높게 랭크할 수 있다. 또한, 사용자는 다양한 액세스가능성 기준에 할당되는 가중값들을 커스터마이징 할 수도 있다. 예를 들어, 사용자는 추천되는 엔티티에 도달하기 위하여 방향을 반전하는 것을 주저하지 않을 수 있으며, 따라서 그는/그녀는 현재 방향을 반전하는데 관련되는 디폴트 가중값을 적절한 값으로 낮출 수 있다. 각 추천과 관련되는 전체 경로 비용은 디스플레이 (302) 상에 디스플레이되도록 구성됨으로써, 사용자에게 어떤 추천이 전체 경로 비용의 관점에서 예를 들어 목록 상의 다음 추천과 얼마나 유사한지에 대한 정보를 제공할 수 있는데, 이 정보는 사용자로 하여금 어떤 추천을 따라야 할지에 대한 더 많은 정보를 참조한 결정을 수행할 수 있도록 허용할 수 있다. 추천 결과들의 관련성 또는 위치 인식에 대한 강조는 조절될 수도 있다. 예를 들어, 디폴트 세팅은 모든 추천들이 (예를 들어, 도 4 와 관련하여 논의된 방법에 기초하여 결정된) 전체 경로 비용에 따라서 랭크되어야 한다는 것을 나타낼 수도 있다. 사용자는 세팅을 재구성함으로써, 모든 추천들이 관련성 검색에 의하여 결정된 바와 같은 추천 요청에 대한 관련성에 따라서 랭크되도록 할 수 있는데, 여기서 예를 들어, 문을 닫고 있거나, 액세스가 제한되거나 또는 요청의 시간에 민감한 속성 때문에 어떤 엔티티가 액세스 불가능한 경우가 아니라면 가장 관련성이 높은 결과가 최적 추천으로서 나열되고, 동일한 관련성을 가지는 결과들은 전체 경로 비용에 기반하여 랭크될 수 있다. 다른 예로서, 사용자는 그가/그녀가 추천된 엔티티에 도달하기 위하여 이동할 최대 이동 거리를 구성할 수 있으며, 사용자의 현재 포지션으로부터의 전체 경로 길이가 최대 이동 거리 이상인 임의의 엔티티는 추천으로서 포함되지 않을 수 있다. 이와 유사하게, 사용자는 그가/그녀가 어떤 엔티티에 도달하기 위하여 감수할 최대 전체 경로 비용을 구성할 수 있다. 일 설계예에서, 위치 인식 추천 엔진은 추천 요청을 수신하면 위치 인식 검색을 수행하여, 예를 들어 사용자의 현재 포지션에 기반하여 적합하거나 사용자가 구성한 전체 경로 길이/전체 경로 비용 안에 속하는 하나 이상의 엔티티들을 결정하고, 추천 요청에 대한 그들의 관련성에 기반하여 하나 이상의 엔티티들을 랭크할 수도 있다. In some design examples, the location awareness recommendation engine may be configured through, for example, a configuration menu in the user application, or through automatic configuration by the MS 100 or server. For example, a user in a wheelchair may indicate that he / she is in a wheelchair. In response, the recommendation engine may rank entities in the same level (level / floor) as the user, higher than entities that may require layer changes. The user may also customize the weight values assigned to the various accessibility criteria. For example, the user may not hesitate to reverse the direction to reach the recommended entity, so he / she can lower the default weight associated with reversing the current direction to an appropriate value. The total path cost associated with each recommendation is configured to be displayed on the display 302 so that the user can provide information as to what recommendation is in terms of overall path cost, for example, how similar to the next recommendation on the list, This information may allow the user to make decisions that refer to more information about which recommendations to follow. The relevance of recommendation results or emphasis on location awareness may be adjusted. For example, the default setting may indicate that all recommendations should be ranked according to the overall path cost (e.g., determined based on the method discussed with respect to FIG. 4). The user can reconfigure the settings so that all the recommendations are ranked according to their relevance to the recommendation request as determined by the relevance search, for example, by closing the door, limiting access, Unless an entity is inaccessible due to an attribute, the most relevant result is listed as an optimal recommendation, and the results with the same relevance can be ranked based on the total path cost. As another example, the user may configure the maximum travel distance he / she will travel to reach the recommended entity, and any entities whose total path length from the user's current position is greater than or equal to the maximum travel distance may not be included as a recommendation . Similarly, a user may configure a maximum overall path cost that he / she will take to reach an entity. In one design example, the location awareness recommendation engine performs a location aware search upon receipt of a recommendation request to determine one or more entities that are eligible based on, for example, the user's current position, or belonging to the full path length / And rank one or more entities based on their relevance to the recommendation request.

몇 가지 설계예들에서, 위치 인식 추천 엔진은 자동으로 세팅을 조정할 수도 있다. 예를 들어, 엔진은 사용자 히스토리로부터 사용자가 웬디스를 버거킹, 맥도날드 또는 소닉보다 더 자주 선택한 바 있다고 결정할 수도 있고, 웬디스가 몰 내에서 사용자가 선호하는 햄버거 식당이라고 결정할 수도 있다. 추후에 웬디스가 관련성 검색 결과들 중에 포함된다면, 추천 엔진은, 예를 들어 웬디스의 전체 경로 비용을 감소시킴으로써, 웬디스가 합리적인 대안들 중에 포함될 가능성을 향상시키기 위해 그 랭크를 증가시킬 수도 있다. 다른 예로서, 추천 엔진은 사용자 히스토리로부터 사용자가 몰에 방문할 때마다 MS (100) 의 위치가 시어즈의 경계 좌표들 안에서 흔히 발견되었다고 결정할 수도 있다. 추천 엔진은 시어즈가 사용자가 선호하는 상점들 중 하나라고 결정할 수도 있으며, 추천된 엔티티들에 도달하는 경로에 적합한 조정을 수행함으로써, 예를 들어, 사용자에게 시어즈에 들러서 내부를 둘러볼 기회를 제공하기 위해 이러한 경로가 사용자를 시어즈의 입구들 중 하나에 근접하도록 안내하게 할 수도 있다. In some design examples, the location awareness recommendation engine may automatically adjust the settings. For example, the engine may determine from the user history that the user has selected Wendy more often than Burger King, McDonald, or Sonic, or that Wendy's is the user's preferred hamburger restaurant within the mall. If later Wendith is included in the relevance search results, the recommendation engine may increase its rank to improve the likelihood of Wendith being included in a reasonable alternative, for example by reducing Wendith's overall path cost. As another example, the recommendation engine may determine from the user history that the location of the MS 100 is frequently found within the boundary coordinates of the Sears whenever the user visits the mall. The recommendation engine may determine that Sears is one of the user's preferred stores, and may make adjustments to the route to reach the recommended entities, for example, to provide the user with an opportunity to visit Sears and explore the interior This path may lead the user to approach one of the entrances of the sears.

도 7 은 보행자 환경에 대한 추천들의 위치 인식 정렬을 생성하기 위한 예시적인 흐름도이다. 블록 (701) 에서, 검색 요청이 수신될 수 있다. 블록 (702) 에서, 보행자 환경과 연관된 하나 이상의 검색 결과들이 결정될 수 있다. 블록 (703) 에서, 검색 요청과 연관된 이동국의 위치가 결정될 수 있다. 예를 들어, 검색 요청과 연관된 이동국이란, 사용자가 추천 요청을 입력한 이동국이거나, 자동 추천 요청이 입력된 이동국 등일 수 있다. 예를 들어, 블록 (703) 은 블록 (702) 이전에 수행되거나 블록 (702) 와 동시에 수행될 수도 있다. 블록 (704) 에서, 하나 이상의 검색 결과들의 적어도 일부는 MS의 위치에 기반하여, 그리고 하나 이상의 검색 결과들과 연관된 위치, 및/또는 액세스가능성 기준 중 적어도 하나에 기반하여 랭크될 수 있다. 7 is an exemplary flow chart for creating a location aware arrangement of recommendations for a pedestrian environment. At block 701, a search request may be received. At block 702, one or more search results associated with the pedestrian environment may be determined. At block 703, the location of the mobile station associated with the search request may be determined. For example, a mobile station associated with a search request may be a mobile station to which a user has entered a recommendation request, a mobile station to which an automatic recommendation request is input, and the like. For example, block 703 may be performed before block 702 or may be performed concurrently with block 702. [ At block 704, at least a portion of the one or more search results may be ranked based on at least one of a location of the MS, a location associated with the one or more search results, and / or an accessibility criterion.

도 8 은 위치 인식 추천 엔진과 관련하여 이용될 수도 있는 이동국과 통신하기 위한 시스템의 블록도를 예시한다. MS (100) 는 송신기/수신기 (TMTR/RCVR, 802), 프로세싱 유닛 (804), 메모리 (806), 센서들/카메라 (808), 입력부 (810), 및 출력부 (812) 를 포함할 수도 있다. 서버 (800) 는 프로세싱 유닛 (820), 메모리 (822), 및 송신기/수신기 (TMTR/RCVR) (824) 를 포함할 수도 있다. 서버 (800) 는 도 1a 및 1b 의 몰과 같은 보행자 현장에 의하여 관리될 수도 있다. MS (100) 및 서버 (800) 는 무선 네트워크를 통하여 통신할 수도 있는데, 예를 들어, Wi-Fi 네트워크와 같은 무선 근거리 통신망을 통하여 통신할 수도 있다. 8 illustrates a block diagram of a system for communicating with a mobile station that may be utilized in conjunction with a location awareness recommendation engine. MS 100 may include a transmitter / receiver (TMTR / RCVR, 802), a processing unit 804, a memory 806, sensors / camera 808, an input 810, and an output 812 have. The server 800 may include a processing unit 820, a memory 822, and a transmitter / receiver (TMTR / RCVR) The server 800 may be managed by a pedestrian scene, such as the mall in Figures 1a and 1b. The MS 100 and the server 800 may communicate over a wireless network, for example, via a wireless local area network, such as a Wi-Fi network.

MS (100) 는 송신기/수신기 (802) 를 통하여, 예를 들어 시그널링 (signaling), 데이터, 및 메시지를 다른 장치들로 송신하고, 예를 들어, 시그널링, 데이터, 및 메시지를 다른 장치들로부터 수신할 수도 있다. 송신기/수신기 (802) 는 Wi-Fi 송수신기, 셀룰러 송수신기, GPS 수신기, 블루투스 송수신기, USB 송수신기 등을 포함할 수도 있다. 메모리 (806) 는, 현장의 맵 (예를 들어, 도 1a 및 도 1b 와 같은 맵), 데이터베이스 (200), 위치 인식 추천 애플리케이션, 사용자 히스토리 등과 같이 위치 인식 추천 엔진과 연관된 정보 및 코드를 저장할 수도 있다. 설계예에 따라서는, 프로세싱 유닛 (804) 은, 예를 들어 메모리 (806) 내에 저장된 코드의 지시 하에, 도 7 에 예시된 다양한 기능들 및 본 명세서에서 논의된 다른 기능들을 실행하거나 또는 이들의 실행을 디렉팅할 수도 있다. 센서/카메라 (808) 는 가속도계, 자이로스코프, 고도계, 온도 센서, 주변광 센서, 디지털 카메라 등을 포함할 수도 있다 (예를 들어, 디지털 카메라는 고화질 이미지 및 동영상 촬영이 가능하다). 입력부 (808) 는 마이크로폰 시스템 (예를 들어, 잡음 제거 마이크로폰 시스템), 키패드/키보드 (예를 들어, 키패드/키보드 (316)), 터치/감지 기능을 가지는 디스플레이 스크린 (예를 들어, 디스플레이 (302)), 노브/휠 (knobs/wheels), HDMI 수신기 등을 포함할 수도 있다. 출력부 (810) 는 스피커, 디스플레이 스크린 (예를 들어, 디스플레이 (302)), 프로젝터, 떨림/진동 발생기, HDMI 송신기 등을 포함할 수도 있다. MS (100) 는 전술된 바와 같이 자신의 현재 위치를 결정하고 자신의 현재 위치를 서버 (800) 로 송신할 수도 있다. MS 100 may send signaling, data, and messages to other devices, for example, via transmitter / receiver 802, and may receive, for example, signaling, data, and messages from other devices You may. The transmitter / receiver 802 may include a Wi-Fi transceiver, a cellular transceiver, a GPS receiver, a Bluetooth transceiver, a USB transceiver, and the like. The memory 806 may store information and code associated with the location awareness recommendation engine, such as a map of the site (e.g., maps such as FIGS. 1A and 1B), a database 200, a location awareness recommendation application, user history, have. Depending on the design example, the processing unit 804 may be capable of executing various functions illustrated in FIG. 7 and other functions discussed herein and / or executing them, for example, under the direction of the code stored in the memory 806 . The sensor / camera 808 may include an accelerometer, a gyroscope, an altimeter, a temperature sensor, an ambient light sensor, a digital camera, and the like (e.g., a digital camera is capable of capturing high quality images and movies). Inputs 808 include a microphone system (e.g., a noise canceling microphone system), a keypad / keyboard (e.g., keypad / keyboard 316), a display screen ), Knobs / wheels, an HDMI receiver, and the like. Output 810 may include a speaker, a display screen (e.g., display 302), a projector, a tremor / vibration generator, an HDMI transmitter, and the like. MS 100 may determine its current location and transmit its current location to server 800 as described above.

서버 (800) 는 송신기/수신기 (824) 를 통하여, 예를 들어 시그널링, 데이터, 및 메시지를 다른 장치들로 송신하고, 예를 들어, 시그널링, 데이터, 및 메시지를 다른 장치들로부터 수신할 수도 있다. 송신기/수신기 (824) 는 Wi-Fi 송수신기, 이더넷 접속, 블루투스 송수신기, USB 송수신기 등을 포함할 수도 있다. 메모리 (822) 는, 현장의 맵 (예를 들어, 도 1a 및 도 1b 와 같은 맵), 데이터베이스 (200), 현장 내의 Wi-Fi 액세스 포인트들/펨토셀들의 위치들과 같이 위치 인식 추천 엔진과 연관된 정보 및 코드를 저장할 수도 있다. 설계예에 따라서는, 프로세싱 유닛 (820) 은, 예를 들어 메모리 (822) 내에 저장된 코드의 지시 하에, 도 7 에 예시된 다양한 기능들 및 본 명세서에서 논의된 다른 기능들을, 실행하거나 또는 이들의 실행을 디렉팅할 수도 있다. The server 800 may send signaling, data, and messages to other devices, for example, signaling, data, and messages from other devices, via the transmitter / . The transmitter / receiver 824 may include a Wi-Fi transceiver, an Ethernet connection, a Bluetooth transceiver, a USB transceiver, and the like. The memory 822 may be configured to store location information associated with the location awareness recommendation engine, such as a map of the site (e.g., maps such as FIGS. 1A and 1B), database 200, locations of Wi-Fi access points / femtocells within the site Information and code can also be stored. Depending on the design example, the processing unit 820 may be capable of executing various functions illustrated in FIG. 7 and other functions discussed herein, under the direction of code stored, for example, in the memory 822, You can also direct execution.

본 명세서에서 이용되는 용어에서, 이동국 (MS) 이란 셀룰러 또는 다른 무선 통신 장치, 개인용 통신 시스템 (PCS) 장치, 개인용 네비게이션 장치 (PND), 개인용 정보 관리자 (PIM), 개인휴대 정보단말 (PDA), 랩톱, 태블릿, 넷북, 스마트북, 또는 무선 통신 및/또는 네비게이션 신호들을 수신할 수 있는 다른 적합한 모바일 장치들과 같은 장치를 가리킨다. 또한, "이동국" 이라는 용어는, 이를 테면 근거리 무선, 적외선, 유선 접속, 또는 다른 접속에 의해 개인용 네비게이션 장치 (PND) 와 통신하는 장치들을 포함하는 것으로 의도된다 - 이는 위성 신호 수신, 보조 데이터 수신, 및/또는 포지션-관련 프로세싱이 해당 장치 또는 PND에서 일어나는지 여부와는 무관하다. 또한, "이동국" 은 무선 통신 장치들, 컴퓨터들, 랩톱 등과 같이, 인터넷, Wi-Fi, 또는 다른 네트워크를 통하여 서버와 통신할 수 있는 모든 장치들을 포함하는 것으로 의도되는데, 이는 위성 신호 수신, 보조 데이터 수신, 및/또는 포지션-관련 프로세싱이 장치에서, 서버에서, 또는 네트워크와 연관된 다른 장치에서 일어나는지 여부와는 무관하다. 또한, 전술된 장치들을 동작 가능하도록 조합한 모든 것들이 "이동국"이라고 간주된다. In the terminology used herein, a mobile station (MS) is a cellular or other wireless communication device, a personal communication system (PCS) device, a personal navigation device (PND), a personal information manager (PIM), a personal digital assistant Laptop, tablet, netbook, smartbook, or other suitable mobile devices capable of receiving wireless communication and / or navigation signals. The term "mobile station" is also intended to include devices that communicate with a personal navigation device (PND), such as by a near-field radio, infrared, wired connection, or other connection- And / or position-related processing occurs on the corresponding device or PND. It is also contemplated that the "mobile station" is intended to include any apparatus capable of communicating with a server over the Internet, Wi-Fi, or other network, such as wireless communication devices, computers, Data reception, and / or position-related processing occurs at the device, at the server, or at another device associated with the network. In addition, everything that combines the above-described devices for operability is considered a "mobile station. &Quot;

본 명세서에서 논의된 방법들은, 적용예에 따라서 다양한 수단을 이용하여 구현될 수도 있다. 예를 들어, 이러한 방법들은 하드웨어, 펌웨어, 소프트웨어 또는 이들의 임의의 조합의 형태로 구현될 수도 있다. 하드웨어를 수반하는 구현예에서, 프로세싱 유닛은 하나 이상의 주문형 집적 회로들 (ASICs), 디지털 신호 프로세서들 (DSPs), 디지털 신호 프로세싱 장치들 (DSPDs), 프로그램가능 로직 디바이스들 (PLDs), 필드 프로그램가능 게이트 어레이들 (FPGAs), 프로세서들, 제어기들, 마이크로-제어기들, 마이크로프로세서들, 전자 장치들, 본 명세서에서 논의된 기능을 실행하도록 설계된 다른 전자 유닛들 또는 이들의 조합으로 구현될 수도 있다. The methods discussed herein may be implemented using various means, depending on the application. For example, these methods may be implemented in the form of hardware, firmware, software, or any combination thereof. In an embodiment involving hardware, the processing unit may comprise one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) Controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions discussed herein, or a combination thereof.

펌웨어 및/또는 소프트웨어를 수반하는 구현예에 대하여, 본 발명의 방법들은 본 명세서에서 논의된 기능들을 수행하는 모듈들 (예를 들어, 프로시저들, 기능들 등과 같은 모듈들) 을 이용하여 구현될 수 있다. 본 명세서에서 논의된 방법을 구현하는 데에는 명령들을 유형으로 (tangibly) 구현하는 모든 머신 판독가능 매체가 이용될 수도 있다. 예를 들어, 소프트웨어 코드는 메모리 내에 저장되고 프로세싱 유닛에 의하여 실행될 수 있다. 메모리는 프로세싱 유닛 내에 구현되거나 프로세싱 유닛 외부에 구현될 수도 있다. 본 명세서에서 이용되는 "메모리" 라는 용어는 임의의 타입의 장기 메모리, 단기 메모리, 휘발성 메모리, 비휘발성 메모리, 또는 다른 메모리를 가리키는 것이며, 메모리의 어떤 특정 타입 또는 메모리들의 수, 또는 메모리가 저장되는 매체의 타입에 한정되는 것이 아니다. For implementations involving firmware and / or software, the methods of the present invention may be implemented using modules (e.g., modules such as procedures, functions, etc.) that perform the functions discussed herein . Any machine readable medium that tangibly implements the instructions may be used to implement the methods discussed herein. For example, the software code may be stored in memory and executed by the processing unit. The memory may be implemented within the processing unit or external to the processing unit. The term "memory ", as used herein, refers to any type of long-term memory, short-term memory, volatile memory, non-volatile memory, or other memory and includes any particular type or number of memories, It is not limited to the type of medium.

펌웨어 및/또는 소프트웨어와 관련된 구현예에 대하여, 기능들은 하나 이상의 명령들 또는 코드로서 컴퓨터 판독가능 매체에 저장될 수 있다. 그 실시예들에는, 데이터 구조를 이용하여 인코딩된 컴퓨터 판독가능 매체 및 컴퓨터 프로그램을 이용하여 인코딩된 컴퓨터 판독가능 매체가 포함된다. 컴퓨터 판독가능 매체는 제조품 (article of manufacture) 의 형태를 가질 수도 있다. 컴퓨터 판독가능 매체는 물리적 컴퓨터 저장 매체를 포함한다. 저장 매체는 컴퓨터에 의하여 액세스 될 수 있는 모든 이용가능한 매체일 수도 있다. 한정이 아닌 예시의 의미에서, 이러한 컴퓨터 판독가능 매체는 RAM, ROM, EEPROM, CD-ROM 또는 다른 광학 디스크 저장소, 자기적 디스크 저장소, 반도체 저장소, 또는 다른 저장 장치들, 또는 명령어들이나 데이터 구조체들의 형태로 원하는 프로그램 코드를 저장하는데 이용될 수 있고 컴퓨터에 의하여 액세스될 수 있는 모든 다른 매체를 포함할 수 있는데, 여기서 디스크 (disk 및 disc) 라는 용어는 컴팩트 디스크 (CD), 레이저 디스크, 광학 디스크, 디지털 다기능 디스크 (DVD), 플로피 디스크 및 블루레이 디스크를 포함하며, 여기서 디스크 (disk) 라는 용어는 일반적으로 데이터를 자기적으로 복제하는 반면, 디스크 (disk) 는 데이터를 레이저를 이용하여 광학적으로 복제한다. 또한, 전술된 부재들의 조합들이 컴퓨터 판독가능 매체의 범위 내에 포함되어야 한다. For implementations related to firmware and / or software, functions may be stored in one or more instructions or code as computer readable media. The embodiments include a computer readable medium encoded using a data structure and a computer readable medium encoded using the computer program. The computer-readable medium may have the form of an article of manufacture. Computer readable media include physical computer storage media. The storage medium may be any available medium that can be accessed by a computer. By way of example and not of limitation, such computer-readable media can be in the form of RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage, semiconductor storage, or other storage devices, (CD), a laser disk, an optical disk, a digital disk, and the like, as well as any other medium that can be used to store the desired program code and accessible by a computer. A multifunctional disk (DVD), a floppy disk, and a Blu-ray disk, where the term generally refers to magnetically replicating data, while a disk optically replicates data using a laser . Combinations of the above-described elements should also be included within the scope of computer readable media.

컴퓨터 판독가능 매체에 저장되는 것에 추가하여, 명령들 및/또는 데이터는 통신 장치 내에 포함된 송신 매체 상에 신호로서 제공될 수도 있다. 예를 들어, 통신 장치는 명령들 및 데이터들을 나타내는 신호들을 가지는 송수신기를 포함할 수도 있다. 이러한 명령들 및 데이터들은 하나 이상의 프로세싱 유닛으로 하여금 청구항에서 강조되는 기능들을 구현하도록 구성된다. 즉, 통신 장치는 개시된 기능들을 수행하기 위한 정보를 나타내는 신호들을 가지는 송신 매체를 포함한다. 첫 번째로, 통신 장치 내에 포함된 송신 매체는 개시된 기능들을 수행하기 위한 정보의 제 1 부분을 포함할 수 있으며, 두 번째로는 통신 장치 내에 포함되는 송신 매체는 개시된 정보들을 수행하기 위한 정보의 제 2 부분을 포함할 수도 있다. In addition to being stored on a computer readable medium, the instructions and / or data may be provided as a signal on a transmission medium included within the communication device. For example, the communication device may include a transceiver having signals representative of instructions and data. These instructions and data are configured to cause one or more processing units to implement the functions highlighted in the claims. That is, the communication device includes a transmission medium having signals indicative of information for performing the disclosed functions. First, a transmission medium included in a communication device may include a first portion of information for performing the disclosed functions, and secondly a transmission medium included in the communication device may include a portion of information for performing the disclosed information 2 < / RTI >

발명의 상세한 설명의 일부는, 특정 장치 또는 특정 용도의 연산 장치 또는 플랫폼 내의 메모리에 저장된 이진 디지털 신호들에 대한 연산들의 알고리즘들 또는 심볼 표현들의 측면에서 제시된다. 본 명세서의 문맥에서는, 특정 장치, 특수 용도 장치 등이라는 용어에는, 프로그램 소프트웨어로부터의 명령들에 따르는 특정 기능들을 수행하도록 프로그램된 바 있는 범용 컴퓨터가 포함된다. 알고리즘 설명 또는 심볼 표현들은, 신호 프로세싱 또는 관련 기술 분야의 당업자들이 그들의 작업의 요지를 다른 당업자들에게 전달하기 위하여 이용하는 기술들의 예들이다. 본 명세서에서와 같은 알고리즘이라는 용어는 일반적으로 원하는 결과를 도출해내는 연산들 또는 유사한 신호 프로세싱의 일관적인 시퀀스인 것으로 간주된다. 이러한 맥락에서, 연산들 또는 프로세싱은 물리적 양들의 물리적 조종과 관련된다. 전형적으로, 이러한 양들은 저장, 전달, 결합, 비교, 또는 다른 방식으로 조종될 수 있는 전기적 또는 자기적 신호들의 형태를 가질 수 있는데, 반드시 가져야 하는 것은 아니다. Part of the detailed description of the invention is presented in terms of algorithms or symbolic representations of operations on binary digital signals stored in a memory in a particular device or computing device or platform for a particular application. In the context of this specification, the term specific device, special purpose device, etc., includes a general purpose computer programmed to perform certain functions in accordance with instructions from the program software. Algorithmic descriptions or symbolic representations are examples of techniques that signal processing or other techniques used by those skilled in the art to convey to others skilled in the art of their work. The term algorithm as used herein is generally considered to be a consistent sequence of operations or similar signal processing that yields the desired result. In this context, operations or processing involves physical manipulation of physical quantities. Typically, these quantities may, but need not, have the form of electrical or magnetic signals that can be stored, transferred, combined, compared, or otherwise manipulated.

가끔은, 주로 공통의 사용을 이유서, 이러한 신호들을 비트, 데이터, 값, 요소, 심벌, 문자, 용어, 개수, 및 숫자 등과 같이 부르는 것이 편리하다는 것이 증명된 바 있다. 그러나, 이러한 용어들 및 이와 유사한 용어들이 적합한 물리적 양들과 관련되어야 하며, 단지 편리한 명칭에 지나지 않는다는 것이 이해되어야 한다. 명백하게 그렇지 않다고 언급되지 않는다면, 본 명세서 전체에 걸쳐서 "프로세싱", "연산", "계산", "결정" 등과 같은 용어를 이용하는 것이, 특수 용도의 컴퓨터 또는 이와 유사한 특수 용도의 전자 연산 장치와 같은 특정 장치의 액션들 (actions) 또는 프로세스를 가리킨다는 것이 이해된다. 그러므로, 본 명세서의 문맥에서는, 특수 용도 컴퓨터 또는 이와 유사한 특수 용도 전자 연산 장치는 신호들을 조종 또는 변환할 수 있는데, 이러한 신호는 전형적으로는 메모리, 레지스터, 또는 다른 정보 저장 장치, 송신 장치, 또는 특수 목적 컴퓨터 또는 이와 유사한 특수 목적 전자 연산 장치의 디스플레이 장치 내에 저장된 물리적, 전자적, 또는 자기적 물리량들로서 표현된다. 예를 들어, 특정 연산 장치, 특수 목적 장치 등은 하나 이상의 특정 기능들을 수행하기 위한 명령들을 이용하여 프로그램되는 프로세싱 유닛을 포함할 수도 있다. Sometimes it has proven convenient to call such signals as bits, data, values, elements, symbols, letters, terms, numbers, numbers and the like, mainly for common use. It should be understood, however, that such terms and similar terms are to be associated with the appropriate physical quantities and are merely convenient designations. It will be understood by those of skill in the art that the use of terms such as "processing", "operation", "calculation", "determination" Quot; device " refers to a device ' s actions or process. Thus, in the context of this disclosure, a special purpose computer or similar special purpose electronic computing device may manipulate or translate signals, which are typically stored in memory, registers, or other information storage devices, Electronic, or magnetic physical quantities stored within the display device of the target computer or similar special purpose electronic computing device. For example, a particular computing device, special purpose device, or the like, may include a processing unit that is programmed with instructions for performing one or more specific functions.

본 명세서에서 이용되는 "명령들 (instructions)" 이라는 용어는 하나 이상의 논리적 동작들을 나타내는 표현과 관련된다. 예를 들어, 명령들은 하나 이상의 동작을 하나 이상의 데이터 오브젝트들에 대하여 실행하기 위한 머신에 의하여 해석됨으로써, "기계 판독가능 (machine-readable)" 해질 수 있다. 그러나 이것은 명령들의 한 예에 지나지 않으며, 청구된 요지는 이러한 측면에 한정되지 않는다. 다른 예에서, 본 명세서에서 이용되는 명령들은, 인코딩된 커맨드들을 포함하는 커맨드 집합을 가지는 프로세싱 유닛에 의하여 실행될 수 있는 인코딩된 커맨드에 관련될 수도 있다. 이러한 명령은 프로세싱 유닛에 의하여 이해되는 머신 언어의 형태로 인코딩될 수 있다. 다시 한번 언급하지만, 이들은 명령의 예들에 지나지 않으며 청구된 요지는 이러한 측면에 한정되지 않는다. The term "instructions, " as used herein, refers to representations that represent one or more logical operations. For example, the instructions may be "machine-readable" by being interpreted by a machine to perform one or more operations on one or more data objects. However, this is merely an example of the commands, and the claimed subject matter is not limited to this aspect. In another example, the instructions used herein may relate to encoded commands that may be executed by a processing unit having a set of commands including encoded commands. Such an instruction may be encoded in the form of a machine language understood by the processing unit. Again, these are merely examples of orders, and the claimed subject matter is not limited in this respect.

본 명세서에서 설명된 본 발명의 실시형태들에 따르는 청구항들의 기능들, 단계 및/또는 동작은 명백히 그렇지 않다고 언급되지 않는 한 어떤 특정 순서로 실행되어야 할 필요는 없다. 더 나아가, 비록 본 발명의 요소들이 단수 형태로 설명 또는 청구될 수 있지만, 명백하게 단수라는 한정이 언급되지 않는 한 복수형도 역시 고려된다. 현재까지 예시적 특징들이라고 간주되는 것들이 예시되고 논의되어 왔지만, 많은 다른 개조가 이루어질 수 있으며, 청구된 요지를 벗어남 없이 균등물들이 대체될 수도 있다는 것이 당업자에게 이해될 수 있을 것이다. 또한, 본 명세서에서 논의되는 중심 개념에서 벗어나지 않으면서, 특정 상황을 청구된 요지들의 교시 내용에 맞도록 적응시키기 위하여 많은 개조들이 이루어질 수도 있다. 그러므로, 청구된 요지들은 개시된 특정 예들에 한정되지 않으며, 이러한 청구된 요지들은 첨부된 특허청구범위 및 그들의 균등물의 기술적 범위 내에 속하는 모든 측면들을 포함할 수도 있다는 점이 의도된다.  The functions, steps and / or operations of the claims according to the embodiments of the invention described herein need not be performed in any particular order unless explicitly stated otherwise. Furthermore, although elements of the present invention may be described or claimed in the singular, plural forms are also contemplated unless explicitly limited to the singular. While there have been illustrated and discussed what are at present considered exemplary features, many other modifications may be made and equivalents may be substituted without departing from the spirit claimed herein. In addition, many modifications may be made to adapt a particular situation to the teachings of the claimed subject matter without departing from the central concept discussed herein. It is, therefore, to be understood that the claimed subject matter is not limited to the specific examples disclosed, and that these claimed subject matter may include all aspects falling within the scope of the appended claims and their equivalents.

Claims (33)

보행자 환경을 위한 추천들을 랭크하는 방법으로서,
복수의 시간에 민감한 요청들(time sensitive requests)과 연관된 완료 시간 (completion time) 을 표시하는 적어도 하나의 시간 제약과 연관된, 상기 복수의 시간에 민감한 요청들을 포함하는 검색 요청을 수신하는 단계; 및
상기 검색 요청을 수신하는 단계에 응답하여,
상기 보행자 환경과 연관된 검색 결과들을 결정하는 단계;
상기 검색 요청과 연관된 이동국의 위치를 결정하는 단계; 및
상기 이동국의 위치, 상기 검색 결과들의 적어도 일부와 연관된 위치, 상기 복수의 시간에 민감한 요청들 및 액세스가능성 기준에 적어도 부분적으로 기반하여, 상기 검색 결과들의 적어도 일부를 랭크하는 단계를 포함하며,
상기 액세스가능성 기준은 상기 보행자 환경과 연관된 경로 복잡도 기준 및 경로 이동 시간 기준을 포함하고, 상기 경로 복잡도 기준은 상기 보행자 환경을 통한 경로에 복잡도를 부가하는 횡단되는 하나 이상의 장애물들의 존재와 연관되고, 상기 경로 이동 시간 기준은 상기 보행자 환경을 통한 경로와 연관된 상기 하나 이상의 장애물들을 횡단하기 위한 시간 양과 연관되는, 보행자 환경을 위한 추천들을 랭크하는 방법.
CLAIMS What is claimed is: 1. A method for ranking recommendations for a pedestrian environment,
Receiving a search request including the plurality of time sensitive requests associated with at least one time constraint indicative of a completion time associated with a plurality of time sensitive requests; And
In response to receiving the search request,
Determining search results associated with the pedestrian environment;
Determining a location of a mobile station associated with the search request; And
Ranking at least a portion of the search results based at least in part on the location of the mobile station, a location associated with at least a portion of the search results, the plurality of time sensitive requests and an accessibility criterion,
Wherein the accessibility criteria comprises a path complexity criterion and a path movement time criterion associated with the pedestrian environment and wherein the path complexity criterion is associated with the presence of one or more traversed obstacles that add complexity to the path through the pedestrian environment, Wherein the path travel time reference is associated with an amount of time to traverse the one or more obstacles associated with the path through the pedestrian environment.
제 1 항에 있어서,
상기 검색 요청은,
사용자 입력 및/또는 자동화된 검색 요청 중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
The search request includes:
User input, and / or automated search request. ≪ RTI ID = 0.0 >< / RTI >
제 1 항에 있어서,
상기 검색 결과들 중 적어도 하나에 네비게이션 안내를 제공하는 단계를 더 포함하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
And providing navigation guidance to at least one of the search results. ≪ Desc / Clms Page number 21 >
제 1 항에 있어서,
상기 검색 결과들을 결정하는 단계는,
상기 검색 요청의 속성들을 결정하는 단계;
상기 검색 요청의 속성들을 상기 보행자 환경과 연관된 하나 이상의 엔티티들의 속성들과 매칭하는 단계; 및
상기 검색 결과들에 각각의 매칭된 엔티티를 삽입하는 단계를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
The step of determining the search results comprises:
Determining attributes of the search request;
Matching attributes of the search request with attributes of one or more entities associated with the pedestrian environment; And
And inserting each matched entity into the search results. ≪ Desc / Clms Page number 22 >
제 1 항에 있어서,
상기 액세스가능성 기준은 이용가능성 기준을 더 포함하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
Wherein the accessibility criteria further comprises an availability criterion.
제 1 항에 있어서,
각각의 상기 액세스가능성 기준에는 가중치가 할당되는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
Wherein each accessibility criterion is assigned a weight. ≪ RTI ID = 0.0 > 8. < / RTI >
제 1 항에 있어서,
상기 경로 이동 시간 기준은,
상기 이동국의 위치 및 상기 검색 결과들의 적어도 일부 각각과 연관된 위치 간의 경로 거리;
이동 속도;
경로 상의 혼잡도;
계단에서의 시간;
에스컬레이터에서의 시간; 및/또는
엘리베이터에서의 시간
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
The path travel time reference is calculated by:
A path distance between a location of the mobile station and a location associated with each of at least a portion of the search results;
speed;
Congestion on the path;
Time on stairs;
Time on the escalator; And / or
Time in the elevator
Wherein the recommendation includes at least one of: < RTI ID = 0.0 > a < / RTI >
제 1 항에 있어서,
상기 경로 복잡도 기준은,
경로가 에스컬레이터를 포함하는지 여부;
상기 경로가 계단을 포함하는지 여부;
상기 경로가 엘리베이터를 포함하는지 여부;
현재 이동 방향; 및/또는
상기 경로가 현재 현장 (venue) 을 떠나는 것을 포함하는지 여부
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
The path complexity criterion,
Whether the path includes an escalator;
Whether the path includes a step;
Whether the path includes an elevator;
Current direction of movement; And / or
Whether the path includes leaving the current venue
Wherein the recommendation includes at least one of: < RTI ID = 0.0 > a < / RTI >
제 5 항에 있어서,
상기 이용가능성 기준은,
상기 보행자 환경과 연관된 엔티티가 열리거나 닫혔는지 여부;
상기 엔티티가 액세스 제한을 가지는지 여부;
상기 엔티티에서 요구되는 금액; 및/또는
상기 엔티티에서 요구되는 시간
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
6. The method of claim 5,
The availability criteria may include,
Whether the entity associated with the pedestrian environment is opened or closed;
Whether the entity has an access restriction;
An amount required by the entity; And / or
The time required by the entity
Wherein the recommendation includes at least one of: < RTI ID = 0.0 > a < / RTI >
제 1 항에 있어서,
상기 이동국이 상기 보행자 환경에서 포지션을 변경할 때, 상기 검색 결과들의 랭크된 부분을 동적으로 재정렬하는 단계를 더 포함하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
Further comprising dynamically reordering the ranked portion of the search results when the mobile station changes a position in the pedestrian environment.
보행자 환경을 위한 추천들을 랭크하는 장치로서,
프로세싱 유닛을 포함하고,
상기 프로세싱 유닛은,
복수의 시간에 민감한 요청들(time sensitive requests)과 연관된 완료 시간 (completion time) 을 표시하는 적어도 하나의 시간 제약과 연관된, 상기 복수의 시간에 민감한 요청들을 포함하는 검색 요청을 수신하고; 그리고
상기 검색 요청에 응답하여,
상기 보행자 환경과 연관된 검색 결과들을 결정하고;
상기 검색 요청과 연관된 이동국의 위치를 결정하고;
상기 이동국의 위치, 상기 검색 결과들의 적어도 일부와 연관된 위치, 상기 복수의 시간에 민감한 요청들 및 액세스가능성 기준에 적어도 부분적으로 기반하여, 상기 검색 결과들의 적어도 일부를 랭크하도록 구성되며,
상기 액세스가능성 기준은 상기 보행자 환경과 연관된 경로 복잡도 기준 및 경로 이동 시간 기준을 포함하고, 상기 경로 복잡도 기준은 상기 보행자 환경을 통한 경로에 복잡도를 부가하는 횡단되는 하나 이상의 장애물들의 존재와 연관되고, 상기 경로 이동 시간 기준은 상기 보행자 환경을 통한 경로와 연관된 상기 하나 이상의 장애물들을 횡단하기 위한 시간 양과 연관되는, 보행자 환경을 위한 추천들을 랭크하는 장치.
An apparatus for ranking recommendations for a pedestrian environment,
Comprising a processing unit,
The processing unit comprising:
Receiving a search request comprising the plurality of time sensitive requests associated with at least one time constraint indicative of a completion time associated with a plurality of time sensitive requests; And
In response to the search request,
Determine search results associated with the pedestrian environment;
Determine a location of a mobile station associated with the search request;
And rank at least a portion of the search results based at least in part on the location of the mobile station, a location associated with at least a portion of the search results, the plurality of time sensitive requests and an accessibility criterion,
Wherein the accessibility criteria comprises a path complexity criterion and a path movement time criterion associated with the pedestrian environment and wherein the path complexity criterion is associated with the presence of one or more traversed obstacles that add complexity to the path through the pedestrian environment, Wherein the path travel time reference is associated with an amount of time to traverse the one or more obstacles associated with the path through the pedestrian environment.
제 11 항에 있어서,
상기 검색 요청은,
사용자 입력 및/또는 자동화된 검색 요청 중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
12. The method of claim 11,
The search request includes:
User input, and / or automated search request. ≪ RTI ID = 0.0 > 31. < / RTI >
제 11 항에 있어서,
상기 프로세싱 유닛은,
상기 검색 결과들 중 적어도 하나에 네비게이션 안내를 제공하도록 더 구성되는, 보행자 환경을 위한 추천들을 랭크하는 장치.
12. The method of claim 11,
The processing unit comprising:
And provide navigation guidance to at least one of the search results.
제 11 항에 있어서,
상기 프로세싱 유닛은,
상기 검색 요청의 속성들을 결정하고;
상기 검색 요청의 속성들을 상기 보행자 환경과 연관된 하나 이상의 엔티티들의 속성들과 매칭하며; 그리고,
상기 검색 결과들에 각각의 매칭된 엔티티를 삽입하도록 더 구성되는, 보행자 환경을 위한 추천들을 랭크하는 장치.
12. The method of claim 11,
The processing unit comprising:
Determine attributes of the search request;
Match attributes of the search request with attributes of one or more entities associated with the pedestrian environment; And,
And to insert each matched entity into the search results. ≪ Desc / Clms Page number 22 >
제 11 항에 있어서,
상기 액세스가능성 기준은 이용가능성 기준을 더 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
12. The method of claim 11,
Wherein the accessibility criteria further includes an availability criterion.
제 11 항에 있어서,
각각의 상기 액세스가능성 기준에는 가중치가 할당되는, 보행자 환경을 위한 추천들을 랭크하는 장치.
12. The method of claim 11,
And wherein each accessibility criterion is assigned a weight.
제 11 항에 있어서,
상기 경로 이동 시간 기준은,
상기 이동국의 위치 및 상기 검색 결과들의 적어도 일부 각각과 연관된 위치 간의 경로 거리;
이동 속도;
경로 상의 혼잡도;
계단에서의 시간;
에스컬레이터에서의 시간; 및/또는
엘리베이터에서의 시간
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
12. The method of claim 11,
The path travel time reference is calculated by:
A path distance between a location of the mobile station and a location associated with each of at least a portion of the search results;
speed;
Congestion on the path;
Time on stairs;
Time on the escalator; And / or
Time in the elevator
The recommendation for the pedestrian environment.
제 11 항에 있어서,
상기 경로 복잡도 기준은,
경로가 에스컬레이터를 포함하는지 여부;
상기 경로가 계단을 포함하는지 여부;
상기 경로가 엘리베이터를 포함하는지 여부;
현재 이동 방향; 및/또는
상기 경로가 현재 현장을 떠나는 것을 포함하는지 여부
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
12. The method of claim 11,
The path complexity criterion,
Whether the path includes an escalator;
Whether the path includes a step;
Whether the path includes an elevator;
Current direction of movement; And / or
Whether the path includes leaving the current scene
The recommendation for the pedestrian environment.
제 15 항에 있어서,
상기 이용가능성 기준은,
상기 보행자 환경과 연관된 엔티티가 열리거나 닫혔는지 여부;
상기 엔티티가 액세스 제한을 가지는지 여부;
상기 엔티티에서 요구되는 금액; 및/또는
상기 엔티티에서 요구되는 시간
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
16. The method of claim 15,
The availability criteria may include,
Whether the entity associated with the pedestrian environment is opened or closed;
Whether the entity has an access restriction;
An amount required by the entity; And / or
The time required by the entity
The recommendation for the pedestrian environment.
제 11 항에 있어서,
상기 프로세싱 유닛은,
상기 이동국이 상기 보행자 환경에서 포지션을 변경할 때, 상기 검색 결과들의 랭크된 부분을 동적으로 재정렬하도록 더 구성되는, 보행자 환경을 위한 추천들을 랭크하는 장치.
12. The method of claim 11,
The processing unit comprising:
And when the mobile station changes a position in the pedestrian environment, dynamically reorders the ranked portion of the search results.
보행자 환경을 위한 추천들을 랭크하는 장치로서,
복수의 시간에 민감한 요청들(time sensitive requests)과 연관된 완료 시간 (completion time) 을 표시하는 적어도 하나의 시간 제약과 연관된, 상기 복수의 시간에 민감한 요청들을 포함하는 검색 요청을 수신하는 수단;
상기 검색 요청에 응답하여, 상기 보행자 환경과 연관된 검색 결과들을 결정하는 수단;
상기 검색 요청과 연관된 이동국의 위치를 결정하는 수단; 및
상기 이동국의 위치, 상기 검색 결과들의 적어도 일부와 연관된 위치, 상기 복수의 시간에 민감한 요청들 및 액세스가능성 기준에 적어도 부분적으로 기반하여, 상기 검색 결과들의 적어도 일부를 랭크하는 수단을 포함하며,
상기 액세스가능성 기준은 상기 보행자 환경과 연관된 경로 복잡도 기준 및 경로 이동 시간 기준을 포함하고, 상기 경로 복잡도 기준은 상기 보행자 환경을 통한 경로에 복잡도를 부가하는 횡단되는 하나 이상의 장애물들의 존재와 연관되고, 상기 경로 이동 시간 기준은 상기 보행자 환경을 통한 경로와 연관된 상기 하나 이상의 장애물들을 횡단하기 위한 시간 양과 연관되는, 보행자 환경을 위한 추천들을 랭크하는 장치.
An apparatus for ranking recommendations for a pedestrian environment,
Means for receiving a search request comprising the plurality of time sensitive requests associated with at least one time constraint indicating a completion time associated with a plurality of time sensitive requests;
Means for determining search results associated with the pedestrian environment in response to the search request;
Means for determining a location of a mobile station associated with the search request; And
Means for ranking at least a portion of the search results based at least in part on the location of the mobile station, a location associated with at least a portion of the search results, the plurality of time sensitive requests and an accessibility criterion,
Wherein the accessibility criteria comprises a path complexity criterion and a path movement time criterion associated with the pedestrian environment and wherein the path complexity criterion is associated with the presence of one or more traversed obstacles that add complexity to the path through the pedestrian environment, Wherein the path travel time reference is associated with an amount of time to traverse the one or more obstacles associated with the path through the pedestrian environment.
제 21 항에 있어서,
상기 검색 요청은,
사용자 입력 및/또는 자동화된 검색 요청 중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
22. The method of claim 21,
The search request includes:
User input, and / or automated search request. ≪ RTI ID = 0.0 > 31. < / RTI >
제 21 항에 있어서,
상기 검색 결과들 중 적어도 하나에 네비게이션 안내를 제공하는 수단을 더 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
22. The method of claim 21,
And means for providing navigation guidance to at least one of the search results.
제 21 항에 있어서,
상기 검색 결과들을 결정하는 수단은,
상기 검색 요청의 속성들을 결정하는 수단;
상기 검색 요청의 속성들을 상기 보행자 환경과 연관된 하나 이상의 엔티티들의 속성들과 매칭하는 수단; 및
상기 검색 결과들에 각각의 매칭된 엔티티를 삽입하는 수단을 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
22. The method of claim 21,
Wherein the means for determining the search results comprises:
Means for determining attributes of the search request;
Means for matching attributes of the search request with attributes of one or more entities associated with the pedestrian environment; And
And means for inserting each matched entity into the search results.
제 21 항에 있어서,
상기 액세스가능성 기준은 이용가능성 기준을 더 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
22. The method of claim 21,
Wherein the accessibility criteria further includes an availability criterion.
제 21 항에 있어서,
각각의 상기 액세스가능성 기준에는 가중치가 할당되는, 보행자 환경을 위한 추천들을 랭크하는 장치.
22. The method of claim 21,
And wherein each accessibility criterion is assigned a weight.
제 21 항에 있어서,
상기 경로 이동 시간 기준은,
상기 이동국의 위치 및 상기 검색 결과들의 적어도 일부 각각과 연관된 위치 간의 경로 거리;
이동 속도;
경로 상의 혼잡도;
계단에서의 시간;
에스컬레이터에서의 시간; 및/또는
엘리베이터에서의 시간
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
22. The method of claim 21,
The path travel time reference is calculated by:
A path distance between a location of the mobile station and a location associated with each of at least a portion of the search results;
speed;
Congestion on the path;
Time on stairs;
Time on the escalator; And / or
Time in the elevator
The recommendation for the pedestrian environment.
제 21 항에 있어서,
상기 경로 복잡도 기준은,
경로가 에스컬레이터를 포함하는지 여부;
상기 경로가 계단을 포함하는지 여부;
상기 경로가 엘리베이터를 포함하는지 여부;
현재 이동 방향; 및/또는
상기 경로가 현재 현장을 떠나는 것을 포함하는지 여부
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
22. The method of claim 21,
The path complexity criterion,
Whether the path includes an escalator;
Whether the path includes a step;
Whether the path includes an elevator;
Current direction of movement; And / or
Whether the path includes leaving the current scene
The recommendation for the pedestrian environment.
제 25 항에 있어서,
상기 이용가능성 기준은,
상기 보행자 환경과 연관된 엔티티가 열리거나 닫혔는지 여부;
상기 엔티티가 액세스 제한을 가지는지 여부;
상기 엔티티에서 요구되는 금액; 및/또는
상기 엔티티에서 요구되는 시간
중 적어도 하나를 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
26. The method of claim 25,
The availability criteria may include,
Whether the entity associated with the pedestrian environment is opened or closed;
Whether the entity has an access restriction;
An amount required by the entity; And / or
The time required by the entity
The recommendation for the pedestrian environment.
제 21 항에 있어서,
상기 이동국이 상기 보행자 환경에서 포지션을 변경할 때, 상기 검색 결과들의 랭크된 부분을 동적으로 재정렬하는 수단을 더 포함하는, 보행자 환경을 위한 추천들을 랭크하는 장치.
22. The method of claim 21,
And means for dynamically reordering the ranked portion of the search results when the mobile station changes a position in the pedestrian environment.
프로세싱 유닛에 보행자 환경을 위한 추천들의 랭크를 실행할 것을 지시하도록 구성된 명령들이 저장된 컴퓨터 판독가능 매체로서,
상기 명령들은,
복수의 시간에 민감한 요청들(time sensitive requests)과 연관된 완료 시간 (completion time) 을 표시하는 적어도 하나의 시간 제약과 연관된, 상기 복수의 시간에 민감한 요청들을 포함하는 검색 요청을 수신하기 위한 코드; 및
상기 검색 요청에 응답하여,
상기 보행자 환경과 연관된 검색 결과들을 결정하고;
상기 검색 요청과 연관된 이동국의 위치를 결정하며;
상기 이동국의 위치, 상기 검색 결과들의 적어도 일부와 연관된 위치, 상기 복수의 시간에 민감한 요청들 및 액세스가능성 기준에 적어도 부분적으로 기반하여, 상기 검색 결과들의 적어도 일부를 랭크하기 위한 코드를 포함하며,
상기 액세스가능성 기준은 상기 보행자 환경과 연관된 경로 복잡도 기준 및 경로 이동 시간 기준을 포함하고, 상기 경로 복잡도 기준은 상기 보행자 환경을 통한 경로에 복잡도를 부가하는 횡단되는 하나 이상의 장애물들의 존재와 연관되고, 상기 경로 이동 시간 기준은 상기 보행자 환경을 통한 경로와 연관된 상기 하나 이상의 장애물들을 횡단하기 위한 시간 양과 연관되는, 컴퓨터 판독가능 매체.
Instructions for instructing the processing unit to execute a rank of recommendations for the pedestrian environment,
The instructions,
Code for receiving a search request comprising the plurality of time sensitive requests associated with at least one time constraint indicating a completion time associated with a plurality of time sensitive requests; And
In response to the search request,
Determine search results associated with the pedestrian environment;
Determine a location of a mobile station associated with the search request;
Code for ranking at least a portion of the search results based at least in part on the location of the mobile station, a location associated with at least a portion of the search results, the plurality of time sensitive requests and an accessibility criterion,
Wherein the accessibility criteria comprises a path complexity criterion and a path movement time criterion associated with the pedestrian environment and wherein the path complexity criterion is associated with the presence of one or more traversed obstacles that add complexity to the path through the pedestrian environment, Wherein the path travel time reference is associated with an amount of time to traverse the one or more obstacles associated with the path through the pedestrian environment.
제 1 항에 있어서,
상기 이동국의 위치에 적어도 부분적으로 기반하여 상기 검색 결과들의 적어도 일부를 랭크하는 단계는,
상기 이동국의 이동 방향을 결정하는 단계; 및
상기 이동국의 이동 방향에 적어도 부분적으로 기반하여 상기 검색 결과들을 랭크하는 단계를 더 포함하며,
상기 이동국의 이동 방향에 따르고 상기 이동국의 이동 방향으로부터 미리결정된 각도내에 있는 검색 결과들은, 상기 이동국의 이동 방향에 따르지 않고 상기 이동국의 이동 방향으로부터 미리결정된 각도내에 있지 않은 다른 검색 결과들보다, 더 높은 랭킹으로 연관되는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
Wherein ranking at least a portion of the search results based at least in part on the location of the mobile station comprises:
Determining a direction of movement of the mobile station; And
Further comprising ranking the search results based at least in part on the direction of movement of the mobile station,
The search results in accordance with the moving direction of the mobile station and within a predetermined angle from the moving direction of the mobile station are higher than other search results that are not within a predetermined angle from the moving direction of the mobile station, A method of ranking recommendations for a pedestrian environment, wherein the recommendations are ranked.
제 1 항에 있어서,
상기 검색 결과들은 재정적 제약 (monetary constraint) 을 포함하고,
상기 검색 결과들의 적어도 일부를 랭크하는 단계는, 상기 이동국의 위치, 상기 검색 결과들의 적어도 일부와 연관된 위치, 상기 액세스가능성 기준 및 상기 재정적 제약에 적어도 부분적으로 기반하여, 상기 검색 결과들의 적어도 일부를 랭크하는, 보행자 환경을 위한 추천들을 랭크하는 방법.
The method according to claim 1,
The search results include a monetary constraint,
The step of ranking at least a portion of the search results may include determining at least some of the search results based on at least a portion of the location of the mobile station, a location associated with at least a portion of the search results, Gt; a < / RTI > method for ranking recommendations for a pedestrian environment.
KR1020127022008A 2010-01-22 2011-01-21 Location aware recommendation engine KR101435305B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US29766610P 2010-01-22 2010-01-22
US61/297,666 2010-01-22
US12/846,687 US20110184945A1 (en) 2010-01-22 2010-07-29 Location aware recommendation engine
US12/846,687 2010-07-29
PCT/US2011/022126 WO2011091306A1 (en) 2010-01-22 2011-01-21 Location aware recommendation engine

Publications (2)

Publication Number Publication Date
KR20120120347A KR20120120347A (en) 2012-11-01
KR101435305B1 true KR101435305B1 (en) 2014-08-27

Family

ID=44021899

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127022008A KR101435305B1 (en) 2010-01-22 2011-01-21 Location aware recommendation engine

Country Status (7)

Country Link
US (1) US20110184945A1 (en)
EP (1) EP2526382A1 (en)
JP (2) JP2013518253A (en)
KR (1) KR101435305B1 (en)
CN (1) CN102762955B (en)
TW (1) TW201144767A (en)
WO (1) WO2011091306A1 (en)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7933897B2 (en) 2005-10-12 2011-04-26 Google Inc. Entity display priority in a distributed geographic information system
CN103222005B (en) 2009-12-31 2016-08-24 美光科技公司 Method for phase change memory array
KR101425093B1 (en) * 2010-10-12 2014-08-04 한국전자통신연구원 Method for personalized searching of mobile terminal and mobile terminal performing the same
US8565735B2 (en) 2010-10-29 2013-10-22 Jeffrey L. Wohlwend System and method for supporting mobile unit connectivity to venue specific servers
US8838600B2 (en) * 2011-04-01 2014-09-16 Ricoh Co., Ltd. Method for determining constraint-based relationships between devices for interacting and sharing information
US20120265784A1 (en) * 2011-04-15 2012-10-18 Microsoft Corporation Ordering semantic query formulation suggestions
KR101602078B1 (en) * 2011-07-20 2016-03-09 이베이 인크. Real-time location-aware recommendations
US20130120428A1 (en) * 2011-11-10 2013-05-16 Microvision, Inc. Mobile Projector with Position Dependent Display
CN104011759A (en) 2011-12-22 2014-08-27 英特尔公司 Obtaining vendor information using mobile internet devices
CN110006395B (en) * 2011-12-28 2022-03-29 英特尔公司 Provision of navigation services including reporting of altitude information and/or vertical guidance
US9279878B2 (en) 2012-03-27 2016-03-08 Microsoft Technology Licensing, Llc Locating a mobile device
US9080885B2 (en) * 2012-06-05 2015-07-14 Apple Inc. Determining to display designations of points of interest within a map view
EP2864939A4 (en) 2012-06-22 2016-12-07 Google Inc Ranking nearby destinations based on visit likelihoods and predicting future visits to places from location history
US20140032250A1 (en) * 2012-07-27 2014-01-30 Ebay, Inc. Interactive Venue Seat Map
US9911085B2 (en) * 2012-07-27 2018-03-06 Ebay Inc. Venue seat and feature map
US9449121B2 (en) 2012-10-30 2016-09-20 Apple Inc. Venue based real time crowd modeling and forecasting
US10460354B2 (en) * 2012-12-05 2019-10-29 Ebay Inc. Systems and methods for customer valuation and merchant bidding
US9612121B2 (en) * 2012-12-06 2017-04-04 Microsoft Technology Licensing, Llc Locating position within enclosure
US20140172572A1 (en) * 2012-12-19 2014-06-19 Ebay Inc. Systems and methods to provide recommendations
JP6075581B2 (en) 2013-02-27 2017-02-08 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method for providing route guide using building information modeling (BIM) data, computer providing the route guide, and computer program therefor
US9424358B2 (en) * 2013-08-16 2016-08-23 International Business Machines Corporation Searching and classifying information about geographic objects within a defined area of an electronic map
EP2840543A1 (en) * 2013-08-20 2015-02-25 Amadeus S.A.S. Contextualized travel offers
US20160247215A1 (en) * 2013-10-02 2016-08-25 Htc Corporation Method of providing recommended dining options, method of selecting recommended dining options and electronic apparatus, computer readable medium, server apparatus thereof
US10025830B1 (en) 2013-10-30 2018-07-17 Google Llc Aggregation of disparate entity lists for local entities
US9858291B1 (en) 2013-10-30 2018-01-02 Google Inc. Detection of related local entities
US9674563B2 (en) 2013-11-04 2017-06-06 Rovi Guides, Inc. Systems and methods for recommending content
US11615460B1 (en) * 2013-11-26 2023-03-28 Amazon Technologies, Inc. User path development
EP2878923A1 (en) * 2013-11-27 2015-06-03 Alcatel Lucent Network-connected objects discovery in indoor environments
US9618343B2 (en) 2013-12-12 2017-04-11 Microsoft Technology Licensing, Llc Predicted travel intent
KR20150076796A (en) * 2013-12-27 2015-07-07 한국전자통신연구원 3-Dimensional Indoor Route Providing Apparatus, System and the Method
US10083409B2 (en) 2014-02-14 2018-09-25 Bby Solutions, Inc. Wireless customer and labor management optimization in retail settings
CN104239453B (en) * 2014-09-02 2018-10-16 百度在线网络技术(北京)有限公司 Data processing method and device
US20160104177A1 (en) * 2014-10-14 2016-04-14 Brandlogic Corporation Administering and conducting surveys, and devices therefor
US9396210B1 (en) * 2015-03-12 2016-07-19 Verve Wireless, Inc. Systems, methods, and apparatus for reverse geocoding
US9838848B2 (en) * 2015-06-05 2017-12-05 Apple Inc. Venue data prefetch
ITUB20152997A1 (en) * 2015-08-07 2017-02-07 Avv Annalisa Premuroso INFORMATION AND NAVIGATION SYSTEM IN BUILDINGS OR COMPLEX BUILDINGS
US10520576B2 (en) * 2015-10-27 2019-12-31 Sk Planet Co., Ltd. Method and apparatus for providing indoor travel path based on beacon
US10270868B2 (en) 2015-11-06 2019-04-23 Facebook, Inc. Ranking of place-entities on online social networks
US10795936B2 (en) 2015-11-06 2020-10-06 Facebook, Inc. Suppressing entity suggestions on online social networks
US9602965B1 (en) 2015-11-06 2017-03-21 Facebook, Inc. Location-based place determination using online social networks
US20170185600A1 (en) * 2015-12-28 2017-06-29 Facebook, Inc. Systems and methods for providing location-based minutiae post recommendations
US10282434B2 (en) 2016-01-11 2019-05-07 Facebook, Inc. Suppression and deduplication of place-entities on online social networks
KR101768535B1 (en) * 2016-02-11 2017-08-30 한국기술교육대학교 산학협력단 Attendance Management System
US10664893B2 (en) * 2016-03-02 2020-05-26 Social Data Sciences, Inc. System to customize recommendations by soliciting and analyzing suggestions and evaluations tailored to a particular subject
CN107402008A (en) * 2016-05-19 2017-11-28 阿里巴巴集团控股有限公司 The method, apparatus and system of indoor navigation
WO2017201223A1 (en) * 2016-05-19 2017-11-23 Alibaba Group Holding Limited Methods, apparatuses and systems for indoor navigation
US10142782B2 (en) * 2016-07-14 2018-11-27 United Parcel Service Of America, Inc. Internal location address and automatic routing of intra-facility movement
CN106643718A (en) * 2016-07-22 2017-05-10 禾麦科技开发(深圳)有限公司 Intelligent shopping guide system and method
TWI635450B (en) * 2016-12-14 2018-09-11 中華電信股份有限公司 Personalized product recommendation method
EP3607268B1 (en) 2017-06-02 2022-11-09 Apple Inc. Venues map application and system
US11373229B2 (en) 2017-07-13 2022-06-28 The Toronto-Dominion Bank Contextually-aware recommendation and translation engine
US10419883B2 (en) 2017-07-31 2019-09-17 4Info, Inc. Systems and methods for statistically associating mobile devices and non-mobile devices with geographic areas
US10339931B2 (en) 2017-10-04 2019-07-02 The Toronto-Dominion Bank Persona-based conversational interface personalization using social network preferences
US10460748B2 (en) 2017-10-04 2019-10-29 The Toronto-Dominion Bank Conversational interface determining lexical personality score for response generation with synonym replacement
US20190130429A1 (en) * 2017-10-31 2019-05-02 Walmart Apollo, Llc Customized activity-based reward generation
US10129705B1 (en) 2017-12-11 2018-11-13 Facebook, Inc. Location prediction using wireless signals on online social networks
US11604968B2 (en) 2017-12-11 2023-03-14 Meta Platforms, Inc. Prediction of next place visits on online social networks
CN110889029B (en) * 2018-08-17 2024-04-05 京东科技控股股份有限公司 Urban target recommendation method and device
KR102044009B1 (en) * 2018-09-19 2019-11-12 주식회사 카카오 System and method of providing information
EP3754303A1 (en) 2019-06-19 2020-12-23 HERE Global B.V. Floor levels of a venue
US20220335698A1 (en) * 2019-12-17 2022-10-20 Ashley SinHee Kim System and method for transforming mapping information to an illustrated map
US12031228B2 (en) 2021-07-21 2024-07-09 Meta Platforms Technologies, Llc Organic solid crystal—method and structure
US11797580B2 (en) * 2021-12-20 2023-10-24 Microsoft Technology Licensing, Llc Connection nature between nodes in graph structure
WO2023204349A1 (en) * 2022-04-21 2023-10-26 쿠팡 주식회사 Method and device for providing store information related to delivery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090005965A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Adaptive Route Guidance Based on Preferences
US20090043504A1 (en) * 2007-05-31 2009-02-12 Amrit Bandyopadhyay System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964821A (en) * 1995-04-07 1999-10-12 Delco Electronics Corporation Mapless GPS navigation system with sortable destinations and zone preference
JP4001026B2 (en) * 1996-10-01 2007-10-31 アイシン・エィ・ダブリュ株式会社 Navigation method, navigation device, and medium storing computer program for guide route display
US10684350B2 (en) * 2000-06-02 2020-06-16 Tracbeam Llc Services and applications for a communications network
US8082096B2 (en) * 2001-05-22 2011-12-20 Tracbeam Llc Wireless location routing applications and architecture therefor
US7082365B2 (en) * 2001-08-16 2006-07-25 Networks In Motion, Inc. Point of interest spatial rating search method and system
JP2006267114A (en) * 2001-09-26 2006-10-05 Toshiba Corp Local guide data collector, local guide data collection terminal, local guide collection method, and program
US6946715B2 (en) * 2003-02-19 2005-09-20 Micron Technology, Inc. CMOS image sensor and method of fabrication
US7272489B2 (en) * 2002-07-18 2007-09-18 Alpine Electronics, Inc. Navigation method and system for extracting, sorting and displaying POI information
JP2004213084A (en) * 2002-12-26 2004-07-29 Toshiba Corp Guidance information providing device, server device, guidance information providing method and program
KR100493092B1 (en) * 2003-02-08 2005-06-02 삼성전자주식회사 Navigation apparatus and method for calculating optimal path
CA2555280A1 (en) * 2003-02-14 2004-09-02 Nervana, Inc. Semantic knowledge retrieval management and presentation
WO2005008914A1 (en) * 2003-07-10 2005-01-27 University Of Florida Research Foundation, Inc. Mobile care-giving and intelligent assistance device
JP2005031023A (en) * 2003-07-10 2005-02-03 Nippon Telegr & Teleph Corp <Ntt> Moving route searching system
US20050165543A1 (en) * 2004-01-22 2005-07-28 Tatsuo Yokota Display method and apparatus for navigation system incorporating time difference at destination
US20060146719A1 (en) * 2004-11-08 2006-07-06 Sobek Adam D Web-based navigational system for the disabled community
JP3987073B2 (en) * 2005-04-20 2007-10-03 株式会社ナビタイムジャパン Navigation system, route search server, route search method and program
US7831454B2 (en) * 2005-05-26 2010-11-09 Kabushiki Kaisha Toshiba System and method for selecting a business location, wherein the business location has an activity level indicator
US7826965B2 (en) * 2005-06-16 2010-11-02 Yahoo! Inc. Systems and methods for determining a relevance rank for a point of interest
JP2007024624A (en) * 2005-07-14 2007-02-01 Navitime Japan Co Ltd Navigation system, information delivery server and portable terminal
US7603360B2 (en) * 2005-09-14 2009-10-13 Jumptap, Inc. Location influenced search results
JP4880961B2 (en) * 2005-09-27 2012-02-22 株式会社ゼンリン Route guidance system
JP5362544B2 (en) * 2006-03-15 2013-12-11 クゥアルコム・インコーポレイテッド Method and apparatus for determining relevant target point information based on user's route
US7743056B2 (en) * 2006-03-31 2010-06-22 Aol Inc. Identifying a result responsive to a current location of a client device
US20080103815A1 (en) * 2006-10-31 2008-05-01 Sap Ag System and method for estimating cost of medical treatment
DE102006057428A1 (en) * 2006-12-06 2008-06-12 Robert Bosch Gmbh Route guidance method and arrangement for carrying out such and a corresponding computer program and a corresponding computer-readable storage medium
US20080234928A1 (en) * 2007-03-23 2008-09-25 Palm, Inc. Location based services using altitude
US7795681B2 (en) * 2007-03-28 2010-09-14 Advanced Analogic Technologies, Inc. Isolated lateral MOSFET in epi-less substrate
US8229458B2 (en) * 2007-04-08 2012-07-24 Enhanced Geographic Llc Systems and methods to determine the name of a location visited by a user of a wireless device
EP2000775A1 (en) * 2007-06-08 2008-12-10 Aisin AW Co., Ltd. Navigation apparatus and navigation program
US20090001270A1 (en) * 2007-06-28 2009-01-01 Aleph America RF detector and temperature sensor
US9460578B2 (en) * 2007-12-07 2016-10-04 Victor A. Grossman Apparatus and method for targeted acquisition
US8140335B2 (en) * 2007-12-11 2012-03-20 Voicebox Technologies, Inc. System and method for providing a natural language voice user interface in an integrated voice navigation services environment
JP2009229108A (en) * 2008-03-19 2009-10-08 Pioneer Electronic Corp Navigation device, route searching method, and route searching program
US20100106411A1 (en) * 2008-10-24 2010-04-29 Mikko Nirhamo Method, apparatus and computer program product for providing search result augmentation
US20110098915A1 (en) * 2009-10-28 2011-04-28 Israel Disatnik Device, system, and method of dynamic route guidance
US20110153193A1 (en) * 2009-12-22 2011-06-23 General Electric Company Navigation systems and methods for users having different physical classifications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043504A1 (en) * 2007-05-31 2009-02-12 Amrit Bandyopadhyay System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US20090005965A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Adaptive Route Guidance Based on Preferences

Also Published As

Publication number Publication date
CN102762955A (en) 2012-10-31
US20110184945A1 (en) 2011-07-28
CN102762955B (en) 2016-12-21
TW201144767A (en) 2011-12-16
JP2013518253A (en) 2013-05-20
JP2014160093A (en) 2014-09-04
WO2011091306A1 (en) 2011-07-28
EP2526382A1 (en) 2012-11-28
KR20120120347A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
KR101435305B1 (en) Location aware recommendation engine
US11105635B2 (en) Seamless transition from outdoor to indoor mapping
EP3676566B1 (en) Method, apparatus, and computer program product for providing an indication of favorability of parking locations
US20240019252A1 (en) Rerouting in a Navigation System Based on Updated Information
US8924147B2 (en) Method for constructing geo-fences for a spatial recommendation and discovery system
US8930132B2 (en) Geo-spatial recommendation and discovery system
KR101399143B1 (en) Method and apparatus for accounting for user experience in pedestrian navigation routing
JP5973509B2 (en) Scalable routing for mobile station navigation using location context identifiers
CN105180924B (en) A kind of air navigation aid being lined up based on dining room and mobile terminal
CN107543557A (en) A kind of method and apparatus for carrying out Personalized Navigation
JP2017026537A (en) Navigation system and route selection method for navigation system
CN110709884A (en) Information processing apparatus, information processing method, and computer program
US20170023368A1 (en) Multi-waypoint semantic-driven itinerary guidance to situses within buildings
US20220364878A1 (en) Indoor navigational route enhancements using contextual data implied by map colors
JP2004213084A (en) Guidance information providing device, server device, guidance information providing method and program
JP7361084B2 (en) Information processing device, information processing method, and information processing program
JP7354211B2 (en) Information processing device, information processing method, and information processing program
JP7304925B2 (en) Information processing device, information processing method and information processing program
JP7012781B2 (en) Information processing equipment, information processing methods and information processing programs
JP2023000787A (en) Information processing device, information processing method, and information processing program
JP2012189463A (en) Navigation device, navigation method, and program

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee