KR101431084B1 - Method for producing active inclusion body using PoxB gene - Google Patents

Method for producing active inclusion body using PoxB gene Download PDF

Info

Publication number
KR101431084B1
KR101431084B1 KR1020110121249A KR20110121249A KR101431084B1 KR 101431084 B1 KR101431084 B1 KR 101431084B1 KR 1020110121249 A KR1020110121249 A KR 1020110121249A KR 20110121249 A KR20110121249 A KR 20110121249A KR 101431084 B1 KR101431084 B1 KR 101431084B1
Authority
KR
South Korea
Prior art keywords
leu
gly
ala
val
asp
Prior art date
Application number
KR1020110121249A
Other languages
Korean (ko)
Other versions
KR20130055480A (en
Inventor
최수근
박승환
박수영
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020110121249A priority Critical patent/KR101431084B1/en
Publication of KR20130055480A publication Critical patent/KR20130055480A/en
Application granted granted Critical
Publication of KR101431084B1 publication Critical patent/KR101431084B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Abstract

본 발명은 목적 단백질의 활성 인클루젼 바디를 생산하기 위한, PoxB 유전자 및 목적 단백질을 코딩하는 유전자를 결합시킨 융합 유전자, 상기 융합 유전자가 코딩하는 융합 단백질, 상기 융합 유전자를 포함하는 발현벡터, 상기 발현벡터가 숙주세포에 형질전환된 형질전환체, 및 상기 PoxB 유전자를 이용하여 목적 단백질의 활성 인클루젼 바디를 생산하는 단계를 포함하는 목적 단백질의 제조 방법에 관한 것이다. 본 발명에 따라 생산된 활성 인클루젼 바디는 별도의 과정없이 단백질의 활성을 나타내므로, 효소반응이 필요한 산업공정에서 효소 생산, 분리 정제 및 효소 고정화의 단계가 필요없어, 효소를 이용하는 공정에서 비용을 절감할 수 있고, 고정화 과정에서 효소 활성이 급격히 감소하는 단점을 보완할 수 있으며, 발현된 단백질의 순수 분리가 용이하다.The present invention provides a fusion protein comprising a fusion gene comprising a PoxB gene and a gene encoding a target protein, a fusion protein encoded by the fusion gene, an expression vector comprising the fusion gene, A transformant in which an expression vector is transformed into a host cell, and a method of producing a target protein comprising the step of producing an active inclusion body of a target protein using the PoxB gene. Since the active inclusion body produced according to the present invention shows the activity of the protein without a separate process, it is not necessary to produce the enzyme, separate purification and enzyme immobilization step in the industrial process requiring the enzyme reaction, Can be reduced, and the disadvantage that the enzyme activity is rapidly reduced during the immobilization process can be compensated, and the purified protein can be easily separated.

Description

PoxB 유전자를 이용한 활성 인클루젼 바디 생산방법{Method for producing active inclusion body using PoxB gene}A method for producing an active inclusion body using a PoxB gene (PoxB gene)

본 발명은 PoxB 유전자를 이용한 목적 단백질의 활성 인클루젼 바디(inclusion body) 생산방법에 관한 것이다. 보다 구체적으로, 본 발명은 목적 단백질의 활성 인클루젼 바디를 생산하기 위한, PoxB 유전자 및 목적 단백질을 코딩하는 유전자를 결합시킨 융합 유전자, 상기 융합 유전자가 코딩하는 융합 단백질, 상기 융합 유전자를 포함하는 발현벡터, 상기 발현벡터가 숙주세포에 형질전환된 형질전환체, 및 상기 PoxB 유전자를 이용하여 목적 단백질의 활성 인클루젼 바디를 생산하는 단계를 포함하는 목적 단백질의 제조 방법에 관한 것이다.
The present invention relates to an active inclusion body production method of a target protein using PoxB gene. More specifically, the present invention relates to a fusion protein comprising a fusion gene in which a PoxB gene and a gene encoding a desired protein are bound, a fusion protein encoded by the fusion gene, and a fusion protein comprising the fusion gene, An expression vector, a transformant obtained by transforming the expression vector into a host cell, and an active encasing body of the target protein using the PoxB gene.

미생물은 산업적으로 화학물질이나 효소 등 유용 물질의 대량생산이나 식품발효 산업 등에 주로 쓰이고 있다. 고전적으로 유용 효소 또는 단백질을 대량으로 생산시키기 위하여 돌연변이 유도물질 처리, 자외선 또는 방사선 조사 등을 통해 숙주균을 돌연변이 시키는 방법이 사용되어 왔으나, 상기 방법들은 비선택적 돌연변이로 인해 종종 숙주균의 성장속도가 저하되거나, 배지조성 및 배양조건을 최적화시키기 까다로운 경우가 많다. 또한, 돌연변이 균주의 경우에는 균주 퇴화가 일어나며, 각각의 목적 단백질 생산을 위한 숙주균을 따로 개발해야 하므로 시간과 노력이 많이 소요되는 고전적인 방법이다. 따라서, 최근에는 유전자 조작 기술을 이용하여 재조합 미생물을 만들고 이를 이용하여 원하는 단백질이나 물질의 생산성을 높이는 방법이 시도되고 있으며 강력한 프로모터를 이용하여 목적 단백질의 과발현을 유도하는 방법이 기본이 되고 있다. 그러나, 목적 단백질의 지나친 과발현은 인클루젼 바디(inclusion body, IB)를 형성하여 불활성화된 단백질이 생산되므로 목적 단백질의 발현양을 최적인 상태로 조절하는 것이 필요하다. Microorganisms are mainly used industrially for mass production of useful substances such as chemical substances and enzymes, and food fermentation industries. Methods have been used to classically mutate host bacteria through treatment of mutagen inducers, ultraviolet light, or irradiation to produce large quantities of useful enzymes or proteins, but these methods often result in the growth rate of host bacteria Degrade, and it is often difficult to optimize medium composition and culture conditions. In addition, in the case of mutant strains, strain degeneration occurs and a host microorganism for producing each target protein must be separately developed, which is a classic method that requires a lot of time and effort. Therefore, recently, a method of increasing the productivity of a desired protein or material by making a recombinant microorganism using genetic engineering technology has been attempted, and a method of inducing overexpression of a target protein using a strong promoter has become a basic. However, excessive overexpression of the target protein forms an inclusion body (IB) to produce an inactivated protein, and thus it is necessary to control the expression amount of the target protein to an optimal state.

상기와 같이 미생물에서 목적 단백질을 과발현하게 되면 인클루젼 바디라는 결정체가 만들어지게 되며, 이러한 인클루젼 바디는 발현된 단백질이 잘못된 폴딩을 한 결과물로써 단백질의 활성을 잃어버리는 것이 일반적이다. 인클루젼 바디의 형성은 단백질 대량발현의 중요한 장애요인으로 작용하며 형성된 인클루젼 바디를 녹인 후 다시 활성형 단백질로 만드는데 어려움이 있으며 추가적인 비용이 소모되게 된다.When the target protein is overexpressed in the microorganism as described above, a crystal called an inclusion body is produced. In such an inclusion body, it is general that the expressed protein loses activity of the protein as a result of erroneous folding. The formation of encapsulated bodies is a major obstacle to the mass expression of proteins, and it is difficult to dissolve the formed encapsulated body and turn it into an active protein again, which consumes additional costs.

따라서, 단백질 발현 동안에 이러한 인클루젼 바디의 생성을 회피하기 위한 여러 전략들이 시도되었다. 대장균에서 β-갈락토시다제를 포함하는 융합 단백질 발현의 경우, 배양 배지의 온도 및 pH가 인클루젼 바디의 형성에 지대한 효과를 미치므로 이러한 조건을 조절하는 방법이 개발되었으며, 고-세포 밀도 유가배양(high-cell density fed-batch) 방식에서 융합 단백질의 인클루젼 바디 형성을 감소시키는 연구결과도 있었다. 또한, 인클루젼 바디 형성을 억제하는 다른 접근으로 세포질에서 발현 단백질의 가용성과 발현 단백질의 정제 효율을 증가시키기 위하여 융합 태그 기술이 개발되었다(de Groot, N. S. and S. Ventura. 2006. FEBS Lett. 580: 6471-6476 등). 특히, 단백질 응집을 방지하기 위한 방법으로, 분자 샤페론(chaperone)과 응집-경향 단백질의 공동발현 관점에서 단백질 리폴딩과 단백질 분비에 관련되 분자 샤페론에 대한 검토가 있었다(Bukau, B., J. et al. 2006. Cell 125: 443-451 등).Thus, several strategies have been attempted to avoid the production of such inclusion bodies during protein expression. In the case of expression of a fusion protein containing? -Galactosidase in E. coli, a method of regulating these conditions has been developed since the temperature and pH of the culture medium have a great effect on the formation of inclusion bodies, Studies have also shown that reducing the formation of inclusion bodies of fusion proteins in a high-cell density fed-batch mode. In addition, fusion tags technology has been developed to increase the solubility of expressed proteins in the cytoplasm and the purification efficiency of expressed proteins as an alternative approach to inhibition of inclusion body formation (de Groot, NS and S. Ventura, 2006. FEBS Lett. 580: 6471-6476). Particularly, as a method for preventing protein aggregation, molecular chaperons related to protein refolding and protein secretion have been examined from the viewpoint of coexpression of molecular chaperone and aggregation-tendency protein (Bukau, B., J. et al. et al. 2006. Cell 125: 443-451).

그러나, 이러한 인클루젼 바디의 생성에 대해 많은 연구가 진행되고 있지만 아직 인클루젼 바디 형성의 정확한 기작은 알려지지 않고 있으며, 어떤 일반적인 연관성을 발견하지 못한 실정이다. 인클루젼 바디의 형성은 숙주-벡터 시스템, 단백질의 특성, 배양 및 발현 조건에 따라 변화하므로 원하는 시스템에서의 실험을 통해서만 알 수 있다. 이에 인클루젼 바디가 활성을 잃어버리지 않고 활성 인클루젼 바디를 형성하는 경우에 대한 연구가 진행되고 있다.However, although many studies have been made on the production of such inclusion bodies, the precise mechanism of inclusion body formation is not yet known, and no general association has been found. The formation of the inclusion body varies depending on the host-vector system, the characteristics of the protein, the culture conditions and the expression conditions, and thus can be known only through experiments in a desired system. Studies have been conducted on the case where an encapsulated body forms an active inclusion body without losing its activity.

이러한 활성 인클루젼 바디의 형성은 산업적으로 중요한 의미를 가진다. 예를 들어, 효소를 이용한 화학반응에서 효소의 반복적 재사용을 위해 쉽게 분리가 가능하도록 특정 물질에 고정화하는 과정이 필요한데 활성 인클루젼 바디의 경우 이미 활성을 가지는 효소가 결정체를 이루고 있으므로 고정화가 필요하지 않다. 따라서, 효소 고정화에 필요한 효소 농축, 순수 분리, 화학적 고정화 단계 등이 필요하지 않으므로 공정 비용이 절감되며, 효소 고정화 과정에서 효소의 활성이 급격하게 감소하는 단점을 미연에 방지할 수 있다. 또한, 세포의 독성이 있는 단백질의 과발현에 사용할 수 있으며, 발현된 단백질의 순수 분리도 용이한 장점이 있다. 그러나, 인클루젼 바디는 일반적으로 비활성인 경우가 많으며, 그에 따라 추가적인 공정이 필요하다.The formation of such an active inclusion body has industrial significance. For example, in a chemical reaction using enzymes, it is necessary to immobilize a specific substance so that it can be easily separated for repeated reuse of the enzyme. In the case of the active inclusion body, the enzyme having already active forms crystals, not. Therefore, since the enzyme concentration, pure water separation, and chemical immobilization steps necessary for enzyme immobilization are not required, the process cost is reduced, and the disadvantage that the enzyme activity is rapidly reduced during the enzyme immobilization process can be prevented in advance. In addition, it can be used for the overexpression of a protein having toxicity of a cell, and the purified protein can be easily separated. However, occlusion bodies are often inactive in many cases and require additional processing accordingly.

한편, 최근 수족구병 바이러스(foot-and-mouth disease virus)의 캡시드 단백질 VP1, 인간 베타 아밀로이드 펩타이드(beta-amyloid peptide) Ab42(F19D), 말토오즈 결합 단백질 변이체(maltose-binding protein mutant) MalE31, 및 셀룰로오즈 결합 도메인(cellulose-binding domain) CBDclos 등과 같이 적절한 단백질과 결합된 융합 단백질은 활성을 가진 인클루젼 바디를 형성한다는 몇몇 경우가 보고되고 있다.
Recently, the capsid protein VP1 of the foot-and-mouth disease virus, the human beta-amyloid peptide Ab42 (F19D), the maltose-binding protein mutant MalE31, Several cases have been reported in which a fusion protein with a suitable protein, such as a cellulose-binding domain CBDclos, forms an encapsulated body with activity.

이러한 배경 하에서, 본 발명자는 활성을 가지는 인클루젼 바디를 형성하여 추가적인 공정 없이 사용 가능한 단백질을 개발하기 위하여 예의 노력한 결과, PoxB 유전자를 목적 단백질을 코딩하는 유전자에 결합시킬 경우, 목적 단백질의 활성 인클루젼 바디를 생산할 수 있음을 발견하고 본 발명을 완성하였다.
Under these circumstances, the present inventor has made intensive efforts to develop a protein that can be used without additional processing by forming an encapsulated body having an activity. As a result, when the PoxB gene is bound to a gene encoding a target protein, Clms Page number 16 > body, and completed the present invention.

본 발명의 하나의 목적은 목적 단백질의 활성 인클루젼 바디(inclusion body)를 생산하기 위한, PoxB 유전자 및 목적 단백질을 코딩하는 유전자를 결합시킨 융합 유전자를 제공하는 것이다.It is an object of the present invention to provide a fusion gene in which a PoxB gene and a gene encoding a target protein are bound to produce an active inclusion body of a target protein.

본 발명의 다른 하나의 목적은 상기 융합 유전자가 코딩하는 융합 단백질을 제공하는 것이다.It is another object of the present invention to provide a fusion protein encoded by the fusion gene.

본 발명의 또 다른 하나의 목적은 상기 융합 유전자를 포함하는 발현벡터를 제공하는 것이다.It is another object of the present invention to provide an expression vector comprising the fusion gene.

본 발명의 또 다른 하나의 목적은 상기 발현벡터가 숙주세포에 형질전환된 형질전환체를 제공하는 것이다.It is still another object of the present invention to provide a transformant in which the expression vector is transformed into a host cell.

본 발명의 또 다른 하나의 목적은 poxB 유전자를 이용하여 목적 단백질의 활성 인클루젼 바디를 생산하는 단계를 포함하는 목적 단백질의 제조 방법을 제공하는 것이다.
It is another object of the present invention to provide a method for producing a target protein comprising the step of producing an active inclusion body of a target protein using the poxB gene.

상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 목적 단백질의 활성 인클루젼 바디(inclusion body)를 생산하기 위한, PoxB 유전자 및 목적 단백질을 코딩하는 유전자를 결합시킨 융합 유전자, 및 상기 융합 유전자가 코딩하는 융합 단백질을 제공한다.
In order to accomplish the above objects, the present invention provides a fusion protein comprising a PoxB gene and a gene encoding a target protein, the fusion gene for producing an inclusion body of an active protein of interest, Lt; / RTI > protein.

본 발명에서 용어, "PoxB 유전자"는 산화환원효소에 속하는 피루베이트 옥시다아제(pyruvate oxidase)를 암호화하는 유전자를 의미하며, 상기 PoxB 효소는 피루베이트 및 포스페이트를 기질로 하여 아세틸 포스페이트를 생산한다. 본 발명의 목적상, 상기 PoxB 유전자는 대장균 등의 미생물에서 목적 단백질이 과발현되는 경우 활성 인클루젼 바디를 생산할 수 있도록 유도하기 위하여 사용된다.In the present invention, the term "PoxB gene" means a gene encoding pyruvate oxidase belonging to an oxidoreductase, and the PoxB enzyme produces acetyl phosphate using pyruvate and phosphate as substrates. For the purpose of the present invention, the PoxB gene is used to induce production of an active inclusion body when a target protein is overexpressed in a microorganism such as Escherichia coli.

상기 PoxB 유전자는 피루베이트 옥시다아제 활성을 갖는 효소를 암호화하는 유전자이면 모두 포함할 수 있으며, 바람직하게는 페니바실러스 폴리믹사(Paenibacillus polymyxa) 유래일 수 있으며, 보다 바람직하게는 서열번호 1의 염기서열을 가질 수 있다. 또한, 상기 PoxB 유전자가 코딩하는 단백질은 바람직하게는 서열번호 2의 아미노산 서열을 가질 수 있다.The PoxB gene may be any gene encoding an enzyme having pyruvate oxidase activity. Preferably, the PoxB gene may be derived from Paenibacillus polymyxa. More preferably, the PoxB gene has a nucleotide sequence of SEQ ID NO: 1 . In addition, the protein encoded by the PoxB gene may preferably have the amino acid sequence of SEQ ID NO: 2.

본 발명의 일실시예에서는 페니바실러스 폴리믹사에서 유래한 PoxB 단백질이 대장균에서 과발현되는 경우, 인클루젼 바디를 형성하며, 상기 형성된 인클루젼 바디가 활성을 가지는 인클루젼 바디임을 확인하였다(도 1). 그에 따라, 상기 PoxB 유전자를 목적 단백질을 코딩하는 유전자에 결합시키는 경우, 목적 단백질의 활성 인클루젼 바디의 형성을 유도할 수 있음을 확인하였다(도 2 및 3).
In one embodiment of the present invention, when the PoxB protein derived from Penny Bacillus polymyx was overexpressed in E. coli, it was confirmed that the encapsulated body forms an inclusion body and that the formed encapsulated body has an activity One). Accordingly, it was confirmed that when the PoxB gene is bound to a gene encoding a target protein, the formation of an active inclusion body of a target protein can be induced (FIGS. 2 and 3).

본 발명에서 용어, "목적 단백질"은 발현시키고자 하는 목적이 되는 단백질로서, 본 발명의 목적상 그 활성을 유지하기 위하여 활성 인클루젼 바디를 생산하기 위한 목적이 되는 단백질을 의미한다. 상기 목적 단백질을 코딩하는 유전자는 본 발명의 PoxB 유전자와 결합되어 융합 유전자를 형성하며, 그에 따라 목적 단백질의 활성 인클루젼 바디를 형성하여 추가적인 고정화 과정 없이 단백질의 활성을 나타내게 된다. 본 발명의 일실시예에서는 상기 목적 단백질로서 GFP(green fluorescent protein) 및 아밀라아제를 사용하였으며, 상기 GFP를 목적 단백질로 사용하는 경우 본 발명의 융합 유전자는 바람직하게는 서열번호 5의 염기서열을 가질 수 있으며, 상기 아밀라아제를 목적 단백질로 사용하는 경우 본 발명의 융합 유전자는 바람직하게는 서열번호 9의 염기서열을 가질 수 있다.
In the present invention, the term "target protein" means a target protein to be expressed, and for the purpose of the present invention, a protein which is a target for producing an active inclusion body in order to maintain its activity. The gene coding for the target protein binds to the PoxB gene of the present invention to form a fusion gene, thereby forming a clustering body of the target protein, thereby exhibiting protein activity without further immobilization. In one embodiment of the present invention, GFP (green fluorescent protein) and amylase are used as the target protein, and when the GFP is used as a target protein, the fusion gene of the present invention preferably has a nucleotide sequence of SEQ ID NO: 5 When the amylase is used as a target protein, the fusion gene of the present invention may preferably have the nucleotide sequence of SEQ ID NO: 9.

본 발명에서 용어, "융합 유전자"는 상이한 유전자를 유전자 재조합 등의 방법으로 연결한 유전자를 의미하며, 일반적으로 종래의 것보다 유용성이 높은 융합 단백질을 제조하는데 이용된다. 본 발명의 목적상 상기 융합 유전자는 PoxB 유전자 및 목적 단백질을 코딩하는 유전자를 결합시킨 것을 의미하며, 그에 따라 목적 단백질의 활성 인클루젼 바디를 생산할 수 있다. 상기 융합의 방법은 당업계에서 통상적으로 사용되는 모든 융합의 방법을 사용할 수 있으며, 예를 들어 유전자 재조합의 방법일 수 있다. 또한, 용어, "융합 단백질"은 2개 이상의 이종 단백질의 일부 또는 전부가 결합된 단백질을 의미한다. 상기 융합 단백질은 본 발명의 목적상 상기 융합 유전자가 코딩하는 융합 단백질이며, 목적 단백질로 GFP를 사용하는 경우 서열번호 6의 아미노산 서열을 가질 수 있으며, 목적 단백질로 아밀라아제를 사용하는 경우 서열번호 10의 아미노산 서열을 가질 수 있다.
In the present invention, the term "fusion gene" means a gene in which different genes are linked by a method such as gene recombination, and is generally used to produce a fusion protein having higher utility than the conventional one. For the purpose of the present invention, the fusion gene means a PoxB gene and a gene encoding a target protein bound thereto, thereby producing an active inclusion body of the target protein. The method of fusion may be any fusion method commonly used in the art, for example, a method of genetic recombination. The term "fusion protein" also refers to a protein in which some or all of two or more heterologous proteins are combined. The fusion protein is a fusion protein encoded by the fusion gene for the purpose of the present invention. In the case of using GFP as the target protein, the fusion protein may have the amino acid sequence of SEQ ID NO: 6, and when amylase is used as the target protein, May have an amino acid sequence.

본 발명에서 용어, "인클루젼 바디(inclusion body)"는 핵이나 원형질의 염색 특징을 갖는 구조로서, 재조합 단백질이 대장균이나 효모 등에서 생성될 때 배지에 분비하지 않고 균체 내에서 불용 상태로 응집된 덩어리를 의미하는 것이며, 봉입체 또는 내포체라고도 불린다. 미생물에서 단백질을 과발현하면 인클루젼 바디라는 결정체가 만들어지며, 상기 인클루젼 바디는 발현된 단백질이 잘못된 폴딩(folding)을 한 결과물로서, 단백질의 활성을 잃어버리는 것이 일반적이다. 따라서, 상기 인클루젼 바디를 다시 활성형 단백질로 만드는데 추가적인 비용이 소요되므로, 이러한 과정없이 단백질의 활성을 잃어버리지 않은 활성 인클루젼 바디를 생산하면 보다 효율적으로 활성형 단백질을 제조할 수 있다. 따라서, 본 발명에서 용어, "활성 인클루젼 바디"는 단백질 활성을 잃어버리지 않고 유지된 인클루젼 바디를 의미한다. 본 발명에서는 poxB가 인클루젼 바디를 형성할 때 poxB의 활성을 갖는 것을 확인하고, 이를 목적 단백질과 결합시킬 경우 목적 단백질의 활성 인클루젼 바디를 생산할 수 있음을 확인하였다.
In the present invention, the term "inclusion body" refers to a structure having a nucleus or protoplast staining characteristic. When the recombinant protein is produced in E. coli or yeast, it does not secrete into the medium, It is also called an inclusion body or an inner body. Overexpression of a protein in a microorganism results in the formation of a crystal called an inclusion body. The inclusion body is a result of an incorrect folding of the expressed protein, which generally results in loss of activity of the protein. Therefore, since the encapsulation body is required to be an active protein again, an active protein can be produced more efficiently by producing an active inclusion body without losing the activity of the protein without such a process. Thus, in the present invention, the term "active inclusion body" means an inclusion body maintained without loss of protein activity. In the present invention, it was confirmed that poxB has poxB activity when forming an inclusion body, and when it is bound to a target protein, it is confirmed that a closure body of the target protein can be produced.

본 발명의 일실시예에서는 목적 단백질의 인클루젼 바디 형성 및 그 활성 여부를 확인하기 위하여, PoxBpp-gfp 융합 유전자(서열번호 5) 및 PoxBpp-amyE 융합 유전자(서열번호 6)를 제작하였다. 먼저, PoxBpp-gfp 융합 유전자를 포함하는 플라스미드를 제작하고 대장균에 도입하여 배양한 후 광학 및 형광현미경으로 관찰한 결과, 인클루젼 바디의 형성 및 형광을 관찰하여 활성 인클루젼 바디가 생산되었음을 확인하였다(도 1). 또한, PoxBpp-amyE 융합 유전자를 포함하는 플라스미드를 제작하고 대장균에 도입하여 배양한 후 광학현미경으로 관찰한 결과, 인클루젼 바디가 생산되었음을 확인하였으며, 추가적으로 아밀라아제 활성을 측정한 결과, PoxB-AmeE 융합 단백질 군에서는 인클루젼 바디가 포함된 침전물에서 아밀라아제 효소 활성이 높음을 관찰함으로써(도 2) PoxB 유전자의 융합이 목적 단백질의 활성 인클루젼 바디 형성을 유도함을 확인하였다.
In one embodiment of the present invention, a PoxB pp -gfp fusion gene (SEQ ID NO: 5) and a PoxB pp- amyE fusion gene (SEQ ID NO: 6) were prepared to confirm formation of an inclusion body of the target protein and its activity . First, a plasmid containing the PoxB pp- gfp fusion gene was prepared, introduced into E. coli, cultured, and observed under optical and fluorescence microscope. As a result, the formation of an active inclusion body and observation of fluorescence revealed that an active inclusion body was produced (Fig. 1). In addition, a plasmid containing the PoxB pp- amyE fusion gene was prepared, introduced into Escherichia coli, and cultured. The resultant was observed under an optical microscope. As a result, it was confirmed that an encapsulated body was produced, and the amylase activity was further measured. As a result, PoxB-AmeE In the fusion protein group, it was confirmed that the amylase enzyme activity was high in the precipitate containing the inclusion body (FIG. 2), thereby confirming that the fusion of the PoxB gene induces formation of a clustering body of the target protein.

다른 하나의 양태로서, 본 발명은 상기 융합 유전자를 포함하는 발현벡터, 및 상기 발현벡터가 숙주세포에 형질전환된 형질전환체를 제공한다. 상기 융합 유전자는 목적 단백질의 활성 인클루젼 바디를 생산하기 위한 PoxB 유전자 및 목적 단백질을 코딩하는 유전자를 결합시킨 융합 유전자이며, 이는 상기에서 설명한 바와 같다.
In another embodiment, the present invention provides an expression vector comprising the fusion gene, and a transformant in which the expression vector is transformed into a host cell. The fusion gene is a fusion gene in which a PoxB gene and a gene encoding a target protein are combined to produce an active inclusion body of a target protein, as described above.

본 발명에서 용어, "벡터"는 연결되어 있는 다른 핵산을 운반할 수 있는 핵산 분자를 의미하며, 벡터의 하나의 유형인 "플라스미드"는 그 안에 추가적으로 DNA 조각을 연결시킬 수 있는 환형의 이중 가닥 DNA 루프를 의미한다.The term "vector" in the present invention means a nucleic acid molecule capable of carrying other nucleic acid to which it is linked. One type of vector, "plasmid ", is a circular double- stranded DNA Loop.

본 발명에서 용어, "발현벡터"는 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 재조합 벡터로서, 작동 가능하도록 연결된 목적 단백질을 코딩하는 유전자의 발현을 지시하는 벡터를 의미한다. 상기 발현벡터는 이에 제한되지는 않으나 플라스미드 벡터, 코즈미드 벡터, 박테리오파지 벡터 및 아데노바이러스 벡터, 레트로바이러스 벡터와 같은 바이러스 벡터 등을 포함하며, 재조합 DNA 기술의 사용에 있어서 바람직하게는 플라스미드 벡터일 수 있다.
As used herein, the term "expression vector" means a recombinant vector capable of expressing a target protein in a suitable host cell, and which expresses a gene encoding a target protein operably linked. Such expression vectors include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, and viral vectors such as adenovirus vectors and retroviral vectors, and may be plasmid vectors, preferably in the use of recombinant DNA technology .

본 발명에서 용어, "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체의 인자로서 또는 염색체 통합 완성에 의해 복제 가능하게 되는 것으로 외부의 DNA를 세포 내로 도입하여 인위적으로 유전적인 변화를 일으키는 현상을 의미한다. 본 발명의 숙주세포는 당업계에 알려져 있는 숙주세포는 제한없이 사용할 수 있으며, 본 발명의 일실시예에서는 대장균을 숙주세포로 사용하였다.In the present invention, the term "transformation" refers to a phenomenon in which DNA is introduced as a host and DNA can be cloned as a factor of chromosome or by integration of chromosome integration, thereby introducing an external DNA into cells to cause an artificial genetic change it means. The host cell of the present invention may be any host cell known in the art without limitation. In one embodiment of the present invention, Escherichia coli was used as a host cell.

본 발명의 형질전환 방법은 임의의 형질전환 방법이 사용될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다. 일반적으로 형질전환 방법에는 CaCl2 침전법, CaCl2 방법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법 (electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개된 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 있다. 따라서, 본 발명에서 상기 형질전환 방법을 제한없이 이용하여 본 발명의 융합 유전자를 포함하는 발현벡터를 숙주세포로 도입함으로써, 형질전환체를 획득할 수 있다.
Any transformation method of the present invention can be used, and can be easily carried out according to a conventional method in the art. Generally, the transformation methods include the CaCl 2 precipitation method, the Hanahan method which uses a reducing material called DMSO (dimethyl sulfoxide) for the CaCl 2 method, the electroporation method, the calcium phosphate precipitation method, the protoplasm fusion method, Agrobacterium-mediated transformation, transformation with PEG, dextran sulfate, lipofectamine, and drying / inhibition-mediated transformation methods. Therefore, in the present invention, a transformant can be obtained by introducing an expression vector containing the fusion gene of the present invention into a host cell by using the above transformation method without limitation.

또 다른 하나의 양태로서, 본 발명은 (a) 활성 인클루젼 바디를 생산하고자 하는 목적 단백질을 코딩하는 유전자에 PoxB 유전자를 결합시켜 융합 유전자를 제조하는 단계; (b) 상기 제조된 융합 유전자를 포함하는 발현벡터를 제조하는 단계; (c) 상기 제조된 발현벡터가 숙주세포에 형질전환된 형질전환체를 제조하는 단계; (d) 상기 형질전환체를 배양하여 목적 단백질의 활성 인클루젼 바디를 생산하는 단계를 포함하는, 목적 단백질의 제조 방법을 제공한다.In another aspect, the present invention provides a method for producing a fusion protein comprising the steps of: (a) preparing a fusion gene by binding a PoxB gene to a gene encoding a target protein to produce an active inclusion body; (b) preparing an expression vector comprising the fusion gene; (c) preparing a transformant transformed with the expression vector prepared in the host cell; (d) culturing the transformant to produce an active inclusion body of the target protein.

본 발명의 방법은 (e) 상기 생산된 활성 인클루젼 바디에서 목적 단백질을 절단하는 단계를 추가로 포함할 수 있다.The method of the present invention may further comprise (e) cleaving the target protein in the produced active inclusion body.

본 발명에서는 활성 인클루젼 바디 형성을 유도할 수 있는 PoxB 유전자를 이용하여 목적 단백질의 활성 인클루젼 바디를 생산하여 최종적으로 목적 단백질을 제조하는 방법을 제공하며, 본 발명의 융합 유전자, 발현벡터, 형질전환체, 및 활성 인클루젼 바디에 대해서는 상기에서 설명한 바와 같다.The present invention provides a method for producing a target protein by producing an active inclusion body of a target protein using a PoxB gene capable of inducing formation of an active inclusion body. The fusion protein of the present invention, the expression vector , Transformants, and active inclusion bodies are as described above.

상기 형질전환체를 배양하여 생산한 목적 단백질의 인클루젼 바디는 활성을 가지며, 그에 따라 효소 고정화 등의 추가적인 과정 없이 활성이 있는 단백질로서 사용 가능하다. 상기 목적 단백질은 그 활성을 유지하기 위하여 활성 인클루젼 바디를 생산하기 위한 목적이 되는 단백질을 제한없이 포함하며, 그 예로서 GFP 및 아밀라아제 등이 있다.
The encapsulated body of the target protein produced by culturing the transformant is active and can be used as a protein having no activity such as enzyme immobilization. The target protein includes, without limitation, proteins that are intended to produce an active inclusion body to maintain its activity, such as GFP and amylase.

본 발명에 따라 생산된 활성 인클루젼 바디는 별도의 과정없이 단백질의 활성을 나타내므로, 효소반응이 필요한 산업공정에서 효소 생산, 분리 정제 및 효소 고정화의 단계가 필요없어, 효소를 이용하는 공정에서 비용을 절감할 수 있고, 고정화 과정에서 효소 활성이 급격히 감소하는 단점을 보완할 수 있으며, 발현된 단백질의 순수 분리가 용이하다.
Since the active inclusion body produced according to the present invention shows the activity of the protein without a separate process, it is not necessary to produce the enzyme, separate purification and enzyme immobilization step in the industrial process requiring the enzyme reaction, Can be reduced, and the disadvantage that the enzyme activity is rapidly reduced during the immobilization process can be compensated, and the purified protein can be easily separated.

도 1은 PoxB의 활성 인클루젼 바디 형성을 나타낸 도이다. 도 1의 A는 페니바실러스 폴리믹사의 poxB(poxBpp)가 대장균에서 과발현되어 인클루젼 바디를 형성한 현미경 사진이며, B는 야생형 대장균(BW25113), poxB 결손 변이주(△poxB), poxBpp를 도입한 후의 상등액(poxB(pUC-pppox)-sol), 및 침전물(poxB(pUC-pppox)-insol)에서의 poxB 효소 활성을 측정한 그래프이다.
도 2는 poxB-gfp 융합 유전자가 도입된 대장균에 대한 광학현미경(A) 및 형광현미경(B) 사진이다.
도 3은 poxB-amyE 융합 유전자가 도입된 대장균에 대한 광학현미경 사진(A) 및 아밀라아제 효소 활성을 측정한 그래프이다(B). sol: 상등액; insol: 침전물, amy: amyE 단백질; pox-amy: poxB-amyE 융합 단백질; -xylose: 자일로오스 부재, +xylose: 자일로오스 존재.
Figure 1 shows the formation of active inclusion bodies of PoxB. FIG. 1 (A) is a micrograph showing the formation of an encapsulated body by overexpression of poxB (poxB pp ) by Penny Bacillus Polychyx in Escherichia coli. B represents a wild type Escherichia coli (BW25113), poxB deletion mutant (poxB) (PUC-pppox) -sol), and a precipitate (poxB (pUC-pppox) -insol).
2 is an optical microscope (A) and a fluorescence microscope (B) photograph of E. coli into which the poxB-gfp fusion gene is introduced.
FIG. 3 is a photograph (A) of the E. coli into which the poxB-amyE fusion gene is introduced and a graph (B) showing the activity of the amylase enzyme activity. sol: supernatant; insol: precipitate, amy: amyE protein; pox-amy: poxB-amyE fusion protein; -xylose: absence of xylose, + xylose: xylose present.

이하, 하기 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. These embodiments are only for illustrating the present invention, and the scope of the present invention is not construed as being limited by these embodiments.

실시예Example 1:  One: PoxBPoxB of 인클루젼Inclusion 바디body (( inclusioninclusion bodybody , , IBIB ) 형성 확인) Formation Confirmation

페니바실러스 폴리믹사(Paenibacillus polymyxa) 유래 poxB 단백질(poxBpp)을 대장균에서 과발현하기 위하여, 페니바실러스 폴리믹사 E681 균주(J. Bacteriol. 2010. 192: 6103-6104)의 게놈으로부터 poxB 유전자(서열번호 1)를 확보하였다. poxB-hind 프라이머(서열번호 2) 및 poxB-bam 프라이머(서열번호 3)를 사용하여 PCR을 통해 poxB 유전자를 확보하고, 확보된 PCR 산물은 BamHI 및 HindⅢ 제한효소로 절단한 후 플라스미드 pUC19의 같은 부위에 클로닝하여 pUC-pox를 제작하였다. 제작된 플라스미드 pUC-pox는 대장균 BW25113(Proc. Natl. Acad. Sci. USA 97:6640-6645) 및 poxB 결손 변이주 JW0855(Mol. Syst. Biol. 2006. 2:1-11)에 도입하였다. pUC-pox를 포함한 BW25113을 LB 고체배지에서 2일간 배양한 후 현미경으로 관찰하였다. 그 결과, poxB가 대장균에서 과발현하여 인클루젼 바디(inclusion body, IB)를 형성함을 확인하였다(도 1의 A).
In order to overexpress poxB protein derived from Paenibacillus polymyxa (poxB pp ) in Escherichia coli, the poxB gene (SEQ ID NO: 1) was obtained from the genome of Penny Bacillus polymyxer strain E681 (J. Bacteriol. 2010. 192: 6103-6104) ). The poxB gene was obtained by PCR using the poxB-hind primer (SEQ ID NO: 2) and the poxB-bam primer (SEQ ID NO: 3), and the obtained PCR product was digested with BamHI and HindIII restriction enzymes and then ligated to the same site of the plasmid pUC19 To prepare pUC-pox. The prepared plasmid pUC-pox was introduced into Escherichia coli BW25113 (Proc. Natl. Ac. Sci. USA 97: 6640-6645) and poxB deletion mutant JW0855 (Mol. BW25113 containing pUC-pox was cultured in LB solid medium for 2 days and then observed with a microscope. As a result, it was confirmed that poxB was overexpressed in E. coli to form an inclusion body (IB) (FIG. 1A).

다음으로, 상기에서 형성된 인클루젼 바디가 poxB의 활성을 갖는지 확인하기 위하여, pUC-pox를 포함한 BW25113 및 JW0855를 LB 고체배지에서 2일간 배양한 후 세포를 수집하였다. 이후, 소니케이션(sonication)으로 세포를 파쇄하고, 원심분리하여 상등액과 침전물을 구분하였고 J. Bacteriol. 1982. 151:1279-1289 (Chang, Cronan)에 개시된 방법으로 PoxB의 활성을 검정하였다. 이 때 poxB의 효소 활성이 있으면 A450nm에서 수치가 낮아지게 된다.Next, BW25113 and JW0855 containing pUC-pox were cultured in LB solid medium for 2 days and then cells were collected to confirm that the encapsulated body formed above had poxB activity. Cells were then disrupted with sonication and centrifuged to separate the supernatant and precipitate. 1982. 151: 1279-1289 (Chang, Cronan). At this time, the enzyme activity of poxB is lowered at A450 nm.

BW25113 야생형 대장균 균주, poxB 결손 변이주 JW0855, poxB 결손 변이주에 poxBpp를 도입하여 배양하고 세포를 파쇄한 후 이를 원심분리하여 나온 상등액(sol) 및 침전물(insol)에서 각각 poxB의 활성을 측정한 결과, 상등액뿐만 아니라 침전물에서도 poxB의 활성을 관찰할 수 있었다(도 1의 B). 이는 상기에서 형성된 poxB의 인클루젼 바디가 활성을 가지는 인클루젼 바디임을 의미한다.
The activity of poxB was measured in the supernatant (sol) and the precipitate (insol) obtained by centrifuging the BW25113 wild type Escherichia coli strain, poxB deletion mutant JW0855, poxB deficient mutant strains by introducing poxB pp , PoxB activity was observed not only in the supernatant but also in the precipitate (Fig. 1B). This means that the inclusion body of poxB formed in the above is an inclusion body having activity.

실시예Example 2:  2: GFPGFP 의 활성 Active 인클루젼Inclusion 바디body 제작 making

PoxBpp가 다른 단백질의 활성 인클루젼 바디 형성을 유도하는지 확인하기 위하여, PoxBpp와 gfp 유전자를 융합한 PoxBpp-gfp 융합 유전자(서열번호 5)를 제작하여 인클루젼 바디의 활성을 확인하였다.Was PoxB pp is confirmed, pp PoxB and gfp a PoxB pp fusion genes -gfp fusion gene (SEQ ID NO: 5) for making the activity of the inclusion bodies by induction in order to ensure that the active inclusion body formation of other proteins .

먼저, 페니바실러스 폴리믹사 E681 균주의 게놈으로부터 poxBF-apa 프라이머(서열번호 7) 및 poxBR-xho 프라이머(서열번호 8)를 사용하여 PCR을 통해 PoxBpp를 확보하였고, 확보된 PCR 산물은 ApaI 및 XhoI 제한효소로 절단한 후 gfp 유전자가 포함된 플라스미드 pSG1164 (gene 1999. 227: 101-109)의 같은 부위에 클로닝하여 pSG-pox를 제작하였다. 제작된 플라스미드 pSG-pox는 대장균 BW25113에 도입하였고, LB 고체배지에서 2일간 배양한 후 광학 및 형광현미경으로 관찰하였다.First, PoxB pp was obtained by PCR using the poxBF-apa primer (SEQ ID NO: 7) and the poxBR-xho primer (SEQ ID NO: 8) from the genome of the Penny Bacillus policeman E681 strain. The obtained PCR products were ApaI and XhoI After digestion with restriction enzymes, the plasmid pSG1164 (gene 1999. 227: 101-109) containing the gfp gene was cloned into the same site to prepare pSG-pox. The prepared plasmid pSG-pox was introduced into Escherichia coli BW25113 and cultured in LB solid medium for 2 days, followed by optical and fluorescence microscopy.

그 결과, 광학 현미경 하에서 인클루젼 바디의 형성을 관찰할 수 있었으며(도 2의 A), 이는 형광 현미경 하에서 형광을 띄고 있음을 확인하였다(도 2의 B). 이러한 결과를 통해, PoxB-Gfp 인클루젼 바디가 활성 인클루젼 바디임을 확인하였으며, 이는 목적 단백질을 코딩하는 유전자에 poxB 유전자를 융합할 경우, 목적 단백질의 활성 인클루젼 바디 형성을 유도할 수 있다는 것을 의미한다.
As a result, formation of an encapsulated body under an optical microscope was observed (A in FIG. 2), which confirmed fluorescence under a fluorescence microscope (FIG. 2B). These results confirmed that the PoxB-Gfp inclusion body is an active inclusion body. When the poxB gene is fused to the gene encoding the target protein, it is possible to induce the formation of the active inclusion body of the target protein .

실시예Example 3:  3: 아밀라아제의Amylase 활성  activation 인클루젼Inclusion 바디body 제작 making

PoxBpp가 다른 효소의 활성 인클루젼 바디 형성을 유도하는지 확인하기 위하여, PoxBpp와 amyE 유전자를 융합한 PoxBpp-amyE 융합 유전자(서열번호 9)를 제작하여 인클루젼 바디의 활성을 확인하였다.Was PoxB pp is confirmed, pp PoxB and amyE a PoxB pp fusion genes -amyE fusion gene (SEQ ID NO: 9) for making the activity of the inclusion bodies by induction in order to ensure that the active inclusion body formation of other enzyme .

먼저, 고초균(Bacillus subtilis, Nature 1997. 390: 249-256)의 게놈으로부터 amyF-xho 프라이머(서열번호 11) 및 amyR-spe 프라이머(서열번호 12)를 사용하여 PCR을 통해 amyE 유전자를 확보하였다. 다음으로, 페니바실러스 폴리믹사 E681 균주의 게놈으로부터 poxBF-apa 프라이머(서열번호 7) 및 poxBR-xho 프라이머(서열번호 8)를 사용하여 PCR을 통해 PoxBpp를 확보하였으며, 상기 amyE 유전자 및 PoxBpp를 XhoI를 이용하여 연결하였다. 이후, ApaI 및 SpeI 제한효소로 절단한 후 플라스미드 pSG1164의 같은 부위에 클로닝하여 pSG-poxamy를 제작하였다. 대조군으로 사용된 amyE 유전자는 상기 amyF-xho 프라이머와 amyR-spe 프라이머를 사용하여 확보된 PCR 산물을 XhoI과 SpeI으로 절단한 후 플라스미드 pSG1164의 같은 부위에 클로닝하여 pSG-amy를 제작하였다. 제작된 플라스미드들은 대장균 BW25113에 도입하였고, LB 고체배지에서 2일간 배양한 후 광학현미경으로 관찰하였다. 그 결과, PoxB-AmyE가 인클루젼 바디를 형성함을 관찰할 수 있었다(도 3의 A).
First, the amyE gene was obtained by PCR using the amyF-xho primer (SEQ ID NO: 11) and the amyR-spe primer (SEQ ID NO: 12) from the genome of Bacillus subtilis (Nature 1997. 390: 249-256). Next, PoxB pp was obtained by PCR using the poxBF-apa primer (SEQ ID NO: 7) and poxBR-xho primer (SEQ ID NO: 8) from the genome of the Penny Bacillus polymyxer strain E681 and the amyE gene and PoxB pp XhoI. Then, the plasmid pSG1164 was digested with ApaI and SpeI restriction enzymes and cloned into the same site of plasmid pSG1164 to prepare pSG-poxamy. The amyE gene used as a control was obtained by digesting the PCR product obtained using the amyF-xho primer and the amyR-spe primer with XhoI and SpeI, and then cloning into the same site of the plasmid pSG1164 to prepare pSG-amy. The prepared plasmids were introduced into Escherichia coli BW25113, cultured in LB solid medium for 2 days, and then observed with an optical microscope. As a result, it was observed that PoxB-AmyE forms an inclusion body (Fig. 3A).

다음으로, 상기에서 형성된 인클루젼 바디가 활성을 갖는지 확인하기 위하여, 아밀라아제 효소 활성을 측정하였다. 상기에서 배양된 세포를 수집하고, 소니케이션으로 세포를 파쇄, 원심분리하여 상등액과 침전물을 구분하였다. 이들 상등액과 침전물에 대한 아밀라아제 활성은 DNS 방법(Harwood & Cutting. 1990. Molecular biological methods for Bacillus. John Wiley & Sons Ltd. p380-381)으로 측정하였다. amyE 유전자 및 poxB-amyE 융합 유전자가 각각 도입된 군에 대하여, 단백질 발현 유도물질인 자일로오스(xylose)를 첨가하거나 첨가하지 않은 군에서 측정하였다.Next, in order to confirm that the encapsulated body formed above had activity, amylase enzyme activity was measured. The cultured cells were collected, and the cells were disrupted by sonication and centrifuged to separate the supernatant and the precipitate. The amylase activities of these supernatants and precipitates were measured by the DNS method (Harwood & Cutting, 1990. Molecular biological methods for Bacillus, John Wiley & Sons Ltd. p380-381). amyE gene and the poxB-amyE fusion gene were respectively measured in the group to which the protein expression inducing substance xylose or no xylose was added.

그 결과, amyE는 상등액에서 대부분의 활성이 관찰되고 침전물에서는 활성이 거의 없는 반면, PoxB-AmyE 융합 단백질은 인클루젼 바디가 포함된 침전물에서 아밀라아제 효소 활성이 더 높았다. 또한, 자일로오스의 존재 유무와 관계없이 유사한 패턴의 결과를 관찰할 수 있었다(도 3의 B). 이를 통해, PoxB-AmyE가 형성한 인클루젼 바디가 활성 인클루젼 바디임을 확인할 수 있었으며, 이는 목적 효소를 코딩하는 유전자에 poxB 유전자를 융합할 경우, 목적 효소의 활성 인클루젼 바디 형성을 유도할 수 있다는 것을 의미한다.
As a result, amyE showed the most activity in the supernatant and little activity in the precipitate, whereas the PoxB-AmyE fusion protein had higher amylase activity in the precipitate containing the inclusion body. In addition, similar pattern results were observed regardless of the presence or absence of xylose (Fig. 3B). In this way, it was confirmed that the inclusion body formed by PoxB-AmyE is an active inclusion body. When the poxB gene is fused to the gene encoding the target enzyme, it is possible to induce the formation of the active inclusion body of the target enzyme It means that you can do it.

<110> Korea Research Institute of Bioscience and Biotechnology <120> Method for producing active inclusion body using PoxB gene <130> PA110883KR <160> 12 <170> KopatentIn 2.0 <210> 1 <211> 1725 <212> DNA <213> Paenibacillus polymyxa <400> 1 atgaagacaa tcgcagatac tattgtacaa gttttggtca atgcaggggt caagcggatt 60 tatggcattg ttggagactc tctaaataat atggttgatt ccattcgcag caatggtcaa 120 atcgaatgga ttcatgtaag gcacgaagaa gtggctgcct ttgcagccgg agcggatgct 180 gaccttagtg gcagcattgc tgtatgtgct ggaagtagtg gtcccggaaa tttgcatctg 240 attaatggtt tatatgattg ccaccgcaat cgggtgcctg tactggctat tgccgctcat 300 attccaagcg acgaaatcgg aagtgaatat tttcaagcga cgcatcctga gcatcttttc 360 ggagaatgca gtcacttttg tgaggttatt acgacaccgc gtcaaattcc cagaacggtg 420 accatggcca ttcaacaggc aatttcacgt tcaggtgtct ccgtcattgt tcttcccggt 480 gatgtagcag ctttggaggc ggaaaaggta cccatccctg aacatgtcta ccatcccact 540 gcacctgtag tgcatccgtc agcttccgaa atttcccgac tggccgaata tttgaatcaa 600 ggcaaacgaa ttacgttact atgcggcgcc ggctgtgcac aatctcatga attgctcatg 660 cagctatgcg acaagttaaa atcccccatg gtatccgctc tgcgaggcaa ggaatatctg 720 gagtatgaca acccttatta tgctggattg acgggactga tcgggtattc ttccgggtac 780 catgcgatga tggattgtga cgtcctgctt atgctcggaa cagacttccc ttacagacag 840 ttttaccctg aagatgcgat tgtcctacag gtagatatag agccagccca tctcggcaga 900 cgtactccgt tgacgtatgg tttatgcggg gatgtaaaag ccacattgga aatgctgcta 960 ccgcatttaa cgtcagagca tgattccaag catctagaga aaaccgtctc ccactatacc 1020 aaggtacgtc aggagttgga tgaccttgcc gttggtaaac caggtcatac gccgatccat 1080 ccccaatatc ttgccaaggt catcagtgac gccgcgcagg aaaatgctat tttcacttgt 1140 gatgtcggta ctcccactgt atgggcggcg cgttatttgc agatgaacgg tcagcgtcgg 1200 ctgctcggct cgttcaacca tggcacgatg gcaaatgcgc taccgcaggc aatcggagcg 1260 caggccactg agcctgaccg acaagtgatt gccctctcag gcgatggcgg gctcacgatg 1320 ctgatgggcg acctgctcac cctgaagcag catcagctgc ctattaaagt cattgttttc 1380 aataatggcg ctctcggttt tgtcgagctg gaaatgaaag cggccggatt cctggaaaac 1440 ggcactgaac tggtgaatcc tgattttggt gctgtagcgc aagctatggg actcaagggc 1500 atccgggttg aagatccgac catgctggag gatgccattc agcaagcatt ggctcatgat 1560 ggccctgttg tagtagacgt ggtggtgaac cgtcaagagc tatccatgcc acccaaaatt 1620 aatcttaaac aagcacaagg ctttacactg tggatgatga aagcgatgct gaacggacgc 1680 ggtgacgaga ttgttgaact ggctaagacc aatctctttc gttaa 1725 <210> 2 <211> 574 <212> PRT <213> Paenibacillus polymyxa <400> 2 Met Lys Thr Ile Ala Asp Thr Ile Val Gln Val Leu Val Asn Ala Gly 1 5 10 15 Val Lys Arg Ile Tyr Gly Ile Val Gly Asp Ser Leu Asn Asn Met Val 20 25 30 Asp Ser Ile Arg Ser Asn Gly Gln Ile Glu Trp Ile His Val Arg His 35 40 45 Glu Glu Val Ala Ala Phe Ala Ala Gly Ala Asp Ala Asp Leu Ser Gly 50 55 60 Ser Ile Ala Val Cys Ala Gly Ser Ser Gly Pro Gly Asn Leu His Leu 65 70 75 80 Ile Asn Gly Leu Tyr Asp Cys His Arg Asn Arg Val Pro Val Leu Ala 85 90 95 Ile Ala Ala His Ile Pro Ser Asp Glu Ile Gly Ser Glu Tyr Phe Gln 100 105 110 Ala Thr His Pro Glu His Leu Phe Gly Glu Cys Ser His Phe Cys Glu 115 120 125 Val Ile Thr Thr Pro Arg Gln Ile Pro Arg Thr Val Thr Met Ala Ile 130 135 140 Gln Gln Ala Ile Ser Arg Ser Gly Val Ser Val Ile Val Leu Pro Gly 145 150 155 160 Asp Val Ala Ala Leu Glu Ala Glu Lys Val Pro Ile Pro Glu His Val 165 170 175 Tyr His Pro Thr Ala Pro Val Val His Pro Ser Ala Ser Glu Ile Ser 180 185 190 Arg Leu Ala Glu Tyr Leu Asn Gln Gly Lys Arg Ile Thr Leu Leu Cys 195 200 205 Gly Ala Gly Cys Ala Gln Ser His Glu Leu Leu Met Gln Leu Cys Asp 210 215 220 Lys Leu Lys Ser Pro Met Val Ser Ala Leu Arg Gly Lys Glu Tyr Leu 225 230 235 240 Glu Tyr Asp Asn Pro Tyr Tyr Ala Gly Leu Thr Gly Leu Ile Gly Tyr 245 250 255 Ser Ser Gly Tyr His Ala Met Met Asp Cys Asp Val Leu Leu Met Leu 260 265 270 Gly Thr Asp Phe Pro Tyr Arg Gln Phe Tyr Pro Glu Asp Ala Ile Val 275 280 285 Leu Gln Val Asp Ile Glu Pro Ala His Leu Gly Arg Arg Thr Pro Leu 290 295 300 Thr Tyr Gly Leu Cys Gly Asp Val Lys Ala Thr Leu Glu Met Leu Leu 305 310 315 320 Pro His Leu Thr Ser Glu His Asp Ser Lys His Leu Glu Lys Thr Val 325 330 335 Ser His Tyr Thr Lys Val Arg Gln Glu Leu Asp Asp Leu Ala Val Gly 340 345 350 Lys Pro Gly His Thr Pro Ile His Pro Gln Tyr Leu Ala Lys Val Ile 355 360 365 Ser Asp Ala Ala Gln Glu Asn Ala Ile Phe Thr Cys Asp Val Gly Thr 370 375 380 Pro Thr Val Trp Ala Ala Arg Tyr Leu Gln Met Asn Gly Gln Arg Arg 385 390 395 400 Leu Leu Gly Ser Phe Asn His Gly Thr Met Ala Asn Ala Leu Pro Gln 405 410 415 Ala Ile Gly Ala Gln Ala Thr Glu Pro Asp Arg Gln Val Ile Ala Leu 420 425 430 Ser Gly Asp Gly Gly Leu Thr Met Leu Met Gly Asp Leu Leu Thr Leu 435 440 445 Lys Gln His Gln Leu Pro Ile Lys Val Ile Val Phe Asn Asn Gly Ala 450 455 460 Leu Gly Phe Val Glu Leu Glu Met Lys Ala Ala Gly Phe Leu Glu Asn 465 470 475 480 Gly Thr Glu Leu Val Asn Pro Asp Phe Gly Ala Val Ala Gln Ala Met 485 490 495 Gly Leu Lys Gly Ile Arg Val Glu Asp Pro Thr Met Leu Glu Asp Ala 500 505 510 Ile Gln Gln Ala Leu Ala His Asp Gly Pro Val Val Val Asp Val Val 515 520 525 Val Asn Arg Gln Glu Leu Ser Met Pro Pro Lys Ile Asn Leu Lys Gln 530 535 540 Ala Gln Gly Phe Thr Leu Trp Met Met Lys Ala Met Leu Asn Gly Arg 545 550 555 560 Gly Asp Glu Ile Val Glu Leu Ala Lys Thr Asn Leu Phe Arg 565 570 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> PoxB-hind primer <400> 3 aagcttctag acaggaggaa catctatg 28 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> PoxB-bam primer <400> 4 ggatcctaac aggcaggacg aatggg 26 <210> 5 <211> 2503 <212> DNA <213> Artificial Sequence <220> <223> poxBpp-gfp fusion gene <400> 5 atgggtaccg ggcccatgaa gacaatcgca gatactattg tacaagtttt ggtcaatgca 60 ggggtcaagc ggatttatgg cattgttgga gactctctaa ataatatggt tgattccatt 120 cgcagcaatg gtcaaatcga atggattcat gtaaggcacg aagaagtggc tgcctttgca 180 gccggagcgg atgctgacct tagtggcagc attgctgtat gtgctggaag tagtggtccc 240 ggaaatttgc atctgattaa tggtttatat gattgccacc gcaatcgggt gcctgtactg 300 gctattgccg ctcatattcc aagcgacgaa atcggaagtg aatattttca agcgacgcat 360 cctgagcatc ttttcggaga atgcagtcac ttttgtgagg ttattacgac accgcgtcaa 420 attcccagaa cggtgaccat ggccattcaa caggcaattt cacgttcagg tgtctccgtc 480 attgttcttc ccggtgatgt agcagctttg gaggcggaaa aggtacccat ccctgaacat 540 gtctaccatc ccactgcacc tgtagtgcat ccgtcagctt ccgaaatttc ccgactggcc 600 gaatatttga atcaaggcaa acgaattacg ttactatgcg gcgccggctg tgcacaatct 660 catgaattgc tcatgcagct atgcgacaag ttaaaatccc ccatggtatc cgctctgcga 720 ggcaaggaat atctggagta tgacaaccct tattatgctg gattgacggg actgatcggg 780 tattcttccg ggtaccatgc gatgatggat tgtgacgtcc tgcttatgct cggaacagac 840 ttcccttaca gacagtttta ccctgaagat gcgattgtcc tacaggtaga tatagagcca 900 gcccatctcg gcagacgtac tccgttgacg tatggtttat gcggggatgt aaaagccaca 960 ttggaaatgc tgctaccgca tttaacgtca gagcatgatt ccaagcatct agagaaaacc 1020 gtctcccact ataccaaggt acgtcaggag ttggatgacc ttgccgttgg taaaccaggt 1080 catacgccga tccatcccca atatcttgcc aaggtcatca gtgacgccgc gcaggaaaat 1140 gctattttca cttgtgatgt cggtactccc actgtatggg cggcgcgtta tttgcagatg 1200 aacggtcagc gtcggctgct cggctcgttc aaccatggca cgatggcaaa tgcgctaccg 1260 caggcaatcg gagcgcaggc cactgagcct gaccgacaag tgattgccct ctcaggcgat 1320 ggcgggctca cgatgctgat gggcgacctg ctcaccctga agcagcatca gctgcctatt 1380 aaagtcattg ttttcaataa tggcgctctc ggttttgtcg agctggaaat gaaagcggcc 1440 ggattcctgg aaaacggcac tgaactggtg aatcctgatt ttggtgctgt agcgcaagct 1500 atgggactca agggcatccg ggttgaagat ccgaccatgc tggaggatgc cattcagcaa 1560 gcattggctc atgatggccc tgttgtagta gacgtggtgg tgaaccgtca agagctatcc 1620 atgccaccca aaattaatct taaacaagca caaggcttta cactgtggat gatgaaagcg 1680 atgctgaacg gacgcggtga cgagattgtt gaactggcta agaccaatct ctttcgtctc 1740 gaggtcgacg gtatcgataa gcttgatatc gaattcctgc agatgagtaa aggagaagaa 1800 cttttcactg gagttgtccc aattcttgtt gaattagatg gtgacgttaa tgggcacaaa 1860 ttttctgtca gtggagaggg tgaaggtgat gcaacatacg gaaaacttac ccttaaattt 1920 atttgcacta ctggaaaact acctgttcca tggccaacac ttgtcactac tctgacttat 1980 ggtgttcaat gcttttcaag atacccagat catatgaaac agcatgactt tttcaagagt 2040 gccatgcccg aaggttatgt acaggaaaga actatatttt tcaaagatga cgggaactac 2100 aagacacgtg ctgaagtcaa gtttgaaggt gatacccttg ttaatagaat cgagttaaaa 2160 ggtattgatt ttaaagaaga tggaaacatt cttggacaca aattggaata caactataac 2220 tcacacaatg tatacatcat ggcagacaaa caaaagaatg gaatcaaagt taacttcaaa 2280 attagacaca acattgaaga tggaagcgtt caactagcag accattatca acaaaatact 2340 ccaattggcg atggccctgt cctttcacca gacaaccatt acctgtccac acaatctgcc 2400 ctttcgaaag atcccaacga aaagagagac cacatggtcc ttcttgagtt tgtaacagct 2460 gctgggatta cacatggcat ggatgaacta tacaaataaa tga 2503 <210> 6 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> poxBpp-gfp fusion protein <400> 6 Met Gly Thr Gly Pro Met Lys Thr Ile Ala Asp Thr Ile Val Gln Val 1 5 10 15 Leu Val Asn Ala Gly Val Lys Arg Ile Tyr Gly Ile Val Gly Asp Ser 20 25 30 Leu Asn Asn Met Val Asp Ser Ile Arg Ser Asn Gly Gln Ile Glu Trp 35 40 45 Ile His Val Arg His Glu Glu Val Ala Ala Phe Ala Ala Gly Ala Asp 50 55 60 Ala Asp Leu Ser Gly Ser Ile Ala Val Cys Ala Gly Ser Ser Gly Pro 65 70 75 80 Gly Asn Leu His Leu Ile Asn Gly Leu Tyr Asp Cys His Arg Asn Arg 85 90 95 Val Pro Val Leu Ala Ile Ala Ala His Ile Pro Ser Asp Glu Ile Gly 100 105 110 Ser Glu Tyr Phe Gln Ala Thr His Pro Glu His Leu Phe Gly Glu Cys 115 120 125 Ser His Phe Cys Glu Val Ile Thr Thr Pro Arg Gln Ile Pro Arg Thr 130 135 140 Val Thr Met Ala Ile Gln Gln Ala Ile Ser Arg Ser Gly Val Ser Val 145 150 155 160 Ile Val Leu Pro Gly Asp Val Ala Ala Leu Glu Ala Glu Lys Val Pro 165 170 175 Ile Pro Glu His Val Tyr His Pro Thr Ala Pro Val Val His Pro Ser 180 185 190 Ala Ser Glu Ile Ser Arg Leu Ala Glu Tyr Leu Asn Gln Gly Lys Arg 195 200 205 Ile Thr Leu Leu Cys Gly Ala Gly Cys Ala Gln Ser His Glu Leu Leu 210 215 220 Met Gln Leu Cys Asp Lys Leu Lys Ser Pro Met Val Ser Ala Leu Arg 225 230 235 240 Gly Lys Glu Tyr Leu Glu Tyr Asp Asn Pro Tyr Tyr Ala Gly Leu Thr 245 250 255 Gly Leu Ile Gly Tyr Ser Ser Gly Tyr His Ala Met Met Asp Cys Asp 260 265 270 Val Leu Leu Met Leu Gly Thr Asp Phe Pro Tyr Arg Gln Phe Tyr Pro 275 280 285 Glu Asp Ala Ile Val Leu Gln Val Asp Ile Glu Pro Ala His Leu Gly 290 295 300 Arg Arg Thr Pro Leu Thr Tyr Gly Leu Cys Gly Asp Val Lys Ala Thr 305 310 315 320 Leu Glu Met Leu Leu Pro His Leu Thr Ser Glu His Asp Ser Lys His 325 330 335 Leu Glu Lys Thr Val Ser His Tyr Thr Lys Val Arg Gln Glu Leu Asp 340 345 350 Asp Leu Ala Val Gly Lys Pro Gly His Thr Pro Ile His Pro Gln Tyr 355 360 365 Leu Ala Lys Val Ile Ser Asp Ala Ala Gln Glu Asn Ala Ile Phe Thr 370 375 380 Cys Asp Val Gly Thr Pro Thr Val Trp Ala Ala Arg Tyr Leu Gln Met 385 390 395 400 Asn Gly Gln Arg Arg Leu Leu Gly Ser Phe Asn His Gly Thr Met Ala 405 410 415 Asn Ala Leu Pro Gln Ala Ile Gly Ala Gln Ala Thr Glu Pro Asp Arg 420 425 430 Gln Val Ile Ala Leu Ser Gly Asp Gly Gly Leu Thr Met Leu Met Gly 435 440 445 Asp Leu Leu Thr Leu Lys Gln His Gln Leu Pro Ile Lys Val Ile Val 450 455 460 Phe Asn Asn Gly Ala Leu Gly Phe Val Glu Leu Glu Met Lys Ala Ala 465 470 475 480 Gly Phe Leu Glu Asn Gly Thr Glu Leu Val Asn Pro Asp Phe Gly Ala 485 490 495 Val Ala Gln Ala Met Gly Leu Lys Gly Ile Arg Val Glu Asp Pro Thr 500 505 510 Met Leu Glu Asp Ala Ile Gln Gln Ala Leu Ala His Asp Gly Pro Val 515 520 525 Val Val Asp Val Val Val Asn Arg Gln Glu Leu Ser Met Pro Pro Lys 530 535 540 Ile Asn Leu Lys Gln Ala Gln Gly Phe Thr Leu Trp Met Met Lys Ala 545 550 555 560 Met Leu Asn Gly Arg Gly Asp Glu Ile Val Glu Leu Ala Lys Thr Asn 565 570 575 Leu Phe Arg Leu Glu Val Asp Gly Ile Asp Lys Leu Asp Ile Glu Phe 580 585 590 Leu Gln Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile 595 600 605 Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 610 615 620 Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe 625 630 635 640 Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr 645 650 655 Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met 660 665 670 Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln 675 680 685 Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala 690 695 700 Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys 705 710 715 720 Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu 725 730 735 Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys 740 745 750 Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly 755 760 765 Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp 770 775 780 Gly Pro Val Leu Ser Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala 785 790 795 800 Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu 805 810 815 Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 820 825 830 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> poxBF-apa primer <400> 7 aaagggccca tgaagacaat cgcagatac 29 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> poxBR-xho primer <400> 8 atatctcgag acgaaagaga ttggtcttag 30 <210> 9 <211> 3597 <212> DNA <213> Artificial Sequence <220> <223> poxBpp-amyE fusion gene <400> 9 atgggtaccg ggcccatgaa gacaatcgca gatactattg tacaagtttt ggtcaatgca 60 ggggtcaagc ggatttatgg cattgttgga gactctctaa ataatatggt tgattccatt 120 cgcagcaatg gtcaaatcga atggattcat gtaaggcacg aagaagtggc tgcctttgca 180 gccggagcgg atgctgacct tagtggcagc attgctgtat gtgctggaag tagtggtccc 240 ggaaatttgc atctgattaa tggtttatat gattgccacc gcaatcgggt gcctgtactg 300 gctattgccg ctcatattcc aagcgacgaa atcggaagtg aatattttca agcgacgcat 360 cctgagcatc ttttcggaga atgcagtcac ttttgtgagg ttattacgac accgcgtcaa 420 attcccagaa cggtgaccat ggccattcaa caggcaattt cacgttcagg tgtctccgtc 480 attgttcttc ccggtgatgt agcagctttg gaggcggaaa aggtacccat ccctgaacat 540 gtctaccatc ccactgcacc tgtagtgcat ccgtcagctt ccgaaatttc ccgactggcc 600 gaatatttga atcaaggcaa acgaattacg ttactatgcg gcgccggctg tgcacaatct 660 catgaattgc tcatgcagct atgcgacaag ttaaaatccc ccatggtatc cgctctgcga 720 ggcaaggaat atctggagta tgacaaccct tattatgctg gattgacggg actgatcggg 780 tattcttccg ggtaccatgc gatgatggat tgtgacgtcc tgcttatgct cggaacagac 840 ttcccttaca gacagtttta ccctgaagat gcgattgtcc tacaggtaga tatagagcca 900 gcccatctcg gcagacgtac tccgttgacg tatggtttat gcggggatgt aaaagccaca 960 ttggaaatgc tgctaccgca tttaacgtca gagcatgatt ccaagcatct agagaaaacc 1020 gtctcccact ataccaaggt acgtcaggag ttggatgacc ttgccgttgg taaaccaggt 1080 catacgccga tccatcccca atatcttgcc aaggtcatca gtgacgccgc gcaggaaaat 1140 gctattttca cttgtgatgt cggtactccc actgtatggg cggcgcgtta tttgcagatg 1200 aacggtcagc gtcggctgct cggctcgttc aaccatggca cgatggcaaa tgcgctaccg 1260 caggcaatcg gagcgcaggc cactgagcct gaccgacaag tgattgccct ctcaggcgat 1320 ggcgggctca cgatgctgat gggcgacctg ctcaccctga agcagcatca gctgcctatt 1380 aaagtcattg ttttcaataa tggcgctctc ggttttgtcg agctggaaat gaaagcggcc 1440 ggattcctgg aaaacggcac tgaactggtg aatcctgatt ttggtgctgt agcgcaagct 1500 atgggactca agggcatccg ggttgaagat ccgaccatgc tggaggatgc cattcagcaa 1560 gcattggctc atgatggccc tgttgtagta gacgtggtgg tgaaccgtca agagctatcc 1620 atgccaccca aaattaatct taaacaagca caaggcttta cactgtggat gatgaaagcg 1680 atgctgaacg gacgcggtga cgagattgtt gaactggcta agaccaatct ctttcgtctc 1740 gaggcaccgt cgatcaaaag cggaaccatt cttcatgcat ggaattggtc gttcaatacg 1800 ttaaaacaca atatgaagga tattcatgat gcaggatata cagccattca gacatctccg 1860 attaaccaag taaaggaagg gaatcaagga gataaaagca tgtcgaactg gtactggctg 1920 tatcagccga catcgtatca aattggcaac cgttacttag gtactgaaca agaatttaaa 1980 gaaatgtgtg cagccgctga agaatatggc ataaaggtca ttgttgacgc ggtcatcaat 2040 cataccacca gtgattatgc cgcgatttcc aatgaggtta agagtattcc aaactggaca 2100 catggaaaca cacaaattaa aaactggtct gatcgatggg atgtcacgca gaattcattg 2160 ctcgggctgt atgactggaa tacacaaaat acacaagtac agtcctatct gaaacggttc 2220 ttagacaggg cattgaatga cggggcagac ggttttcgat ttgatgccgc caaacatata 2280 gagcttccag atgatggcag ttacggcagt caattttggc cgaatatcac aaatacatct 2340 gcagagttcc aatacggaga aatcctgcag gatagtgcct ccagagatgc tgcatatgcg 2400 aattatatgg atgtgacagc gtctaactat gggcattcca taaggtccgc tttaaagaat 2460 cgtaatctgg gcgtgtcgaa tatctcccac tatgcatctg atgtgtctgc ggacaagcta 2520 gtgacatggg tagagtcgca tgatacgtat gccaatgatg atgaagagtc gacatggatg 2580 agcgatgatg atatccgttt aggctgggcg gtgatagctt ctcgttcagg cagtacgcct 2640 cttttctttt ccagacctga gggaggcgga aatggtgtga ggttcccggg gaaaagccaa 2700 ataggcgatc gcgggagtgc tttatttgaa gatcaggcta tcactgcggt caatagattt 2760 cacaatgtga tggctggaca gcctgaggaa ctctcgaacc cgaatggaaa caaccagata 2820 tttatgaatc agcgcggctc acatggcgtt gtgctggcaa atgcaggttc atcctctgtc 2880 tctatcaata cggcaacaaa attgcctgat ggcaggtatg acaataaagc tggagcgggt 2940 tcatttcaag tgaacgatgg taaactgaca ggcacgatca atgccaggtc tgtagctgtg 3000 ctttatcctg atgatattgc aaaagcgcct catgttttcc ttgagaatta caaaacaggt 3060 gtaacacatt ctttcaatga tcaactgacg attaccttgc gtgcagatgc gaatacaaca 3120 aaagccgttt atcaaatcaa taatggacca gacgacaggc gtttaaggat ggagatcaat 3180 tcacaatcgg aaaaggagat ccaatttggc aaaacataca ccatcatgtt aaaaggaacg 3240 aacagtgatg gtgtaacgag gaccgagaaa tacagttttg ttaaaagaga tccagcgtcg 3300 gccaaaacca tcggctatca aaatccgaat cattggagcc aggtaaatgc ttatatctat 3360 aaacatgatg ggagccgagt aattgaattg accggatctt ggcctggaaa accaatgact 3420 aaaaatgcag acggaattta cacgctgacg ctgcctgcgg acacggatac aaccaacgca 3480 aaagtgattt ttaataatgg cagcgcccaa gtgcccggtc agaatcagcc tggctttgat 3540 tacgtgctaa atggtttata taatgactcg ggcttaagcg gttctcttcc ccattga 3597 <210> 10 <211> 1198 <212> PRT <213> Artificial Sequence <220> <223> poxBpp-amyE fusion protein <400> 10 Met Gly Thr Gly Pro Met Lys Thr Ile Ala Asp Thr Ile Val Gln Val 1 5 10 15 Leu Val Asn Ala Gly Val Lys Arg Ile Tyr Gly Ile Val Gly Asp Ser 20 25 30 Leu Asn Asn Met Val Asp Ser Ile Arg Ser Asn Gly Gln Ile Glu Trp 35 40 45 Ile His Val Arg His Glu Glu Val Ala Ala Phe Ala Ala Gly Ala Asp 50 55 60 Ala Asp Leu Ser Gly Ser Ile Ala Val Cys Ala Gly Ser Ser Gly Pro 65 70 75 80 Gly Asn Leu His Leu Ile Asn Gly Leu Tyr Asp Cys His Arg Asn Arg 85 90 95 Val Pro Val Leu Ala Ile Ala Ala His Ile Pro Ser Asp Glu Ile Gly 100 105 110 Ser Glu Tyr Phe Gln Ala Thr His Pro Glu His Leu Phe Gly Glu Cys 115 120 125 Ser His Phe Cys Glu Val Ile Thr Thr Pro Arg Gln Ile Pro Arg Thr 130 135 140 Val Thr Met Ala Ile Gln Gln Ala Ile Ser Arg Ser Gly Val Ser Val 145 150 155 160 Ile Val Leu Pro Gly Asp Val Ala Ala Leu Glu Ala Glu Lys Val Pro 165 170 175 Ile Pro Glu His Val Tyr His Pro Thr Ala Pro Val Val His Pro Ser 180 185 190 Ala Ser Glu Ile Ser Arg Leu Ala Glu Tyr Leu Asn Gln Gly Lys Arg 195 200 205 Ile Thr Leu Leu Cys Gly Ala Gly Cys Ala Gln Ser His Glu Leu Leu 210 215 220 Met Gln Leu Cys Asp Lys Leu Lys Ser Pro Met Val Ser Ala Leu Arg 225 230 235 240 Gly Lys Glu Tyr Leu Glu Tyr Asp Asn Pro Tyr Tyr Ala Gly Leu Thr 245 250 255 Gly Leu Ile Gly Tyr Ser Ser Gly Tyr His Ala Met Met Asp Cys Asp 260 265 270 Val Leu Leu Met Leu Gly Thr Asp Phe Pro Tyr Arg Gln Phe Tyr Pro 275 280 285 Glu Asp Ala Ile Val Leu Gln Val Asp Ile Glu Pro Ala His Leu Gly 290 295 300 Arg Arg Thr Pro Leu Thr Tyr Gly Leu Cys Gly Asp Val Lys Ala Thr 305 310 315 320 Leu Glu Met Leu Leu Pro His Leu Thr Ser Glu His Asp Ser Lys His 325 330 335 Leu Glu Lys Thr Val Ser His Tyr Thr Lys Val Arg Gln Glu Leu Asp 340 345 350 Asp Leu Ala Val Gly Lys Pro Gly His Thr Pro Ile His Pro Gln Tyr 355 360 365 Leu Ala Lys Val Ile Ser Asp Ala Ala Gln Glu Asn Ala Ile Phe Thr 370 375 380 Cys Asp Val Gly Thr Pro Thr Val Trp Ala Ala Arg Tyr Leu Gln Met 385 390 395 400 Asn Gly Gln Arg Arg Leu Leu Gly Ser Phe Asn His Gly Thr Met Ala 405 410 415 Asn Ala Leu Pro Gln Ala Ile Gly Ala Gln Ala Thr Glu Pro Asp Arg 420 425 430 Gln Val Ile Ala Leu Ser Gly Asp Gly Gly Leu Thr Met Leu Met Gly 435 440 445 Asp Leu Leu Thr Leu Lys Gln His Gln Leu Pro Ile Lys Val Ile Val 450 455 460 Phe Asn Asn Gly Ala Leu Gly Phe Val Glu Leu Glu Met Lys Ala Ala 465 470 475 480 Gly Phe Leu Glu Asn Gly Thr Glu Leu Val Asn Pro Asp Phe Gly Ala 485 490 495 Val Ala Gln Ala Met Gly Leu Lys Gly Ile Arg Val Glu Asp Pro Thr 500 505 510 Met Leu Glu Asp Ala Ile Gln Gln Ala Leu Ala His Asp Gly Pro Val 515 520 525 Val Val Asp Val Val Val Asn Arg Gln Glu Leu Ser Met Pro Pro Lys 530 535 540 Ile Asn Leu Lys Gln Ala Gln Gly Phe Thr Leu Trp Met Met Lys Ala 545 550 555 560 Met Leu Asn Gly Arg Gly Asp Glu Ile Val Glu Leu Ala Lys Thr Asn 565 570 575 Leu Phe Arg Leu Glu Ala Pro Ser Ile Lys Ser Gly Thr Ile Leu His 580 585 590 Ala Trp Asn Trp Ser Phe Asn Thr Leu Lys His Asn Met Lys Asp Ile 595 600 605 His Asp Ala Gly Tyr Thr Ala Ile Gln Thr Ser Pro Ile Asn Gln Val 610 615 620 Lys Glu Gly Asn Gln Gly Asp Lys Ser Met Ser Asn Trp Tyr Trp Leu 625 630 635 640 Tyr Gln Pro Thr Ser Tyr Gln Ile Gly Asn Arg Tyr Leu Gly Thr Glu 645 650 655 Gln Glu Phe Lys Glu Met Cys Ala Ala Ala Glu Glu Tyr Gly Ile Lys 660 665 670 Val Ile Val Asp Ala Val Ile Asn His Thr Thr Ser Asp Tyr Ala Ala 675 680 685 Ile Ser Asn Glu Val Lys Ser Ile Pro Asn Trp Thr His Gly Asn Thr 690 695 700 Gln Ile Lys Asn Trp Ser Asp Arg Trp Asp Val Thr Gln Asn Ser Leu 705 710 715 720 Leu Gly Leu Tyr Asp Trp Asn Thr Gln Asn Thr Gln Val Gln Ser Tyr 725 730 735 Leu Lys Arg Phe Leu Asp Arg Ala Leu Asn Asp Gly Ala Asp Gly Phe 740 745 750 Arg Phe Asp Ala Ala Lys His Ile Glu Leu Pro Asp Asp Gly Ser Tyr 755 760 765 Gly Ser Gln Phe Trp Pro Asn Ile Thr Asn Thr Ser Ala Glu Phe Gln 770 775 780 Tyr Gly Glu Ile Leu Gln Asp Ser Ala Ser Arg Asp Ala Ala Tyr Ala 785 790 795 800 Asn Tyr Met Asp Val Thr Ala Ser Asn Tyr Gly His Ser Ile Arg Ser 805 810 815 Ala Leu Lys Asn Arg Asn Leu Gly Val Ser Asn Ile Ser His Tyr Ala 820 825 830 Ser Asp Val Ser Ala Asp Lys Leu Val Thr Trp Val Glu Ser His Asp 835 840 845 Thr Tyr Ala Asn Asp Asp Glu Glu Ser Thr Trp Met Ser Asp Asp Asp 850 855 860 Ile Arg Leu Gly Trp Ala Val Ile Ala Ser Arg Ser Gly Ser Thr Pro 865 870 875 880 Leu Phe Phe Ser Arg Pro Glu Gly Gly Gly Asn Gly Val Arg Phe Pro 885 890 895 Gly Lys Ser Gln Ile Gly Asp Arg Gly Ser Ala Leu Phe Glu Asp Gln 900 905 910 Ala Ile Thr Ala Val Asn Arg Phe His Asn Val Met Ala Gly Gln Pro 915 920 925 Glu Glu Leu Ser Asn Pro Asn Gly Asn Asn Gln Ile Phe Met Asn Gln 930 935 940 Arg Gly Ser His Gly Val Val Leu Ala Asn Ala Gly Ser Ser Ser Val 945 950 955 960 Ser Ile Asn Thr Ala Thr Lys Leu Pro Asp Gly Arg Tyr Asp Asn Lys 965 970 975 Ala Gly Ala Gly Ser Phe Gln Val Asn Asp Gly Lys Leu Thr Gly Thr 980 985 990 Ile Asn Ala Arg Ser Val Ala Val Leu Tyr Pro Asp Asp Ile Ala Lys 995 1000 1005 Ala Pro His Val Phe Leu Glu Asn Tyr Lys Thr Gly Val Thr His Ser 1010 1015 1020 Phe Asn Asp Gln Leu Thr Ile Thr Leu Arg Ala Asp Ala Asn Thr Thr 1025 1030 1035 1040 Lys Ala Val Tyr Gln Ile Asn Asn Gly Pro Asp Asp Arg Arg Leu Arg 1045 1050 1055 Met Glu Ile Asn Ser Gln Ser Glu Lys Glu Ile Gln Phe Gly Lys Thr 1060 1065 1070 Tyr Thr Ile Met Leu Lys Gly Thr Asn Ser Asp Gly Val Thr Arg Thr 1075 1080 1085 Glu Lys Tyr Ser Phe Val Lys Arg Asp Pro Ala Ser Ala Lys Thr Ile 1090 1095 1100 Gly Tyr Gln Asn Pro Asn His Trp Ser Gln Val Asn Ala Tyr Ile Tyr 1105 1110 1115 1120 Lys His Asp Gly Ser Arg Val Ile Glu Leu Thr Gly Ser Trp Pro Gly 1125 1130 1135 Lys Pro Met Thr Lys Asn Ala Asp Gly Ile Tyr Thr Leu Thr Leu Pro 1140 1145 1150 Ala Asp Thr Asp Thr Thr Asn Ala Lys Val Ile Phe Asn Asn Gly Ser 1155 1160 1165 Ala Gln Val Pro Gly Gln Asn Gln Pro Gly Phe Asp Tyr Val Leu Asn 1170 1175 1180 Gly Leu Tyr Asn Asp Ser Gly Leu Ser Gly Ser Leu Pro His 1185 1190 1195 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> amyF-xho primer <400> 11 atatctcgag gcaccgtcga tcaaaagcgg 30 <210> 12 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> amyR-spe primer <400> 12 attactagtt gtgccaacac ttcacaaac 29 <110> Korea Research Institute of Bioscience and Biotechnology <120> Method for producing active inclusion body using PoxB gene <130> PA110883KR <160> 12 <170> Kopatentin 2.0 <210> 1 <211> 1725 <212> DNA <213> Paenibacillus polymyxa <400> 1 atgaagacaa tcgcagatac tattgtacaa gttttggtca atgcaggggt caagcggatt 60 tatggcattg ttggagactc tctaaataat atggttgatt ccattcgcag caatggtcaa 120 atcgaatgga ttcatgtaag gcacgaagaa gtggctgcct ttgcagccgg agcggatgct 180 gaccttagtg gcagcattgc tgtatgtgct ggaagtagtg gtcccggaaa tttgcatctg 240 attaatggtt tatatgattg ccaccgcaat cgggtgcctg tactggctat tgccgctcat 300 attccaagcg acgaaatcgg aagtgaatat tttcaagcga cgcatcctga gcatcttttc 360 ggagaatgca gtcacttttg tgaggttatt acgacaccgc gtcaaattcc cagaacggtg 420 accatggcca ttcaacaggc aatttcacgt tcaggtgtct ccgtcattgt tcttcccggt 480 gatgtagcag ctttggaggc ggaaaaggta cccatccctg aacatgtcta ccatcccact 540 gcacctgtag tgcatccgtc agcttccgaa atttcccgac tggccgaata tttgaatcaa 600 ggcaaacgaa ttacgttact atgcggcgcc ggctgtgcac aatctcatga attgctcatg 660 cagctatgcg acaagttaaa atcccccatg gtatccgctc tgcgaggcaa ggaatatctg 720 gagtatgaca acccttatta tgctggattg acgggactga tcgggtattc ttccgggtac 780 catgcgatga tggattgtga cgtcctgctt atgctcggaa cagacttccc ttacagacag 840 ttttaccctg aagatgcgat tgtcctacag gtagatatag agccagccca tctcggcaga 900 cgtactccgt tgacgtatgg tttatgcggg gatgtaaaag ccacattgga aatgctgcta 960 ccgcatttaa cgtcagagca tgattccaag catctagaga aaaccgtctc ccactatacc 1020 aaggtacgtc aggagttgga tgaccttgcc gttggtaaac caggtcatac gccgatccat 1080 ccccaatatc ttgccaaggt catcagtgac gccgcgcagg aaaatgctat tttcacttgt 1140 gatgtcggta ctcccactgt atgggcggcg cgttatttgc agatgaacgg tcagcgtcgg 1200 ctgctcggct cgttcaacca tggcacgatg gcaaatgcgc taccgcaggc aatcggagcg 1260 caggccactg agcctgaccg acaagtgatt gccctctcag gcgatggcgg gctcacgatg 1320 ctgatgggcg acctgctcac cctgaagcag catcagctgc ctattaaagt cattgttttc 1380 aataatggcg ctctcggttt tgtcgagctg gaaatgaaag cggccggatt cctggaaaac 1440 ggcactgaac tggtgaatcc tgattttggt gctgtagcgc aagctatggg actcaagggc 1500 atccgggttg aagatccgac catgctggag gatgccattc agcaagcatt ggctcatgat 1560 ggccctgttg tagtagacgt ggtggtgaac cgtcaagagc tatccatgcc acccaaaatt 1620 aatcttaaac aagcacaagg ctttacactg tggatgatga aagcgatgct gaacggacgc 1680 ggtgacgaga ttgttgaact ggctaagacc aatctctttc gttaa 1725 <210> 2 <211> 574 <212> PRT <213> Paenibacillus polymyxa <400> 2 Met Lys Thr Ile Ala Asp Thr Ile Val Gln Val Leu Val Asn Ala Gly   1 5 10 15 Val Lys Arg Ile Tyr Gly Ile Val Gly Asp Ser Leu Asn Asn Met Val              20 25 30 Asp Ser Ile Arg Ser Asn Gly Gln Ile Glu Trp Ile His Val Arg His          35 40 45 Glu Glu Val Ala Ala Phe Ala Ala Gly Ala Asp Ala Asp Leu Ser Gly      50 55 60 Ser Ile Ala Val Cys Ala Gly Ser Ser Gly Pro Gly Asn Leu His Leu  65 70 75 80 Ile Asn Gly Leu Tyr Asp Cys His Arg Asn Arg Val Pro Val Leu Ala                  85 90 95 Ile Ala Ala His Ile Pro Ser Asp Glu Ile Gly Ser Glu Tyr Phe Gln             100 105 110 Ala Thr His Pro Glu His Leu Phe Gly Glu Cys Ser His Phe Cys Glu         115 120 125 Val Ile Thr Thr Pro Arg Gln Ile Pro Arg Thr Val Thr Met Ala Ile     130 135 140 Gln Gln Ala Ile Ser Arg Ser Gly Val Ser Val Ile Val Leu Pro Gly 145 150 155 160 Asp Val Ala Leu Glu Ala Glu Lys Val Pro Ile Pro Glu His Val                 165 170 175 Tyr His Pro Thr Ala Pro Val Val His Ser Ser Ala Ser Glu Ile Ser             180 185 190 Arg Leu Ala Glu Tyr Leu Asn Gln Gly Lys Arg Ile Thr Leu Leu Cys         195 200 205 Gly Ala Gly Cys Ala Gln Ser His Glu Leu Leu Met Gln Leu Cys Asp     210 215 220 Lys Leu Lys Ser Pro Met Val Ser Ala Leu Arg Gly Lys Glu Tyr Leu 225 230 235 240 Glu Tyr Asp Asn Pro Tyr Tyr Ala Gly Leu Thr Gly Leu Ile Gly Tyr                 245 250 255 Ser Ser Gly Tyr His Ala Met Met Asp Cys Asp Val Leu Leu Met Leu             260 265 270 Gly Thr Asp Phe Pro Tyr Arg Gln Phe Tyr Pro Glu Asp Ala Ile Val         275 280 285 Leu Gln Val Asp Ile Glu Pro Ala His Leu Gly Arg Arg Thr Pro Leu     290 295 300 Thr Tyr Gly Leu Cys Gly Asp Val Lys Ala Thr Leu Glu Met Leu Leu 305 310 315 320 Pro His Leu Thr Ser Glu His Asp Ser Lys His Leu Glu Lys Thr Val                 325 330 335 Ser His Tyr Thr Lys Val Arg Gln Glu Leu Asp Asp Leu Ala Val Gly             340 345 350 Lys Pro Gly His Thr Pro Ile His Pro Gln Tyr Leu Ala Lys Val Ile         355 360 365 Ser Asp Ala Gln Glu Asn Ale Ile Phe Thr Cys Asp Val Gly Thr     370 375 380 Pro Thr Val Trp Ala Ala Arg Tyr Leu Gln Met Asn Gly Gln Arg Arg 385 390 395 400 Leu Leu Gly Ser Phe Asn His Gly Thr Met Ala Asn Ala Leu Pro Gln                 405 410 415 Ala Ile Gly Ala Gln Ala Thr Glu Pro Asp Arg Gln Val Ile Ala Leu             420 425 430 Ser Gly Asp Gly Gly Leu Thr Met Leu Met Gly Asp Leu Leu Thr Leu         435 440 445 Lys Gln His Gln Leu Pro Ile Lys Val Ile Val Phe Asn Asn Gly Ala     450 455 460 Leu Gly Phe Val Glu Leu Glu Met Lys Ala Glu Ply Leu Glu Asn 465 470 475 480 Gly Thr Glu Leu Val Asn Pro Asp Phe Gly Ala Val Ala Gln Ala Met                 485 490 495 Gly Leu Lys Gly Ile Arg Val Glu Asp Pro Thr Met Leu Glu Asp Ala             500 505 510 Ile Gln Gln Ala Leu Ala His Asp Gly Pro Val Val Val Asp Val Val         515 520 525 Val Asn Arg Gln Glu Leu Ser Met Pro Pro Lys Ile Asn Leu Lys Gln     530 535 540 Ala Gln Gly Phe Thr Leu Trp Met Met Lys Ala Met Leu Asn Gly Arg 545 550 555 560 Gly Asp Glu Ile Val Glu Leu Ala Lys Thr Asn Leu Phe Arg                 565 570 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> PoxB-hind primer <400> 3 aagcttctag acaggaggaa catctatg 28 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> PoxB-bam primer <400> 4 ggatcctaac aggcaggacg aatggg 26 <210> 5 <211> 2503 <212> DNA <213> Artificial Sequence <220> <223> poxBpp-gfp fusion gene <400> 5 atgggtaccg ggcccatgaa gacaatcgca gatactattg tacaagtttt ggtcaatgca 60 ggggtcaagc ggatttatgg cattgttgga gactctctaa ataatatggt tgattccatt 120 cgcagcaatg gtcaaatcga atggattcat gtaaggcacg aagaagtggc tgcctttgca 180 gccggagcgg atgctgacct tagtggcagc attgctgtat gtgctggaag tagtggtccc 240 ggaaatttgc atctgattaa tggtttatat gattgccacc gcaatcgggt gcctgtactg 300 gctattgccg ctcatattcc aagcgacgaa atcggaagtg aatattttca agcgacgcat 360 cctgagcatc ttttcggaga atgcagtcac ttttgtgagg ttattacgac accgcgtcaa 420 attcccagaa cggtgaccat ggccattcaa caggcaattt cacgttcagg tgtctccgtc 480 attgttcttc ccggtgatgt agcagctttg gaggcggaaa aggtacccat ccctgaacat 540 gtctaccatc ccactgcacc tgtagtgcat ccgtcagctt ccgaaatttc ccgactggcc 600 gaatatttga atcaaggcaa acgaattacg ttactatgcg gcgccggctg tgcacaatct 660 catgaattgc tcatgcagct atgcgacaag ttaaaatccc ccatggtatc cgctctgcga 720 ggcaaggaat atctggagta tgacaaccct tattatgctg gattgacggg actgatcggg 780 tattcttccg ggtaccatgc gatgatggat tgtgacgtcc tgcttatgct cggaacagac 840 ttcccttaca gacagtttta ccctgaagat gcgattgtcc tacaggtaga tatagagcca 900 gcccatctcg gcagacgtac tccgttgacg tatggtttat gcggggatgt aaaagccaca 960 ttggaaatgc tgctaccgca tttaacgtca gagcatgatt ccaagcatct agagaaaacc 1020 gtctcccact ataccaaggt acgtcaggag ttggatgacc ttgccgttgg taaaccaggt 1080 catacgccga tccatcccca atatcttgcc aaggtcatca gtgacgccgc gcaggaaaat 1140 gctattttca cttgtgatgt cggtactccc actgtatggg cggcgcgtta tttgcagatg 1200 aacggtcagc gtcggctgct cggctcgttc aaccatggca cgatggcaaa tgcgctaccg 1260 caggcaatcg gagcgcaggc cactgagcct gaccgacaag tgattgccct ctcaggcgat 1320 ggcgggctcg cgatgctgat gggcgacctg ctcaccctga agcagcatca gctgcctatt 1380 aaagtcattg ttttcaataa tggcgctctc ggttttgtcg agctggaaat gaaagcggcc 1440 ggattcctgg aaaacggcac tgaactggtg aatcctgatt ttggtgctgt agcgcaagct 1500 atgggactca agggcatccg ggttgaagat ccgaccatgc tggaggatgc cattcagcaa 1560 gcattggctc atgatggccc tgttgtagta gacgtggtgg tgaaccgtca agagctatcc 1620 atgccaccca aaattaatct taaacaagca caaggcttta cactgtggat gatgaaagcg 1680 atgctgaacg gacgcggtga cgagattgtt gaactggcta agaccaatct ctttcgtctc 1740 gaggtcgacg gtatcgataa gcttgatatc gaattcctgc agatgagtaa aggagaagaa 1800 cttttcactg gagttgtccc aattcttgtt gaattagatg gtgacgttaa tgggcacaaa 1860 ttttctgtca gtggagaggg tgaaggtgat gcaacatacg gaaaacttac ccttaaattt 1920 atttgcacta ctggaaaact acctgttcca tggccaacac ttgtcactac tctgacttat 1980 ggtgttcaat gcttttcaag atacccagat catatgaaac agcatgactt tttcaagagt 2040 gccatgcccg aaggttatgt acaggaaaga actatatttt tcaaagatga cgggaactac 2100 aagacacgtg ctgaagtcaa gtttgaaggt gatacccttg ttaatagaat cgagttaaaa 2160 ggtattgatt ttaaagaaga tggaaacatt cttggacaca aattggaata caactataac 2220 tcacacaatg tatacatcat ggcagacaaa caaaagaatg gaatcaaagt taacttcaaa 2280 attagacaca acattgaaga tggaagcgtt caactagcag accattatca acaaaatact 2340 ccaattggcg atggccctgt cctttcacca gacaaccatt acctgtccac acaatctgcc 2400 ctttcgaaag atcccaacga aaagagagac cacatggtcc ttcttgagtt tgtaacagct 2460 gctgggatta cacatggcat ggatgaacta tacaaataaa tga 2503 <210> 6 <211> 832 <212> PRT <213> Artificial Sequence <220> <223> poxBpp-gfp fusion protein <400> 6 Met Gly Thr Gly Pro Met Lys Thr Ile Ala Asp Thr Ile Val Gln Val   1 5 10 15 Leu Val Asn Ala Gly Val Lys Arg Ile Tyr Gly Ile Val Gly Asp Ser              20 25 30 Leu Asn Asn Met Val Asp Ser Ile Arg Ser Asn Gly Gln Ile Glu Trp          35 40 45 Ile His Val Arg His Glu Glu Val Ala Ala Phe Ala Ala Gly Ala Asp      50 55 60 Ala Asp Leu Ser Gly Ser Ile Ala Val Cys Ala Gly Ser Ser Gly Pro  65 70 75 80 Gly Asn Leu His Leu Ile Asn Gly Leu Tyr Asp Cys His Arg Asn Arg                  85 90 95 Val Pro Val Leu Ala Ala Ala His Ile Pro Ser Asp Glu Ile Gly             100 105 110 Ser Glu Tyr Phe Gln Ala Thr His Pro Glu His Leu Phe Gly Glu Cys         115 120 125 Ser His Phe Cys Glu Val Ile Thr Thr Pro Arg Gln Ile Pro Arg Thr     130 135 140 Val Thr Met Ala Ile Gln Gln Ala Ile Ser Arg Ser Gly Val Val Ser 145 150 155 160 Ile Val Leu Pro Gly Asp Val Ala Ala Leu Glu Ala Glu Lys Val Pro                 165 170 175 Ile Pro Glu His Val Tyr His Pro Thr Ala Pro Val Val His Ser Ser             180 185 190 Ala Ser Glu Ile Ser Arg Leu Ala Glu Tyr Leu Asn Gln Gly Lys Arg         195 200 205 Ile Thr Leu Leu Cys Gly Ala Gly Cys Ala Gln Ser His Glu Leu Leu     210 215 220 Met Gln Leu Cys Asp Lys Leu Lys Ser Pro Met Val Ser Ala Leu Arg 225 230 235 240 Gly Lys Glu Tyr Leu Glu Tyr Asp Asn Pro Tyr Tyr Ala Gly Leu Thr                 245 250 255 Gly Leu Ile Gly Tyr Ser Ser Gly Tyr His Ala Met Met Asp Cys Asp             260 265 270 Val Leu Leu Met Leu Gly Thr Asp Phe Pro Tyr Arg Gln Phe Tyr Pro         275 280 285 Glu Asp Ala Ile Val Leu Gln Val Asp Ile Glu Pro Ala His Leu Gly     290 295 300 Arg Arg Thr Pro Leu Thr Tyr Gly Leu Cys Gly Asp Val Lys Ala Thr 305 310 315 320 Leu Glu Met Leu Leu Pro His Leu Thr Ser Glu His Asp Ser Lys His                 325 330 335 Leu Glu Lys Thr Val Ser His Tyr Thr Lys Val Arg Gln Glu Leu Asp             340 345 350 Asp Leu Ala Val Gly Lys Pro Gly His Thr Pro Ile His Pro Gln Tyr         355 360 365 Leu Ala Lys Val Ile Ser Asp Ala Gln Glu Asn Ala Ile Phe Thr     370 375 380 Cys Asp Val Gly Thr Pro Thr Val Trp Ala Ala Arg Tyr Leu Gln Met 385 390 395 400 Asn Gly Gln Arg Arg Leu Leu Gly Ser Phe Asn His Gly Thr Met Ala                 405 410 415 Asn Ala Leu Pro Gln Ala Ile Gly Ala Gln Ala Thr Glu Pro Asp Arg             420 425 430 Gln Val Ile Ala Leu Ser Gly Asp Gly Gly Leu Thr Met Leu Met Gly         435 440 445 Asp Leu Leu Thr Leu Lys Gln His Gln Leu Pro Ile Lys Val Ile Val     450 455 460 Phe Asn Asn Gly Ala Leu Gly Phe Val Glu Leu Glu Met Lys Ala Ala 465 470 475 480 Gly Phe Leu Glu Asn Gly Thr Glu Leu Val Asn Pro Asp Phe Gly Ala                 485 490 495 Val Ala Gln Ala Met Gly Leu Lys Gly Ile Arg Val Glu Asp Pro Thr             500 505 510 Met Leu Glu Asp Ala Ile Gln Gln Ala Leu Ala His Asp Gly Pro Val         515 520 525 Val Val Asp Val Val Val Asn Arg Gln Glu Leu Ser Met Pro Pro Lys     530 535 540 Ile Asn Leu Lys Gln Ala Gln Gly Phe Thr Leu Trp Met Met Lys Ala 545 550 555 560 Met Leu Asn Gly Arg Gly Asp Glu Ile Val Glu Leu Ala Lys Thr Asn                 565 570 575 Leu Phe Arg Leu Glu Val Asp Gly Ile Asp Lys Leu Asp Ile Glu Phe             580 585 590 Leu Gln Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile         595 600 605 Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Ser Ser     610 615 620 Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe 625 630 635 640 Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr                 645 650 655 Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met             660 665 670 Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln         675 680 685 Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala     690 695 700 Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys 705 710 715 720 Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu                 725 730 735 Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys             740 745 750 Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly         755 760 765 Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp     770 775 780 Gly Pro Val Leu Ser Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala 785 790 795 800 Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu                 805 810 815 Phe Val Thr Ala Gly Ily Thr Gly Met Asp Glu Leu Tyr Lys             820 825 830 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> pOXBF-apa primer <400> 7 aaagggccca tgaagacaat cgcagatac 29 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pOXBR-xho primer <400> 8 atatctcgag acgaaagaga ttggtcttag 30 <210> 9 <211> 3597 <212> DNA <213> Artificial Sequence <220> <223> poxBpp-amyE fusion gene <400> 9 atgggtaccg ggcccatgaa gacaatcgca gatactattg tacaagtttt ggtcaatgca 60 ggggtcaagc ggatttatgg cattgttgga gactctctaa ataatatggt tgattccatt 120 cgcagcaatg gtcaaatcga atggattcat gtaaggcacg aagaagtggc tgcctttgca 180 gccggagcgg atgctgacct tagtggcagc attgctgtat gtgctggaag tagtggtccc 240 ggaaatttgc atctgattaa tggtttatat gattgccacc gcaatcgggt gcctgtactg 300 gctattgccg ctcatattcc aagcgacgaa atcggaagtg aatattttca agcgacgcat 360 cctgagcatc ttttcggaga atgcagtcac ttttgtgagg ttattacgac accgcgtcaa 420 attcccagaa cggtgaccat ggccattcaa caggcaattt cacgttcagg tgtctccgtc 480 attgttcttc ccggtgatgt agcagctttg gaggcggaaa aggtacccat ccctgaacat 540 gtctaccatc ccactgcacc tgtagtgcat ccgtcagctt ccgaaatttc ccgactggcc 600 gaatatttga atcaaggcaa acgaattacg ttactatgcg gcgccggctg tgcacaatct 660 catgaattgc tcatgcagct atgcgacaag ttaaaatccc ccatggtatc cgctctgcga 720 ggcaaggaat atctggagta tgacaaccct tattatgctg gattgacggg actgatcggg 780 tattcttccg ggtaccatgc gatgatggat tgtgacgtcc tgcttatgct cggaacagac 840 ttcccttaca gacagtttta ccctgaagat gcgattgtcc tacaggtaga tatagagcca 900 gcccatctcg gcagacgtac tccgttgacg tatggtttat gcggggatgt aaaagccaca 960 ttggaaatgc tgctaccgca tttaacgtca gagcatgatt ccaagcatct agagaaaacc 1020 gtctcccact ataccaaggt acgtcaggag ttggatgacc ttgccgttgg taaaccaggt 1080 catacgccga tccatcccca atatcttgcc aaggtcatca gtgacgccgc gcaggaaaat 1140 gctattttca cttgtgatgt cggtactccc actgtatggg cggcgcgtta tttgcagatg 1200 aacggtcagc gtcggctgct cggctcgttc aaccatggca cgatggcaaa tgcgctaccg 1260 caggcaatcg gagcgcaggc cactgagcct gaccgacaag tgattgccct ctcaggcgat 1320 ggcgggctcg cgatgctgat gggcgacctg ctcaccctga agcagcatca gctgcctatt 1380 aaagtcattg ttttcaataa tggcgctctc ggttttgtcg agctggaaat gaaagcggcc 1440 ggattcctgg aaaacggcac tgaactggtg aatcctgatt ttggtgctgt agcgcaagct 1500 atgggactca agggcatccg ggttgaagat ccgaccatgc tggaggatgc cattcagcaa 1560 gcattggctc atgatggccc tgttgtagta gacgtggtgg tgaaccgtca agagctatcc 1620 atgccaccca aaattaatct taaacaagca caaggcttta cactgtggat gatgaaagcg 1680 atgctgaacg gacgcggtga cgagattgtt gaactggcta agaccaatct ctttcgtctc 1740 gaggcaccgt cgatcaaaag cggaaccatt cttcatgcat ggaattggtc gttcaatacg 1800 ttaaaacaca atatgaagga tattcatgat gcaggatata cagccattca gacatctccg 1860 attaaccaag taaaggaagg gaatcaagga gataaaagca tgtcgaactg gtactggctg 1920 tatcagccga catcgtatca aattggcaac cgttacttag gtactgaaca agaatttaaa 1980 gaaatgtgtg cagccgctga agaatatggc ataaaggtca ttgttgacgc ggtcatcaat 2040 cataccacca gtgattatgc cgcgatttcc aatgaggtta agagtattcc aaactggaca 2100 catggaaaca cacaaattaa aaactggtct gatcgatggg atgtcacgca gaattcattg 2160 ctcgggctgt atgactggaa tacacaaaat acacaagtac agtcctatct gaaacggttc 2220 ttagacaggg cattgaatga cggggcagac ggttttcgat ttgatgccgc caaacatata 2280 gagcttccag atgatggcag ttacggcagt caattttggc cgaatatcac aaatacatct 2340 gcagagttcc aatacggaga aatcctgcag gatagtgcct ccagagatgc tgcatatgcg 2400 aattatatgg atgtgacagc gtctaactat gggcattcca taaggtccgc tttaaagaat 2460 cgtaatctgg gcgtgtcgaa tatctcccac tatgcatctg atgtgtctgc ggacaagcta 2520 gtgacatggg tagagtcgca tgatacgtat gccaatgatg atgaagagtc gacatggatg 2580 agcgatgatg atatccgttt aggctgggcg gtgatagctt ctcgttcagg cagtacgcct 2640 cttttctttt ccagacctga gggaggcgga aatggtgtga ggttcccggg gaaaagccaa 2700 ataggcgatc gcgggagtgc tttatttgaa gatcaggcta tcactgcggt caatagattt 2760 cacaatgtga tggctggaca gcctgaggaa ctctcgaacc cgaatggaaa caaccagata 2820 tttatgaatc agcgcggctc acatggcgtt gtgctggcaa atgcaggttc atcctctgtc 2880 tctatcaata cggcaacaaa attgcctgat ggcaggtatg acaataaagc tggagcgggt 2940 tcatttcaag tgaacgatgg taaactgaca ggcacgatca atgccaggtc tgtagctgtg 3000 ctttatcctg atgatattgc aaaagcgcct catgttttcc ttgagaatta caaaacaggt 3060 gtaacacatt ctttcaatga tcaactgacg attaccttgc gtgcagatgc gaatacaaca 3120 aaagccgttt atcaaatcaa taatggacca gacgacaggc gtttaaggat ggagatcaat 3180 tcacaatcgg aaaaggagat ccaatttggc aaaacataca ccatcatgtt aaaaggaacg 3240 aacagtgatg gtgtaacgag gaccgagaaa tacagttttg ttaaaagaga tccagcgtcg 3300 gccaaaacca tcggctatca aaatccgaat cattggagcc aggtaaatgc ttatatctat 3360 aaacatgatg ggagccgagt aattgaattg accggatctt ggcctggaaa accaatgact 3420 aaaaatgcag acggaattta cacgctgacg ctgcctgcgg acacggatac aaccaacgca 3480 aaagtgattt ttaataatgg cagcgcccaa gtgcccggtc agaatcagcc tggctttgat 3540 tacgtgctaa atggtttata taatgactcg ggcttaagcg gttctcttcc ccattga 3597 <210> 10 <211> 1198 <212> PRT <213> Artificial Sequence <220> &Lt; 223 > PoxBpp-amyE fusion protein <400> 10 Met Gly Thr Gly Pro Met Lys Thr Ile Ala Asp Thr Ile Val Gln Val   1 5 10 15 Leu Val Asn Ala Gly Val Lys Arg Ile Tyr Gly Ile Val Gly Asp Ser              20 25 30 Leu Asn Asn Met Val Asp Ser Ile Arg Ser Asn Gly Gln Ile Glu Trp          35 40 45 Ile His Val Arg His Glu Glu Val Ala Ala Phe Ala Ala Gly Ala Asp      50 55 60 Ala Asp Leu Ser Gly Ser Ile Ala Val Cys Ala Gly Ser Ser Gly Pro  65 70 75 80 Gly Asn Leu His Leu Ile Asn Gly Leu Tyr Asp Cys His Arg Asn Arg                  85 90 95 Val Pro Val Leu Ala Ala Ala His Ile Pro Ser Asp Glu Ile Gly             100 105 110 Ser Glu Tyr Phe Gln Ala Thr His Pro Glu His Leu Phe Gly Glu Cys         115 120 125 Ser His Phe Cys Glu Val Ile Thr Thr Pro Arg Gln Ile Pro Arg Thr     130 135 140 Val Thr Met Ala Ile Gln Gln Ala Ile Ser Arg Ser Gly Val Val Ser 145 150 155 160 Ile Val Leu Pro Gly Asp Val Ala Ala Leu Glu Ala Glu Lys Val Pro                 165 170 175 Ile Pro Glu His Val Tyr His Pro Thr Ala Pro Val Val His Ser Ser             180 185 190 Ala Ser Glu Ile Ser Arg Leu Ala Glu Tyr Leu Asn Gln Gly Lys Arg         195 200 205 Ile Thr Leu Leu Cys Gly Ala Gly Cys Ala Gln Ser His Glu Leu Leu     210 215 220 Met Gln Leu Cys Asp Lys Leu Lys Ser Pro Met Val Ser Ala Leu Arg 225 230 235 240 Gly Lys Glu Tyr Leu Glu Tyr Asp Asn Pro Tyr Tyr Ala Gly Leu Thr                 245 250 255 Gly Leu Ile Gly Tyr Ser Ser Gly Tyr His Ala Met Met Asp Cys Asp             260 265 270 Val Leu Leu Met Leu Gly Thr Asp Phe Pro Tyr Arg Gln Phe Tyr Pro         275 280 285 Glu Asp Ala Ile Val Leu Gln Val Asp Ile Glu Pro Ala His Leu Gly     290 295 300 Arg Arg Thr Pro Leu Thr Tyr Gly Leu Cys Gly Asp Val Lys Ala Thr 305 310 315 320 Leu Glu Met Leu Leu Pro His Leu Thr Ser Glu His Asp Ser Lys His                 325 330 335 Leu Glu Lys Thr Val Ser His Tyr Thr Lys Val Arg Gln Glu Leu Asp             340 345 350 Asp Leu Ala Val Gly Lys Pro Gly His Thr Pro Ile His Pro Gln Tyr         355 360 365 Leu Ala Lys Val Ile Ser Asp Ala Gln Glu Asn Ala Ile Phe Thr     370 375 380 Cys Asp Val Gly Thr Pro Thr Val Trp Ala Ala Arg Tyr Leu Gln Met 385 390 395 400 Asn Gly Gln Arg Arg Leu Leu Gly Ser Phe Asn His Gly Thr Met Ala                 405 410 415 Asn Ala Leu Pro Gln Ala Ile Gly Ala Gln Ala Thr Glu Pro Asp Arg             420 425 430 Gln Val Ile Ala Leu Ser Gly Asp Gly Gly Leu Thr Met Leu Met Gly         435 440 445 Asp Leu Leu Thr Leu Lys Gln His Gln Leu Pro Ile Lys Val Ile Val     450 455 460 Phe Asn Asn Gly Ala Leu Gly Phe Val Glu Leu Glu Met Lys Ala Ala 465 470 475 480 Gly Phe Leu Glu Asn Gly Thr Glu Leu Val Asn Pro Asp Phe Gly Ala                 485 490 495 Val Ala Gln Ala Met Gly Leu Lys Gly Ile Arg Val Glu Asp Pro Thr             500 505 510 Met Leu Glu Asp Ala Ile Gln Gln Ala Leu Ala His Asp Gly Pro Val         515 520 525 Val Val Asp Val Val Val Asn Arg Gln Glu Leu Ser Met Pro Pro Lys     530 535 540 Ile Asn Leu Lys Gln Ala Gln Gly Phe Thr Leu Trp Met Met Lys Ala 545 550 555 560 Met Leu Asn Gly Arg Gly Asp Glu Ile Val Glu Leu Ala Lys Thr Asn                 565 570 575 Leu Phe Arg Leu Glu Ala Pro Ser Ile Lys Ser Gly Thr Ile Leu His             580 585 590 Ala Trp Asn Trp Ser Phe Asn Thr Leu Lys His Asn Met Lys Asp Ile         595 600 605 His Asp Ala Gly Tyr Thr Ala Ile Gln Thr Ser Pro Ile Asn Gln Val     610 615 620 Lys Glu Gly Asn Gln Gly Asp Lys Ser Ser Ser Asn Trp Tyr Trp Leu 625 630 635 640 Tyr Gln Pro Thr Ser Tyr Gln Ile Gly Asn Arg Tyr Leu Gly Thr Glu                 645 650 655 Gln Glu Phe Lys Glu Met Cys Ala Ala Ala Glu Glu Tyr Gly Ile Lys             660 665 670 Val Ile Val Asp Ala Val Ile Asn His Thr Thr Ser Asp Tyr Ala Ala         675 680 685 Ile Ser Asn Glu Val Lys Ser Ile Pro Asn Trp Thr His Gly Asn Thr     690 695 700 Gln Ile Lys Asn Trp Ser Asp Arg Trp Asp Val Thr Gln Asn Ser Leu 705 710 715 720 Leu Gly Leu Tyr Asp Trp Asn Thr Gln Asn Thr Gln Val Gln Ser Tyr                 725 730 735 Leu Lys Arg Phe Leu Asp Arg Ala Leu Asn Asp Gly Ala Asp Gly Phe             740 745 750 Arg Phe Asp Ala Lys His Ile Glu Leu Pro Asp Asp Gly Ser Tyr         755 760 765 Gly Ser Gln Phe Trp Pro Asn Ile Thr Asn Thr Ser Ala Glu Phe Gln     770 775 780 Tyr Gly Glu Ile Leu Gln Asp Ser Ala Ser Arg Asp Ala Ala Tyr Ala 785 790 795 800 Asn Tyr Met Asp Val Thr Ala Ser Asn Tyr Gly His Ser Ile Arg Ser                 805 810 815 Ala Leu Lys Asn Arg Asn Leu Gly Val Ser Asn Ile Ser His Tyr Ala             820 825 830 Ser Asp Val Ser Ala Asp Lys Leu Val Thr Trp Val Glu Ser His Asp         835 840 845 Thr Tyr Ala Asn Asp Asp Glu Glu Ser Thr Trp Met Ser Asp Asp Asp     850 855 860 Ile Arg Leu Gly Trp Ala Val Ile Ala Ser Arg Ser Ser Ser Thr Pro 865 870 875 880 Leu Phe Ser Arg Pro Glu Gly Gly Gly Asn Gly Val Arg Phe Pro                 885 890 895 Gly Lys Ser Gln Ile Gly Asp Arg Gly Ser Ala Leu Phe Glu Asp Gln             900 905 910 Ala Ile Thr Ala Val Asn Arg Phe His Asn Val Ala Gly Gln Pro         915 920 925 Glu Glu Leu Ser Asn Pro Asn Gly Asn Asn Gln Ile Phe Met Asn Gln     930 935 940 Arg Gly Ser His Gly Val Val Leu Ala Asn Ala Gly Ser Ser Ser Val 945 950 955 960 Ser Ile Asn Thr Ala Thr Lys Leu Pro Asp Gly Arg Tyr Asp Asn Lys                 965 970 975 Ala Gly Ala Gly Ser Phe Gln Val Asn Asp Gly Lys Leu Thr Gly Thr             980 985 990 Ile Asn Ala Arg Ser Val Ala Val Leu Tyr Pro Asp Asp Ile Ala Lys         995 1000 1005 Ala Pro His Val Phe Leu Glu Asn Tyr Lys Thr Gly Val Thr His Ser    1010 1015 1020 Phe Asn Asp Gln Leu Thr Ile Thr Leu Arg Ala Asp Ala Asn Thr Thr 1025 1030 1035 1040 Lys Ala Val Tyr Gln Ile Asn Asn Gly Pro Asp Asp Arg Arg Leu Arg                1045 1050 1055 Met Glu Ile Asn Ser Gln Ser Glu Lys Glu Ile Gln Phe Gly Lys Thr            1060 1065 1070 Tyr Thr Ile Met Leu Lys Gly Thr Asn Ser Asp Gly Val Thr Arg Thr        1075 1080 1085 Glu Lys Tyr Ser Phe Val Lys Arg Asp Pro Ala Ser Ala Lys Thr Ile    1090 1095 1100 Gly Tyr Gln Asn Pro Asn His Trp Ser Gln Val Asn Ala Tyr Ile Tyr 1105 1110 1115 1120 Lys His Asp Gly Ser Arg Val Ile Glu Leu Thr Gly Ser Trp Pro Gly                1125 1130 1135 Lys Pro Met Thr Lys Asn Ala Asp Gly Ile Tyr Thr Leu Thr Leu Pro            1140 1145 1150 Ala Asp Thr Asp Thr Thr Asn Ala Lys Val Ile Phe Asn Asn Gly Ser        1155 1160 1165 Ala Gln Val Pro Gly Gln Asn Gln Pro Gly Phe Asp Tyr Val Leu Asn    1170 1175 1180 Gly Leu Tyr Asn Asp Ser Gly Leu Ser Gly Ser Leu Pro His 1185 1190 1195 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> AmyF-Xho primer <400> 11 atatctcgag gcaccgtcga tcaaaagcgg 30 <210> 12 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> amyR-spe primer <400> 12 attactagtt gtgccaacac ttcacaaac 29

Claims (13)

목적 단백질의 활성 인클루젼 바디(inclusion body)를 생산하기 위한, 서열번호 1의 염기서열로 이루어진 PoxB 유전자 및 목적 단백질을 코딩하는 유전자를 결합시킨 융합 유전자.
A fusion gene comprising a PoxB gene consisting of the nucleotide sequence of SEQ ID NO: 1 and a gene encoding a target protein linked to produce an inclusion body of the target protein.
제1항에 있어서, 상기 PoxB 유전자는 페니바실러스 폴리믹사(Paenibacillus polymyxa) 유래인 것인 융합 유전자.
The fusion gene according to claim 1, wherein the PoxB gene is derived from a Paenibacillus polymyxa.
삭제delete 제1항에 있어서, 상기 목적 단백질은 GFP(green fluorescent protein) 또는 아밀라아제인 것인 융합 유전자.
2. The fusion gene according to claim 1, wherein the target protein is green fluorescent protein (GFP) or amylase.
제4항에 있어서, 상기 융합 유전자는 서열번호 5 또는 9의 염기서열을 가지는 것인 융합 유전자.
5. The fusion gene according to claim 4, wherein the fusion gene has the nucleotide sequence of SEQ ID NO: 5 or 9.
제1항, 제2항, 제4항 또는 제5항 중 어느 한 항의 융합 유전자가 코딩하는 융합 단백질.
A fusion protein encoded by the fusion gene of any one of claims 1, 2, 4, or 5.
제6항에 있어서, 상기 융합 단백질은 서열번호 6 또는 10의 아미노산 서열을 가지는 것인 융합 단백질.
7. The fusion protein of claim 6, wherein the fusion protein has the amino acid sequence of SEQ ID NO: 6 or 10.
제1항, 제2항, 제4항 또는 제5항 중 어느 한 항의 융합 유전자를 포함하는 발현벡터.
An expression vector comprising the fusion gene of any one of claims 1, 2, 4, or 5.
제8항의 발현벡터가 숙주세포에 형질전환된 형질전환체.
A transformant in which the expression vector of claim 8 is transformed into a host cell.
제9항에 있어서, 상기 숙주세포는 대장균인 것인 형질전환체.
10. The transformant according to claim 9, wherein the host cell is Escherichia coli.
(a) 활성 인클루젼 바디를 생산하고자 하는 목적 단백질을 코딩하는 유전자에 서열번호 1의 염기서열로 이루어진 PoxB 유전자를 결합시켜 융합 유전자를 제조하는 단계;
(b) 상기 제조된 융합 유전자를 포함하는 발현벡터를 제조하는 단계;
(c) 상기 제조된 발현벡터가 숙주세포에 형질전환된 형질전환체를 제조하는 단계;
(d) 상기 형질전환체를 배양하여 목적 단백질의 활성 인클루젼 바디를 생산하는 단계를 포함하는, 목적 단백질의 제조 방법.
(a) preparing a fusion gene by binding a PoxB gene comprising the nucleotide sequence of SEQ ID NO: 1 to a gene encoding a target protein to produce an active inclusion body;
(b) preparing an expression vector comprising the fusion gene;
(c) preparing a transformant transformed with the expression vector prepared in the host cell;
(d) culturing the transformant to produce an active inclusion body of the target protein.
제11항에 있어서, (e) 상기 생산된 활성 인클루젼 바디에서 목적 단백질을 절단하는 단계를 추가로 포함하는 것인 방법.
12. The method of claim 11, further comprising: (e) cleaving the target protein in the produced active inclusion body.
제11항에 있어서, 상기 목적 단백질은 GFP 또는 아밀라아제인 것인 방법.

12. The method of claim 11, wherein the target protein is GFP or amylase.

KR1020110121249A 2011-11-18 2011-11-18 Method for producing active inclusion body using PoxB gene KR101431084B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110121249A KR101431084B1 (en) 2011-11-18 2011-11-18 Method for producing active inclusion body using PoxB gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110121249A KR101431084B1 (en) 2011-11-18 2011-11-18 Method for producing active inclusion body using PoxB gene

Publications (2)

Publication Number Publication Date
KR20130055480A KR20130055480A (en) 2013-05-28
KR101431084B1 true KR101431084B1 (en) 2014-09-23

Family

ID=48663960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110121249A KR101431084B1 (en) 2011-11-18 2011-11-18 Method for producing active inclusion body using PoxB gene

Country Status (1)

Country Link
KR (1) KR101431084B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540763A (en) 2015-07-24 2017-02-01 Evocatal Gmbh Catalytically active protein aggregates and methods for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051289A (en) * 1999-10-28 2001-06-25 데구사-휠스 악티엔게젤샤프트 Novel nucleotide sequences coding for the poxB gene
WO2006065272A2 (en) 2004-05-21 2006-06-22 Idaho Research Foundation, Inc. Methods for altering acetic acid production and enhancing cell death in bacteria

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051289A (en) * 1999-10-28 2001-06-25 데구사-휠스 악티엔게젤샤프트 Novel nucleotide sequences coding for the poxB gene
WO2006065272A2 (en) 2004-05-21 2006-06-22 Idaho Research Foundation, Inc. Methods for altering acetic acid production and enhancing cell death in bacteria

Also Published As

Publication number Publication date
KR20130055480A (en) 2013-05-28

Similar Documents

Publication Publication Date Title
CN105992817B (en) Improved bacillus host
CN109072207A (en) Improved method for modifying target nucleic acid
CA2847061C (en) Protein expression
CN110799205A (en) Inducible, regulatable and multiplexed human gene regulation using CRISPR-Cpf1
JP5374584B2 (en) Improved protein expression system
KR102183558B1 (en) Gene encoding L-alanyl-L-glutamine biosynthetic enzyme and use thereof
CN113667685B (en) Signal peptide related sequence and application thereof in protein synthesis
WO2000075344A1 (en) Pectate lyase fusion for expression and secretion of polypeptides
KR101985345B1 (en) Recombinant vector for microalgae transformation comprising sequence derived from nitrate reductase and uses thereof
Bartolo-Aguilar et al. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells
KR101431084B1 (en) Method for producing active inclusion body using PoxB gene
KR101841264B1 (en) Recombinant Vector Including Gene of Autopahgy Activation Protein and Crystallizing Method for Recombinant Protein Using Thereof
MX2013010872A (en) Regulated gene expression systems and constructs thereof.
EP4359423A1 (en) Bacillus licheniformis host cell for production of a compound of interest with increased purity
KR102211740B1 (en) Novel promoter HASP1 of Phaeodactylum tricornutum and signal peptide thereof and uses thereof
EP3279327A1 (en) Novel promoter and use for same
US20220049260A1 (en) Inducible expression system for plasmid-free production of a protein of interest
Ho et al. Co-expression of a prophage system and a plasmid system in Bacillus subtilis
JP6778870B2 (en) Cyanobacteria mutant strain and succinic acid and D-lactic acid production method using it
KR101803013B1 (en) New Lipase Signal Sequences and Expression Method Using The Same
KR102302827B1 (en) Compositon for inhibiting gene expression using CRISPRi
CN113957071B (en) Combined DNA fragment with double promoter and double secretion signal functions and application thereof
WO2022269557A1 (en) Recombinant algae and production of spider silk protein from the recombinant algae
KR101948248B1 (en) A method for tunable control of protein expression
EP3225686B1 (en) Novel homing endonuclease derived from arabidopsis thaliana

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20170718

Year of fee payment: 4