KR101430638B1 - Fabrication Method of Extracting needle inserted a Metal Wire Coated with Adsorbent and In-Needle Micro-Extraction Method Using thereof - Google Patents

Fabrication Method of Extracting needle inserted a Metal Wire Coated with Adsorbent and In-Needle Micro-Extraction Method Using thereof Download PDF

Info

Publication number
KR101430638B1
KR101430638B1 KR1020120110258A KR20120110258A KR101430638B1 KR 101430638 B1 KR101430638 B1 KR 101430638B1 KR 1020120110258 A KR1020120110258 A KR 1020120110258A KR 20120110258 A KR20120110258 A KR 20120110258A KR 101430638 B1 KR101430638 B1 KR 101430638B1
Authority
KR
South Korea
Prior art keywords
acid
ester
sample
methyl
needle
Prior art date
Application number
KR1020120110258A
Other languages
Korean (ko)
Other versions
KR20140044194A (en
Inventor
이동선
이은지
Original Assignee
서울여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울여자대학교 산학협력단 filed Critical 서울여자대학교 산학협력단
Priority to KR1020120110258A priority Critical patent/KR101430638B1/en
Publication of KR20140044194A publication Critical patent/KR20140044194A/en
Application granted granted Critical
Publication of KR101430638B1 publication Critical patent/KR101430638B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/0075Separation due to differential desorption
    • G01N2030/008Thermal desorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Abstract

본 발명은 미세한 금속선 표면에 폴리에틸렌글리콜, 폴리디메틸실록산 또는 그 혼합체 등 흡착제를 특정한 두께와 길이로 코팅한 것을 특정 크기의 주사바늘 내부에 삽입장착한 주사바늘내 추출용 주사기를 제작하고 그것을 이용한 추출방법으로서, 더욱 상세하게는 스테인레스 스틸선, 니크롬선 등의 금속선 표면에 유기물질 또는 무기물질 흡착제를 특정 두께와 길이로 코팅 경화시킨 후 특정 크기의 주사바늘 내부에 삽입장착한 추출용 주사바늘을 휘발성 시료와 함께 바이알에 삽입하고 휘발성분을 포화 및 흡착 시킨 후, 열탈착하여 추출하는 방법에 관한 것으로서, 기체 크로마토그래피(gas chromatography, 이하 GC) 과정 이전에 추출, 농축, 정제, 시료주입을 하나의 과정단계로 통합시켜 주고, 추출용매를 전혀 사용하지 않기 때문에 유독성 유기용매에 대한 노출과 폐기물 발생이 전혀 없어 친환경적이며, 별도의 기기 및 장치가 필요하지 않아 실험의 규모가 간소화 될 뿐만 아니라 추출 효율을 크게 증가시키고 추출 속도는 단축시켜 경제적 비용이 감소되고, 실험이 현저히 단순 간편하게 개선되고, 액체시료는 물론 고체나 기체 등 다양한 휘발성 시료의 조성성분 분석에 반복적으로 이용이 가능한 주사바늘의 제작과 그것을 이용한 극미량 추출방법에 관한 것이다.The present invention relates to a method of preparing an injector for extraction in an injection needle by coating an adsorbent such as polyethylene glycol, polydimethylsiloxane or a mixture thereof on a surface of a fine metal wire with a specific thickness and length, And more particularly to a method of coating and curing an organic or inorganic substance adsorbent on the surface of a metal wire such as stainless steel wire or nichrome wire with a specific thickness and length, And then extracting, concentrating, refining, and injecting the sample prior to the gas chromatography (GC). In this method, the volatile components are saturated and adsorbed, , And since no extraction solvent is used at all, the toxic organic solvent It is eco-friendly because it does not have any exposure and waste generation and it does not need any separate equipment and equipment. It not only simplifies the scale of the experiment, but also greatly increases the extraction efficiency, reduces the extraction speed, reduces the economic cost, The present invention also relates to a method of preparing a needle which can be repeatedly used for analyzing composition components of various volatile samples such as solids and gases as well as liquid samples,

Description

흡착제가 코팅된 금속선을 포함하는 추출용 주사바늘의 제작 방법 및 이를 이용한 바늘 내부 극미량 추출방법{Fabrication Method of Extracting needle inserted a Metal Wire Coated with Adsorbent and In-Needle Micro-Extraction Method Using thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of preparing an extractive injection needle containing a metal wire coated with an adsorbent and a method of extracting a micro-

본 발명은 미세한 금속선 표면에 폴리에틸렌글리콜, 폴리디메틸실록산 또는 그 혼합체 등 흡착제를 특정한 두께와 길이로 코팅한 것을 특정 크기의 주사바늘 내부에 삽입 장착한 주사바늘내 추출용 주사기를 제작하는 방법 및 이를 이용하여 시료를 추출하는 방법에 관한 것이다.
The present invention relates to a method for producing an injection needle for extraction in an injection needle in which an adsorbent such as polyethylene glycol, polydimethylsiloxane or a mixture thereof is coated on the surface of a fine metal wire with a specific thickness and length, Thereby extracting the sample.

분석 시료로부터 휘발성 성분을 분석하기 위하여 많은 추출방법이 알려져 있다. 전통적으로 용매추출법(solvent extraction)이 많이 쓰여 왔으며 이 방법은 주로 GC 또는 기체 크로마토그래피-질량분석법(Gas Chromatography-Mass Spectroscopy, 이하 GC-MS)의 분리단계 이전에 적용하여 수행되어왔다. 그러나 상기한 용매추출법은 상대적으로 많은 양의 시료가 요구되었고, GC로 분석하기 전 농축과정이 추가적으로 필요한 문제점이 있었으며 기기 오염과 분석물질의 파괴, 변성 및 손실 뿐 아니라 다량의 유독한 용매에 노출이 심하고 다량의 폐기물이 발생되고 많은 시간이 소요되었다. Many extraction methods are known for analyzing volatile components from analytical samples. Conventionally, solvent extraction has been widely used, and this method has been mainly applied prior to the separation step of GC or Gas Chromatography-Mass Spectroscopy (GC-MS). However, the above-mentioned solvent extraction method requires a relatively large amount of sample, and there is a problem that the concentration process is additionally required before GC analysis. In addition to the contamination of the instrument and the destruction, degradation and loss of the analyte, exposure to a large amount of toxic solvent A large amount of waste was generated and it took a long time.

이와 같은 이유로 새로운 대체 방법의 개발이 요구되어 왔다. 그 중 하나가 1990년대에 소개된 고체상 극미량추출법(solid phase microextraction, 이하 SPME), 교반막대흡탈착추출법(stir bar sorptive extraction, 이하 SBSE) 등이다. 분석화학의 최근 경향은 시료전처리의 단순화, 소규모화, 자동화를 추구한다. 최근 개발된 시료 전처리 기술들은 분석시료량, 추출용매의 부피, 추출시간 및 비용을 줄이는 방향으로 개선되고 있다. 그 대표적인 예로 SPME와 SBSE 는 폴리디메틸실록산(polydimethylsiloxane, 이하 PDMS)를 흡착제로 사용하는데 기본 원리를 두고 있으며 추출용매를 사용하지 않고 열탈착한다는 것이 중요 특징이다. For this reason, the development of new alternative methods has been required. One of them is solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE), which were introduced in the 1990s. Recent trends in analytical chemistry are to simplify, miniaturize, and automate sample preparation. Recently developed sample preparation techniques are being improved to reduce the amount of analytical sample, volume of extraction solvent, extraction time and cost. As a typical example, SPME and SBSE have a basic principle of using polydimethylsiloxane (PDMS) as an adsorbent, and it is important that they are detoxified without using an extraction solvent.

분석에서 PEG, PDMS 등의 흡착제의 응용은 GC 컬럼의 정지상으로 처음 응용되었으며, 전처리 과정에서는 SPME의 흡착 섬유(fiber)에 주로 응용되고 있다. 그 밖에 자석 교반 막대(magnetic stirring bar)에 PDMS를 코팅하여 SBSE의 시료 전처리 과정으로 액체시료의 휘발성 물질을 분석하는데 응용되고 있다. 하지만 이러한 분석법들은 몇 가지 단점을 가지고 있는데 SPME의 경우 분석에 사용하기 위해 별도의 고가 전용부품(assembly)이 필요하며, 또한 열탈착을 위한 고가의 열탈착 기기가 필요하다. 뿐만 아니라 견고성이 낮아 열탈착 과정에서 흡착 섬유의 손상이 일어나기 쉽고 비교적 수명이 짧은 문제점이 있다. 따라서 추출할 때 취급에 세심한 주의가 필요하며 견고성이 없어 여러 번 반복해서 사용하기 어려워 경제적인 효율성이 떨어진다. SBSE의 경우 액체시료 외 고체시료 등에 적용하기에는 부적합하며, SPME와 마찬가지로 고가의 열탈착 기기 및 별도의 부품이 필요한 실정이다.
The application of adsorbents such as PEG and PDMS was first applied to the stationary phase of GC column, and it is mainly applied to adsorption fibers of SPME in pretreatment. In addition, PDMS is applied to a magnetic stirring bar to analyze volatile substances in liquid samples by SBSE sample pretreatment process. However, these analytical methods have some disadvantages. In case of SPME, separate expensive special assembly is required for analysis and expensive thermal desorption equipment for thermal desorption is needed. In addition, since the hardness is low, the adsorption fibers are liable to be damaged in the thermal desorption process and have a relatively short life span. Therefore, it is necessary to pay close attention to handling when extracting, and it is difficult to use it repeatedly many times because of lack of robustness. In the case of SBSE, it is not suitable for application to solid samples other than liquid samples. In addition, expensive thermal desorption equipment and separate parts are required as in SPME.

이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위해 연구한 결과, 흡착제를 코팅한 금속선을 삽입 장착한 주사바늘을 이용한 휘발성 화합물의 극미량 추출방법을 개발하게 되었다.The inventors of the present invention have developed a method for extracting volatile compounds using a needle having a metal wire coated with an adsorbent.

따라서, 본 발명은 시료량을 현저히 줄이고, 휘발성 성분 추출을 위한 유기 용매의 사용량을 완전히 없애고, 추출 시간 및 이에 따른 비용을 감소시키기 위해 다양한 종류의 흡착제를 첨가하여, 특정 두께 및 길이로 금속선 표면에 코팅한 후 주사기 바늘 내부에 삽입 장착한 특수 주사기를 제작하는 방법을 제공하는 데에 그 목적이 있다.Therefore, the present invention can be applied to various types of adsorbents in order to significantly reduce the amount of the sample, completely eliminate the amount of the organic solvent used for volatile component extraction, and reduce the extraction time and cost, And a method of manufacturing a special syringe inserted and inserted into a syringe needle.

본 발명은 상기 주사기를 이용하여 각종 휘발성 물질을 효율적으로 흡착 및 탈착이 가능하고 반복적인 사용이 가능하며 견고한 추출 방법을 제공하는 데에 그 목적이 있다.
It is an object of the present invention to provide a robust extraction method capable of efficiently adsorbing and desorbing various volatile substances using the syringe, capable of repeated use, and a robust extraction method.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 According to one aspect of the present invention,

(i) 폴리에틸렌글리콜(PEG)과 폴리디메틸실록산(PDMS) 베이스 용액 에이(A)와 폴리디메틸실록산 경화제 비(B)를 혼합한 후 금속선, 내열성 섬유 또는 미세 실리카 막대에 코팅하여 경화시키는 단계; 및(i) mixing polyethyleneglycol (PEG) and polydimethylsiloxane (PDMS) base solution (A) with polydimethylsiloxane curing agent ratio (B) and coating the metal wire, heat resistant fiber or fine silica rod to cure; And

(ii) 상기 코팅된 금속선, 섬유 또는 미세 실리카 막대를 스테인리스 스틸 주사바늘 내부에 삽입 장착하는 단계; 추출용 주사바늘을 제작하는 단계;(ii) inserting the coated metal wire, fiber or fine silica rod into a stainless steel injection needle; Preparing an extraction needle;

를 포함하는 휘발성 성분을 분석하기 위한 추출용 주사 바늘을 제작하는 방법을 제공한다.The present invention also provides a method of manufacturing an extraction needle for analyzing a volatile component containing a volatile component.

본 발명의 다른 양태에 따르면, 본 발명은According to another aspect of the present invention,

휘발성 성분을 분석하기 위한 추출용 주사 바늘 제작 방법에 의해 제작된 주사바늘을 장탈착형 기체 밀폐 주사기통 및 주사기 밀대에 연결시킨 후 시료가 담긴 바이알을 밀폐시켜 시료를 금속선, 내열성 섬유 또는 미세 실리카 막대 상에 코팅된 폴리에틸렌글리콜-폴리디메틸실록산(PEG-PDMS)에 흡착시키는 단계를 포함하는 분석하려는 시료의 극미량 추출 방법을 제공한다.The injector needle manufactured by the extraction needle manufacturing method for analyzing the volatile components is connected to the long-desorption type gas-tight syringe barrel and the syringe barrel, and the vial containing the sample is sealed so that the sample is inserted into the metal wire, (PEG-PDMS) coated on a polyethylene glycol-polydimethylsiloxane (PEG-PDMS).

본 발명의 또 다른 양태에 따르면, 본 발명은 시료의 극미량 추출 방법을 이용하여 추출한 시료를 분석기기에 넣고 시료를 분석하는 단계를 포함하는 시료의 분석 방법을 제공한다.According to still another aspect of the present invention, there is provided a method of analyzing a sample, comprising the step of inserting a sample extracted using a microextraction method of a sample into an analyzer and analyzing the sample.

본 발명의 또 다른 양태에 따르면, 본 발명은 주사 바늘 제작 방법을 통해 제작된 시료의 극미량 추출용 주사바늘을 제공한다.
According to another aspect of the present invention, there is provided an injection needle for extracting a trace amount of a sample prepared through a method for preparing an injection needle.

본원 발명의 특징 및 이점을 요약하면 다음과 같다.The features and advantages of the present invention are summarized as follows.

(i) 본 발명의 주사바늘을 이용하면 GC 과정 이전에 추출, 농축, 정제, 시료주입을 하나의 과정단계로 통합시켜 주고, 추출용매를 전혀 사용하지 않기 때문에 유독성 유기용매에 대한 노출과 폐기물 발생이 전혀 없어 친환경적이다.(i) When the injection needle of the present invention is used, the extraction, concentration, purification, and sample injection are integrated into one process step before the GC process, and since no extraction solvent is used, exposure to toxic organic solvents and waste generation There is no environmentally friendly.

(ii) 본 발명의 흡착제를 코팅시킨 금속선을 주사바늘 내부에 삽입장착한 주사기를 이용한 휘발성 화합물의 추출방법은 시료량을 현저히 감소시키고, 휘발성 성분 추출을 위한 유기 용매의 사용량을 완전히 없애고, 추출 시간 및 이에 따른 비용을 감소시킬 수 있다.(ii) The method of extracting volatile compounds by using a syringe inserted with a metal wire coated with the adsorbent of the present invention inside the injection needle significantly reduces the amount of sample, completely eliminates the amount of organic solvent used for volatile component extraction, The cost can be reduced.

(iii) 본 발명의 주사 바늘을 이용하면 액체시료는 물론 고체나 기체 등 다양한 휘발성 시료의 조성성분 분석에 반복적으로 이용이 가능한 주사바늘을 이용한 극미량 추출이 가능해진다.(iii) By using the injection needle of the present invention, it is possible to perform a very small amount extraction using a needle which can be repeatedly used for analysis of composition components of various volatile samples such as solids and gases as well as liquid samples.

(iv) 본 발명의 추출법을 통하여 다양한 에센셜 오일 및 향신료, 수목, 초화류 뿐만 아니라 환경시료, 석유화학 시료, 식품 시료, 농약 및 비료시료, 의약화학 시료, 생물화학 시료 및 비휘발성 시료에 적용시켜 추출효율이 높으며 정확도와 정밀성이 향상된 분석이 가능하다.
(iv) Extraction method of the present invention is applied to various essential oils and spices, woods, superhomes as well as environmental samples, petrochemical samples, food samples, pesticide and fertilizer samples, medical chemical samples, biochemical samples and non- The analysis is possible with high efficiency and improved accuracy and accuracy.

도 1은 흡착제를 코팅한 금속선을 삽입 장착한 주사바늘의 제작방법과 주사바늘 내부 극미량추출방법의 개략도이다.
도 2는 주사바늘의 제작에 사용한 재료와 흡착제를 코팅한 금속선을 삽입장착한 주사바늘 제작과정 및 왕복 운동형 피스톤의 사진이다.
도 3의 패널 A는 코팅되지 않은 니크롬선을 생물 현미경으로 확대 관찰한 사진이고, 패널 B는 코팅된 니크롬선을 생물현미경으로 확대 관찰한 사진이며, 패널 C는 PEG-PDMS 코팅 표면의 주사전자 현미경(field emission-scanning electron microscope, FE-SEM, Tescan, TUV Mira II - LMH, 50/60 Hz, 230 ~ 2200 VA)으로 관찰한 사진이고, 패널 D는 PDMS 코팅표면을 주사전자현미경으로 관찰한 사진이다.
도 4는 PEG-PDMS 혼합용액의 무게 조성비를 0:10, 3:7, 5:5 로 변화시켜 실험을 수행한 총 10가지 목적 성분(target compounds)들의 피크 면적을 비교한 결과이다. 10 가지 목적 성분은 순서대로 각각 A: benzyl alcohol, B: linalool, C: β-phenethyl alcohol, D: eugenol, E: benzaldehyde, F: benzaldehyde, G: trans-cinnamaldehyde, H: benzyl acetate, I: linalyl acetate, J: (+)-limonene 및 K: β-caryophyllene이다.
도 5는 PEG-PDMS 흡착제의 코팅 길이를 5, 10, 15, 20 mm로 변화시켜가며 10가지 목적 성분들의 피크 면적의 비교도이다.
도 6은 본 발명의 WC-INME에서 흡착 온도에 따른 추출효율의 비교도이다.
도 7은 본 발명의 WC-INME에서 흡착 시간에 따른 추출 효율의 비교도이다. A, B는 피스톤을 사용한 경우이고 C,D는 피스톤을 사용하지 않았을 경우의 결과이다.
도 8은 본 발명의 WC-INME에서 탈착 온도에 따른 탈착효율의 비교도이다.
도 9는 본 발명의 WC-INME에서 탈착 시간에 따른 탈착효율의 비교도이다.
도 10은 유자 에센셜 오일 시료를 분석한 본 발명의 WC-INME방법과 PDMS를 흡착제로 이용한 HS-SPME(red) 및 HS-INME방법의 추출 효율의 비교도이다. 각각 순서대로 A: α-pinene, B: α-phellandrene, C: (+)-limonene, D: p-cymene, E: γ-terpinene, F: terpinolene, G: linalool, H: β-caryophyllene이다.
도 11은 본 발명의 WC-INME 방법을 이용하여 A: 유자 에센셜 오일(Essential oil of Yuza: Korean citron, Citrus inchangenius Swingle x C. reticulata Blanco, Jeollanamdo Agricultural Research and Extension Services, Najusi, Korea), B: 라벤더 에센셜 오일 (true lavender: Huile Essentielle de Lavande vraie, Lavandula angustifolia Miller, Distillerie Vallondes Lavandes, Sault, France) 및 C: 장미 퍼퓸 (Bulgarian rose perfume : Rosa damasceina Mill, Lema, Kazanlak, Bulgaria) 시료를 분석한 실시예 2의 GC-FID 분석 결과 얻은 전형적인 크로마토그램이다. 피크 번호는 표 8의 피크번호에 해당한다.
Fig. 1 is a schematic view of a method of preparing an injection needle having a metal wire coated with an adsorbent thereon, and a method of extracting a very small amount of an injection needle.
2 is a photograph of a needle manufacturing process and a reciprocating piston in which a metal wire coated with an absorbent is inserted into a material used for making a needle.
3 is an enlarged photograph of a non-coated nichrome wire with a biomicroscope, Panel B is a photograph of a coated nichrome wire with a biomicroscope, and Panel C shows a PEG-PDMS coated surface with a scanning electron microscope (FE-SEM, Tescan, TUV Mira II - LMH, 50/60 Hz, 230 ~ 2200 VA), and panel D shows a photograph of the PDMS coated surface observed with a scanning electron microscope to be.
FIG. 4 shows the results of comparing the peak areas of the 10 target compounds in which the weight ratio of the PEG-PDMS mixed solution was changed to 0:10, 3: 7, and 5: 5. E: benzaldehyde, F: benzaldehyde, G: trans- cinnamaldehyde, H: benzyl acetate, I: linalyl, acetate, J: (+) - limonene, and K: β-caryophyllene.
FIG. 5 is a comparative chart of the peak areas of 10 target components while varying the coating length of the PEG-PDMS adsorbent to 5, 10, 15 and 20 mm.
6 is a comparative chart of the extraction efficiency according to the adsorption temperature in the WC-INME of the present invention.
7 is a comparative chart of the extraction efficiency according to the adsorption time in the WC-INME of the present invention. A and B are the results when the piston is used and C and D are the results when the piston is not used.
Figure 8 is a comparison of desorption efficiencies according to desorption temperatures in the WC-INME of the present invention.
9 is a comparative diagram of desorption efficiency according to desorption time in the WC-INME of the present invention.
10 is a comparative chart of the extraction efficiencies of the WC-INME method of the present invention in which citron essential oil samples are analyzed and the HS-SPME (red) and HS-INME methods using PDMS as an adsorbent. C: (+) - limonene, D: p-cymene, E: gamma-terpinene, F: terpinolene, G: linalool, H:? -Caryophyllene.
11 is a graph showing the results of measurement of A: essential oil of Yuza: Korean citron, Citrus inchangenius Swingle x C. reticulata Blanco, Jeollanamdo Agricultural Research and Extension Services, Najusi, Korea), B: Lavender Essential Oil (true lavender: Huile Essentielle de Lavande vraie, Lavandula angustifolia Miller, Distillerie Vallondes Lavandes, Sault, France) and C: Bulgarian rose perfume: Rosa Damasceina Mill, Lema, Kazanlak, Bulgaria) is a typical chromatogram obtained from the GC-FID analysis of Example 2. The peak numbers correspond to the peak numbers in Table 8.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명의 일 양태에 따르면, 본 발명은 According to one aspect of the present invention,

(i) 폴리에틸렌글리콜(PEG)과 폴리디메틸실록산(PDMS) 베이스 용액 에이(A) 및 폴리디메틸실록산 경화제 비(B)를 혼합한 후 금속선, 내열성 섬유 또는 미세 실리카 막대에 코팅하여 경화시키는 단계; 및(i) mixing polyethyleneglycol (PEG) with polydimethylsiloxane (PDMS) base solution (A) and polydimethylsiloxane curing agent ratio (B) and coating the metal wire, heat resistant fiber or fine silica rod to cure; And

(ii) 상기 코팅된 금속선, 섬유 또는 미세 실리카 막대를 스테인리스 스틸 주사바늘 내부에 삽입 장착하는 단계; 추출용 주사바늘을 제작하는 단계;(ii) inserting the coated metal wire, fiber or fine silica rod into a stainless steel injection needle; Preparing an extraction needle;

를 포함하는 휘발성 성분을 분석하기 위한 추출용 주사 바늘을 제작하는 방법을 제공한다.The present invention also provides a method of manufacturing an extraction needle for analyzing a volatile component containing a volatile component.

본 발명의 바람직한 구현예에 있어서, 상기 폴리에틸렌글리콜과 폴리디메틸실록산 베이스 용액 에이(A) 및 폴리디메틸실록산 경화제 비(B)를 혼합한 용액의 무게 조성비는 1 - 10 : 1 - 10 : 1 - 10로 할 수 있다. 보다 바람직하게는 PEG와 PDMS A 및 B를 10: 10 : 1 의 중량비로 혼합 후 니크롬선, 스테인레스 스틸선 등의 표면에 특정 두께와 길이로 코팅하여 경화시킨다. PDMS를 더욱 구체적으로 설명하면, 에틸-실록산(ethyl-siloxane)을 기본단위로 하는 고분자이다. PDMS의 물성은 하기 표 1에 나타내었다.In a preferred embodiment of the present invention, the weight composition ratio of the solution obtained by mixing the polyethylene glycol with the polydimethylsiloxane base solution (A) and the polydimethylsiloxane curing agent ratio (B) is 1: 10: 1 - 10: . More preferably, PEG and PDMS A and B are mixed at a weight ratio of 10: 10: 1 and then coated on a surface of nichrome wire, stainless steel wire or the like to have a specific thickness and length and cured. More specifically, PDMS is a polymer having ethyl-siloxane as a basic unit. The physical properties of the PDMS are shown in Table 1 below.

구분division 용액 A(베이스)Solution A (base) 용액 B(경화제)Solution B (curing agent) 제품명product name Sylgarg(R)184 실리콘 엘라스토머 키트Sylgarg (R) 184 silicone elastomer kit 화학 분류Chemical classification SiliconeSilicone 화합물compound 화학명Chemical name %(w/w)% (w / w) 화학명Chemical name %(w/w)% (w / w) Dimethylsiloxane,
dimethylvinylterminated
Dimethylsiloxane,
dimethylvinylterminated
> 60> 60 Dimethyl,methylhydrogen siloxaneDimethyl, methylhydrogen siloxane 30 ~ 6030 to 60
Dimethylvinylated and trimethylated silicaDimethylvinylated and trimethylated silica 30 ~ 6030 to 60 Dimethylsiloxane,
dimethylvinylterminated
Dimethylsiloxane,
dimethylvinylterminated
10 ~ <3010 ~ <30
tetra(trimethylsiloxy)silanetetra (trimethylsiloxy) silane < 10<10 Dimethylvinylated and trimethylated silicaDimethylvinylated and trimethylated silica 10 ~ <3010 ~ <30 tetramethyl tetravinyl cyclotetrasiloxanetetramethyl tetravinyl cyclotetrasiloxane < 10<10 상태condition 액체Liquid 색상color 무색Colorless 냄새smell 약간slightly 끓는점Boiling point >100℃> 100 ° C 비중importance 1.111.11 1.031.03 동적 점성도
(cSt)
Dynamic viscosity
(cSt)
50005000 110110

본 발명의 바람직한 구현예에 있어서, 상기 금속선은 스테인리스 또는 니크롬 금속선를 이용할 수 있으나, 반드시 이에 한정되는 것은 아니며 내열성 섬유나 미세한 실리카 선, 유리섬유, 나노튜브로 대체 가능하다.In a preferred embodiment of the present invention, the metal wire may be stainless steel or a nichrome metal wire, but is not limited thereto, and may be replaced with a heat resistant fiber, a fine silica wire, a glass fiber or a nanotube.

본 발명의 바람직한 구현예에 있어서, 상기 단계 (i)에서의 코팅된 폴리에틸렌글리콜-폴리디메틸실록산(PEG-PDMS) 두께는 10-50 ㎛, 코팅 길이는 5 - 30 mm이다. 보다 바람직하게는 예를 들어 10 mm 길이 35 μm 두께로 코팅된 금속선을 주사바늘 길이로 준비하여 특정 크기의, 예를 들어 21 게이지(21 gauge, 39 mm 길이) 굵기의 스테인레스 스틸 재질의 주사바늘 내부에 삽입 장착시켜 추출용 주사바늘을 제작할 수 있다. 제작한 주사바늘은 실험에 사용하기 전, 250 oC의 GC 주입구에 30분간 꽂아 불순물을 제거한다.
In a preferred embodiment of the present invention, the thickness of the coated polyethylene glycol-polydimethylsiloxane (PEG-PDMS) in step (i) is 10-50 μm and the coating length is 5-30 mm. More preferably, for example, a metal wire coated with a 10 mm long and 35 탆 thick metal wire is prepared as an injection needle and inserted into a stainless steel needle needle of a certain size, for example, 21 gauge or 39 mm long, So that an injection needle for extraction can be manufactured. The injection needle is inserted into the GC injection port at 250 ° C for 30 minutes to remove impurities before use in the experiment.

본 발명의 바람직한 구현예에 있어서, 상기 금속선, 내열성 섬유, 미세 실리카 막대 또는 나노튜브에 코팅된 폴리에틸렌글리콜-폴리디메틸실록산(PEG-PDMS)에 폴리아크릴산, 폴리아크릴레이트, poly(phenyl dimethyl siloxane), cyano propyl phenyl dimethyl polysiloxane, poly(styrene divinyl benzene), 테낙스 티에이(Tenax TA), 테낙스 쥐알(Tenax GR), 포라팍 엔(Porapak N), 활성탄, 그라파이트, 그라파이트 카본 블랙, 카본 나노 파티클, 그라펜(graphene), florisil, 제올라이트, 실리카 젤, 용융실리카, 알루미나, 금속촉매, 고분자 중합체, octadecyl silane (ODS), monolithic material, molecularly imprinted polymer, polyurethane, cellulose, 이온교환체, 계면활성제, 시클로덱스트린, 효소와 기질 및 항원과 항체로 이루어진 군에서 선택된 단독 또는 2 이상의 혼합물을 추가적으로 첨가하여 분석하고자 하는 화합물의 물리화학적 특성, 극성, 반응성에 따라 흡착제의 종류와 그 사용량을 알맞게 조절하여 응용(modify) 할 수 있다.
In a preferred embodiment of the present invention, polyacrylic acid, polyacrylate, poly (phenyl dimethyl siloxane), and poly (vinylpyrrolidone) are added to polyethylene glycol-polydimethylsiloxane (PEG-PDMS) coated on the metal wires, Tenax TA, Tenax GR, Porapak N, Activated Carbon, Graphite, Graphite Carbon Black, Carbon Nanoparticles, Carbon Nanoparticles, Poly (styrene divinyl benzene), Tenax TA, It is also possible to use a variety of polymers such as graphene, florisil, zeolite, silica gel, fused silica, alumina, metal catalyst, polymeric polymer, octadecyl silane (ODS), monolithic material, molecularly imprinted polymer, polyurethane, cellulose, ion exchanger, The physicochemical properties of the compound to be analyzed by addition of the enzyme, the substrate, the antigen, and the antibody alone, or a mixture of two or more thereof, Depending on the chemical properties, polarity, reactivity to properly adjust the type and the amount of the adsorbent can be applied (modify).

본 발명의 다른 양태에 따르면, 본 발명은According to another aspect of the present invention,

휘발성 성분을 분석하기 위한 추출용 주사 바늘 제작 방법에 의해 제작된 주사바늘을 장탈착형 기체 밀폐 주사기통 및 주사기 밀대에 연결시킨 후 시료가 담긴 바이알을 밀폐시켜 시료를 금속선, 내열성 섬유, 미세 실리카 막대 또는 나노튜브 상에 코팅된 폴리에틸렌글리콜-폴리디메틸실록산(PEG-PDMS)에 흡착시키는 단계를 포함하는 분석하려는 시료의 극미량 추출 방법을 제공한다.
The injector needle manufactured by the extraction needle manufacturing method for analyzing the volatile components is connected to the long-desorption type gas-tight syringe barrel and the syringe barrel, and the vial containing the sample is sealed so that the sample is inserted into the metal wire, the heat resistant fiber, Or polyethyleneglycol-polydimethylsiloxane (PEG-PDMS) coated on a nanotube. The present invention also provides a method for extracting a trace amount of a sample to be analyzed.

본 발명의 바람직한 구현예에 있어서, 본 발명의 주사 바늘에 흡착되는 시료는 (-)-acetoxy-p-menthane, (+)-aromadendrene, 4-allyl veratrole, 4-allyl-1,2-dimethoxybenzene, 4-allylanisole, allicin, alliin, 4-aminobenzoic acid, acetaldehyde, acetic acid 2-ethylhexyl ester, acetic acid 2-phenylethyl ester, acetic acid benzyl ester, acetic acid isoamyl ester, acetic acid n-hexyl ester, acetoacetic acid n-butyl ester, acetophenone, anhydrous alcohol, allyl methyl sulfide, allyl n-propyl sulfide, allyl sulfide, anisaldehyde , anhydrous anisole, anethol, isoamyl alcohol, isoamyl amine, trans-anethole, anthracene, 2,3-benzanthracene, benzaldehyde, benzoic acid cis-3-hexenyl ester, benzoic acid ethyl ester, benzoic acid methyl ester, benzoic acid, benzyl acetate, benzyl alcohol, benzyl methyl ether, benzene, bergamotene, borneol, bornyl acetate, butyl acetate, iso-butanal, iso -butylaldehyde, iso-butylamine, n-butyl alcohol, n-butyric acid ethyl ester, n-butyraldehyde, n-butyric acid, n-butyric acid amyl ester, n-butanol, p-bromobenzyl bromide, p-bromophenacyl bromide, bromocresol green, (-)-α-bisabolol, (R)-(-)-carvone, (R)-(-)-citramalic acid, (S)-(+)-carvone, (-)-α-cubebene, (+)-3-carene, (+)-8(15)-cedren-9-ol, (+)-camphor, (±)-camphor, 1,3,5,7-cyclooctatetraene, 1,3,5-cycloheptatriene, 2-carene, 2-cyclohexane-1-one, cadaverine, caryophylleneoxide, choline, cineole, cinnamaldehyde, cinnamic acid benzyl ester, cinnamic acid cinnamyl ester, cinnamyl acetate, cinnamyl alcohol, citral, citronellol, citronellyl acetate, coumarin, crotonaldehyde, cuminaldehyde, curcumin, cyclohexane, cyclohexene, cyclohexanol, cyperene, D,L-camphene, n-caproic acid ethyl ester, n-capric acid isopropyl ester, n-capric acid methyl ester, n-caprylic acid ethyl ester, n-capronaldehyde, n-caprylaldehyde, n-caprylic acid isopropyl ester, trans-cinnamaldehyde, trans-cinnamic acid, α-caryophyllene, α-cyclodextrin, α-caryophyllene, β-caryophyllene, β-cyclodextrin, γ-cyclodextrin, o-cymene, p-cymene, carbon tetrachloride, chloroform, 1,3-dithiane, 1,2-dithiolane, 1,3-dithiolane, 1,4-Diaminobutane, 1,5-Decadiyne, 2,5-dimethyl pyrazine, 2,5-dimethyl thiophene, 2,6-dimethoxy toluene, 2,6-di-tert-butyl-p-cresol, 2-dodecene-1-ylsuccinic anhydride, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, dimethyl disulfide, dimethylfuran(DMF), diethyl phthalate, dimethyl phthalate, di-n-propyl disulfide, 2,7-dichlorofluoresceine, n-decane, 2-decane, decanal, n-docosane, n-dodecane, trans-2,4-decadienal, 2-ethyl-1-hexanol, enanthic acid-ethyl ester, ethyl 2-methylbutyrate, ethyl alcohol, ethyl vinyl sulfide, ethylbenzene, ethylene sulfide, ethylene chlorohydrine, eugenol, eugenol acetate, eugenol methylether, n-eicosane, o-ethoxy benzaldehyde, p-ethoxy benzaldehyde, p-ethylbenzaldehyde, ethyl vanillin, fatty acid methyl esters, farnesene, (-)-fenchone, (+)-fenchone, farnesol, formic acid isoamyl ester, fusel oil, furfural, furfuryl alcohol, fluorobenzene, geranial, geraniol, geranyl acetate, geranyl acetone, guaiacol, guaiazulene, n-heneicosane, 1-hexanol, 2-hexyn-1-ol, cis-3-hexene-1-ol, cis-3-hexene-1-ol, cis-3-hexyl acetate, hexanal, n-heptadecane, n-heptyl aldehyde, hepenal, n-hexadecane, 1-hexadecanol, indole, α-Ionone, β-Ionone, cis-jasmone, lavandulol, lavandulyl acetate, cis-lanceol, (-)-limonene, (-)-linalool, (+)-linalool, (+)-limonene, (±)-limonene, (±)-linalool, (1R)-(+)-trans-isolimonene, laurinaldohyde, linalool, linalool oxide, linalool oxide, longifolene, (-)-menthol, (-)-p-mentha-1,5-diene, (+)-isomenthol, (+)-menthofuran, (+)-menthol, 2-methyl pyrazine, 2-methyl-3-pentanol, 4-methoxycinamic acid, 5-methyl-2-furfural, 6-methyl-5-heptene-2-one, D,L-menthol, menthone, methyl enanthate, methyl n-caproate, methyl n-caprylate, methyl pelargonate, methyl phenylacetate, methyltrimethoxysilane, methyl propyl disulfide, methyl 2-propynyl sulfide, α-iso-methylionone, β-mycrene, (+)-neomenthol, 1-Naphthylamine, narigin, naphthalene, nerol, neryl acetate, neoclovene, nicotinic acid methyl ester, n-nonadecane, n-nonane, nonanal, n-nonylaldehyde , 2-nonanone, n-octane, n-octanal, 1-octanol, n-octadecane, 3-octanone, n-octanoic acid, n-octanoic acid ethyl ester, ocimene, palmitic acid methyl ester, (+)-pulegone, (1R)-(+)-α-pinene, (1S)-(-)-α-pinene, β-pinene, 1-pentanol, 2-pentadecanone, 1-pentadecanol, 2-phenyl-2-propanol, 2-phenylethyl alcohol, 2-phenylethyl alcohol(β), sec-phenethyl alcohol, 2-phenyl-ethylamine, 2-propanol, 1-(1-propenylthio)propane, propenyl 1-propynyl sulfide, 3-phenylpropionaldehyde, iso-phrone, n-propyl alcohol, o-phthalaldehyde, pelargonic acid ethyl ester, penta fluorobenzyl bromide, pentacene, n-pentadecane, phenyl ether, phenyl acetaldehyde, phenyl acetaonitrile, phenylacetic acid ethyl ester, phthalic acid, Propionaldehyde, propylene sulfide, (-)-α-phellandrene, β-phellandrene, phenol, poly(ethylene glycol), reserpine, salicylic acid, stearic acid, succinic acid, sabinene hydrate, safrole, salicylic acid methyl ester, α-santalene, (Z)-α-santalol, (Z)-β-santalol, epi-β-santalol, (E)-β-santalol, santolina triene, styrene, sec-phenethyl-alcohol, sesamol, succinic acid diethyl ester, (-)-terpinen-4-ol, (±)-terpinen-4-ol, (+)-δ-tocopherol, 1-tetradecanol, 2-tridecanone, n-tricosane, triirane, iso-thymol, N,o-bis-TMS-trifluoroacetamide, n-tetradecane, n-tridecane, terpinolene, terpinyl acetate, toluene, thujone, thujene, thymol, thymoquinone, tyramine, α-terpineol, γ-terpinene, 2-undecanone, n-undecane, uraine, (1S)-cis-verbenol, iso-valeric acid ethyl ester, valeric acid, n-valeraldehyde, (+)-valencene, vanillin, vanilic acid, verbenone, 2-vinyl-1,3-dithiine, 3-vinyl-1,2-dithiocyclohex-5-ene, (m)-xylene, (o)-xylene 또는 (p)-xylene이다.
In a preferred embodiment of the present invention, the sample to be adsorbed to the injection needle of the present invention is (-) - acetoxy-p-menthane, (+) - aromadendrene, 4-allyl veratrole, 4-allyl- 4-allylanisole, allicin, allyl, 4-aminobenzoic acid, acetaldehyde, acetic acid 2-ethylhexyl ester, acetic acid 2-phenylethyl ester, acetic acid benzyl ester, acetic acid isoamyl ester, acetic acid n-hexyl ester, acetoacetic acid n- anhydrous anisole, isoamyl alcohol, isoamyl amine, trans-anethole, anthracene, 2,3-benzanthracene, benzaldehyde, benzoic acid, anhydrous anisole, anisaldehyde, allyl sulfide, allyl n-propyl sulfide, cis-3-hexenyl ester, benzoic acid ethyl ester, benzoic acid methyl ester, benzoic acid, benzyl acetate, benzyl alcohol, benzyl methyl ether, benzene, bergamotene, borneol, bornyl acetate, butyl acetate, iso -butanal, iso - butylaldehyde, iso- butylamine, n-butyl alcohol, n-butyric acid ethyl ester, n-butyraldehyd (-) - (-) - carvone, (-) - n-butyric acid, n-butyric acid amyl ester, n-butanol, p-bromobenzyl bromide, p-bromophenacyl bromide, bromocresol green R) - (-) - citramalic acid, (S) - (+) - carvone, (-) - α-cubebene, (+) - 3-carene, , camphor, (+) - camphor, 1,3,5,7-cyclooctatetraene, 1,3,5-cycloheptatriene, 2-carene, 2-cyclohexane-1-one, cadaverine, caryophylleneoxide, choline, cineole , cinnamaldehyde, cinnamic acid benzyl ester, cinnamic acid cinnamyl ester, cinnamyl acetate, cinnamyl alcohol, citral, citronellol, citronellyl acetate, coumarin, crotonaldehyde, cuminaldehyde, curcumin, cyclohexane, cyclohexene, cyclohexanol, cyperene, D, caproic acid ethyl ester, n-capric acid isopropyl ester, n-capric acid methyl ester, n-caprylic acid ethyl ester, n-capronaldehyde, n-caprylaldehyde, n-caprylic acid isopropyl ester, trans -cinnamaldehyde, trans -cinnamic acid, α-caryophyllene, α-cyclodextrin, α-caryophyllene, β-caryophyllene, β-cyclodextrin, 1,3-dithiolane, 1,3-dithiolane, 1,4-dianobutane, 1,5-decadienes, 2,5-decadienes, dimethyl pyrazine, 2,5-dimethyl thiophene, 2,6-dimethoxy toluene, 2,6-di-tert-butyl-p-cresol, 2-dodecene-1-ylsuccinic anhydride, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, dimethyl 2-decane, n-decane, n-dodecane, n-dodecane, trans-2,4-dicyclohexylamine, diethyl phthalate, dimethyl phthalate, eugenol acetate, eugenol methylether, n-eicosane, o-caprolactone, ethylbenzene, ethylene sulfide, ethylene chlorohydrine, eugenol, eugenol acetate, ethyl 2-methylbutyrate, farnesene, formic acid isoamyl ester, fusel oil, furfural, furfuryl alcohol, fluorobenzene, (-) - fenchone, (+) - fenchone, farnesol, p-ethylbenzaldehyde, ethyl vanillin, fatty acid methyl esters, 1-hexene-1-ol, cis-3-hexene-1-ol, cis-3-hexene- 1- cis-jasmone, lavandulol, lavandulyl acetate, cis-3-hexyl acetate, hexanal, n-heptadecane, n-heptyl aldehyde, hepenal, n-hexadecanol, 1-hexadecanol, indole, (+) - linalool, (-) - linalool, (-) - linalool, (+) - linalool, , laurinaldohyde, linalool, linalool oxide, linalool oxide, longifolene, (-) - menthol, (-) - p-mentha-1,5-diene, (+) - isomenthol, , 2-methyl pyrazine, 2-methyl-3-pentanol, 4-methoxycinamic acid, 5-methyl-2-furfural, 6-methyl-5-heptene- methyl n-caproate, methyl n-caprylate, methyl pelargonate, methyl phenylacetate, methyltrimethoxysilane, methyl propyl disulfide, methyl 2-propynyl sulfide, α-iso-methylionone, β-mycrene, (+) - neomenthol, n-octanol, n-octanol, n-octanol, n-octanol, n-octanol, n-octanol, n-hexanol, nerol acetate, neoclovene, nicotinic acid methyl ester, n-nonadecane, (1R) - (-) - α-pinene, (1S) - (-) - α-propanediol 2-phenylethyl alcohol (2), sec-phenethyl alcohol, 2-phenyl-ethylamine (2) N-propyl alcohol, o-phthalaldehyde, pelargonic acid ethyl ester, penta fluorobenzyl bromide, pentacene, n-propyl alcohol, propylene sulfide, (-) - α-phellandrene, β-phellandrene, phenol, poly (ethylene glycol), reserpine, salicylic acid, stearic acid, phenylacetic acid ethyl ester, phthalic acid, acid, succinic acid, sabi (Z) -β-cantalol, epi-β-cantalol, (E) -β-cantalol, santolina triene, styrene, sec, secene, salicylic acid methyl ester, α-santalene (-) - terpinen-4-ol, (+) - δ-tocopherol, 1-tetradecanol, 2-tridecanone, n- tricosane, triirane, iso-thymol, N, o-bis-TMS-trifluoroacetamide, n-tetradecane, n-tridecane, terpinolene, terpinyl acetate, toluene, thujone, thujene, thymol, thymoquinone, tyramine, , 2-undecanone, n-undecane , uraine, (1S) -cis-verbenol, iso-valeric acid ethyl ester, valeric acid, n-valeraldehyde, (+) - valencene, vanillin, vanilic acid, verbenone, 2-vinyl- 1,3-dithiine, 3-vinyl-1,2-dithiocyclohex-5-ene, (m) -xylene, (o) -xylene or (p) -xylene.

그밖에 대부분의 극성, 비극성 물질에 모두 적용 가능하지만 특히 휘발성 극성 물질에 가장 유용하며, 알코올류와 알데하이드류, 에스터류의 분석에 효과적이다.
In addition, it can be applied to most polar and nonpolar materials, but it is most useful for volatile polar materials and is effective for analysis of alcohols, aldehydes and esters.

본 발명의 바람직한 구현예에 있어서, 상기 단계에서 분석 성분을 추출 및 흡착을 촉진시키기 위해 왕복 운동형 피스톤을 이용하여 밀대를 상하로 움직이는 것을 통해 압축 및 흡착시킨다.In a preferred embodiment of the present invention, the piston is compressed and adsorbed by moving the plunger up and down using a reciprocating piston to facilitate extraction and adsorption of analytical components in the step.

보다 구체적으로, 추출용 주사바늘을 장탈착형 기체 밀폐 주사기통, 예를 들면 1 mL 용량의 Hamilton 1001 N, Luer lock gas tight syringe barrel 및 polytetrafluoroethylene (PTFE, Teflon) 재질로 만든 주사기 밀대(plunger)에 연결시킨다. Teflon은 유기물질을 흡착하지 않으며 부드럽고 단단하게 주사기를 밀폐하기 때문에 휘발성 시료 분석에 효과적이다. 분석 성분의 추출을 위해 0.5 μL의 정유가 담긴 50 mL 바이알을 mini-nut cap으로 밀폐하고 주사바늘을 시료상층부에 노출시켜 50 oC에서 30분간 흡착 과정을 진행한다. 이때, 왕복 운동형 피스톤 (reciprocating piston)을 이용해서 밀대를 상하로 움직여 자동적인 압축과 흡인을 통해 시료상층부에 존재하는 분석 성분들을 주사바늘 내부로 흡인함으로써 추출 및 흡착 과정을 촉진시킨다. 이 피스톤의 왕복 속도는 6 cycle/min (10 s/cycle)으로 30분의 추출시간 동안 총 180회를 왕복하는 것이 바람직하다.More specifically, the extraction needle is inserted into a syringe plunger made of a long-terminated gas-tight syringe barrel, for example, 1 mL of Hamilton 1001 N, Luer lock gas tight syringe barrel and polytetrafluoroethylene (PTFE, Teflon) . Teflon is effective in analyzing volatile samples because it does not adsorb organic materials and seals the syringe smoothly and tightly. For the extraction of the analytical components, a 50 mL vial containing 0.5 μL of essential oil is sealed with a mini-nut cap, and the needle is exposed to the upper part of the sample and the adsorption process is performed at 50 ° C for 30 minutes. At this time, the reciprocating piston is used to move the plunger up and down to automatically extract and adsorb the analytical components present in the upper layer of the sample through the needle, thereby accelerating the extraction and adsorption process. It is preferable that the reciprocating speed of the piston is 180 reciprocations during an extraction time of 30 minutes at 6 cycles / min (10 s / cycle).

본 발명의 바람직한 구현예에 있어서, 시료상층부에 바늘을 노출시켜 추출하였지만 이에 국한되지 않는다. 다양한 용량의 바이알에 넣은 액체 시료의 경우 직접 액체 시료에 담구어 추출할 수 있다. In a preferred embodiment of the present invention, the needle is exposed by exposing the upper layer of the sample, but is not limited thereto. For liquid samples in vials of varying volumes, they can be directly immersed in liquid samples.

본 발명의 바람직한 구현예에 있어서, 상기 단계에서 흡착 단계시 흡착 온도를 30 - 70℃에서 수행하는 것을 특징으로 하는 분석하는 것이 바람직하다. 보다 바람직하게는 40 - 60℃에서 수행시킨다.
In a preferred embodiment of the present invention, it is preferable to carry out the analysis characterized in that the adsorption temperature during the adsorption step is 30 to 70 ° C. More preferably at 40 - 60 &lt; 0 &gt; C.

본 발명의 바람직한 구현예에 있어서, 상기 흡착 단계시 흡착 시간을 5 - 60분 범위에서 수행할 수 있다. 보다 바람직하게는 흡착 시간은 20-40분 범위에서 수행시킨다.In a preferred embodiment of the present invention, the adsorption time during the adsorption step may be in the range of 5 to 60 minutes. More preferably, the adsorption time is in the range of 20 to 40 minutes.

본 발명의 바람직한 구현예에 있어서, 상기 시료를 흡착시켜 추출하는 단계 이후 상기 시료 성분을 분석기기에 주입하기 위해 흡착된 추출 시료를 탈착시키는 단계를 추가적으로 포함시킬 수 있다. In a preferred embodiment of the present invention, the step of adsorbing and extracting the sample may further include the step of desorbing the adsorbed extracted sample to inject the sample component into the analyzer.

본 발명의 바람직한 구현예에 있어서, 상기 흡착된 시료를 탈착시키는 단계에서 탈착 온도는 150 - 300℃, 탈착 시간을 1 - 30분 범위에서 수행할 수 있다. In a preferred embodiment of the present invention, the desorption temperature may be 150 to 300 ° C. and the desorption time may be 1 to 30 minutes in the step of desorbing the adsorbed sample.

보다 바람직하게는 상기 추출과정이 완료된 후, 주사바늘을 바이알로부터 분리하여 같은 제품의 새로운 주사기로 교체 연결하고 즉시 GC 또는 GC-MS 주입구에 꽂아 240-250 oC에서 2-5분간 열탈착시킨다. 분석성분들은 열탈착과 동시에 GC 컬럼으로 주입되고 분리된다.
More preferably, after the extraction process is completed, the needle is detached from the vial, replaced with a new syringe of the same product, immediately inserted into a GC or GC-MS inlet, and then detached at 240-250 ° C for 2-5 minutes. The analytical components are injected and separated into the GC column simultaneously with the thermal desorption.

본 발명의 또 다른 양태에 따르면, 본 발명은 시료의 극미량 추출 방법을 이용하여 추출한 시료를 분석기기에 넣고 시료를 분석하는 단계를 포함하는 시료의 분석 방법을 제공한다.According to still another aspect of the present invention, there is provided a method of analyzing a sample, comprising the step of inserting a sample extracted using a microextraction method of a sample into an analyzer and analyzing the sample.

분석기기는 GC 또는 GC-MS에만 국한되지 않고 fast GC, multidimensional GC (GC x GC), GC-olfactometry (GC-O), tandem MS, HPLC, ultra-HPLC, LC-MS, supercritical fluid chromatography (SFC), capillary electrophoresis (CE), Lab-on-a-chip, UV-visible spectrometer, atomic absorption spectrometry(AAS), inductively coupled plasma(ICP), flow injection analysis(FIA), fluorometer, potentiometry, polarography, cyclic voltammetry 등 다양한 분석기기에 적용가능하다.
Analytical instruments are not limited to GC or GC-MS and can be used for fast GC, multidimensional GC, GC-olfactometry (GC-O), tandem MS, HPLC, ultra-HPLC, LC-MS, supercritical fluid chromatography ), capillary electrophoresis (CE), lab-on-a-chip, UV-visible spectrometer, atomic absorption spectrometry (AAS), inductively coupled plasma (ICP) And so on.

본 발명의 또 다른 양태에 따르면, 본 발명은 주사 바늘 제작 방법을 통해 제작된 시료의 극미량 추출용 주사바늘을 제공한다. 본 발명의 추출용 주사바늘을 이용한 추출방법을 이용하여 에센셜 오일의 추출분석의 개략도는 도 1에 나타내었다.
According to another aspect of the present invention, there is provided an injection needle for extracting a trace amount of a sample prepared through a method for preparing an injection needle. A schematic diagram of extraction analysis of essential oils using the extraction method using the extraction needles of the present invention is shown in FIG.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention, and it is to be understood by those skilled in the art that the present invention is not limited thereto It will be obvious.

[[ 실시예Example ] ]

(1) (One) 실시예Example 1 : 흡착제를 코팅한  1: coated with adsorbent 금속선을Metal wire 삽입장착한  Inserted 주사바늘을Inject needle 이용한  Used 주사바늘Needle 내부 극미량추출방법을 위한 흡착제를 코팅한  Coated with an adsorbent for internal microextraction 금속선을Metal wire 삽입장착한  Inserted 주사바늘의Needle 제작방법 How to make

주사바늘을 제작하기 위해 stainless steel재질의 주사바늘 (Edge Co., Korea, 21 gauge; 819 μm O.D., 514 μm I.D., 39 mm length)과 니크롬선 (Teikoku Alloy Industry, Japan, 200 μm O.D.)을 사용하였으며, 니크롬선에 흡착물질을 코팅하기 위해 일회용 스테인리스 재질의 주사바늘 및 플라스틱 재질의 주사기 (Sofjec, Hwajin Medical Co., Ltd, Korea, 25 gauge, 25 mm length)를 사용하였다. 제작한 주사바늘은 장탈착형 기체 밀폐 주사기통 (1 mL Hamilton 1001N, luer lock gas tight syringe barrel) 및 PTFE(polytetrafluoroethylene, Teflon) 재질의 밀대 (plunger)와 연결하여 사용하였다. Using stainless steel injection needle (Edge Co., Korea, 21 gauge; 819 μm OD, 514 μm ID, 39 mm length) and nichrome wire (Teikoku Alloy Industry, Japan, 200 μm OD) A disposable stainless steel needle and a plastic syringe (Sofjec, Hwajin Medical Co., Ltd, Korea, 25 gauge, 25 mm length) were used to coat the nichrome wire with adsorbent material. The injection needle was connected to a plunger made of PTFE (polytetrafluoroethylene, Teflon) and a long-terminated gas-tight syringe barrel (1 mL Hamilton 1001N, luer lock gas tight syringe barrel).

코팅용 흡착제로 사용한 poly(ethylene glycol) (PEG)는 Aldrich (St. Louis, MO, USA)로부터 Number Average Molecular weight 20,000을 구입하여 50% (wt/wt) 수용액을 조제하여 사용하였다. Poly(dimethylsiloxane) (PDMS)는 Dow Corning Inc. 로부터 PDMS base solution A (Sylgard 184A)와 curing agent solution B (Sylgard 184B)로 구성되어 있는 PDMS solution kit (Sylgard 184 Silicone Elastomer Kit)를 구입하여 이용하였다. Poly (ethylene glycol) (PEG) used as an adsorbent for coating was prepared from 50% (wt / wt) aqueous solution by purchasing 20,000 Number Average Molecular Weight from Aldrich (St. Louis, Mo., USA). Poly (dimethylsiloxane) (PDMS) was purchased from Dow Corning Inc. PDMS solution kit (Sylgard 184 Silicone Elastomer Kit) consisting of PDMS base solution A (Sylgard 184A) and curing agent solution B (Sylgard 184B) was purchased and used.

깨끗이 세척한 5 mL 바이알에 PEG 50% 수용액 0.500 g을 칭량하여 넣고, PDMS base solution A 0.500 g과 curing agent solution B 0.050 g을 10:1의 무게 비로 칭량하여 넣은 후 고루 섞어 1:1 (5:5) 비율의 PEG-PDMS 혼합용액을 조제하였다. 코팅할 니크롬선 (200 μm O.D.)을 stainless steel재질의 원형 파이프 (6 cm O.D., 15 cm length)를 이용하여 일직선이 되도록 펴서 10 cm의 길이로 잘라준 후 methanol로 깨끗이 닦아 100 oC오븐에서 3분 동안 방치하여 불순물을 제거하였다. PEG-PDMS 혼합용액을 채울 일회용 주사바늘을 주사기통 및 밀대와 연결하여 methanol을 주사바늘 내부로 끌어올렸다가 방출시켜서 주사바늘 내부의 불순물을 제거하였다.0.500 g of PEG 50% aqueous solution was weighed into a cleanly washed 5 mL vial, and 0.500 g of PDMS base solution A and 0.050 g of curing agent solution B were weighed in a weight ratio of 10: 1 and mixed thoroughly to obtain a 1: 1 (5: 5) ratio of PEG-PDMS mixed solution was prepared. The coated nichrome wire (200 μm OD) was straightened with a round pipe (6 cm OD, 15 cm length) made of stainless steel, cut into a length of 10 cm, wiped clean with methanol, and dried in a 100 ° C oven Min to remove impurities. Disposable needles to fill the PEG-PDMS mixed solution were connected to the syringe barrel and the push rod, and the methanol was pulled up to the inside of the injection needle and released to remove the impurities inside the injection needle.

Stainless steel재질의 일회용 주사바늘 (25 gauge)을 1 mL 용량의 플라스틱 재질의 일회용 주사기와 연결하고 PEG-PDMS 혼합용액에 담그어 15초 동안 주사기 밀대를 0.4 mL까지 천천히 끌어당겨 PEG-PDMS 혼합용액을 일회용 주사바늘 내부로 빨아 올렸다. 15초 후 주사바늘과 주사기를 분리하고 PEG-PDMS 혼합용액이 충전된 주사바늘을 GC용 septum에 수직으로 꽂아 세운 후, 준비한 니크롬선을 주사바늘 내부의 중앙에 오도록 관통시켜 니크롬선에 흡착제가 코팅되도록 하였다. PEG-PDMS mixed solution was prepared by disposing a sterile steel disposable needle (25 gauge) with 1 mL of a disposable syringe made of plastic and immersing it in PEG-PDMS mixed solution for 15 seconds. I swallowed it into the needle. After 15 seconds, the injection needles and the syringe were separated, the injection needle filled with the PEG-PDMS mixed solution was set up vertically in the septum for GC, and the prepared nichrome wire was inserted into the center of the injection needle so that the adsorbent was coated Respectively.

100oC 오븐에서 15분간 경화시킨 후 일회용 주사바늘로부터 니크롬선을 조심스럽게 뽑아내어 PEG-PDMS가 코팅된 금속선을 제작하였다. 니크롬선에 코팅된 PEG-PDMS의 길이가 10 mm가 되도록 nipper로 자르고, 전체 니크롬선의 길이가 stainless steel 주사바늘 (21 gauge, 39 mm length)의 길이와 같아지도록 39 mm로 잘라준 후, 이 코팅된 금속선이 주사바늘에 장착될 수 있도록 윗부분을 동그란 나선형 코일이 되도록 말아주었다. After curing in a 100 o C oven for 15 minutes, the nichrome wire was carefully pulled out of the disposable needles and a metal wire coated with PEG-PDMS was prepared. The length of the PEG-PDMS coated on the nichrome wire was cut with a nipper so that the length was 10 mm, the length of the entire nichrome wire was cut to 39 mm so as to be equal to the length of a stainless steel injection needle (21 gauge, 39 mm length) The upper portion was rolled into a circular spiral coil so that the metal wire could be attached to the injection needle.

PEG-PDMS 흡착제의 두께가 약 35 μm인 니크롬선을 stainless steel 주사바늘 (21 gauge, 39 mm length) 안에 조심스럽게 넣어 고정시켜, 코팅된 금속선을 삽입한 주사바늘을 제작하였다. 주사바늘의 제작에 사용한 재료와 제작과정을 도 2에 도시하였다. A nichrome wire with a thickness of about 35 μm was carefully placed in a stainless steel injection needle (21 gauge, 39 mm length) to fix the PEG-PDMS adsorbent. The materials used in the production of the needles and the manufacturing process are shown in Fig.

코팅된 PEG-PDMS 흡착제의 두께는 35 μm이며, 이것을 생물현미경과 주사형 전자현미경을 통해 확인한 사진을 도 3에 도시하였다. 니크롬선에 코팅된 PEG-PDMS 흡착제의 두께를 확인하기 위해 렌즈 (Q-Emaging Micropublisher 3.3, 40 magnification)가 연결된 도립현미경(inverted microscope, IM, Nikon Eclipse, TS100)을 이용하여 코팅된 니크롬선과 코팅되지 않은 니크롬선을 비교하였다. 흡착제의 표면은 주사전자현미경 (field emission-scanning electron microscope, FE-SEM, Tescan, TUV Mira II - LMH, 50/60 Hz, 230 ~ 2200 VA)을 이용하여 분석하였으며 확대비율이 1700배의 이미지를 나타낸다.
The thickness of the coated PEG-PDMS adsorbent is 35 μm, and a photograph of the PEG-PDMS adsorbent is shown in FIG. 3 through a biomicroscope and a scanning electron microscope. The coated nichrome wire was coated with an inverted microscope (IM, Nikon Eclipse, TS100) connected with a lens (Q-Emaging Micropublisher 3.3, 40 magnification) to confirm the thickness of the PEG-PDMS adsorbent coated on the nichrome wire No nichrome wires were compared. The surface of the adsorbent was analyzed using a field emission-scanning electron microscope (FE-SEM, Tescan, TUV Mira II - LMH, 50/60 Hz, 230-2200 VA) .

(2) (2) 실시예Example 2: 흡착제를 코팅한  2: coated with adsorbent 금속선을Metal wire 삽입장착한  Inserted 주사바늘을Inject needle 이용한 극미량추출방법 Extraction method

상기 실시예 1의 방법으로 제작한 주사바늘은 실험에 사용하기 전, 250 oC의 GC 주입구에 30분간 꽂아 불순물을 제거한 후, 1 mL 장탈착형 기체 밀폐 주사기통 및 Teflon재질의 밀대와 연결하였다. Teflon은 유기물질을 흡착하지 않으며 부드럽고 단단하게 주사기를 밀폐하기 때문에 휘발성 시료 분석에 효과적이다. 분석 성분의 추출을 위해 0.5 μL의 정유가 담긴 50 mL 바이알을 Teflon 재질로 구성된 mini-nut cap으로 밀폐하고 주사바늘을 시료상층부에 노출시켜 50 oC에서 30분간 흡착 과정을 진행하였다. 이때, 도 2에 도시된 바와 같은 실험실내 자체 제작한 왕복 운동형 피스톤(reciprocating piston)을 사용하여 밀대를 상하로 움직여 자동적인 압축과 흡인을 통해 시료상층부에 존재하는 분석 성분들을 주사바늘 내부로 흡인함으로써 추출 및 흡착 과정을 촉진하였다. 이 피스톤의 왕복 속도는 6 cycle/min (10 s/cycle)으로 30분의 추출시간 동안 총 180회를 왕복하였다. 추출과정이 완료된 후, 주사바늘을 바이알로부터 분리하여 같은 제품의 새로운 주사기로 교체 연결하고 즉시 GC 주입구에 삽입하여 240oC에서 2분간 열탈착하였다. 분석성분들은 열탈착과 동시에 GC 컬럼에 주입되어 분리하였다.
The injection needle prepared by the method of Example 1 was inserted into a GC injection port of 250 ° C for 30 minutes to remove impurities before use in the experiment and then connected to a 1 mL long desorption type gas tight syringe barrel and a Teflon material bar . Teflon is effective in analyzing volatile samples because it does not adsorb organic materials and seals the syringe smoothly and tightly. For the extraction of the analytical components, a 50 mL vial containing 0.5 μL of essential oil was sealed with a mini-nut cap made of Teflon and the needle was exposed to the upper part of the sample and the adsorption process was performed at 50 ° C for 30 minutes. At this time, by using a self-reciprocating piston as shown in FIG. 2, the analyzing components existing in the upper part of the sample are automatically sucked into the needle through automatic compression and suction by moving the plunger up and down Thereby promoting the extraction and adsorption process. The reciprocating speed of the reciprocating piston was 6 cycles / min (10 s / cycle) for a total of 180 revolutions over 30 minutes of extraction time. After the extraction procedure was completed, the injection needle was detached from the vial, replaced with a new syringe of the same product, immediately inserted into the GC inlet, and thermally desorbed at 240 ° C for 2 minutes. The analytical components were separated and injected into the GC column simultaneously with the thermal desorption.

(3) (3) 실시예Example 3 :  3: 실시예Example 1 내지 2의 추출 과정을 이용한 시료의 분석 실험 Analysis of samples using 1 to 2 extraction procedures

실시예 1과 같은 방법으로 제작하여 유자 에센셜 오일, 라벤더 에센셜 오일, 장미 퍼퓸 시료를 이용하여 분석하였다.Was prepared in the same manner as in Example 1, and analyzed using yuza essential oil, lavender essential oil, and rose perfume samples.

[물성측정평가][Evaluation of physical properties]

1) 기체크로마토그래피(1) gas chromatography ( gasgas chromatographychromatography , , GCGC ))

분석방법의 최적화 연구는 불꽃이온화 검출기(FID)가 장착된 HP 5890(Hewlett-Packard GC), HP 3396A integrator를 이용하였다. 분석방법의 최적화 연구에 사용한 GC의 상세한 분석조건은 하기 표 2와 같다.
Optimization of the analytical method was performed using an HP 5890 (Hewlett-Packard GC) equipped with a flame ionization detector (FID) and an HP 3396A integrator. Optimization of analysis method The detailed analysis conditions of the GC used in the study are shown in Table 2 below.

GCGC 작동 조건( Operating conditions ( HPHP 5890) 5890) 컬럼 column 6% 사이아노프로필페닐-94%-디메틸 실록산 공중합체 (DB-624, 길이 30 m × I.D. 0.25 mm × 필름 두께 1.4 ㎛, J&W Scientific, Folsom, CA, USA(DB-624, length 30 m x ID 0.25 mm x film thickness 1.4 m, J & W Scientific, Folsom, Calif., USA) 오븐 온도 Oven temperature 50 ℃(3 min)-5 ℃/min-220 ℃(10 min) 50 DEG C (3 min) -5 DEG C / min-220 DEG C (10 min) 주입 온도 Injection temperature 240 ℃ 240 ℃ 검출기 온도 Detector temperature 250 ℃ 250 ℃ Split ratio Split ratio 1 : 30 1: 30 운반 기체 Carrier gas 유량 1.0 ㎖/min에서 N2(99.99%)N 2 (99.99%) at a flow rate of 1.0 ml / min, FID 기체 FID gas 30 ㎖/min에서 H2, 300 ㎖/min에서 공기H 2 at 30 ml / min, air at 300 ml / min

2) 기체크로마토그래피-질량분석(2) Gas Chromatography-Mass Spectrometry ( gasgas chromatographychromatography -- massmass spectrometryspectrometry , , GCGC -- MSMS ))

에센셜 오일의 휘발성 향기성분을 정성분석하기 위해(GC-Q plus ion trap MSn) GC 2000(Thermoquest-Finnigan, Austin, TX, USA)을 사용하였다. 향기성분의 확인동정은 표준물질과 이에 상응하는 NIST and Wiley libraries 의 질량 스펙트라와 비교하여 수행하였다. 에센셜 오일의 휘발성 향기성분을 정성분석하기 위한 GC-MS의 상세한 분석 조건은 하기 표 3과 같다.
GC 2000 (Thermoquest-Finnigan, Austin, TX, USA) was used to qualitatively analyze the volatile flavor components of essential oils (GC-Q plus ion trap MS n ). Identification of aroma components was performed by comparing the mass spectra of the reference materials and the corresponding NIST and Wiley libraries. The detailed analysis conditions of GC-MS for qualitative analysis of volatile flavor components of essential oils are shown in Table 3 below.

GCGC -- MSMS 작동 조건 Operating Conditions GCGC ( ( TraceTrace GCGC 2000) 2000) 컬럼 column 6% 사이아노프로필페닐-94%-디메틸실록한 공중합체 (DB-624, 길이 30 m × I.D. 0.25 mm × 필름 두께 1.4 ㎛, J&W Scientific, Folsom, CA, USA6% cyanopropyl phenyl-94% -dimethylsiloxane copolymer (DB-624, length 30 m x ID 0.25 mm x film thickness 1.4 m, J & W Scientific, Folsom, CA, USA 오븐 온도 Oven temperature 50 ℃ 50 인젝터 온도 Injector temperature 240 ℃ 240 ℃ Split ratio Split ratio 1 : 30 1: 30 운반 기체 Carrier gas 99.999% He (유량 상수 1.0 ㎖/min 에서) 99.999% He (at a flow rate constant of 1.0 ml / min) MSMS (a (a GCGC -A -A plusplus ionion traptrap MSMS nn ) ) 이온화 전압 Ionization voltage 70 eV 70 eV 이송 라인 온도 Transfer line temperature 230 ℃ 230 ℃ 이온 소스 온도 Ion source temperature 200 ℃ 200 ℃ 질량 범위(m/z) Mass range (m / z) 50 ~ 500 50 to 500

(4) (4) 비교예Comparative Example

1) One) 비교예Comparative Example 1 : 시료 상층부 고체상 미량 추출방법( 1: Extraction method of upper layer solid phase HSHS -- SPMESPME ))

SPME 부품 및 흡착코팅 섬유는 Supelco(Bellefonte, PA, USA)사의 제품을 사용하였으며, 이 섬유는 100 ㎛의 PDMS(red)가 코팅되어있다. 실험에 사용하기 전 GC 주입부에 꽂아 250 ℃에서 30 분간 가열하여 불순물을 제거하여 오염된 피크가 나타나는지 확인하였다. 실시예 2와 마찬가지로 유자 에센셜 오일 시료를 50 ㎖ 바이알에 취하고 테플론 재질의 미니-캡으로 밀폐시킨 후 40 ℃에서 30 분간 방치하여 향기성분을 흡착시켰다. 흡착이 종료되면 SPME-섬유를 꺼내어 즉시 GC-MS 주입구에 삽입하여 1 분 동안 열탈착시켜 분석하였다.
SPME parts and adsorption coated fibers were made by Supelco (Bellefonte, PA, USA), which is coated with 100 ㎛ PDMS (red). Before being used in the experiment, it was inserted into a GC injection part and heated at 250 ° C for 30 minutes to remove impurities to confirm that contaminated peaks appeared. As in Example 2, a sample of yuzu essential oil was taken in a 50 ml vial, sealed with a Teflon mini-cap, and left at 40 캜 for 30 minutes to adsorb a perfume component. At the end of the adsorption, the SPME fibers were taken out and immediately inserted into the GC-MS injection port and analyzed by thermal desorption for 1 minute.

2) 2) 비교예Comparative Example 2 : 마이크로  2: Micro 내경의Inner 터털을Turf 가진  have PDMSPDMS 를 충전한 바늘을 이용한 시료 상층부 바늘 내부 극미량 추출방법(Extraction Method of Needle in the Upper Layer of a Sample Using a Needle Filled with HSHS -- INMEINME ))

200 μm 직경의 micro-bore tunnel을 가진 PDMS(ca . 106 μm 두께, l cm 길이)가 충전된 주사바늘을 실험에 사용하기 전, 250 oC에서 30분간 가열하여 불순물을 제거한 후, 1 mL 장탈착형 기체 밀폐 주사기 통 및 Teflon재질의 밀대와 연결하였다. 실시예 2와 마찬가지로 소량의 유자 에센셜 오일 시료의 향기성분 분석에 적용하였다. 0.5 μL 정유를 넣은 50 mL 바이알을 mini-nut cap으로 밀폐하고 주사바늘을 시료상층부에 노출시켜 50 oC에서 20분간 포화 및 흡착과정을 진행하였다. 이때, 실험실내 자체 제작한 왕복운동형 피스톤(reciprocal piston)을 사용하여 시료상층부에 존재하는 분석 성분들을 주사바늘 내부로 흡인하여 추출 및 흡착 과정을 촉진하였다. 추출과정이 완료된 후, 주사바늘을 바이알로부터 꺼내 같은 제품의 새로운 주사기로 교체 연결하고 즉시 GC 주입구에 꽂아 240 oC에서 2분간 탈착하여 분석하였다.
200 μm diameter of the micro-bore tunnel before use in the experiment with the filled needles PDMS (ca. 106 μm thickness, l cm in length) with, after removing the impurities for 30 minutes heated at 250 o C, Chapter 1 mL A detachable gas-tight syringe barrel and a Teflon plunger. As in Example 2, the present invention was applied to the analysis of fragrance components of a small amount of citrus essential oil samples. A 50 mL vial containing 0.5 μL essential oil was sealed with a mini-nut cap, and the needle was exposed to the upper part of the sample, and saturation and adsorption process was performed at 50 ° C for 20 minutes. At this time, using the reciprocal piston manufactured by the laboratory itself, the analytical components existing in the upper part of the sample were sucked into the needle to promote the extraction and adsorption process. After the extraction procedure was completed, the injection needle was removed from the vial, replaced with a new syringe of the same product, immediately plugged into the GC inlet, and desorbed at 240 ° C for 2 minutes.

(5) (5) 실시예Example 4 : 본 발명의  4: WCWC -- INMEINME 분석 결과에 영향을 줄 수 있는 여러 가지 파라미터에 대한 최적화 실험 Optimization experiments for various parameters that can affect the analysis results

1) 분석에 적합한 1) Suitable for analysis PEGPEG -- PDMSPDMS 혼합용액 무게 조성비 판단 Determination of weight ratio of mixed solution

PEG-PDMS 흡착제의 최적 조성비를 찾기 위하여 PEG-PDMS 혼합용액의 무게 조성비를 0:10, 3:7, 5:5, 7:3으로 변화시켜가며 실험을 수행한 결과를 도4에 도시하였다. 총 10가지 목적 성분(target compounds)들의 피크 면적을 비교한 결과, PEG-PDMS 혼합용액의 조성비가 0:10인 경우에 benzaldehyde (log P ow=1.48)와 (+)-limonene (log P ow=4.45)이 가장 잘 검출되었고, 3:7인 경우에 benzyl acetate (log P ow=1.96)와 linalyl acetate (log P ow=3.93)가 가장 잘 검출되었다. 그러나 PEG-PDMS 혼합용액의 조성비가 7:3인 경우 니크롬선에 코팅이 잘 되지 않는 단점을 지녔는데, 이는 PEG가 PDMS와 혼합되지 않고 단독으로 사용될 경우 상온에서 급격하게 액화되는 성질을 지니기 때문인 것으로 보인다. 따라서 PEG의 함량이 큰 7:3 혼합용액의 경우 코팅 금속선을 제조할 수 있을 만큼 단단히 경화되지 않아 제조하기가 어려웠으며, PEG 만으로 코팅 금속선을 제조하는 것은 불가능했다. PEG-PDMS 혼합용액의 조성비가 5:5인 경우 linalool (log P o /w=2.97), β-phenethyl alcohol (log P o /w=1.36), eugenol (log P o /w=2.27), trans-cinnamaldehyde (log P o /w=1.90), β-caryophyllene (log P o /w=6.30), 총 5가지 성분의 피크 면적이 가장 크게 나온 것으로 보아 0:10이나 3:7보다 더 효과적으로 알코올 성분들을 검출할 수 있다는 것을 의미하며, 이 외의 5가지 성분들의 피크 면적도 대체적으로 큰 것을 확인할 수 있다. 피크 면적이 크다는 것은 감도가 크고 극성 물질인 PEG와 분석 물질의 친화도가 크다는 것을 의미한다. 여기서 octanol/water 분배 상수 (P o /w)는 일반적으로 수용액과 PDMS 코팅 층 사이에서 분석목적성분의 분배 상수 (P PDMS /w)를 P o /w P PDMS /w라고 간주하여 평가하는데 이용된다. 그러므로 P o /w가 큰 분석 물질은 비극성인 PDMS에 더 많이 분배된다고 할 수 있다. 따라서 PEG-PDMS 흡착제의 혼합 조성비가 5:5인 경우 10가지 성분들 중 5가지 성분들의 분석을 위하여 가장 큰 감도를 지니기 때문에 알코올, 알데하이드, 에스터와 같은 특정 분류의 분석 성분들을 추출하기 위한 가장 적절한 조성비라고 판단했다.
FIG. 4 shows the results of experiments in which the weight composition ratio of the PEG-PDMS mixed solution was changed to 0:10, 3: 7, 5: 5 and 7: 3 in order to find the optimum composition ratio of the PEG-PDMS adsorbent. The peak areas of 10 target compounds were compared with those of benzaldehyde (log P ow = 1.48) and (+) - limonene (log P ow = 4.45) was the best detected, and benzyl acetate (log P ow = 1.96) and linalyl acetate (log P ow = 3.93) were best detected at 3: 7. However, when the PEG-PDMS mixed solution has a composition ratio of 7: 3, it has a disadvantage that the coating on the nichrome wire is not well performed. This is because PEG has a property of being rapidly liquefied at room temperature when it is used alone without being mixed with PDMS see. Therefore, in the case of the 7: 3 mixed solution containing a large amount of PEG, it was difficult to produce a coating metal wire because the coating metal wire could not be hardened sufficiently to produce a coating metal wire. PEG-PDMS composition ratio of the mixed solution was 5: 5 in the case linalool (log P o / w = 2.97), β-phenethyl alcohol (log P o / w = 1.36), eugenol (log P o / w = 2.27), trans ( P o / w = 1.90) and β-caryophyllene (log P o / w = 6.30) showed the largest peak area of all five components. Can be detected, and it can be confirmed that the peak areas of the other five components are also substantially large. The large peak area means that the sensitivity is high and the affinity of the polar material PEG and the analyte is high. The octanol / water partition coefficient ( P o / w ) is generally used to evaluate the partition coefficient ( P PDMS / w ) of the analytical target component between the aqueous solution and the PDMS coating layer as P o / w P PDMS / w . Therefore, analytes with large P o / w can be said to be more distributed to non-polar PDMS. Therefore, the PEG-PDMS adsorbent has the highest sensitivity for the analysis of 5 of the 10 components when the composition ratio of the adsorbent is 5: 5. Therefore, it is most suitable for extracting analytes of a specific category such as alcohol, aldehyde, I decided it was a composition rate.

2) 분석에 적합한 2) Suitable for analysis PEGPEG -- PDMSPDMS 혼합 용액의 코팅 길이 판단 Judging coating length of mixed solution

본 발명의 WC-INME 방법을 이용할 때 PEG-PDMS 혼합용액의 코팅 길이에 대한 조사는 PEG-PDMS 흡착제의 코팅 길이를 5, 10, 15, 20 mm로 변화시켜가며 수행하였다. 실험 결과는 도 5에 도시하였다. 10가지 목적성분들의 피크 면적은 10 mm일 때 가장 높았으며, benzyl alcohol이나 linalool, β-phenethyl alcohol 그리고 eugenol과 같은 알코올 종류의 표준물질들은 코팅 길이가 증가함에 따라 피크 면적이 급격하게 감소하는 것을 확인할 수 있다. 이는 코팅 길이가 증가할수록 더 많은 추출 시간과 더 높은 추출 온도가 요구됨을 의미한다. 즉, 이 분석방법을 수행하기 위한 가장 중요한 변수는 흡착제의 종류, 길이, 두께임을 나타낸다.When the WC-INME method of the present invention was used, the coating length of the PEG-PDMS mixed solution was measured by changing the coating length of the PEG-PDMS adsorbent to 5, 10, 15, and 20 mm. The experimental results are shown in Fig. The peak areas of 10 target substances were the highest at 10 mm, and the standard substances of alcohol type such as benzyl alcohol, linalool, β-phenethyl alcohol and eugenol show a drastic decrease in peak area as the coating length increases . This means that as the coating length increases, more extraction time and higher extraction temperature are required. That is, the most important parameter for performing this analysis method is the kind, length, and thickness of the adsorbent.

따라서 HS-WC-INME를 수행하기 위한 PEG-PDMS 흡착제의 길이를 10 mm로 선택하였다.
Therefore, the length of PEG-PDMS adsorbent for HS-WC-INME was chosen as 10 mm.

3) 흡착 온도 및 흡착 시간에 따른 추출 효율 판단3) Determination of extraction efficiency according to adsorption temperature and adsorption time

본 발명의 WC-INME 방법을 이용할 때 흡착 온도에 따른 추출 효율 비교는 30 oC ~ 70 oC의 온도 범위에서 수행하여 도 6에 도시하였다. 50 oC에서 가장 큰 피크 면적을 보였다. 10가지 성분 모두 60 oC와 70 oC에서 추출 효율이 급격히 감소하는 것을 확인할 수 있는데, 이는 흡착되었던 분석 성분들이 높은 온도로 인해 역 추출되어 나타나는 결과로 보여진다.
Comparison of extraction efficiency according to the adsorption temperature when using the WC-INME method of the present invention is shown in FIG. 6 in a temperature range of 30 o C to 70 o C. And the largest peak area at 50 ° C. It can be seen that the extraction efficiency decreases drastically at 60 o C and 70 o C in all 10 components because the adsorbed analytical components are back extracted by high temperature.

흡착 시간에 대한 영향은 5분 ~ 40 분 범위에서 평가하여 도 7에 도시하였다. 흡착 시간은 피스톤의 왕복운동 횟수와 관련된다. 피스톤이 1회 왕복하는데 걸리는 시간은 10초, 즉 1분에 6회 왕복하도록 설정하였다. 50 oC에서 흡착 시간을 변화시켜가며 실험한 결과, linalyl acetate를 제외한 9가지 성분들이 30분 (180회 왕복)에서 가장 크게 검출되는 것을 확인할 수 있었다. 이는 30 분의 흡착 시간 동안 분석 성분들이 PEG-PDMS 흡착제와 시료상층부 사이에서 평형에 도달한 것으로 볼 수 있다. 30분 이후 피크 면적이 감소하는 것을 볼 수 있으며, 이는 HS 추출방법에서 추출 시간이 샘플 내 분석 성분의 농도에 의존하지 않기 때문인 것으로 사료되었다. 또한, 같은 시간 범위에서 피스톤을 사용하지 않고 흡착과정을 진행하여 피스톤 사용에 따른 추출 효율을 알아본 결과를 도 7-C,D에 도시하였다. 도 7-A,B와 비교하여 피크 면적이 50배 가까이 작아짐을 확인할 수 있다. 이를 통해 흡착 시간을 줄이고 추출 효율을 증가시키는데 왕복운동형 피스톤의 사용이 매우 중요하다는 것을 확인할 수 있었다. The effect on the adsorption time was evaluated in the range of 5 minutes to 40 minutes and is shown in FIG. The adsorption time is related to the number of reciprocating movements of the piston. The time taken for the piston to reciprocate once was set to be 10 seconds, that is, 6 times per minute. As a result of the experiment with the adsorption time changed at 50 o C, it was confirmed that the nine components except linalyl acetate were detected most at 30 minutes (180 reciprocations). It can be seen that the analytical components reached equilibrium between the PEG-PDMS adsorbent and the sample upper layer during the adsorption time of 30 minutes. The peak area decreases after 30 min, which is probably due to the fact that the extraction time in the HS extraction method does not depend on the concentration of the analyte in the sample. FIGS. 7-C and D show the results of the extraction efficiency according to the use of the piston during the same adsorption process without using the piston in the same time range. It can be confirmed that the peak area is reduced to about 50 times as compared with Figs. 7-A and 7-B. It was confirmed that the use of the reciprocating piston is very important to reduce the adsorption time and increase the extraction efficiency.

따라서 WC-INME를 수행하기 위한 최적 흡착 온도와 흡착 시간은 각각 50 oC, 30분 (180회)으로 선택하였다.
Therefore, the optimal adsorption temperature and adsorption time for WC-INME were selected to be 50 ° C and 30 minutes (180 times), respectively.

5) 흡착 온도 및 탈착 시간의 최적 조건 판단5) Determination of optimum condition of adsorption temperature and desorption time

탈착 조건에 대한 선택은 첫 번째 탈착으로 얻은 피크 면적Ad1과 두 번째 탈착으로 얻은 피크면적Ad2을 이용하여 하기 식 1과 같이 탈착 효율(desorption efficiency, %) 계산을 통해 평가하였다.Selection for the desorption conditions were evaluated through a first peak area obtained by the second desorption A d1 and two desorption efficiency as shown in the following formula 1 using the peak area A d2, obtained by the second desorption (desorption efficiency,%) calculated.

[식 1][Formula 1]

DesorptionDesorption efficiencyefficiency (%) = { (%) = { AA d1d1 /(/ ( AA d1d1 ++ AA d2d2 )}× 100)} X 100

탈착 효율이 100%가 될 때 흡착된 성분이 모두 탈착 되었다고 말할 수 있으며, 가장 이상적인 조건이 될 수 있다. 50 oC에서 30분간 흡착과정을 진행한 후, 150 oC ~ 250 oC범위에서 2분간의 탈착으로 탈착 온도에 대한 실험을 진행하였다. 그 결과 도 8에 도시된 바와 같이 알코올 종류의 4가지 성분들은 240 oC 및 2분에서 100% 탈착되었으며 재현성있는 탈착 효율을 나타내는 것을 확인할 수 있다. 그러나 6가지 성분들 중 trans-cinnamaldehyde는 240 oC와 250 oC에서 각각 96, 95%의 탈착 효율을 보이므로 약 4 ~ 5% 정도가 주사바늘 내부에 잔여하고 있음을 확인할 수 있다. 따라서 탈착 후 주사바늘을 250 oC에서 30분간 가열하여 주사바늘 내부에 존재하는 trans-cinnamaldehyde를 제거하여 사용하였다.When the desorption efficiency reaches 100%, it can be said that all of the adsorbed components are desorbed and can be the ideal conditions. After the adsorption process at 50 ° C for 30 minutes, the desorption temperature was tested by desorption at 150 ° C to 250 ° C for 2 minutes. As a result, as shown in FIG. 8, it was confirmed that the four components of the alcohol type were desorbed at 240 ° C. and 2 minutes to 100%, indicating reproducible desorption efficiency. However, trans- cinnamaldehyde among the six components showed 96 and 95% desorption efficiency at 240 ° C and 250 ° C, respectively, so that about 4 to 5% of the trans- cinnamaldehyde remained in the needle. Therefore, after the desorption, the injection needle was heated at 250 ° C for 30 minutes to remove the trans- cinnamaldehyde present in the needle.

또한 240 oC에서 0.5, 1, 2, 3 분으로 변화시켜가며 탈착 시간에 대한 영향을 실험한 결과를 도 9에 도시하였다. 탈착 온도에서와 마찬가지로 알코올 종류의 4가지 성분들은 2분에서 평형에 도달한 것을 볼 수 있다. 나머지 6가지 성분들도 2분에서 평형에 도달한 것을 볼 수 있으나 trans-cinnamaldehyde는 2분과 3분에서 96 %의 탈착 효율을 보였다. In addition, FIG. 9 shows the results of experiment on the desorption time while changing the temperature from 240 o C to 0.5, 1, 2, and 3 minutes. As at the desorption temperature, the four components of the alcohol species can be seen to reach equilibrium at two minutes. The remaining 6 components also reached equilibrium at 2 min, whereas trans- cinnamaldehyde showed 96% desorption efficiency at 2 min and 3 min.

따라서 최적의 탈착 온도와 탈착 시간은 각각 240 oC, 2분으로 선택하였다.
Therefore, the optimal desorption temperature and desorption time were selected to be 240 ° C and 2 minutes, respectively.

(6) (6) 실시예Example 5: 최적화 실험 후 분석 방법의 검증 5: Verification of analysis method after optimization experiment

최적화 실험 후, 고안된 HS-WC-INME방법이 정유의 아로마 성분들을 분석하기 위한 적절한 방법인지를 평가하기 위하여 검정곡선의 작성, 검출한계, 정량한계를 검증하였으며 그 결과를 하기 표 4에 요약하였다. 10가지 성분 모두 상관계수(r 2)가 0.98 ~ 0.99 이상의 값으로 우수한 직선성을 보였다. 검출한계와 정량한계는 7점의 농도 중 가장 낮은 농도의 용액으로부터 얻은 피크 면적의 표준편차(s)와 검정곡선의 기울기(m)를 이용하여 각각 3 s/m, 10 s/m으로 계산하였다. 실험을 통해 얻은 검출한계는 1.3 ng ~ 17.9 ng 범위였으며, 정량한계는 4.5 ng ~ 59.7 ng, 직선 범위는 4 ng ~ 450,000 ng이었다.
After the optimization experiment, the preparation of the calibration curve, the detection limit, and the quantitation limit were verified to evaluate whether the designed HS-WC-INME method is an appropriate method for analyzing the aroma components of the essential oil. Correlation coefficient ( r 2 ) of all 10 components showed excellent linearity with a value of 0.98 ~ 0.99. The detection limit and the quantitation limit were calculated as 3 s / m and 10 s / m , respectively, using the standard deviation ( s ) of the peak area and the slope of the calibration curve ( m ) from the lowest concentration of the 7 concentrations . The detection limits obtained from the experiments ranged from 1.3 ng to 17.9 ng. The limits of quantification ranged from 4.5 ng to 59.7 ng and the linear range ranged from 4 ng to 450,000 ng.

Calibration curveCalibration curve No.No. CompoundsCompounds EquationEquation rr 22 LODLOD LOQLOQ Dynamic range (ng)Dynamic range (ng) AA BenzylalcoholBenzylalcohol y = 19.6x + 4495.6 y = 19.6 x + 4495.6 0.9900.990 2.4 2.4 8.1 8.1 8~225,0008 ~ 225,000 BB LinaloolLinalool y = 89.0x + 4307.1 y = 89.0 x + 4307.1 0.9980.998 9.1 9.1 30.3 30.3 30~200,00030 ~ 200,000 CC β-Phenethylalcoholβ-Phenethylalcohol y = 19.7x - 1575.0 y = 19.7 x - 1575.0 0.9960.996 1.3 1.3 4.5 4.5 4~275,0004 ~ 275,000 DD EugenolEugenol y = 19.0x + 1373.2 y = 19.0 x + 1373.2 0.9920.992 8.9 8.9 29.7 29.7 30~175,00030 ~ 175,000 EE BenzaldehydeBenzaldehyde y = 26.2x + 781.1 y = 26.2 x + 781.1 0.9960.996 6.2 6.2 20.8 20.8 21~300,00021 ~ 300,000 FF trans-Cinnamaldehyde trans- cinnamaldehyde y = 31.2x + 2183.5 y = 31.2 x + 2183.5 0.9880.988 16.1 16.1 53.7 53.7 54~200,00054 ~ 200,000 GG BenzylacetateBenzylacetate y = 64.4x - 3744.9 y = 64.4 x - 3744.9 0.9990.999 8.2 8.2 27.2 27.2 27~200,00027 ~ 200,000 II LinalylacetateLinalylacetate y = 13.6x + 591.9 y = 13.6 x + 591.9 0.9940.994 17.9 17.9 59.7 59.7 60~325,00060 ~ 325,000 JJ (+)-Limonene(+) - Limonene y = 19.5x + 3318.7 y = 19.5 x + 3318.7 0.9950.995 7.6 7.6 25.325.3 25~450,00025 ~ 450,000 KK β-Caryophylleneβ-Caryophyllene y = 86.8x + 2696.0 y = 86.8 x + 2696.0 0.9990.999 1.8 1.8 5.9 5.9 6~325,0006 ~ 325,000

하기 표 5 및 표 6에 도시한 정확도는 표준물 첨가법을 통해 수행되었다. 0.5 μL의 유자 정유와 라벤더 정유, 장미 퍼퓸에 농도를 알고 있는 표준용액(절대량: 10 μg, 100 μg)을 첨가하여 얻은 회수율(recovery)을 통해 나타내었으며, 10 μg을 첨가하였을 때는 95.6% ~ 111.8%, 100 μg을 첨가하였을 때는 89.7% ~ 101.7% 범위의 우수한 결과를 얻었다. 또한 정밀도는 intra assay (run to run)와 inter assay (needle to needle)로 진행하였으며, 유자 정유와 라벤더 정유의 주성분을 각각 총 10번 씩 측정하여 상대표준편차(RSD%)를 계산하였다. 실험 결과, 같은 주사바늘 사이에서의 intra assay (run to run)의 RSD% 값은 1.9% 이하의 매우 우수한 값을 얻었으며 5개의 서로 다른 주사바늘을 비교한 inter assay (needle to needle) 실험에서는 3.2% ~ 7.2%의 양호한 값을 보였다. The accuracy shown in the following Tables 5 and 6 was performed through the standard addition method. The recovery was obtained by adding 0.5 μL of citron essential oil, lavender essential oil and standard solution (absolute amount: 10 μg, 100 μg) known to the concentration of rose perfume. When 10 μg was added, it was 95.6% ~ 111.8% % And 100 μg, respectively, the results were excellent in the range of 89.7% ~ 101.7%. The relative standard deviation (RSD%) was calculated by measuring intraperitoneal (run to run) and inter assay (needle to needle) precision of the essential components of citron essential oil and lavender essential oil, respectively. As a result, the RSD% value of the intra-assay (run to run) between the same injection needles was 1.9% or less. In the inter assay (needle to needle) experiment comparing 5 different injection needles, 3.2 % To 7.2%.

Recovery % (mean ± RSD%, n=3)Recovery% (mean ± RSD%, n = 3) SampleSample CompoundsCompounds 10 μg spiked (lower level)10 μg spiked (lower level) 100 μg spiked (upper level)100 μg spiked (upper level) YuzaYuza LinaloolLinalool 101.9 ± 6.7101.9 ± 6.7 101.7 ± 6.5101.7 ± 6.5   (+)-Limonene(+) - Limonene 111.8 ± 9.9111.8 ± 9.9 98.7 ± 1.098.7 ± 1.0 LavenderLavender Linalyl acetateLinalyl acetate 107.4 ± 9.1107.4 ± 9.1 89.7 ± 8.589.7 ± 8.5 RoseRose β-Phenethylalcoholβ-Phenethylalcohol 95.6 ± 2.695.6 ± 2.6 98.6 ± 3.598.6 ± 3.5

Reproducibility % (RSD%, n=10)Reproducibility% (RSD%, n = 10) SampleSample CompoundsCompounds Intraassay
(run to run, n=10)
Intraassay
(run to run, n = 10)
Interassay
(needletoneedle, 5 needles x 10 measurements)
Interassay
(needletoneedle, 5 needles x 10 measurements)
YuzaYuza LinaloolLinalool 1.91.9 3.23.2   (+)-Limonene(+) - Limonene 1.91.9 4.14.1 LavenderLavender LinaloolLinalool 0.90.9 3.93.9 Linalyl acetateLinalyl acetate 0.80.8 7.27.2

휘발성 아로마 성분 분석에 이용된 기존의 분석 방법들 중, PDMS를 흡착제로 이용한 HS-SPME(red) 및 HS-INME방법과 함께 WC-INME방법의 추출 효율을 비교하였다. 각 방법에 대해 최적화된 조건에서 0.5 μL 유자 정유를 분석하였으며, 그 중 특징적인 8가지 성분에 대한 피크 면적과 농축계수(enrichment factor, EF)를 계산하여 비교하였다. 농축계수는 시료상층부로 휘발된 분석 성분들이 전처리 과정을 통해 흡착제에 농축된 정도를 나타내는 지표이다. 농축계수는 다음 식과 같이 계산할 수 있으며, 그 값이 클수록 추출 효율이 크다. Among the existing analytical methods used for the analysis of volatile aroma components, the extraction efficiencies of the HS-SPME (red) and HS-INME methods using PDMS as adsorbents and the WC-INME method were compared. For each method, 0.5 μL citron essential oil was analyzed under optimized conditions, and the peak area and enrichment factor ( EF ) for the characteristic eight components were calculated and compared. The concentration factor is an indicator of the degree to which the analytical components volatilized into the upper layer of the sample are concentrated in the adsorbent through the pretreatment process. The concentration factor can be calculated by the following equation, and the larger the value, the greater the extraction efficiency.

EF = A1/A0 EF = A 1 / A 0

여기서 A1은 WC-INME, HS-SPME, HS-INME방법을 통해 얻은 분석 성분들의 피크 면적이며, A0는 static HS방법으로 얻은 분석 성분들의 피크 면적이다. Static HS방법을 위해 10 mL의 Hamilton 1010RN 기체 밀폐형 주사기(Supelco)를 사용하여 0.5 μL 유자 정유가 포화된 바이알의 시료상층부로부터 분석 성분들을 채집하여 GC 주입구에 주입하여 분석하였다. 계산된 농축계수는 하기 표 7에 나타내었으며, GC-FID로부터 얻은 절대적 피크 면적을 통한 비교 결과는 도 10에 도시하였다.Where A 1 is the peak area of the analytical components obtained by the WC-INME, HS-SPME, and HS-INME methods, and A 0 is the peak area of the analytical components obtained by the static HS method. For the Static HS method, 10 mL of Hamilton 1010RN gas-tight syringe (Supelco) was used to collect the analytical components from the upper layer of the vials saturated with 0.5 μL citron essential oil and injected into the GC inlet. The calculated enrichment factors are shown in Table 7 below, and the comparison results through the absolute peak area obtained from GC-FID are shown in FIG.

Peak
No.
Peak
No.
ComponentsComponents Enrichmentfactor (EF)
(mean ± RSD%, n=3)
Enrichmentfactor ( EF )
(mean ± RSD%, n = 3)
HS-WC-INMEHS-WC-INME HS-INME
(PDMS, tunnel)
HS-INME
(PDMS, tunnel)
HS-SPME
(PDMS, red)
HS-SPME
(PDMS, red)
AA α-Pineneα-Pinene 4.62 ± 5.164.62 ± 5.16 3.53 ± 2.683.53 ± 2.68 2.09 ± 2.152.09 ± 2.15 BB α-Phellandreneα-Phellandrene 6.41 ± 6.086.41 + - 6.08 6.23 ± 3.646.23 ± 3.64 6.24 ± 0.616.24 ± 0.61 CC (+)-Limonene(+) - Limonene 38.91 ± 0.9938.91 + - 0.99 37.72 ± 2.0337.72 ± 2.03 33.99 ± 3.0133.99 + - 3.01 DD p-Cymenep-Cymene 46.01 ± 1.6246.01 + - 1.62 40.18 ± 3.5040.18 + - 3.50 37.04 ± 2.6037.04 + - 2.60 EE γ-Terpineneγ-Terpinene 8.72 ± 1.368.72 ± 1.36 7.82 ± 1.237.82 + - 1.23 7.40 ± 2.597.40 ± 2.59 FF TerpinoleneTerpinolene 12.18 ± 4.5512.18 + - 4.55 12.21 ± 0.8312.21 + - 0.83 10.07 ± 1.6010.07 ± 1.60 GG LinaloolLinalool 57.47 ± 3.7857.47 ± 3.78 44.67 ± 3.6644.67 ± 3.66 54.45 ± 8.1354.45 + - 8.13 HH β-Caryophylleneβ-Caryophyllene 24.39 ± 2.1724.39 ± 2.17 20.08 ± 9.5620.08 + - 9.56 35.84 ±1.4235.84 + 1.42

α-Pinene, α-phellandrene, (+)-limonene, ρ-cymene, γ-terpinene, terpinolene은 WC-INME방법에서 HS-INME, HS-SPME방법과 비슷하거나 약간 더 높은 추출 효율을 나타내었다. 이는 PEG로 인해 휘발성 아로마 성분들을 흡착할 수 있는 다공성이 증가하여 sample capicity가 증가하였기 때문인 것으로 보여진다. linalool은 HS-INME방법보다 HS-SPME방법을 이용했을 때 더 큰 추출 효율을 나타내었으며, 이 두 방법보다 WC-INME에서 가장 큰 추출 효율을 보였다. 이는 PDMS로만 구성된 HS-INME, HS-SPME방법보다 PDMS보다 극성이 큰 PEG가 혼합되어 극성물질들을 더 효과적으로 추출할 수 있는 WC-INME방법에서 극성이 큰 linalool이 가장 효율적으로 추출된다는 것을 의미한다. β-Caryophyllene은 HS-SPME방법에서 가장 높은 추출 효율을 보여주었는데, 이는 WC-INME방법이 왕복운동형 피스톤에 의한 수동적 흡착과정을 요하기 때문에 비교적 무겁고 끓는점이 높은 성분보다는 가볍고 끓는점이 낮은 성분에 대해 효과적인 추출 방법이라 여겨지기 때문이다. 따라서 분자량이 크고 octanol/water 분배상수 (P o /w) 값이 크며 끓는점이 높은 β-caryophyllene은 HS-SPME에서 가장 잘 추출되는 것으로 보인다.
α-pinene, α-phellandrene, (+) - limonene, ρ-cymene, γ-terpinene and terpinolene showed similar or slightly higher extraction efficiencies than the HS-INME and HS-SPME methods in the WC-INME method. This is due to the increase of the sample capicity due to the increase of the porosity that can adsorb volatile aroma components due to PEG. linalool showed higher extraction efficiency than HS-INME method using HS-SPME method and showed the highest extraction efficiency in WC-INME than both methods. This means that linalool with high polarity is extracted most efficiently in the WC-INME method which can extract polar substances more effectively by mixing PEG with polarity higher than PDMS than HS-INME, HS-SPME method consisting of PDMS only. β-Caryophyllene showed the highest extraction efficiency in the HS-SPME method because the WC-INME method requires a passive adsorption process by a reciprocating piston, so that it is relatively light and has a boiling point lower than the boiling point. This is considered to be an effective extraction method. Therefore, β-caryophyllene with a high molecular weight and high octanol / water partition coefficient ( P o / w ) and a high boiling point seems to be the best extracted from HS-SPME.

본 발명의 WC-INME 방법을 이용하여 유자, 라벤더 에센셜 오일 및 장미 퍼퓸 시료를 분석한 실시예 2의 GC-FID 분석 결과는 도 11과 같다. 종래 기술인 HS-INME, HS-SPME 방법을 이용하여 유자 시료를 분석한 비교예 1과 2의 GC-FID 분석 결과는 하기 표 8과 같다.The results of the GC-FID analysis of Example 2 in which citron, lavender essential oil and rose perfume samples were analyzed using the WC-INME method of the present invention are shown in FIG. The GC-FID analysis results of Comparative Examples 1 and 2 in which citron samples were analyzed using the HS-INME and HS-SPME methods of the prior art are shown in Table 8 below.

Peak
No.
Peak
No.
Compounds       Compounds Normalized peak area %
(mean ± RSD%, n=3)
Normalized peak area%
(mean ± RSD%, n = 3)
Yuza oilYuza oil Lavender oilLavender oil Rose perfumeRose perfume 1One ThujeneThujene 0.11 ± 0.640.11 + - 0.64 -- -- 22 α-Pineneα-Pinene 0.38 ± 1.160.38 ± 1.16 trtr -- 33 β-Pineneβ-Pinene 0.11 ± 5.310.11 ± 5.31 trtr -- 44 β-Myrceneβ-Myrcene 1.54 ± 5.221.54 + - 5.22 13.85 ± 2.5913.85 ± 2.59 -- 55 3-Octanone3-Octanone -- 0.41 ± 18.080.41 ± 18.08 -- 66 BenzaldehydeBenzaldehyde -- -- 0.54 ± 5.360.54 + - 5.36 77 α-Phellandreneα-Phellandrene 0.30 ± 1.620.30 ± 1.62 -- -- 88 α-Terpineneα-Terpinene 0.16 ± 4.780.16 + - 4.78 -- -- 99 β-Phellandreneβ-Phellandrene -- 7.27 ± 6.677.27 ± 6.67 -- 1010 (+)-Limonene(+) - Limonene 72.87 ± 1.4872.87 ± 1.48 -- 0.44 ± 0.430.44 0.43 1111 p-Cymenep-Cymene 2.95 ± 4.502.95 + - 4.50 -- -- 1212 CineolCineol -- 11.71 ± 7.9211.71 + - 7.92 -- 1313 OcimeneOcimene 0.32 ± 3.070.32 ± 3.07 -- -- 1414 γ-Terpineneγ-Terpinene 9.24 ± 4.529.24 + - 4.52 -- -- 1515 TerpinoleneTerpinolene 0.61 ± 4.760.61 + - 4.76 -- -- 1616 LinaloolLinalool 3.54 ± 8.403.54 + - 8.40 25.57 ± 1.5725.57 ± 1.57 1.31 ± 3.911.31 ± 3.91 1717 β-Phenethyl alcoholβ-Phenethyl alcohol -- -- 22.92 ± 7.8422.92 + - 7.84 1818 CamphorCamphor -- 0.34 ± 3.350.34 3.35 -- 1919 OctanalOctanal 0.03 ± 2.690.03 ± 2.69 -- -- 2020 LavandulolLavandulol -- 0.51 ± 7.120.51 ± 7.12 -- 2121 Terpinene-4-olTerpinene-4-ol -- 1.09 ± 0.571.09 ± 0.57 -- 2222 BorneolBorneol -- 0.90 ± 0.420.90 + 0.42 -- 2323 α-Terpineolα-Terpineol 0.37 ± 11.800.37 + - 11.80 0.19 ± 10.210.19 ± 10.21 -- 2424 CitronellolCitronellol -- -- 17.95 ± 9.5417.95 + - 9.54 2525 NerolNerol -- -- 3.80 ± 8.843.80 ± 8.84 2626 Linalyl acetateLinalyl acetate -- 12.05 ± 10.4112.05 ± 10.41 -- 2727 GeraniolGeraniol -- -- 3.17 ± 4.303.17 ± 4.30 2828 Lavandulyl acetateLavandulyl acetate -- 4.25 ± 4.504.25 + 4.50 -- 2929 ThymolThymol 0.36 ± 5.800.36 5.80 -- -- 3030 Citronellyl acetateCitronellyl acetate -- -- 1.66 ± 4.131.66 ± 4.13 3131 Neryl acetateNeryl acetate -- -- 4.64 ± 10.114.64 ± 10.11 3232 BergamoteneBergamotene 0.34 ± 3.740.34 + - 3.74 -- -- 3333 β-Caryophylleneβ-Caryophyllene 2.39 ± 13.282.39 ± 13.28 5.67 ± 3.315.67 ± 3.31 -- 3434 α-Caryophyllenealpha-caryophyllene 0.80 ± 8.660.80 + - 8.66 -- -- 3535 FarneseneFarnesene 0.39 ± 16.770.39 + - 16.77 -- -- 3636 α-Isomethyl iononeα-Isomethyl ionone -- -- 7.93 ± 3.427.93 ± 3.42 * tr : trace <0.1 %* tr: trace <0.1% * -: not detection* -: not detection

상기 결과에서와 같이 종래방식으로 추출하는 경우, 통상적으로 사용되는 유기 용매를 전혀 사용하지 않고 별도의 열탈착 설비가 없이도 간편하게 추출효율이 더 뛰어난 분석이 가능하였다. 따라서 WC-INME은 대부분의 휘발성 아로마 성분들을 분석하는데 효과적이며, 특히 극성이 큰 성분들을 효과적으로 추출할 수 있다는 것을 확인할 수 있었다.
As is apparent from the above results, in the case of extracting by conventional methods, it is possible to easily perform extraction with excellent extraction efficiency without using any commonly used organic solvent and without a separate thermal desorption facility. Therefore, it was confirmed that WC-INME is effective for analyzing most volatile aroma components, and particularly, it is possible to effectively extract polar components.

Claims (14)

(i) 폴리에틸렌글리콜 및 폴리디메틸실록산(PEG-PDMS) 베이스 에이(A)와 폴리디메틸실록산 경화제 비(B)를 혼합한 후 금속선, 내열성 섬유, 미세 실리카 막대또는 나노 튜브에 코팅하여 경화시키는 단계; 및
(ii) 상기 코팅된 금속선, 섬유 또는 미세 실리카 막대를 스테인리스 스틸 주사바늘 내부에 삽입 장착하는 단계; 추출용 주사바늘을 제작하는 단계;
를 포함하는 휘발성 성분을 분석하기 위한 추출용 주사 바늘을 제작하는 방법.
(i) mixing polyethyleneglycol and polydimethylsiloxane (PEG-PDMS) base resin (A) with polydimethylsiloxane curing agent ratio (B) and coating the metal wire, heat resistant fiber, fine silica rod or nanotube to cure; And
(ii) inserting the coated metal wire, fiber or fine silica rod into a stainless steel injection needle; Preparing an extraction needle;
Wherein the method comprises the steps of:
청구항 1에 있어서, 상기 폴리에틸렌글리콜 및 폴리디메틸실록산 베이스 경화제 비(B)의 무게 조성비는 1 - 10 : 1 - 10 : 1 - 10인 것을 특징으로 하는 주사 바늘 제작 방법.
The method of claim 1, wherein the weight ratio of the polyethylene glycol and the polydimethylsiloxane base curing agent (B) is 1 - 10: 1 - 10: 1 - 10.
청구항 1에 있어서, 상기 금속선은 스테인리스 또는 니크롬 금속선인 것을 특징으로 하는 주사 바늘 제작 방법.
The method of claim 1, wherein the metal wire is a stainless steel or a nichrome wire.
청구항 1에 있어서, 상기 단계 (i)에서의 코팅된 폴리에틸렌글리콜-폴리디메틸실록산(PEG-PDMS) 두께는 10-50 ㎛, 코팅 길이는 5 - 30 mm인 것을 특징으로 하는 주사 바늘 제작 방법.
The method according to claim 1, wherein the thickness of the coated polyethylene glycol-polydimethylsiloxane (PEG-PDMS) in step (i) is 10-50 μm and the coating length is 5-30 mm.
청구항 1에 있어서, 상기 금속선, 내열성 섬유 또는 미세 실리카 막대에 코팅된 폴리에틸렌글리콜-폴리디메틸실록산(PEG-PDMS)에 폴리아크릴산, 폴리아크릴레이트, poly(phenyl dimethyl siloxane), cyano propyl phenyl dimethyl polysiloxane, poly(styrene divinyl benzene), 테낙스 티에이(Tenax TA), 테낙스 쥐알(Tenax GR), 포라팍 엔(Porapak N), 활성탄, 그라파이트, 그라파이트 카본 블랙, 카본 나노 파티클, 그라펜(graphene), florisil, 제올라이트, 실리카 젤, 용융실리카, 알루미나, 금속촉매, 고분자 중합체, octadecyl silane (ODS), monolithic material, molecularly imprinted polymer, polyurethane, cellulose, 이온교환체, 계면활성제, 시클로덱스트린, 효소와 기질 및 항원과 항체로 이루어진 군에서 선택된 단독 또는 2 이상의 혼합물이 흡착물질로 추가적으로 첨가되는 것을 특징으로 하는 특징으로 하는 주사 바늘 제작 방법.
The method of claim 1, wherein the polyethyleneglycol-polydimethylsiloxane (PEG-PDMS) coated on the metal wire, the heat resistant fiber, or the fine silica rod is coated with polyacrylic acid, polyacrylate, poly (phenyl dimethyl siloxane), cyano propylphenyl dimethyl polysiloxane, poly Tenax TA, Tenax GR, Porapak N, activated carbon, graphite, graphite carbon black, carbon nanoparticles, graphene, florisil, Polymer, Polymers, Octadecyl silane (ODS), Monolithic material, Molecularly imprinted polymer, Polyurethane, Cellulose, Ion Exchanger, Surfactant, Cyclodextrin, Enzymes and Substrates, Antigens and Antibodies Characterized in that a single or a mixture of two or more selected from the group consisting of Way.
청구항 1 내지 청구항 5 중 어느 한 항의 휘발성 성분을 분석하기 위한 추출용 주사 바늘 제작 방법에 의해 제작된 주사바늘을 장탈착형 기체 밀폐 주사기통 및 주사기 밀대에 연결시킨 후 시료가 담긴 바이알을 밀폐시켜 시료를 금속선, 내열성 섬유, 미세 실리카 막대 또는 나노튜브 상에 코팅된 폴리에틸렌글리콜-폴리디메틸실록산(PEG-PDMS)에 흡착시키는 단계를 포함하는 분석하려는 시료의 극미량 추출 방법.
The injector needle manufactured by the extraction needle making method for analyzing the volatile component according to any one of claims 1 to 5 is connected to the long-term removable gas tight syringe barrel and the syringe barrel, the vial containing the sample is sealed, To a polyethylene glycol-polydimethylsiloxane (PEG-PDMS) coated on metal wires, heat resistant fibers, fine silica rods or nanotubes.
청구항 6에 있어서, 상기 시료는 (-)-acetoxy-p-menthane, (+)-aromadendrene, 4-allyl veratrole, 4-allyl-1,2-dimethoxybenzene, 4-allylanisole, allicin, alliin, 4-aminobenzoic acid, acetaldehyde, acetic acid 2-ethylhexyl ester, acetic acid 2-phenylethyl ester, acetic acid benzyl ester, acetic acid isoamyl ester, acetic acid n-hexyl ester, acetoacetic acid n-butyl ester, acetophenone, anhydrous alcohol, allyl methyl sulfide, allyl n-propyl sulfide, allyl sulfide, anisaldehyde , anhydrous anisole, anethol, isoamyl alcohol, isoamyl amine, trans-anethole, anthracene, 2,3-benzanthracene, benzaldehyde, benzoic acid cis-3-hexenyl ester, benzoic acid ethyl ester, benzoic acid methyl ester, benzoic acid, benzyl acetate, benzyl alcohol, benzyl methyl ether, benzene, bergamotene, borneol, bornyl acetate, butyl acetate, iso-butanal, iso-butylaldehyde, iso-butylamine, n-butyl alcohol, n-butyric acid ethyl ester, n-butyraldehyde, n-butyric acid, n-butyric acid amyl ester, n-butanol, p-bromobenzyl bromide, p-bromophenacyl bromide, bromocresol green, (-)-α-bisabolol, (R)-(-)-carvone, (R)-(-)-citramalic acid, (S)-(+)-carvone, (-)-α-cubebene, (+)-3-carene, (+)-8(15)-cedren-9-ol, (+)-camphor, (±)-camphor, 1,3,5,7-cyclooctatetraene, 1,3,5-cycloheptatriene, 2-carene, 2-cyclohexane-1-one, cadaverine, caryophylleneoxide, choline, cineole, cinnamaldehyde, cinnamic acid benzyl ester, cinnamic acid cinnamyl ester, cinnamyl acetate, cinnamyl alcohol, citral, citronellol, citronellyl acetate, coumarin, crotonaldehyde, cuminaldehyde, curcumin, cyclohexane, cyclohexene, cyclohexanol, cyperene, D,L-camphene, n-caproic acid ethyl ester, n-capric acid isopropyl ester, n-capric acid methyl ester, n-caprylic acid ethyl ester, n-capronaldehyde, n-caprylaldehyde, n-caprylic acid isopropyl ester, trans-cinnamaldehyde, trans-cinnamic acid, α-caryophyllene, α-cyclodextrin, α-caryophyllene, β-caryophyllene, β-cyclodextrin, γ-cyclodextrin, o-cymene, p-cymene, carbon tetrachloride, chloroform, 1,3-dithiane, 1,2-dithiolane, 1,3-dithiolane, 1,4-Diaminobutane, 1,5-Decadiyne, 2,5-dimethyl pyrazine, 2,5-dimethyl thiophene, 2,6-dimethoxy toluene, 2,6-di-tert-butyl-p-cresol, 2-dodecene-1-ylsuccinic anhydride, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, dimethyl disulfide, dimethylfuran(DMF), diethyl phthalate, dimethyl phthalate, di-n-propyl disulfide, 2,7-dichlorofluoresceine, n-decane, 2-decane, decanal, n-docosane, n-dodecane, trans-2,4-decadienal, 2-ethyl-1-hexanol, enanthic acid-ethyl ester, ethyl 2-methylbutyrate, ethyl alcohol, ethyl vinyl sulfide, ethylbenzene, ethylene sulfide, ethylene chlorohydrine, eugenol, eugenol acetate, eugenol methylether, n-eicosane, o-ethoxy benzaldehyde, p-ethoxy benzaldehyde, p-ethylbenzaldehyde, ethyl vanillin, fatty acid methyl esters, farnesene, (-)-fenchone, (+)-fenchone, farnesol, formic acid isoamyl ester, fusel oil, furfural, furfuryl alcohol, fluorobenzene, geranial, geraniol, geranyl acetate, geranyl acetone, guaiacol, guaiazulene, n-heneicosane, 1-hexanol, 2-hexyn-1-ol, cis-3-hexene-1-ol, cis-3-hexene-1-ol, cis-3-hexyl acetate, hexanal, n-heptadecane, n-heptyl aldehyde, hepenal, n-hexadecane, 1-hexadecanol, indole, α-Ionone, β-Ionone, cis-jasmone, lavandulol, lavandulyl acetate, cis-lanceol, (-)-limonene, (-)-linalool, (+)-linalool, (+)-limonene, (±)-limonene, (±)-linalool, (1R)-(+)-trans-isolimonene, laurinaldohyde, linalool, linalool oxide, linalool oxide, longifolene, (-)-menthol, (-)-p-mentha-1,5-diene, (+)-isomenthol, (+)-menthofuran, (+)-menthol, 2-methyl pyrazine, 2-methyl-3-pentanol, 4-methoxycinamic acid, 5-methyl-2-furfural, 6-methyl-5-heptene-2-one, D,L-menthol, menthone, methyl enanthate, methyl n-caproate, methyl n-caprylate, methyl pelargonate, methyl phenylacetate, methyltrimethoxysilane, methyl propyl disulfide, methyl 2-propynyl sulfide, α-iso-methylionone, β-mycrene, (+)-neomenthol, 1-Naphthylamine, narigin, naphthalene, nerol, neryl acetate, neoclovene, nicotinic acid methyl ester, n-nonadecane, n-nonane, nonanal, n-nonylaldehyde , 2-nonanone, n-octane, n-octanal, 1-octanol, n-octadecane, 3-octanone, n-octanoic acid, n-octanoic acid ethyl ester, ocimene, palmitic acid methyl ester, (+)-pulegone, (1R)-(+)-α-pinene, (1S)-(-)-α-pinene, β-pinene, 1-pentanol, 2-pentadecanone, 1-pentadecanol, 2-phenyl-2-propanol, 2-phenylethyl alcohol, 2-phenylethyl alcohol(β), sec-phenethyl alcohol, 2-phenyl-ethylamine, 2-propanol, 1-(1-propenylthio)propane, propenyl 1-propynyl sulfide, 3-phenylpropionaldehyde, iso-phrone, n-propyl alcohol, o-phthalaldehyde, pelargonic acid ethyl ester, penta fluorobenzyl bromide, pentacene, n-pentadecane, phenyl ether, phenyl acetaldehyde, phenyl acetaonitrile, phenylacetic acid ethyl ester, phthalic acid, Propionaldehyde, propylene sulfide, (-)-α-phellandrene, β-phellandrene, phenol, poly(ethylene glycol), reserpine, salicylic acid, stearic acid, succinic acid, sabinene hydrate, safrole, salicylic acid methyl ester, α-santalene, (Z)-α-santalol, (Z)-β-santalol, epi-β-santalol, (E)-β-santalol, santolina triene, styrene, sec-phenethyl-alcohol, sesamol, succinic acid diethyl ester, (-)-terpinen-4-ol, (±)-terpinen-4-ol, (+)-δ-tocopherol, 1-tetradecanol, 2-tridecanone, n-tricosane, triirane, iso-thymol, N,o-bis-TMS-trifluoroacetamide, n-tetradecane, n-tridecane, terpinolene, terpinyl acetate, toluene, thujone, thujene, thymol, thymoquinone, tyramine, α-terpineol, γ-terpinene, 2-undecanone, n-undecane, uraine, (1S)-cis-verbenol, iso-valeric acid ethyl ester, valeric acid, n-valeraldehyde, (+)-valencene, vanillin, vanilic acid, verbenone, 2-vinyl-1,3-dithiine, 3-vinyl-1,2-dithiocyclohex-5-ene, (m)-xylene, (o)-xylene 또는 (p)-xylene인 것을 특징으로 하는 분석하려는 시료의 극미량 추출 방법.
7. The method of claim 6, wherein the sample is selected from the group consisting of (-) - acetoxy-p-menthane, (+) - aromadendrene, 4-allyl veratrole, 4-allyl-1,2-dimethoxybenzene, 4-allylanisole, allicin, acid, acetaldehyde, acetic acid 2-ethylhexyl ester, acetic acid 2-phenylethyl ester, acetic acid benzyl ester, acetic acid isoamyl ester, acetic acid n-hexyl ester, acetoacetic acid n-butyl ester, acetophenone, anhydrous alcohol, allyl methyl sulfide , allyl n-propyl sulfide, allyl sulfide, anisaldehyde, anhydrous anisole, anethol, isoamyl alcohol, isoamyl amine, trans-anethole, anthracene, 2,3-benzanthracene, benzaldehyde, benzoic acid cis-3-hexenyl ester, benzoic acid ethyl ester , benzoic acid methyl ester, benzoic acid , benzyl acetate, benzyl alcohol, benzyl methyl ether, benzene, bergamotene, borneol, bornyl acetate, butyl acetate, iso -butanal, iso- butylaldehyde, iso -butylamine, n-butyl alcohol, n- butyric acid ethyl ester, n-butyraldehyde, n-butyric acid, n-butyric acid amyl ester, n-butanol, (R) - (-) - carvone, (R) - (-) - citramalic acid, (S) - (+) - carvone, bromobenzene bromide, bromocresol green, (+) - camphor, (+) - 3-carene, (+) - 8 (15) -caten-9-ol, (+) - camphor, -cyclooctatetraene, 1,3,5-cycloheptatriene, 2-carene, 2-cyclohexane-1-one, cadaverine, caryophylleneoxide, choline, cineole, cinnamaldehyde, cinnamic acid benzyl ester, cinnamic acid cinnamyl ester, cinnamyl acetate, , citronellol, citronellyl acetate, coumarin, crotonaldehyde, cuminaldehyde, curcumin, cyclohexane, cyclohexene, cyclohexanol, cyperene, D-L-camphene, n-caproic acid ethyl ester, n-capric acid isopropyl ester, -caprylaldehyde, n-caprylaldehyde, n-caprylic acid isopropyl ester, trans- cinnamaldehyde, trans- cinnamic acid, a-caryophyllene,? -cyclodextrin,? -caryophyllene,? -cyclodextrin, gamma -cyclodextrin, o-cymene, p-cymene, carbon tetrachloride, chlor oform, 1,3-dithiane, 1,2-dithiolane, 1,3-dithiolane, 1,4-Diaminobutane, 1,5-Decadienne, 2,5-dimethyl pyrazine, 2,5-dimethyl thiophene, 2,6- dimethoxy toluene, 2,6-di-tert-butyl-p-cresol, 2-dodecene-1-ylsuccinic anhydride, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, dimethyl disulfide, dimethylfuran n-propyl disulfide, 2,7-dichlorofluorescein, n-decane, 2-decane, decanal, n-docosane, n-dodecane, trans-2,4-decadienal, 2-ethyl- ethoxy benzaldehyde, p-ethylbenzaldehyde, ethyl vanillin, ethyl benzene sulphate, ethyl benzene sulphate, ethyl benzene sulphate, , folic acid, fenchone, fenchone, farnesol, formic acid isoamyl ester, fusel oil, furfural, furfuryl alcohol, fluorobenzene, geranial, geraniol, geranyl acetate, geranyl acetone 1-ol, cis-3-hexene-1-ol, cis-3-hexyl acetate, hexanal, n-hexan-1-ol, cis-lanceol, cis-lanthanole, l-hexadecanol, indole, a-loneone, b-loneone, cis-jasmone, lavandulol, lavandulyl acetate, cis- linalool, (+) - linalool, (+) - limonene, (±) -limonene, (±) -linalool, (+) - menthol, (+) - menthol, 2-methyl pyrazine, 2-methyl-3- pentanol, 4-methoxycinamic acid, 5-methyl-2-furfural, 6-methyl-5-heptene-2-one, D, L-menthol, menthone, methyl enanthate, methyl n-caproate, methyl n-caprylate, methyl pelargonate , methyl phenylacetate, methyltrimethoxysilane, methyl propyl disulfide, methyl 2-propynyl sulfide, α-iso-methylionone, β-mycrene, (+) - neomenthol, 1-naphthylamine, narigin, naphthalene, nerol, neryl acetate, neoclovene, nicotinic aci d-methyl ester, n-nonadecane, n-nonane, nonanal, n-nonylaldehyde, 2-nonanone, n-octane, n-octanal, 1-octanol, n-octadecane, (+) - α-pinene, (1S) - (-) - α-pinene, β-pinene, 1-pentanol, 2 2-phenylethyl alcohol, 2-phenylethyl alcohol (β), sec-phenethyl alcohol, 2-phenylethylamine, 2-propanol, 1- (1-propenylthio) propane, propenyl 1-propynyl sulfide, 3-phenylpropionaldehyde, iso-phrone, n-propyl alcohol, o-phthalaldehyde, pelargonic acid ethyl ester, penta fluorobenzyl bromide, pentacene, n-pentadecane, phenyl ether, phenyl acetaldehyde, phenyl acetaonitrile, phenylacetic (ethylene glycol), reserpine, salicylic acid, stearic acid, succinic acid, sabinene hydrate, safrole, salicylic acid, propionic acid, propionaldehyde, propylene sulfide, methyl ester, α-pentanol e, (Z) -α-santalol, (Z) -β-pentanol, epi-β-cantalol, (-) - terpinen-4-ol, (±) -terpinen-4-ol, (+) - δ-tocopherol, 1-tetradecanol, 2-tridecanone, n-tricosane, n-tetradecane, n-tridecane, terpinolene, terpinyl acetate, toluene, thujone, thujene, thymol, thymoquinone, tyramine, α-terpineol, γ-terpinene, 2-undecanone, n-undecane, uraine 1S) -cis-verbenol, iso- valeric acid ethyl ester, valeric acid, n-valeraldehyde, (+) - valencene, vanillin, vanilic acid, verbenone, 2-vinyl-1,3-dithiine, 3-vinyl-1, 2-dithiocyclohex-5-ene, (m) -xylene, (o) -xylene or (p) -xylene.
청구항 6에 있어서, 상기 단계에서 분석 성분을 추출 및 흡착을 촉진시키기 위해 왕복 운동형 피스톤을 이용하여 밀대를 상하로 움직이는 것을 통해 압축 및 흡착시키는 것을 특징으로 하는 분석하려는 시료의 극미량 추출 방법.
The method according to claim 6, wherein the step of compressing and adsorbing the sample is performed by moving the stirrer up and down using a reciprocating piston to accelerate extraction and adsorption of analytical components.
청구항 6에 있어서, 상기 단계에서 흡착 단계시 흡착 온도를 30 - 70℃에서 수행하는 것을 특징으로 하는 분석하려는 시료의 극미량 추출 방법.
[7] The method according to claim 6, wherein the adsorption temperature during the adsorption step is 30 to 70 [deg.] C.
청구항 6에 있어서, 상기 흡착 단계시 흡착 시간을 5 - 60분 범위에서 수행하는 것을 특징으로 하는 분석하려는 시료의 극미량 추출 방법.
The method according to claim 6, wherein the adsorption time is in the range of 5 to 60 minutes.
청구항 6에 있어서, 상기 시료를 흡착시켜 추출하는 단계 이후 상기 시료 성분을 분석기기에 주입하기 위해 흡착된 추출 시료를 탈착시키는 단계를 추가적으로 포함하는 것을 특징으로 하는 시료의 극미량 추출 방법.
The method according to claim 6, further comprising the step of desorbing the adsorbed extracted sample to inject the sample component into the analyzer after the step of adsorbing and extracting the sample.
청구항 11에 있어서, 상기 흡착된 시료를 탈착시키는 단계에서 탈착 온도는 150 - 300℃, 탈착 시간을 1 - 30분 범위에서 수행하는 것을 특징으로 하는 시료의 극미량 추출 방법.
[12] The method according to claim 11, wherein the adsorbed sample is desorbed at a desorption temperature of 150 to 300 ° C. and a desorption time of 1 to 30 minutes.
청구항 6 내지 12 중 어느 한 항의 시료의 극미량 추출 방법을 이용하여 추출한 시료를 분석기기에 넣고 시료를 분석하는 단계를 포함하는 시료의 분석 방법.
A method for analyzing a sample, comprising the step of inserting a sample extracted using the method of extracting a trace of the sample of any one of claims 6 to 12 into an analyzer and analyzing the sample.
청구항 1 내지 5 중 어느 한 항의 주사 바늘 제작 방법을 통해 제작된 시료의 극미량 추출용 주사바늘.An injection needle for extracting a trace amount of a sample prepared by the method for producing an injection needle according to any one of claims 1 to 5.
KR1020120110258A 2012-10-04 2012-10-04 Fabrication Method of Extracting needle inserted a Metal Wire Coated with Adsorbent and In-Needle Micro-Extraction Method Using thereof KR101430638B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120110258A KR101430638B1 (en) 2012-10-04 2012-10-04 Fabrication Method of Extracting needle inserted a Metal Wire Coated with Adsorbent and In-Needle Micro-Extraction Method Using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120110258A KR101430638B1 (en) 2012-10-04 2012-10-04 Fabrication Method of Extracting needle inserted a Metal Wire Coated with Adsorbent and In-Needle Micro-Extraction Method Using thereof

Publications (2)

Publication Number Publication Date
KR20140044194A KR20140044194A (en) 2014-04-14
KR101430638B1 true KR101430638B1 (en) 2014-08-18

Family

ID=50652313

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120110258A KR101430638B1 (en) 2012-10-04 2012-10-04 Fabrication Method of Extracting needle inserted a Metal Wire Coated with Adsorbent and In-Needle Micro-Extraction Method Using thereof

Country Status (1)

Country Link
KR (1) KR101430638B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651885B (en) * 2016-01-05 2017-12-26 河南省农业科学院农业质量标准与检测技术研究所 A kind of detection method that allicin standard items measure allicin content is replaced with saccharin sodium standard items
CN108414652B (en) * 2018-02-09 2021-06-25 中国农业科学院茶叶研究所 Method for detecting content of anthracene and anthraquinone and anthrone oxides thereof in multi-medium environment
KR20230168767A (en) * 2022-06-08 2023-12-15 한국화학연구원 System for concentrating and breaking through air pollutants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081239B2 (en) * 1990-04-02 2000-08-28 ポーリスジーン、ジャヌスズ・ビー Method and apparatus for solid-phase microextraction and desorption

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081239B2 (en) * 1990-04-02 2000-08-28 ポーリスジーン、ジャヌスズ・ビー Method and apparatus for solid-phase microextraction and desorption

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
비특허1 서울여자대학교 대학원 2012 *
비특허1 서울여자대학교 대학원 2012*
비특허2 MICROCHIMICA ACTA 2012 *
비특허2 MICROCHIMICA ACTA 2012*

Also Published As

Publication number Publication date
KR20140044194A (en) 2014-04-14

Similar Documents

Publication Publication Date Title
Soares da Silva Burato et al. Recent advances and trends in miniaturized sample preparation techniques
Kędziora et al. Extraction media used in needle trap devices—Progress in development and application
Trefz et al. Needle trap micro-extraction for VOC analysis: effects of packing materials and desorption parameters
Seethapathy et al. Applications of polydimethylsiloxane in analytical chemistry: A review
Jiang et al. Thin-film microextraction offers another geometry for solid-phase microextraction
Kędziora-Koch et al. Needle-based extraction techniques with protected sorbent as powerful sample preparation tools to gas chromatographic analysis: trends in application
Laaks et al. In-tube extraction of volatile organic compounds from aqueous samples: an economical alternative to purge and trap enrichment
Risticevic et al. Solid-phase microextraction in targeted and nontargeted analysis: displacement and desorption effects
Kim et al. Determination of floral fragrances of Rosa hybrida using solid-phase trapping-solvent extraction and gas chromatography–mass spectrometry
Paiva et al. Fundamentals of and recent advances in sorbent-based headspace extractions
Li et al. Analysis of volatile compounds emitted from fresh Syringa oblata flowers in different florescence by headspace solid-phase microextraction–gas chromatography–mass spectrometry
Minet et al. Preparation of a polyacrylonitrile/multi-walled carbon nanotubes composite by surface-initiated atom transfer radical polymerization on a stainless steel wire for solid-phase microextraction
Gholivand et al. Anodized aluminum wire as a solid-phase microextraction fiber for rapid determination of volatile constituents in medicinal plant
Patinha et al. Poly (ionic liquids) in solid phase microextraction: Recent advances and perspectives
Sgorbini et al. New medium-to-high polarity twister coatings for liquid and vapour phase sorptive extraction of matrices of vegetable origin
KR101430638B1 (en) Fabrication Method of Extracting needle inserted a Metal Wire Coated with Adsorbent and In-Needle Micro-Extraction Method Using thereof
Won et al. Use of headspace mulberry paper bag micro solid phase extraction for characterization of volatile aromas of essential oils from Bulgarian rose and Provence lavender
Zhang et al. Preparation of novel curcumin‐imprinted polymers based on magnetic multi‐walled carbon nanotubes for the rapid extraction of curcumin from ginger powder and kiwi fruit root
Ghiasvand et al. Comparison of the atmospheric-and reduced-pressure HS-SPME strategies for analysis of residual solvents in commercial antibiotics using a steel fiber coated with a multiwalled carbon nanotube/polyaniline nanocomposite
Kaur et al. Simple and rapid determination of phthalates using microextraction by packed sorbent and gas chromatography with mass spectrometry quantification in cold drink and cosmetic samples
Son et al. New needle packed with polydimethylsiloxane having a micro-bore tunnel for headspace in-needle microextraction of aroma components of citrus oils
Jang et al. Optimization of disk sorptive extraction based on monolithic material for the determination of aroma compounds from Lantana camara L. by gas chromatography-mass spectrometry
Bang et al. Sol–gel‐adsorbent‐coated extraction needles to detect volatile compounds in spoiled fish
Eskandarpour et al. Polyurethane/polystyrene‐silica electrospun nanofibrous composite for the headspace solid‐phase microextraction of chlorophenols coupled with gas chromatography
Zhang et al. Rapid solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples by a coated through-pore sintered titanium disk

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190715

Year of fee payment: 6