KR101428375B1 - Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof - Google Patents
Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof Download PDFInfo
- Publication number
- KR101428375B1 KR101428375B1 KR1020130033733A KR20130033733A KR101428375B1 KR 101428375 B1 KR101428375 B1 KR 101428375B1 KR 1020130033733 A KR1020130033733 A KR 1020130033733A KR 20130033733 A KR20130033733 A KR 20130033733A KR 101428375 B1 KR101428375 B1 KR 101428375B1
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- satisfy
- manufacturing
- high strength
- steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 표면품질이 우수한 초고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법에 관한 것으로서, 보다 상세하게는 표면품질을 향상시킨 주편을 이용하여 실수율을 향상시킬 수 있는 표면품질이 우수한 초고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법에 관한 것이다.The present invention relates to an ultra-high strength cold-rolled steel sheet having excellent surface quality, a hot-dip galvanized steel sheet and a method for manufacturing the same, and more particularly, to a steel sheet having improved surface quality, A cold-rolled steel sheet, a hot-dip galvanized steel sheet, and a manufacturing method thereof.
Description
본 발명은 표면품질이 우수한 초고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법에 관한 것으로서, 보다 상세하게는 표면품질을 향상시킨 주편을 이용하여 실수율을 향상시킬 수 있는 표면품질이 우수한 초고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법에 관한 것이다.
The present invention relates to an ultra-high strength cold-rolled steel sheet having excellent surface quality, a hot-dip galvanized steel sheet and a method for manufacturing the same, and more particularly, to a steel sheet having improved surface quality, A cold-rolled steel sheet, a hot-dip galvanized steel sheet, and a manufacturing method thereof.
최근 자동차용 강판은 지구 환경보전을 위한 연비규제와 탑승자의 충돌 안정성 확보를 위하여 초고강도 강재의 채용을 늘려가고 있다. 이러한 고강도강을 제조하기 위해서는 일반적인 고용강화를 활용한 강재나 석출강화를 이용한 강재만으로 충분한 강도와 연성을 확보하기가 용이하지 않다.
Recently, steel plates for automobiles are increasing the adoption of ultra-high strength steels in order to regulate fuel consumption to preserve the global environment and to ensure crash stability of passengers. In order to manufacture such a high-strength steel, it is not easy to secure sufficient strength and ductility by using a steel material using general solidification reinforcement or a steel material using precipitation hardening.
그래서 개발된 것이 변태조직을 활용하는 변태강화강이다. 이러한 변태강화강에는 이상조직강(Dual Phase Steel, 이하 DP강이라고도 함), 복합조직강(Complex Phase Steel, 이하 CP강이라고도 함), 변태유기소성강(Transformation Induced Plasticity Steel, 이하 TRIP강이라도 함) 등이 있다.
So, what is developed is a metamorphic reinforcing steel that utilizes a metamorphic organization. Such a transformer-reinforced steel may include a dual phase steel (hereinafter also referred to as DP steel), a composite phase steel (hereinafter also referred to as CP steel), a Transformation Induced Plasticity Steel ).
DP강은 연질의 페라이트내에 경질의 마르텐사이트를 미세 균질하게 분산시켜 고강도와 연성을 확보하는 강종이다. CP강은 페라이트, 마르텐사이트, 베이나이트 2상 또는 3상을 포함하며, 강도향상을 위해 Ti, Nb 등의 석출경화원소를 포함하는 강종이다. TRIP강은 미세 균질하게 분산된 잔류 오스테나이트를 상온에서 가공함으로써 마르텐사이트 변태를 일으켜 강도와 연성을 확보하는 강종이다.
DP steel is a type of steel which distributes finely homogeneous hard martensite in soft ferrite to ensure high strength and ductility. CP steel contains ferrite, martensite, bainite two-phase or three-phase, and is a steel grade containing precipitation hardening elements such as Ti and Nb for strength improvement. The TRIP steel is a steel grade that maintains strength and ductility by causing martensite transformation by processing finely homogeneously dispersed retained austenite at room temperature.
일반적으로, 강의 응고시에는 C의 함량에 따라 응고거동이 다르게 나타나는데, 특히 C 함량이 0.08~0.17%의 범위에서 응고가 될 경우, 포정반응에 따른 급격한 응고수축과 델타 페라이트에서 오스테나이트로의 상변태에 따른 부피수축으로 인해서 균일한 응고층의 형성이 어렵게 된다. 이렇게 불균일한 응고가 진행될 경우, 주편 표면에는 깊은 오실레이션 마크가 발생하기 쉽고, 이러한 깊은 오실레이션 마크는 주조시 주편에 걸리는 응력과 주형과의 마찰에 의해 주편 단변부 가로크랙을 유발하게 된다.
In general, when the steel is solidified, the solidification behavior varies depending on the content of C, and particularly when the C content is in the range of 0.08 to 0.17%, the solidification shrinkage due to the solidification reaction and the phase transformation from the delta ferrite to the austenite It is difficult to form a uniform solidification layer. When such uneven solidification proceeds, a deep oscillation mark tends to be generated on the surface of the cast steel, and such a deep oscillation mark causes a horizontal crack at the short side of the cast steel by the friction between the cast steel and the stress applied to the cast steel.
또한, 강중에 함유된 Al이나 강도확보를 위해 첨가되는 Nb와 같은 석출원소의 경우, 응고시 입계를 따라 석출되기 쉬우며, 이로 인해 재료의 고온연성이 나빠지게 된다. 특히, 600~900℃ 영역에서는 이러한 석출물에 의한 취화영역이 나타나게 되는데 이는 연주주편의 교정부 영역의 온도로써, 낮은 고온연성에 의해 주편 코너부에 크랙이 발생할 가능성이 높게 된다.
In addition, in the case of precipitation elements such as Al contained in steel and Nb added to secure strength, precipitation is likely to occur along the grain boundaries at the time of solidification, thereby deteriorating the high temperature ductility of the material. Particularly, in the region of 600 to 900 ° C., the embrittlement region due to such precipitates appears. This is a temperature of the bridge region of the casting casting, and there is a high possibility that a crack occurs in the corner portion of the casting due to low high temperature ductility.
앞서 언급한 초고강도강을 제조하기 위해 사용되는 변태조직상은 다량의 탄소와 합금원소로 인하여 이러한 불균일 응고범위에 들어가게 되고, 또한 강도 상승을 위해 Nb와 같은 석출강화 원소를 함유하고 있어, 고온연성이 열위하고, 이로 인해 대부분 주편의 표면품질이 일반강에 대비하여 열위하게 된다. 이러한 주편 표면품질 문제는 초고강도강의 생산에 있어서 열간압연이나 냉간압연시의 품질문제로 연결되거나, 심한 경우에는 후공정 생산이 불가한 경우도 발생하게 된다.
The above-mentioned metamorphic structure phase used for producing ultra-high strength steels is contained in such heterogeneous solidification range due to a large amount of carbon and alloying elements, and contains precipitation strengthening elements such as Nb for increasing the strength, And thus, the surface quality of the cast steel is largely inferior to that of ordinary steel. Such surface quality problems of the cast steel may lead to quality problems in hot rolling or cold rolling in the production of ultra high strength steels, or in the worst case, post production may not be possible.
초고강도강의 제조방법에 대한 대표적인 선행기술로는 일본 공개특허공보 제2008-304626호가 있는데, 상기 특허에는 화학성분을 제어하여 인장강도 1100MPa이상의 DP강을 제조하는 방법이 개시되어 있으며, 일본 공개특허공보 제2008-068058호 및 제2007-235092호에는 잔류 오스테나이트를 활용한 인장강도 980MPa 이상의 초고강도 박강판을 제조하는 방법이 개시되어 있다. 또한, 일본 공개특허공보 제2003-092208호 및 제2004-087296호에는 잔류 오스테나이트를 활용한 인장강도 1180MPa 이상의 TRIP강 제조방법에 관하여 개시되어 있다. 그러나, 상기 발명들은 대부분 높은 강도와 연신율을 얻기 위해 제안된 것으로, 실제 상업생산시 생산성에 중요한 영향을 미치는 주편의 표면품질에 대해서는 검토가 이루어지지 않았다.
A representative prior art for a method of manufacturing an ultra high strength steel is disclosed in Japanese Unexamined Patent Application Publication No. 2008-304626, which discloses a method of manufacturing a DP steel having a tensile strength of 1100 MPa or more by controlling chemical components, 2008-068058 and 2007-235092 disclose a method for producing an ultra-high strength steel sheet having a tensile strength of 980 MPa or more using residual austenite. Further, Japanese Patent Application Laid-Open Nos. 2003-092208 and 2004-087296 disclose a method for producing TRIP steel having a tensile strength of 1180 MPa or more using residual austenite. However, most of the above-mentioned inventions have been proposed in order to obtain high strength and elongation, and the surface quality of the cast steel, which has an important influence on the productivity in commercial production, has not been examined.
본 발명의 일측면은 성분계 및 제조조건을 제어함으로써, 주편의 단변부 및 코너부의 품질을 향상시키고, 동시에 우수한 강도를 갖는 표면품질이 우수한 초고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법을 제공하고자 하는 것이다.
An aspect of the present invention is to provide an ultra-high strength cold-rolled steel sheet, a hot-dip galvanized steel sheet and a method of manufacturing the same, which can improve the quality of the short side and corner of the cast steel by controlling the component system and the manufacturing conditions, .
본 발명은 중량%로, C: 0.1~0.3%, Si: 0.1~1.5%, Mn: 2.0~3.0%, P: 0.001~0.10%, S: 0.010%이하, Al: 0.01~0.1%, Cr: 0.3~1.0%, B: 0.0010~0.0030%, Ti: 0.01~0.1%, N: 0.001~0.01%를 포함하며, 추가로 Nb: 0.02~0.05%, Mo: 0.01~0.2%, V: 0.01~0.2% 및 W: 0.01~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하고, 잔부 Fe 및 기타 불가피한 불순물로 이루어지며, 상기 Ti와 N은 3.4 ≤ Ti/N ≤ 10, 상기 Nb, Mo, V 및 W는 0.02 ≤ Nb+0.2(Mo+V+W) ≤ 0.05, 상기 C, Mn, Si 및 Cr은 0.17 ≤ C+0.023Mn+0.062Si-0.009Cr ≤ 0.4 및 상기 Nb, C, Al 및 N은 0.2 ≤ 124(Nb×C)+2900(Al×N) ≤ 1의 관계를 만족하고, 동시에 인장강도가 1GPa이상인 표면품질이 우수한 초고강도 냉연강판을 제공한다.The present invention relates to a ferritic stainless steel comprising 0.1 to 0.3% of C, 0.1 to 1.5% of Si, 2.0 to 3.0% of Mn, 0.001 to 0.10% of P, 0.01 to 0.10% 0.001 to 0.0030% of B, 0.01 to 0.1% of Ti, and 0.001 to 0.01% of N, and further contains 0.02 to 0.05% of Nb, 0.01 to 0.2% of Mo, 0.01 to 0.2% of V, % And W: 0.01 to 0.2%, and the balance of Fe and other unavoidable impurities, wherein Ti and N satisfy the relationships of 3.4 ≤ Ti / N ≤ 10, Nb, Mo, V and W is 0.02? Nb + 0.2 (Mo + V + W)? 0.05, C, Mn, Si and Cr are 0.17? C + 0.023Mn + 0.062Si-0.009Cr? 0.4 and Nb, C, A high-strength cold-rolled steel sheet satisfying the relationship of 0.2? 124 (Nb x C) +2900 (Al x N)? 1 and having a tensile strength of 1 GPa or more and excellent surface quality.
상기 냉연강판의 미세조직은 면적분율로 40~70%의 베이나이트와 잔부 페라이트 및 마르텐사이트로 이루어지는 것이 바람직하다.
The microstructure of the cold-rolled steel sheet is preferably composed of 40 to 70% of bainite and residual ferrite and martensite in an area fraction.
본 발명은 중량%로, C: 0.1~0.3%, Si: 0.1~1.5%, Mn: 2.0~3.0%, P: 0.001~0.10%, S: 0.010%이하, Al: 0.01~0.1%, Cr: 0.3~1.0%, B: 0.0010~0.0030%, Ti: 0.01~0.1%, N: 0.001~0.01%를 포함하며, 추가로 Nb: 0.02~0.05%, Mo: 0.01~0.2%, V: 0.01~0.2% 및 W: 0.01~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하고, 잔부 Fe 및 기타 불가피한 불순물로 이루어지며, 상기 Ti와 N은 3.4 ≤ Ti/N ≤ 10, 상기 Nb, Mo, V 및 W는 0.02 ≤ Nb+0.2(Mo+V+W) ≤ 0.05, 상기 C, Mn, Si 및 Cr은 0.17 ≤ C+0.023Mn+0.062Si-0.009Cr ≤ 0.4 및 상기 Nb, C, Al 및 N은 0.2 ≤ 124(Nb×C)+2900(Al×N) ≤ 1의 관계를 만족하고, 동시에 인장강도가 1GPa이상인 표면품질이 우수한 초고강도 용융아연도금강판.The present invention relates to a ferritic stainless steel comprising 0.1 to 0.3% of C, 0.1 to 1.5% of Si, 2.0 to 3.0% of Mn, 0.001 to 0.10% of P, 0.01 to 0.10% 0.001 to 0.0030% of B, 0.01 to 0.1% of Ti, and 0.001 to 0.01% of N, and further contains 0.02 to 0.05% of Nb, 0.01 to 0.2% of Mo, 0.01 to 0.2% of V, % And W: 0.01 to 0.2%, and the balance of Fe and other unavoidable impurities, wherein Ti and N satisfy the relationships of 3.4 ≤ Ti / N ≤ 10, Nb, Mo, V and W is 0.02? Nb + 0.2 (Mo + V + W)? 0.05, C, Mn, Si and Cr are 0.17? C + 0.023Mn + 0.062Si-0.009Cr? 0.4 and Nb, C, 0.2 ≦ 124 (Nb × C) +2900 (Al × N) ≦ 1, and having excellent tensile strength of 1 GPa or more and excellent surface quality.
상기 용융아연도금강판의 미세조직은 면적분율로 40~70%의 베이나이트와 잔부 페라이트 및 마르텐사이트로 이루어지는 것이 바람직하다.
The microstructure of the hot-dip galvanized steel sheet is preferably composed of 40 to 70% bainite and residual ferrite and martensite in an area fraction.
본 발명은 중량%로, C: 0.1~0.3%, Si: 0.1~1.5%, Mn: 2.0~3.0%, P: 0.001~0.10%, S: 0.010%이하, Al: 0.01~0.1%, Cr: 0.3~1.0%, B: 0.0010~0.0030%, Ti: 0.01~0.1%, N: 0.001~0.01%를 포함하며, 추가로 Nb: 0.02~0.05%, Mo: 0.01~0.2%, V: 0.01~0.2% 및 W: 0.01~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하고, 잔부 Fe 및 기타 불가피한 불순물로 이루어지며, 상기 Ti와 N은 3.4 ≤ Ti/N ≤ 10, 상기 Nb, Mo, V 및 W는 0.02 ≤ Nb+0.2(Mo+V+W) ≤ 0.05, 상기 C, Mn, Si 및 Cr은 0.17 ≤ C+0.023Mn+0.062Si-0.009Cr ≤ 0.4 및 상기 Nb, C, Al 및 N은 0.2 ≤ 124(Nb×C)+2900(Al×N) ≤ 1의 관계를 만족하는 강재를 열간압연 및 냉간압연하는 압연단계; 상기 압연된 강재를 770~850℃에서 소둔하는 소둔단계; 상기 소둔된 강재를 마르텐사이트 변태개시 온도(Ms) ~ 베이나이트 변태개시 온도(Bs) 범위로 급냉하는 급냉단계; 및 상기 급냉된 강재를 10~50℃/분의 속도로 서냉하는 서냉단계를 포함하는 표면품질이 우수한 초고강도 냉연강판의 제조방법을 제공한다.The present invention relates to a ferritic stainless steel comprising 0.1 to 0.3% of C, 0.1 to 1.5% of Si, 2.0 to 3.0% of Mn, 0.001 to 0.10% of P, 0.01 to 0.10% 0.001 to 0.0030% of B, 0.01 to 0.1% of Ti, and 0.001 to 0.01% of N, and further contains 0.02 to 0.05% of Nb, 0.01 to 0.2% of Mo, 0.01 to 0.2% of V, % And W: 0.01 to 0.2%, and the balance of Fe and other unavoidable impurities, wherein Ti and N satisfy the relationships of 3.4 ≤ Ti / N ≤ 10, Nb, Mo, V and W is 0.02? Nb + 0.2 (Mo + V + W)? 0.05, C, Mn, Si and Cr are 0.17? C + 0.023Mn + 0.062Si-0.009Cr? 0.4 and Nb, C, A rolling step of subjecting a steel material satisfying the relationship of 0.2? 124 (Nb 占 폚) + 2900 (Al 占 N)? 1 to hot rolling and cold rolling; Annealing the rolled steel material at 770 to 850 캜; A quenching step of rapidly cooling the annealed steel to a range of the martensitic transformation starting temperature (Ms) to the bainite transformation starting temperature (Bs); And a slow cooling step of slowly cooling the quenched steel material at a rate of 10 to 50 ° C / minute. The present invention also provides a method of manufacturing an ultra high strength cold rolled steel sheet having excellent surface quality.
상기 소둔단계는 수소농도가 5~50%이며, 잔부가 질소인 조건에서 행해지는 것이 바람직하며, 상기 급냉단계는 100~600℃/분의 냉각속도로 행해지는 것이 바람직하다.
It is preferable that the annealing step is performed under the condition that the hydrogen concentration is 5 to 50% and the remainder is nitrogen, and the quenching step is performed at a cooling rate of 100 to 600 ° C / min.
본 발명은 중량%로, C: 0.1~0.3%, Si: 0.1~1.5%, Mn: 2.0~3.0%, P: 0.001~0.10%, S: 0.010%이하, Al: 0.01~0.1%, Cr: 0.3~1.0%, B: 0.0010~0.0030%, Ti: 0.01~0.1%, N: 0.001~0.01%를 포함하며, 추가로 Nb: 0.02~0.05%, Mo: 0.01~0.2%, V: 0.01~0.2% 및 W: 0.01~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하고, 잔부 Fe 및 기타 불가피한 불순물로 이루어지며, 상기 Ti와 N은 3.4 ≤ Ti/N ≤ 10, 상기 Nb, Mo, V 및 W는 0.02 ≤ Nb+0.2(Mo+V+W) ≤ 0.05, 상기 C, Mn, Si 및 Cr은 0.17 ≤ C+0.023Mn+0.062Si-0.009Cr ≤ 0.4 및 상기 Nb, C, Al 및 N은 0.2 ≤ 124(Nb×C)+2900(Al×N) ≤ 1의 관계를 만족하는 강재를 열간압연 및 냉간압연하는 압연단계; 상기 압연된 강재를 770~850℃에서 소둔하는 소둔단계; 상기 소둔된 강재를 마르텐사이트 변태개시 온도(Ms) ~ 베이나이트 변태개시 온도(Bs) 범위로 급냉하는 급냉단계; 및 상기 급냉된 강재를 480~520℃의 융융아연도금욕에 침지하여 용융아연도금하는 단계를 포함하는 표면품질이 우수한 초고강도 용융아연도금강판의 제조방법을 제공한다.The present invention relates to a ferritic stainless steel comprising 0.1 to 0.3% of C, 0.1 to 1.5% of Si, 2.0 to 3.0% of Mn, 0.001 to 0.10% of P, 0.01 to 0.10% 0.001 to 0.0030% of B, 0.01 to 0.1% of Ti, and 0.001 to 0.01% of N, and further contains 0.02 to 0.05% of Nb, 0.01 to 0.2% of Mo, 0.01 to 0.2% of V, % And W: 0.01 to 0.2%, and the balance of Fe and other unavoidable impurities, wherein Ti and N satisfy the relationships of 3.4 ≤ Ti / N ≤ 10, Nb, Mo, V and W is 0.02? Nb + 0.2 (Mo + V + W)? 0.05, C, Mn, Si and Cr are 0.17? C + 0.023Mn + 0.062Si-0.009Cr? 0.4 and Nb, C, A rolling step of subjecting a steel material satisfying the relationship of 0.2? 124 (Nb 占 폚) + 2900 (Al 占 N)? 1 to hot rolling and cold rolling; Annealing the rolled steel material at 770 to 850 캜; A quenching step of rapidly cooling the annealed steel to a range of the martensitic transformation starting temperature (Ms) to the bainite transformation starting temperature (Bs); And a step of immersing the quenched steel material in a molten zinc plating bath at 480 to 520 ° C to perform hot dip galvanizing, thereby providing a method of manufacturing an ultra high strength hot dip galvanized steel sheet having excellent surface quality.
상기 소둔단계는 수소농도가 5~50%이며, 잔부가 질소인 조건에서 행해지는 것이 바람직하며, 상기 급냉단계는 100~600℃/분의 냉각속도로 행해지는 것이 바람직하다.
It is preferable that the annealing step is performed under the condition that the hydrogen concentration is 5 to 50% and the remainder is nitrogen, and the quenching step is performed at a cooling rate of 100 to 600 ° C / min.
본 발명의 일측면에 따르면, 주편의 표면 품질을 향상시킴에 따라 실수율을 높일 수 있으며, 동시에 1GPa이상의 초고강도를 가지는 표면품질이 우수한 초고강도 냉연강판 및 용융아연도금강판을 제공할 수 있다.
According to an aspect of the present invention, it is possible to provide an ultra-high strength cold-rolled steel sheet and a hot-dip galvanized steel sheet having an excellent surface quality having an ultra high strength of 1 GPa or more,
도 1은 실시예 비교예 3의 단변부를 나타내는 사진이다.
도 2는 실시예 비교예 10의 코너부를 나타내는 사진이다.Fig. 1 is a photograph showing a short side of Example 3; Fig.
Fig. 2 is a photograph showing a corner portion of Comparative Example 10 of the embodiment. Fig.
일반적으로 자동차용 고강도강은 강도와 굽힘가공성, 용접성 등 여러가지 특징을 만족시키기 위하여, 강중의 C, Mn, Si, Cr, Nb, B 등 여러가지 합금원소가 사용된다. 이러한 합금원소에 따라, 고강도강은 주편을 생산하는 연주공정 중에서 불균일 응고가 일어나 주편의 단변부에 크랙이나 깊은 오실레이션 마크로 인해 주편의 품질저하가 발생하게 되며, Al, Nb 등과 같은 탄화 또는 질화 석출물 형성원소로 인하여 주편의 코너부에 크랙이 발생하게 된다. 이러한 주편 표면에 존재하는 크랙은 후공정에서 에지 크랙(edge crack)이나 에지 스캡(edge scab)과 같은 불량으로 이어져, 초고강도강의 생산을 불가능하게 하거나, 실수율 저하를 유발하게 된다.In general, high strength steels for automobiles use various alloying elements such as C, Mn, Si, Cr, Nb and B in steels to satisfy various characteristics such as strength, bending workability and weldability. According to such an alloy element, the high-strength steel is subject to non-uniform solidification during the casting process for producing the cast steel, resulting in deterioration of the quality of the cast steel due to cracks or deep oscillation marks on the short side of the cast steel. A crack is generated at the corner of the cast steel due to the forming element. Cracks present on the surface of such a slab lead to defects such as edge cracks and edge scabs in the subsequent process, making it impossible to produce ultra-high-strength steels or causing a decrease in the rate of the slump.
이에, 본 발명자들은 초고강도를 가지면서도 주편의 표면품질이 우수한 냉연강판 및 용융아연도금강판을 제조하기 위한 연구를 행하던 중, 성분계와 제조조건을 적절하게 제어함으로써, 1GPa이상의 우수한 강도를 지니면서도 주편의 단변부 및 코너부의 품질이 향상된 냉연강판 및 용융아연도금강판을 제조할 수 있다는 사실을 인지하고, 관련 실험을 통해 본 발명을 완성하게 되었다.
Accordingly, the inventors of the present invention conducted studies for producing a cold-rolled steel sheet and a hot-dip galvanized steel sheet having an ultra-high strength and excellent surface quality of cast steel, while appropriately controlling the component system and the manufacturing conditions, It is possible to produce a cold-rolled steel sheet and a hot-dip galvanized steel sheet with improved quality at the short sides and corners of the piece, and the present invention has been completed through related experiments.
C(탄소) : 0.1~0.3중량%C (carbon): 0.1 to 0.3 wt%
C는 변태조직강에서 강도확보를 위한 중요한 원소이다. 상기 C의 함량은 0.1~0.3%가 바람직하며, 0.1%미만의 탄소함량에서는 인장강도 1GPa이상을 확보하기 어렵고, 0.3%를 초과하면 연성과 굽힘가공성 및 용접성이 감소하여 프레스 성형 및 롤 포밍성이 나빠지는 단점이 있다.
C is an important element for securing strength in metamorphic steel. The content of C is preferably from 0.1 to 0.3%. When the carbon content is less than 0.1%, it is difficult to secure a tensile strength of 1 GPa or more. When the content is more than 0.3%, the ductility, bending workability and weldability are decreased, There is a drawback that it is bad.
Si(실리콘) : 0.1~1.5중량%Si (silicon): 0.1 to 1.5 wt%
Si는 강재의 강도 및 연신율을 향상시키는 원소이며, 함량은 0.1~1.5%가 바람직하다. Si함량이 0.1미만인 경우에는 상기 효과를 얻기 어려우며, 1.5%를 초과하면 표면품질과 관련하여 표면 스케일결함을 유발할 뿐 아니라, 도금강판의 미도금을 유발하는 산화물을 표면에 형성시켜 미도금과 도금박리와 같은 표면결함을 유발한다.
Si is an element for improving the strength and elongation of the steel, and the content is preferably 0.1 to 1.5%. When the Si content is less than 0.1, it is difficult to obtain the above effect. When the Si content is more than 1.5%, surface scale defects are caused in relation to the surface quality. In addition, an oxide which causes non- plating of the coated steel sheet is formed on the surface, And the like.
Mn(망간) : 2.0~3.0중량%Mn (manganese): 2.0 to 3.0 wt%
Mn은 고용강화 효과가 매우 큰 원소로써, 함량은 2.0~3.0%가 바람직하다. Mn함량이 2.0%미만인 경우에는 본 발명에서 목표로 하는 강도확보가 어렵고, 3.0%를 초과하게 되면 용접성과 냉간압연 부하증가 등의 문제가 발생될 가능성이 높을 뿐 아니라, 조대한 소둔농화물 형성으로 도금강판의 표면결함을 유발하기도 한다.
Mn is an element having a very strong solid solution strengthening effect, and its content is preferably 2.0 to 3.0%. When the Mn content is less than 2.0%, it is difficult to secure the desired strength in the present invention. When the Mn content exceeds 3.0%, there is a high possibility that problems such as weldability and cold rolling load increase occur, It may cause surface defects of the coated steel sheet.
P(인) : 0.001~0.10중량%P (phosphorus): 0.001 to 0.10 wt%
P는 강판을 강화시키는 효과를 보이는 원소이다. P 함량이 0.001%미만인 경우에는 상기 효과를 확보할 수 없을 뿐만 아니라 제조비용의 문제를 야기하는 반면, 과다하게 첨가하면 프레스 성형성이 열화하고 강의 취성이 발생될 수 있기 때문에 상기 P의 함량은 0.001~0.10%의 범위인 것이 바람직하다.
P is an element showing the effect of strengthening the steel sheet. If the P content is less than 0.001%, the above effect can not be ensured and the production cost is raised. On the other hand, when the P content is excessively added, the press formability is deteriorated and steel brittleness may be generated. To 0.10%.
S(황) : 0.010%이하S (sulfur): not more than 0.010%
S는 강중 불순물 원소로서 강판의 연성 및 용접성을 저해하는 원소이다. 상기 S의 함량이 0.01%를 초과하면 강판의 연성 및 용접성을 저해할 가능성이 높기 때문에 S의 함량은 0.01%이하로 한정하는 것이 바람직하다.
S is an impurity element in steel and is an element that hinders ductility and weldability of a steel sheet. If the content of S is more than 0.01%, it is highly likely to deteriorate the ductility and weldability of the steel sheet, so the content of S is preferably limited to 0.01% or less.
Al(알루미늄) : 0.01~0.1중량%Al (aluminum): 0.01 to 0.1 wt%
Al은 강중 산소와 결합하여 탈산작용 및 Si와 같이 페라이트 내 탄소를 오스테나이트로 분배하여 마르텐사이트 경화능을 향상시키는데 유효한 성분이다. 상기 Al의 함량이 0.01%미만인 경우 상기 효과를 확보할 수 없는 반면, 0.1%를 초과하게 되면 슬라브 표면 품질을 저하시키고, 제조비용이 증가하므로 Al의 함량은 0.01~0.1%가 바람직하다.
Al is a component effective to combine with oxygen in steel to deacidify and to distribute carbon in ferrite to austenite like Si to improve the hardenability of martensite. If the content of Al is less than 0.01%, the above effect can not be secured. On the other hand, when the content of Al exceeds 0.1%, the quality of the slab surface is lowered and the production cost is increased, so that the content of Al is preferably 0.01 to 0.1%.
Cr(크롬) : 0.3~1.0%Cr (chrome): 0.3 to 1.0%
Cr은 강의 경화능을 향상시키고 고강도를 확보하기 위해 첨가하는 성분이며, 본 발명에서는 페라이트 변태 지연을 통하여 베이나이트 형성을 유도하는 원소로서, 그 함량은 0.3~1.0%가 바람직하다. Cr의 함량이 0.3%미만인 경우 상기 효과를 확보하기 어려우며, 1.0%를 초과하게 되면 그 효과가 포화되고, 냉간압연 부하가 증가될 뿐만 아니라 제조원가가 크게 증가하게 된다.
Cr is added to improve hardenability of steel and ensure high strength. In the present invention, the content of Cr is preferably 0.3 to 1.0% as an element which induces bainite formation through ferrite transformation delay. When the content of Cr is less than 0.3%, it is difficult to secure the above effect. When the Cr content exceeds 1.0%, the effect is saturated and the cold rolling load is increased and the manufacturing cost is greatly increased.
B(보론) : 0.0010~0.0030중량%B (boron): 0.0010 to 0.0030 wt%
B는 소둔 중 냉각하는 과정에서 오스테나이트가 펄라이트로 변태되는 것을 지연시키는 성분으로서, 페라이트 형성을 억제하고 베이나이트 형성을 촉진하는 원소로서 그 함량은 0.001~0.003%가 바람직하다. B의 함량이 0.001%미만인 경우에는 상기의 효과를 얻기가 어렵고, 0.003%를 초과하면 B의 입계편석으로 인해 상기 효과가 포화될 뿐만 아니라, 과도한 표면 농화물의 형성으로 도금결함을 유발할 수 있다.
B is a component for retarding the transformation of austenite into pearlite in the process of cooling during annealing, and it is preferably 0.001 to 0.003% as an element for suppressing ferrite formation and promoting bainite formation. When the content of B is less than 0.001%, it is difficult to obtain the above effect. When the content of B exceeds 0.003%, the effect is saturated due to grain boundary segregation of B, and excessive formation of surface contaminants may lead to plating defects.
Ti(티타늄) : 0.01~0.1중량%Ti (titanium): 0.01 to 0.1 wt%
Ti는 강판의 강도 상승 및 강중에 존재하는 N의 스케빈징을 위하여 첨가되는 원소로서, Ti의 함량이 0.01%미만인 경우에는 이와 같은 효과를 확보하기 어렵고, 0.1%를 초과하는 경우에는 연속주조공정 중 노즐막힘등의 공정결함을 유발할 수 있다.
Ti is an element added for increasing the strength of a steel sheet and for scavenging N present in steel. When the content of Ti is less than 0.01%, it is difficult to secure such effect. When the content exceeds 0.1%, continuous casting Which may cause process defects such as nozzle clogging.
N(질소) : 0.001~0.01중량%N (nitrogen): 0.001 to 0.01 wt%
N은 강판의 강도를 상승시킬 수 있는 고용강화 원소이며, 일반적으로 대기로부터 혼입되는 원소이다. 그 함량은 제강 공정 탈가스 공정으로 제어되어야 한다. 상기 N의 함량이 0.001%미만인 경우에는 과도한 탈가스 처리를 요하게 되어, 제조원가 상승을 유발하게 되고, 0.01%를 초과하면 AlN, TiN 등의 석출물 과다 형성으로 고온연성을 저하시키게 된다.
N is a solid solution strengthening element capable of raising the strength of a steel sheet, and is an element generally incorporated from the atmosphere. The content should be controlled by the steelmaking process degassing process. If the content of N is less than 0.001%, excessive degassing treatment is required, leading to an increase in the production cost. If the N content is more than 0.01%, the high temperature ductility is deteriorated due to excessive formation of precipitates such as AlN and TiN.
상기 Ti와 N은 3.4 ≤ Ti/N ≤ 10의 관계를 만족하는 것이 바람직한데, 상기 Ti/N의 비율이 3.4 미만인 경우에는 용존 N의 양에 비하여 Ti 첨가량이 부족하여, 잔류 N에 의한 NB 등의 형성으로 B첨가에 의한 강도상승 효과를 떨어뜨려 강도저하가 발생할 수 있으며, 10을 초과하는 경우에는 탈질처리 비용이 증가하고, 연주공정에서 노즐막힘등을 유발할 가능성이 커지게 된다.
When the Ti / N ratio is less than 3.4, the Ti addition amount is insufficient compared to the amount of dissolved N, and NB and the like caused by the residual N The strength increase effect due to the addition of B may be lowered and the strength may be lowered. On the other hand, if it exceeds 10, the denitration treatment cost increases and the possibility of nozzle clogging or the like is increased in the performance process.
본 발명의 냉연강판 및 용융아연도금강판은 Nb: 0.02~0.05%, Mo: 0.01~0.2%, V: 0.01~0.2% 및 W: 0.01~0.2%로 이루어지는 그룹으로부터 선택된 1종 이상을 포함하는 것이 바람직하다.
The cold-rolled steel sheet and hot-dip galvanized steel sheet of the present invention contain at least one selected from the group consisting of 0.02 to 0.05% of Nb, 0.01 to 0.2% of Mo, 0.01 to 0.2% of V and 0.01 to 0.2% of W desirable.
Nb(니오븀) : 0.02~0.05중량%Nb (niobium): 0.02 to 0.05 wt%
Nb는 강판의 강도 상승 및 결정립 미세화를 위해 첨가된 원소이며, 그 함량은 0.02~0.05%가 바람직하다. 상기 Nb의 함량이 0.02%미만인 경우에는 상기의 효과를 나타내기가 어렵고, 0.05%를 초과하면 제조비용 상승과 과다한 석출물로 인하여 굽힘가공성과 연성을 저하시킬 수 있다.
Nb is an element added for increasing the strength of the steel sheet and refining the crystal grain, and its content is preferably 0.02 to 0.05%. When the content of Nb is less than 0.02%, it is difficult to exhibit the above effect. When the content of Nb is more than 0.05%, bending workability and ductility may be deteriorated due to an increase in manufacturing cost and excessive deposition.
Mo(몰리브덴), V(바나듐), W(텅스텐) : 0.01~0.2중량%Mo (molybdenum), V (vanadium), W (tungsten): 0.01 to 0.2 wt%
Mo, V, W는 Nb와 유사한 역할을 하는 원소로서, 0.01%미만인 경우에는 강도 상승 및 결정립 미세화 효과를 얻기 어려우며, 0.2%를 초과하는 경우에는 강도효과에 대비하여 제조비용이 지나치게 상승하게 된다.
Mo, V and W are elements which act like Nb. When the Mo content is less than 0.01%, it is difficult to increase the strength and grain refinement effect. When the Mo content exceeds 0.2%, the manufacturing cost becomes excessively high in preparation for the strength effect.
상기 Nb, Mo, V 및 W은 0.02 ≤ Nb + 0.2(Mo+V+W) ≤ 0.05의 관계를 만족하는 것이 바람직한데, 0.02 미만인 경우에는 결정립 미세화 및 석출강화 효과를 기대하기 어려우며, 0.05를 초과하는 경우에는 상기 효과에 대비하여 지나치게 제조원가가 상승하게 된다.
It is preferable that the above Nb, Mo, V and W satisfy the relation of 0.02 Nb + 0.2 (Mo + V + W) 0.05. When the ratio is less than 0.02, it is difficult to expect grain refinement and precipitation strengthening effect. The manufacturing cost is excessively increased in preparation for the above effect.
본 발명이 제안하는 냉연강판 및 용융아연도금강판은 0.17 ≤ C+0.023Mn+0.062Si-0.009Cr ≤ 0.4의 관계를 만족하는 것이 바람직하다. 상기 관계식은 불균일 응고가 일어나는 성분의 적절한 범위를 실험적으로 도출하여 규정한 식으로서, 상기 조건을 만족할 경우, 포정반응에 의한 응고수축량이 감소하여 우수한 주편의 단변부 품질을 확보할 수 있다. 그러나, 상기 관계식의 값이 0.17 미만인 경우, 응고시 불균일 응고가 발생할 수 있는 범위로써, 주편의 단변부 품질이 나빠지게 되며, 0.4를 초과하게 될 경우에는 고액공존 영역의 증가로 주편의 내부크랙이 발생할 가능성이 높아지게 된다.
The cold-rolled steel sheet and the hot-dip galvanized steel sheet proposed by the present invention preferably satisfy the relationship of 0.17? C + 0.023Mn + 0.062Si-0.009Cr? 0.4. The above relational expression is defined by experimentally deriving an appropriate range of components in which non-uniform solidification takes place. When the above condition is satisfied, the amount of coagulation shrinkage due to the entrapping reaction is reduced, and thus excellent quality of the short side portion of the cast steel can be secured. However, when the value of the above relation is less than 0.17, the quality of the short side of the cast steel becomes poor as a range where non-uniform solidification can occur during solidification. When the value exceeds 0.4, The probability of occurrence is increased.
상기와 같이, 주편의 표면 품질을 향상시킴에 따라, 주편을 버리거나 재활용하는 일없이 상기 주편을 이용하여 냉연강판을 제조할 수 있어, 제조비용을 절감시키고, 생산성 또한 향상시킬 수 있다.
As described above, by improving the surface quality of the cast steel, it is possible to manufacture the cold-rolled steel sheet by using the cast steel without throwing away or recycling the cast steel, thereby reducing manufacturing cost and productivity.
본 발명의 냉연강판 및 용융아연도금강판은 0.2 ≤ 124(Nb×C)+2900(Al×N) ≤ 1의 관계를 만족하는 것이 바람직하다. 상기 관계식은 NbC와 AlN 석출물 형성에 따른 고온취화거동을 각각의 성분으로 규정한 식으로서, 상기 조건을 만족할 경우, 재료의 고온취화현상을 약화시켜 주편 코너부의 크랙 발생을 억제할 수 있다. 한편, 상기 식의 값이 0.2미만인 경우, 석출물에 의한 강화효과가 부족하여 최종 소재의 강도를 1GPa 이상으로 확보하는 것이 어렵게 된다.
The cold-rolled steel sheet and the hot-dip galvanized steel sheet of the present invention preferably satisfy the relationship of 0.2? 124 (Nb x C) +2900 (Al x N)? 1. The above relational expression defines the behavior of high-temperature embrittlement due to the formation of NbC and AlN precipitates as respective components. When the above condition is satisfied, cracking of the corner portion of the slab can be suppressed by weakening the high-temperature embrittlement phenomenon of the material. On the other hand, when the value of the above formula is less than 0.2, the strengthening effect by the precipitate is insufficient and it becomes difficult to secure the strength of the final material to 1 GPa or more.
1을 초과하게 될 경우에는 다량의 NbC와 AlN의 석출에 의해 주편이 교정되는 600~900℃ 부근에서 재료의 취화가 심하게 발생하기 때문에, 주편 코너부의 크랙 발생이 증가하게 된다.
1, the brittleness of the material is severely generated in the vicinity of 600 to 900 DEG C, where the major part is corrected by precipitation of a large amount of NbC and AlN, so that the occurrence of cracks at the corner of the bill increases.
또한, 본 발명의 냉연강판 및 용융아연도금강판의 미세조직은 면적분율로 40~70%의 베이나이트와 잔부 페라이트 및 마르텐사이트로 이루어지는 것이 바람직하다. 상기 베이나이트의 분율이 40%미만인 경우 굽힘가공성이 저하되며, 70%를 초과하는 경우 1GPa이상의 높은 인장강도를 실현하기 어렵다. 상기 페라이트 및 마르텐사이트 조직의 분율은 특별히 한정하지는 않으나, 우수한 강도, 연성 및 굽힘가공성을 확보하기 위하여, 페라이트 조직은 10~40면적%, 마르텐사이트 조직은 15~30면적%의 범위를 갖는 것이 바람직하다.
The microstructure of the cold-rolled steel sheet and hot-dip galvanized steel sheet of the present invention is preferably composed of 40 to 70% of bainite and residual ferrite and martensite in an area fraction. If the fraction of bainite is less than 40%, the bending workability is deteriorated, and when it exceeds 70%, it is difficult to realize a high tensile strength of 1 GPa or more. The fraction of the ferrite and martensite structure is not particularly limited. However, in order to secure excellent strength, ductility and bending workability, it is preferable that the ferrite structure and the martensite structure have a range of 10 to 40% by area and 15 to 30% Do.
상기한 본 발명의 냉연강판 및 용융아연도금강판은 1GPa이상의 인장강도를 갖게 된다.
The cold-rolled steel sheet and the hot-dip galvanized steel sheet of the present invention have a tensile strength of 1 GPa or more.
이하, 본 발명의 제조방법에 대하여 설명한다.
Hereinafter, the production method of the present invention will be described.
상기 본 발명의 조성성분 및 범위를 만족하는 강재를 통상적인 조건으로 열간압연 및 냉간압연한다.
The steel material satisfying the composition components and ranges of the present invention is hot-rolled and cold-rolled under ordinary conditions.
이후, 상기 압연된 강재를 770~850℃에서 소둔하게 되는데, 상기 소둔온도가 770℃미만인 경우에는 페라이트 조직 분율이 40%를 초과하여 강도확보가 어렵고, 굽힘가공성이 저하되며, 850℃를 초과하게 되면 굽힘가공성은 개선되나, 고온소둔에서 발생하는 Si, Mn, B등의 표면 농화물의 양이 크게 증가하여 미도금 결함이 다량으로 발생하는 문제가 있다.
When the annealing temperature is lower than 770 ° C, the ferrite structure fraction exceeds 40%, the strength is hardly secured and the bending workability is lowered. When the annealing temperature exceeds 850 ° C The bending workability is improved, but the amount of the surface grains such as Si, Mn, and B generated at the high temperature annealing is greatly increased, resulting in a large amount of unplated defects.
상기 소둔단계는 수소농도가 5~50%, 잔부가 질소로 구성된 분위기 조건에서 행하는 것이 바람직한데, 수소농도가 5%미만인 경우에는 강중에 함유된 Si, Mn, B와 같은 산소친화력이 큰 원소들의 표면농화물 발생이 용이하여 덴트와 도금결함을 유발하고, 반면 50%를 초과할 경우, 제조원가 대비 상기 효과의 상승이 미약해진다. 잔부 물질로 사용되는 질소는 강판의 표면 농화물 형성을 방지하고 제조비용이 저렴하여 분위기 가스로 적절하게 사용될 수 있다.
It is preferable that the annealing step is performed under an atmospheric condition that the hydrogen concentration is 5 to 50% and the balance is nitrogen. When the hydrogen concentration is less than 5%, the elements having large oxygen affinity such as Si, Mn, Surface agglomeration is easy to occur and causes dent and plating defects. On the other hand, if it exceeds 50%, the increase in the effect is insignificant compared with the manufacturing cost. Nitrogen used as a remainder material prevents formation of a surface agglomeration of a steel sheet and is low in manufacturing cost and can be suitably used as an atmospheric gas.
이후, 상기 소둔된 강재를 급냉대 즉, 냉각정지온도범위까지 급냉하게 된다. 급냉대란 마르텐사이트 변태개시 온도(Ms) ~ 베이나이트 변태개시 온도(Bs) 범위를 의미하며, 상기 냉각을 통해, 적절한 범위의 미세조직 분율을 확보할 수 있다. 이 때, 상기 급냉은 100~600℃/분의 속도로 냉각을 행하는 것이 바람직한데, 상기 급냉속도가 100℃/분 미만일 경우, 페라이트와 펄라이트의 형성으로 인해 본 발명에서 목표로 하는 강도를 확보할 수 없으며, 600℃/분을 초과할 경우, 과도한 경질상의 생성으로 연신율 저하가 발생할 뿐 아니라, 형상 불량등의 문제를 발생시킬 수 있다.
Thereafter, the annealed steel material is quenched to the cold / cold zone, that is, the cooling stop temperature range. Quot; means the range from the start temperature (Ms) to the bainite transformation start temperature (Bs) of the martensitic transformation starting temperature, and the cooling rate can ensure an appropriate range of microstructure fractions. At this time, it is preferable that the quenching is performed at a rate of 100 to 600 ° C / min. When the quenching rate is less than 100 ° C / min, the target strength in the present invention is secured due to the formation of ferrite and pearlite If the heating temperature is higher than 600 ° C / min, the elongation rate is lowered due to the formation of an excessive hard phase, and problems such as defective shape may occur.
본 발명의 냉연강판의 제조방법은 상기 공정을 거친 후, 상기 급냉된 강재를 10~50℃/분의 속도로 서냉하는 서냉단계를 거치게 된다. 상기 서냉속도가 10℃/분 미만일 경우, 적정 마르텐사이트 분율을 확보할 수가 없어 본 발명에서 목표로 하는 강도를 얻기가 어려우며, 50℃/분을 초과하는 경우에는 베이나이트를 40%이상 확보할 수 없어 굽힘가공성이 저하되는 문제가 발생한다.
In the cold-rolled steel sheet manufacturing method of the present invention, after the above-described steps, the quenched steel material is subjected to a slow cooling step of slowly cooling the steel material at a rate of 10 to 50 ° C / minute. If the slow cooling rate is less than 10 ° C / minute, it is difficult to secure a proper martensite fraction and it is difficult to obtain the desired strength in the present invention. When the cooling rate is more than 50 ° C / minute, There is a problem that the bending workability is deteriorated.
본 발명의 용융아연도금강판의 제조방법은 상기 급냉공정을 거친 후, 급냉된 강재를 480~520℃의 융융아연도금욕에 침지하여 용융아연도금하는 공정을 포함하게 된다. 상기 도금욕의 온도가 480℃미만인 경우, 합금화 억제층의 형성이 부족하여 도금박리를 유발할 수 있으며, 520℃를 초과할 경우, 드로스(Dross) 발생이 증가하는 문제점이 발생한다.
The method of manufacturing a hot-dip galvanized steel sheet according to the present invention includes a step of dipping a quenched steel material in a hot-dip galvanizing bath at 480 to 520 ° C. after the quenching step and performing hot-dip galvanizing. If the temperature of the plating bath is less than 480 DEG C, the formation of the alloying inhibition layer may be insufficient and the plating may be peeled off. If the temperature exceeds 520 DEG C, a problem arises that the generation of dross increases.
이하, 실시예를 통해 본 발명을 상세히 설명한다. 이하의 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하지는 않는다.
Hereinafter, the present invention will be described in detail with reference to Examples. The following examples are intended to further illustrate the present invention and do not limit the scope of the present invention.
(실시예)(Example)
하기 표 1 및 2의 조성성분을 갖는 슬라브를 제조한 뒤, 10m 주편의 양측 및 4군데의 코너부를 기준으로 관찰한 크랙의 수준을 4단계(매우양호, 양호, 보통, 불량)로 평가하여, 그 결과를 하기 표 4에 나타내었다. 보다 상세한 주편의 표면 품질 구분 기준은 하기 표 5에 나타내었다. 이후, 상기 제조된 슬라브를 통상적인 조건으로 열간압연 및 냉간압연한 후, 하기 표 3의 조건으로 소둔 및 냉각처리하였다. 이 때, 소둔처리시 분위기는 수소와 질소였다.
After the slabs having the compositional components shown in Tables 1 and 2 were prepared, the level of cracks observed on both sides and four corners of the 10-m cast steel was evaluated in four stages (very good, good, normal, and poor) The results are shown in Table 4 below. More detailed surface quality classification criteria of the cast steel are shown in Table 5 below. Then, the produced slab was subjected to hot rolling and cold rolling under ordinary conditions, followed by annealing and cooling treatment under the conditions shown in Table 3 below. At this time, the atmosphere in the annealing treatment was hydrogen and nitrogen.
(ppm)B
(ppm)
(ppm)N
(ppm)
(℃)Annealing temperature
(° C)
(수소농도, %)Annealing atmosphere
(Hydrogen concentration,%)
(℃/분)Quenching rate
(° C / minute)
(℃)Rust
(° C)
(℃/분)Slow cooling rate
(° C / minute)
상기와 같은 조건으로 제조된 냉연강판에 대해서 미세조직의 분율 및 물성을 측정하였으며, 그 결과를 하기 표 4에 나타내었다.The cold-rolled steel sheets produced under the above conditions were measured for microstructure and physical properties. The results are shown in Table 4 below.
단변부
크랙Slab
Short side
crack
코너
크랙Slab
corner
crack
(면적%)B Organization
(area%)
(면적%)M Organization
(area%)
(면적%)F Organization
(area%)
강도
(MPa)surrender
burglar
(MPa)
강도
(MPa)Seal
burglar
(MPa)
(%)Elongation
(%)
상기 표 4에서 알 수 있듯이, 본 발명의 성분계 및 제조조건에 부합하는 발명예 1 내지 9는 주편 상태에서의 표면 품질이 단변와 코너부 모두 우수한 결과를 나타내고 있음을 알 수 있으며, 인장강도 또한 1GPa이상의 고강도를 지니고 있다.
As can be seen from Table 4, Examples 1 to 9 in accordance with the composition system and the production conditions of the present invention show that the surface quality in the cast state shows excellent results in both the short sides and the corner portions, and the tensile strength is also 1 GPa or more It has high strength.
반면, 비교예 1 및 2의 경우에는 슬라브 표면 품질은 양호하나, 본 발명에서 한정하는 B의 함량 범위와 Ti/N 범위에 만족하지 않아, 강도를 일정 수준 이상으로 확보하기 곤란하였으며, 비교예 3 내지 6의 경우에는 주편 표면품질에 관한 관계식(C+0.023Mn+0.062Si-0.009Cr)을 만족하지 않음에 따라 연주시 불균일 응고에 의해 주편의 단변부에 크랙이 발생하였다. 이 중, 비교예 3의 단변부 크랙의 사진을 도 1에 나타내었으며, 도 1에 알 수 있는 바와 같이, 주편 단변부에 크랙이 상당히 발생하였음을 알 수 있다.
On the other hand, in the case of Comparative Examples 1 and 2, the surface quality of the slab was satisfactory, but it was not satisfied with the B content range and the Ti / N range defined in the present invention, (C + 0.023Mn + 0.062Si-0.009Cr) was not satisfied in the case of the casting surface of the cast steel, the cracks occurred at the short side of the cast steel due to non-uniform solidification during casting. FIG. 1 shows a photograph of a short side crack of Comparative Example 3, and it can be seen that cracks were considerably generated in the short side of the strip as shown in FIG.
비교예 7 내지 11의 경우에도 주편 표면품질에 관한 관계식(124(Nb×C)+2900(Al×N))을 만족하지 않아, 재료의 고온연성 저하에 따른 주편의 코너크랙이 발생하였다. 도 2는 비교예 10의 코너부 크랙을 나타내는 사진으로서, 비교예 10 또한 주편의 코너부에서 상당량의 크랙이 관찰되었다.Also in the case of Comparative Examples 7 to 11, the relation (124 (Nb x C) +2900 (Al x N)) concerning the surface quality of the cast steel was not satisfied, and corner cracks of the cast steel due to deterioration of high temperature ductility of the material occurred. Fig. 2 is a photograph showing a corner crack in Comparative Example 10, and a considerable amount of cracks was observed in the corner portion of the casting of Comparative Example 10. Fig.
Claims (5)
상기 Ti와 N은 3.4 ≤ Ti/N ≤ 10,
상기 Nb, Mo, V 및 W는 0.02 ≤ Nb+0.2(Mo+V+W) ≤ 0.05,
상기 C, Mn, Si 및 Cr은 0.17 ≤ C+0.023Mn+0.062Si-0.009Cr ≤ 0.4 및
상기 Nb, C, Al 및 N은 0.2 ≤ 124(Nb×C)+2900(Al×N) ≤ 1의 관계를 만족하는 강재를 열간압연 및 냉간압연하는 압연단계;
상기 압연된 강재를 770~850℃에서 소둔하는 소둔단계;
상기 소둔된 강재를 마르텐사이트 변태개시 온도(Ms) ~ 베이나이트 변태개시 온도(Bs) 범위로 급냉하는 급냉단계; 및
상기 급냉된 강재를 10~50℃/분의 속도로 서냉하는 서냉단계를 포함하는 표면품질이 우수한 초고강도 냉연강판의 제조방법.
0.1 to 0.3% of C, 0.1 to 1.5% of Si, 2.0 to 3.0% of Mn, 0.001 to 0.10% of P, 0.010% or less of S, 0.01 to 0.1% of Al, 0.3 to 1.0 0.001 to 0.0030% of B, 0.01 to 0.1% of Ti, 0.001 to 0.01% of N and 0.02 to 0.05% of Nb, 0.01 to 0.2% of Mo, 0.01 to 0.2% of V, 0.01 to 0.2% of V, : 0.01 to 0.2%, and the balance of Fe and other unavoidable impurities,
Ti and N satisfy the relationship of 3.4 < = Ti / N < = 10,
Wherein Nb, Mo, V and W satisfy the following relationship: 0.02? Nb + 0.2 (Mo + V + W)? 0.05,
C, Mn, Si and Cr satisfy the following equations: 0.17? C + 0.023Mn + 0.062Si-0.009Cr? 0.4
Wherein the Nb, C, Al, and N satisfy a relationship of 0.2? 124 (NbxC) +2900 (AlxN)? 1; hot rolling and cold rolling a steel material;
Annealing the rolled steel material at 770 to 850 캜;
A quenching step of rapidly cooling the annealed steel to a range of the martensitic transformation starting temperature (Ms) to the bainite transformation starting temperature (Bs); And
And a slow cooling step of slowly cooling the quenched steel material at a rate of 10 to 50 ° C / min. The method of manufacturing an ultra-high strength cold-rolled steel sheet having excellent surface quality.
The method of manufacturing an ultra-high strength cold rolled steel sheet according to claim 1, wherein the annealing step is performed at a hydrogen concentration of 5 to 50% and the remainder is nitrogen.
The method of manufacturing an ultra-high strength cold rolled steel sheet according to claim 1, wherein the quenching step is performed at a cooling rate of 100 to 600 ° C / min.
상기 Ti와 N은 3.4 ≤ Ti/N ≤ 10,
상기 Nb, Mo, V 및 W는 0.02 ≤ Nb+0.2(Mo+V+W) ≤ 0.05,
상기 C, Mn, Si 및 Cr은 0.17 ≤ C+0.023Mn+0.062Si-0.009Cr ≤ 0.4 및
상기 Nb, C, Al 및 N은 0.2 ≤ 124(Nb×C)+2900(Al×N) ≤ 1의 관계를 만족하는 강재를 열간압연 및 냉간압연하는 압연단계;
상기 압연된 강재를 770~850℃에서 소둔하는 소둔단계;
상기 소둔된 강재를 마르텐사이트 변태개시 온도(Ms) ~ 베이나이트 변태개시 온도(Bs) 범위로 급냉하는 급냉단계; 및
상기 급냉된 강재를 480~520℃의 융융아연도금욕에 침지하여 용융아연도금하는 단계를 포함하고, 상기 소둔단계는 수소농도가 5~50%이며, 잔부가 질소인 조건에서 행해지는 것을 특징으로 하는 표면품질이 우수한 초고강도 용융아연도금강판의 제조방법.
0.1 to 0.3% of C, 0.1 to 1.5% of Si, 2.0 to 3.0% of Mn, 0.001 to 0.10% of P, 0.010% or less of S, 0.01 to 0.1% of Al, 0.3 to 1.0 0.001 to 0.0030% of B, 0.01 to 0.1% of Ti, 0.001 to 0.01% of N and 0.02 to 0.05% of Nb, 0.01 to 0.2% of Mo, 0.01 to 0.2% of V, 0.01 to 0.2% of V, : 0.01 to 0.2%, and the balance of Fe and other unavoidable impurities,
Ti and N satisfy the relationship of 3.4 < = Ti / N < = 10,
Wherein Nb, Mo, V and W satisfy the following relationship: 0.02? Nb + 0.2 (Mo + V + W)? 0.05,
C, Mn, Si and Cr satisfy the following equations: 0.17? C + 0.023Mn + 0.062Si-0.009Cr? 0.4
Wherein the Nb, C, Al, and N satisfy a relationship of 0.2? 124 (NbxC) +2900 (AlxN)? 1; hot rolling and cold rolling a steel material;
Annealing the rolled steel material at 770 to 850 캜;
A quenching step of rapidly cooling the annealed steel to a range of the martensitic transformation starting temperature (Ms) to the bainite transformation starting temperature (Bs); And
And dipping the quenched steel material in a molten zinc plating bath at 480 to 520 ° C. and performing hot dip galvanizing, wherein the annealing step is performed under a condition that the hydrogen concentration is 5 to 50% and the remainder is nitrogen Wherein the hot dip galvanized steel sheet has an excellent surface quality.
5. The method of manufacturing an ultra-high strength hot-dip galvanized steel sheet according to claim 4, wherein the quenching step is performed at a cooling rate of 100 to 600 ° C / min.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130033733A KR101428375B1 (en) | 2013-03-28 | 2013-03-28 | Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130033733A KR101428375B1 (en) | 2013-03-28 | 2013-03-28 | Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100124273A Division KR20120063196A (en) | 2010-12-07 | 2010-12-07 | Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130036752A KR20130036752A (en) | 2013-04-12 |
KR101428375B1 true KR101428375B1 (en) | 2014-08-13 |
Family
ID=48437957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130033733A KR101428375B1 (en) | 2013-03-28 | 2013-03-28 | Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101428375B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190077203A (en) * | 2017-12-24 | 2019-07-03 | 주식회사 포스코 | Ultra high strength cold-rolled steel sheet and method for manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7410936B2 (en) * | 2018-09-28 | 2024-01-10 | ポスコ カンパニー リミテッド | High-strength cold-rolled steel sheet with high hole expandability, high-strength hot-dip galvanized steel sheet, and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006063360A (en) | 2004-08-25 | 2006-03-09 | Sumitomo Metal Ind Ltd | High tensile hot-dip galvanized steel sheet and its manufacturing method |
KR100685040B1 (en) | 2005-10-18 | 2007-02-20 | 주식회사 포스코 | Method for manufacturing high strength hot dip galvanized steel sheet having superior workability and good surface appearance |
KR20090089391A (en) * | 2006-12-11 | 2009-08-21 | 가부시키가이샤 고베 세이코쇼 | High-strength steel sheet |
KR20090115873A (en) * | 2007-03-22 | 2009-11-09 | 제이에프이 스틸 가부시키가이샤 | High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof |
-
2013
- 2013-03-28 KR KR1020130033733A patent/KR101428375B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006063360A (en) | 2004-08-25 | 2006-03-09 | Sumitomo Metal Ind Ltd | High tensile hot-dip galvanized steel sheet and its manufacturing method |
KR100685040B1 (en) | 2005-10-18 | 2007-02-20 | 주식회사 포스코 | Method for manufacturing high strength hot dip galvanized steel sheet having superior workability and good surface appearance |
KR20090089391A (en) * | 2006-12-11 | 2009-08-21 | 가부시키가이샤 고베 세이코쇼 | High-strength steel sheet |
KR20090115873A (en) * | 2007-03-22 | 2009-11-09 | 제이에프이 스틸 가부시키가이샤 | High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190077203A (en) * | 2017-12-24 | 2019-07-03 | 주식회사 포스코 | Ultra high strength cold-rolled steel sheet and method for manufacturing the same |
KR101999019B1 (en) | 2017-12-24 | 2019-07-10 | 주식회사 포스코 | Ultra high strength cold-rolled steel sheet and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20130036752A (en) | 2013-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101561007B1 (en) | High strength cold rolled, hot dip galvanized steel sheet with excellent formability and less deviation of mechanical properties in steel strip, and method for production thereof | |
KR101736620B1 (en) | Ultra-high strength steel sheet having excellent phosphatability and hole expansibility, and method for manufacturing the same | |
KR102153197B1 (en) | Cold rolled steel sheet with excellent formability, galvanized steel sheet, and manufacturing method thereof | |
KR101758522B1 (en) | Ultra high strength and high ductility steel sheet having excellent yield strength and hole expansion ratio, and method for manufacturing the same | |
KR101736619B1 (en) | Ultra-high strength steel sheet having excellent phosphatability and bendability, and method for manufacturing the same | |
KR20190076258A (en) | High-strength steel sheet having excellent crash worthiness and formability, and method for manufacturing thereof | |
KR101449134B1 (en) | Ultra high strength cold rolled steel sheet having excellent weldability and bendability and method for manufacturinf the same | |
KR101220619B1 (en) | Ultra high strength cold rolled steel sheet, galvanized steel sheet and method for manufacturing thereof | |
KR20210062887A (en) | Manufacturing method of galvanized steel sheet with excellent weldability and galvanized steel sheet | |
KR102200227B1 (en) | Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof | |
KR101778404B1 (en) | Clad steel sheet having excellent strength and formability, and method for manufacturing the same | |
KR101767762B1 (en) | High strength cold-rolled steel sheet having excellent bendability and method for manufacturing the same | |
KR101428375B1 (en) | Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof | |
KR101382908B1 (en) | Thin steel sheet having ultra high strength and manufacturing method of the same | |
KR101543857B1 (en) | Composite structure steel sheet with superior workability, and its manufacturing method | |
KR101228753B1 (en) | Ultra high strength cold rolled steel sheet having excellent shape property and method for manufacturing the same | |
KR101403262B1 (en) | Ultra high strength hot-dip plated steel sheet and method for manufacturing the same | |
KR101360486B1 (en) | Zinc plated steel sheet having excellent coating quality, high ductility, and ultra high strength and method for manufacturing the same | |
KR100782759B1 (en) | Method for manufacturing cold-rolled steel sheet and galvanized steel sheet having yield ratio and high strength | |
KR102164092B1 (en) | High strength cold rolled steel sheet and galvannealed steel sheet having excellent burring property | |
KR101452052B1 (en) | High strength alloyed galvanized steel sheet with excellent coating adhesion and method for manufacturing the same | |
KR101505252B1 (en) | Cold-rolled steel sheet for outcase of car having low yield ratio with excellent formability and method of manufacturing the same | |
KR20120063196A (en) | Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof | |
KR20130056051A (en) | Ultra high strength steel sheet without crack of slab corner and manufacturing method of the same | |
KR20200062428A (en) | Cold rolled galvanized steel sheet and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180801 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190801 Year of fee payment: 6 |