KR101427728B1 - Manufacturing method of carbon nanotube filled-thermoplastic resin for electromagnetic interference shielding material - Google Patents

Manufacturing method of carbon nanotube filled-thermoplastic resin for electromagnetic interference shielding material Download PDF

Info

Publication number
KR101427728B1
KR101427728B1 KR1020120149183A KR20120149183A KR101427728B1 KR 101427728 B1 KR101427728 B1 KR 101427728B1 KR 1020120149183 A KR1020120149183 A KR 1020120149183A KR 20120149183 A KR20120149183 A KR 20120149183A KR 101427728 B1 KR101427728 B1 KR 101427728B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
shielding material
thermoplastic resin
electromagnetic wave
electromagnetic
Prior art date
Application number
KR1020120149183A
Other languages
Korean (ko)
Other versions
KR20140080842A (en
Inventor
박수진
임윤지
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020120149183A priority Critical patent/KR101427728B1/en
Publication of KR20140080842A publication Critical patent/KR20140080842A/en
Application granted granted Critical
Publication of KR101427728B1 publication Critical patent/KR101427728B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 탄소나노튜브를 함유한 열가소성 수지 전자파 차폐재 제조방법에 관한 것으로서, 더욱 상세하게는 전자파의 차폐를 위하여 내장재 등의 용도로 사용될 수 있도록 열가소성 수지에 표면개질된 탄소나노튜브를 첨가해 전기적 특성을 부여함으로써 전자파 차폐율이 우수한 열가소성 수지 전자파 차폐재를 제조하는 방법에 관한 것이다.
상기와 같은 본 발명에 따르면, 고분자 수지에 소량의 탄소나노튜브를 첨가하여 제조과정이 간단하고 무게가 경량이며 제조원가도 줄일 수 있는 경제적이고 효율적인 전자파 차폐재를 제조하여 전기, 전자 제품, 항공, 선박 등의 통신기기 등에 외부로부터 유입되는 전자파 차폐를 위하여 내장재 등의 용도로 사용될 수 있다. 이는 우수한 전자파 차폐성능과 효율적인 성형성을 동시에 만족시키는 효과가 있으며, 통상적으로 사용되는 0.3 내지 3 GHz의 전자파에 대해 우수한 전자파 차폐성능이 발휘된다.
The present invention relates to a method for manufacturing a thermoplastic resin electromagnetic shielding material containing carbon nanotubes. More particularly, the present invention relates to a method for manufacturing a thermoplastic resin electromagnetic shielding material comprising carbon nanotubes, To a method of producing a thermoplastic resin electromagnetic shielding material having an excellent electromagnetic shielding ratio.
According to the present invention, a small amount of carbon nanotubes are added to a polymer resin to produce an economical and efficient electromagnetic wave shielding material which is simple in manufacturing process, light in weight, and capable of reducing manufacturing cost, And can be used as an interior material for electromagnetic wave shielding from the outside such as a communication device of the mobile phone. This has the effect of simultaneously satisfying excellent electromagnetic wave shielding performance and efficient moldability, and exhibits excellent electromagnetic wave shielding performance against electromagnetic waves of 0.3 to 3 GHz which are commonly used.

Description

탄소나노튜브를 함유한 열가소성 수지 전자파 차폐재 제조방법{MANUFACTURING METHOD OF CARBON NANOTUBE FILLED-THERMOPLASTIC RESIN FOR ELECTROMAGNETIC INTERFERENCE SHIELDING MATERIAL}TECHNICAL FIELD [0001] The present invention relates to a method of manufacturing a thermoplastic resin electromagnetic shielding material containing carbon nanotubes, and more particularly, to a method of manufacturing a thermoplastic resin electromagnetic shielding material containing carbon nanotubes,

본 발명은 탄소나노튜브를 함유한 열가소성 수지 전자파 차폐재 제조방법에 관한 것으로서, 더욱 상세하게는 전자파의 차폐를 위하여 내장재 등의 용도로 사용될 수 있도록 열가소성 수지에 표면개질된 탄소나노튜브를 첨가해 전기적 특성을 부여함으로써 전자파 차폐율이 우수한 열가소성 수지 전자파 차폐재를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a thermoplastic resin electromagnetic shielding material containing carbon nanotubes, and more particularly, to a method of manufacturing a thermoplastic resin electromagnetic shielding material containing carbon nanotubes by adding surface modified carbon nanotubes to a thermoplastic resin, To a method of producing a thermoplastic resin electromagnetic shielding material having an excellent electromagnetic shielding ratio.

최근 첨단 전자기술의 발달로 인하여 정보전달과 에너지원에 대한 관심이 급속도로 증가하고 있는 추세이며, 일상생활에 사용되고 있는 전기, 전자 제품과 항공, 선박 기타 각종 통신기기의 사용이 급증함에 따라 전자파의 이용과 발전 속도는 매우 빠르게 진행되고 있다. 이밖에 의료용 기구, 입자 가속기, 식품가공 등의 에너지원으로 전자파가 광범위하게 이용되고 있어 현대 인간의 생활 활동은 전자파에 둘러싸여 있다고 해도 과언이 아닐 만큼 무수한 전자파에 노출되어 있다.Due to recent advances in advanced electronic technologies, interest in information transmission and energy sources is rapidly increasing. As the use of electric, electronic products, air, ship, and other communication devices used in everyday life is rapidly increasing, Usage and development speed are going very fast. In addition, electromagnetic waves are widely used as energy sources such as medical instruments, particle accelerators, food processing, etc., and living activities of modern human beings are surrounded by electromagnetic waves, so that they are exposed to countless electromagnetic waves.

이렇게 산업 현장이나 일상생활에서의 각종 기기들로부터 발생하는 전자파는 상호 간섭으로 인해 다른 기기의 오작동을 일으키거나, 인체에 직접적인 영향을 미쳐 생체리듬의 변화, 가임 여성의 유산 및 기형아 출산, 시력장애 등 여러 가지 질병들을 유발시킬 수 있다고 보고되고 있다.Such electromagnetic waves generated from various devices in the industrial field or everyday life may cause malfunction of other devices due to mutual interference, or may directly affect the human body, resulting in changes in biorhythm, miscarriage of pregnant women, birth defects, It is reported that it can cause various diseases.

기존의 전자파 차폐기술은 주로 금속기제의 사용으로 가공이 어려우며, 무게가 많이 나가는 단점이 있다. 이에 반하여 고분자 복합 수지를 응용한 전자파 차폐재는 복합 수지를 사출하는 공정만으로 제품화가 가능하기 때문에 생산가격 및 생산성 측면에서 이점이 상당하다 할 수 있다. Conventional electromagnetic shielding technology has a disadvantage that it is difficult to process mainly by using a metal base and it is heavy in weight. On the other hand, the electromagnetic wave shielding materials using the polymer composite resin can be produced only by the injection process of the composite resin, which is advantageous in production cost and productivity.

전자파 차폐효과(EMI shielding effectiveness)는 아래 식으로 표현이 가능하다.EMI shielding effectiveness can be expressed by the following equation.

SE(dB)=A+R+MSE (dB) = A + R + M

상기 식에서 A는 전자파의 내부 흡수, R은 전자파의 표면반사 그리고 M은 다반사를 통한 손실을 의미한다. 금속재의 경우 전도성이 높고 임피던스가 낮아 전자파의 표면반사를 통한 전자파 차폐의 비율이 높다. 수지 복합재의 전자파 차폐효율을 높이기 위해서는 전기 전도성을 증대시켜 표면 반사를 증대시키고 동시에 고투자율 충전제로 전자파 흡수를 증가시켜야 고효율의 전자파 차폐재를 만들 수 있다. Where A is the internal absorption of the electromagnetic wave, R is the surface reflection of the electromagnetic wave, and M is the loss through multiple reflection. In the case of metallic materials, the conductivity is high and the impedance is low, so that the ratio of electromagnetic wave shielding through surface reflection of electromagnetic waves is high. In order to increase the electromagnetic wave shielding efficiency of the resin composite, it is necessary to increase the electric conductivity to increase the surface reflection, and at the same time to increase the electromagnetic wave absorption with the high permeability filler, so that the electromagnetic shielding material with high efficiency can be produced.

탄소나노튜브는 높은 전기 전도성, 열적 안정성, 인장 강도 및 복원성을 가지고 있어 다양한 복합재료의 첨가제로 널리 활용되고 있다. 복합재료의 첨가제로 탄소나노튜브가 사용되는 경우 탄소나노튜브의 다발이 얼마나 균일하게 분산되는지가 중요하다. 이에 따라 복합체의 전기 전도도, 전자파 차폐성능, 기계적 강도와 같은 물성이 달라지기 때문이다. 하지만 탄소나노튜브는 직경에 비하여 상대적으로 길이가 길고 탄소나노튜브 상호 간의 인력이 강한 특성으로 인해 고분자에 대하여 매우 낮은 분산도를 갖는 문제점이 있다. 따라서 탄소나노튜브는 우수한 물성에도 불구하고 다른 재료와의 상용성이 낮아서 다른 유용한 재료와 함께 사용하여 상승적 효과를 얻는데 한계가 있었다.Carbon nanotubes are widely used as additives for various composites because of their high electrical conductivity, thermal stability, tensile strength and resilience. When carbon nanotubes are used as additives for composites, it is important how uniformly the bundles of carbon nanotubes are dispersed. This is because the physical properties such as electrical conductivity, electromagnetic shielding performance, and mechanical strength of the composite are changed. However, the carbon nanotubes have a relatively long length as compared with the diameter, and the nanotubes have a very low dispersion degree with respect to the polymer due to the strong attraction between the carbon nanotubes. Therefore, carbon nanotubes are not compatible with other materials despite their excellent physical properties, and have been limited in obtaining synergistic effects by using them together with other useful materials.

종래기술로 대한민국 등록특허 제10-1135055호(전자파차폐 효율이 우수한 고분자/탄소나노튜브 복합체의 제조방법과 이를 이용하여 제조된 고분자/탄소나노튜브 복합체)와 대한민국 등록특허 제10-0642427호(탄소 나노튜브를 이용한 전자파차폐용 조성물)가 있다.(Polymer / carbon nanotube composite prepared by using the polymer / carbon nanotube composite having excellent electromagnetic wave shielding efficiency) and Korean Registered Patent No. 10-0642427 (carbon A composition for shielding electromagnetic waves using nanotubes).

본 발명의 목적은, 표면개질된 탄소나노튜브를 함유한 열가소성 수지 전자파 차폐재를 제조하는 방법을 제공함으로써, 전기 전도성, 열적 안정성, 인장 강도 및 복원성은 우수하나 직경에 비해 길이가 길고 상호 간의 인력이 강한 특성으로 인하여 고분자에 대해 낮은 분산도를 지니는 탄소나노튜브를 표면개질시켜 분산도를 증진시키고, 고분자 복합 수지를 이용하여 복합 수지를 사출하는 공정만으로 제품화가 가능하여 생산가격 및 생산성 측면에서 큰 이점이 있는 효율적인 전자파 차폐재를 제조함에 있다.It is an object of the present invention to provide a method for producing a thermoplastic resin electromagnetic wave shielding material containing surface modified carbon nanotubes, which is excellent in electrical conductivity, thermal stability, tensile strength and resilience, Due to its strong nature, carbon nanotubes with low dispersion to polymer can be surface-modified to improve dispersibility and can be commercialized only by injection molding of composite resin using polymer composite resin, which is a great advantage in production cost and productivity And the like.

상기 목적을 달성하기 위하여, 본 발명은 탄소나노튜브를 산 용액에서 5 내지 120 분 동안 60 내지 150 ℃로 가열하여 표면 처리한 다음 pH를 6.5 내지 7.5로 조절하고 열가소성 수지와 혼합하는 것을 특징으로 하는 전자파 차폐재의 제조방법을 제공한다.In order to achieve the above object, the present invention is characterized in that carbon nanotubes are heated in an acid solution for 5 to 120 minutes at 60 to 150 ° C for surface treatment, then adjusted to a pH of 6.5 to 7.5 and mixed with a thermoplastic resin A method of manufacturing an electromagnetic wave shielding material is provided.

상기 열가소성 수지는 폴리프로필렌, 폴리에틸렌 또는 폴리아이소뷰틸렌인 것을 특징으로 한다.Wherein the thermoplastic resin is polypropylene, polyethylene or polyisobutylene.

상기 전자파 차폐재는 탄소나노튜브 0.1 내지 15 중량%와 열가소성 수지 85 내지 99.9 중량%를 혼합하는 것을 특징으로 한다.The electromagnetic wave shielding material is characterized in that 0.1 to 15% by weight of carbon nanotubes and 85 to 99.9% by weight of a thermoplastic resin are mixed.

상기 전자파 차폐재는 저항값이 0.1 내지 103 ohm·cm, 전자파 차폐율이 10 내지 80 dB인 것을 특징으로 한다.The electromagnetic wave shielding material has a resistance value of 0.1 to 10 3 ohm-cm and an electromagnetic shielding ratio of 10 to 80 dB.

상기 전자파 차폐재는 두께가 1 내지 5 mm인 것을 특징으로 한다.The electromagnetic wave shielding material has a thickness of 1 to 5 mm.

또한, 본 발명은 탄소나노튜브를 1 내지 60 분 동안 무전해 도금 표면 처리한 다음 열가소성 수지와 혼합하는 것을 특징으로 하는 전자파 차폐재의 제조방법을 제공한다.In addition, the present invention provides a method for manufacturing an electromagnetic shielding material, characterized in that carbon nanotubes are subjected to electroless plating surface treatment for 1 to 60 minutes and then mixed with a thermoplastic resin.

상기 열가소성 수지는 폴리프로필렌, 폴리에틸렌 또는 폴리아이소뷰틸렌인 것을 특징으로 한다.Wherein the thermoplastic resin is polypropylene, polyethylene or polyisobutylene.

상기 전자파 차폐재는 탄소나노튜브 0.1 내지 15 중량%와 열가소성 수지 85 내지 99.9 중량%를 혼합하는 것을 특징으로 한다.The electromagnetic wave shielding material is characterized in that 0.1 to 15% by weight of carbon nanotubes and 85 to 99.9% by weight of a thermoplastic resin are mixed.

상기 전자파 차폐재는 저항값이 0.1 내지 103 ohm·cm, 전자파 차폐율이 10 내지 80 dB인 것을 특징으로 한다.The electromagnetic wave shielding material has a resistance value of 0.1 to 10 3 ohm-cm and an electromagnetic shielding ratio of 10 to 80 dB.

상기 전자파 차폐재는 두께가 1 내지 5 mm인 것을 특징으로 한다.The electromagnetic wave shielding material has a thickness of 1 to 5 mm.

상기와 같은 본 발명에 따르면, 표면개질된 탄소나노튜브를 함유한 열가소성 수지 전자파 차폐재를 제조하는 방법을 제공함으로써, 고분자 수지에 소량의 탄소나노튜브를 첨가하여 제조과정이 간단하고 무게가 경량이며 제조원가도 줄일 수 있는 경제적이고 효율적인 전자파 차폐재를 제조하여 전기, 전자 제품, 항공, 선박 등의 통신기기 등에 외부로부터 유입되는 전자파 차폐를 위하여 내장재 등의 용도로 사용될 수 있다. 이는 우수한 전자파 차폐성능과 효율적인 성형성을 동시에 만족시키는 효과가 있으며, 통상적으로 사용되는 0.3 내지 3 GHz의 전자파에 대해 우수한 전자파 차폐성능이 발휘된다.According to the present invention, by providing a method for producing a thermoplastic resin electromagnetic shielding material containing surface-modified carbon nanotubes, a small amount of carbon nanotubes are added to the polymer resin to simplify the manufacturing process, It is possible to manufacture an economical and efficient electromagnetic wave shielding material which can be reduced even if it is used as an interior material for electromagnetic wave shielding which is introduced from the outside into communication devices of electric, electronic products, aviation, ship and the like. This has the effect of simultaneously satisfying excellent electromagnetic wave shielding performance and efficient moldability, and exhibits excellent electromagnetic wave shielding performance against electromagnetic waves of 0.3 to 3 GHz which are commonly used.

도 1은 탄소나노튜브를 함유한 열가소성 수지 전자파 차폐재의 전기적 특성을 나타낸 것이다.
도 2는 탄소나노튜브를 함유한 열가소성 수지 전자파 차폐재의 약 1.8GHz의 주파수에서의 전자폐 차폐 특성을 나타낸 것이다.
1 shows the electrical characteristics of a thermoplastic resin electromagnetic shielding material containing carbon nanotubes.
2 is a graph showing electromagnetic shielding characteristics of a thermoplastic resin electromagnetic shielding material containing carbon nanotubes at a frequency of about 1.8 GHz.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 탄소나노튜브를 산 용액에서 5 내지 120 분 동안 60 내지 150 ℃로 가열하여 표면 처리한 다음 pH를 6.5 내지 7.5로 조절하고 열가소성 수지와 혼합하는 것을 특징으로 하는 전자파 차폐재의 제조방법을 제공한다. The present invention provides a method for manufacturing an electromagnetic shielding material, which comprises heating carbon nanotubes in an acid solution for 5 to 120 minutes at 60 to 150 ° C for surface treatment, adjusting the pH to 6.5 to 7.5, and mixing the carbon nanotubes with a thermoplastic resin do.

이때, 탄소나노튜브는 산 용액에서 20 내지 40 분 동안 80 내지 100 ℃로 가열하여 표면 처리하는 것이 바람직하다.At this time, the carbon nanotubes are preferably subjected to surface treatment by heating at 80 to 100 ° C for 20 to 40 minutes in an acid solution.

상기 산 용액은 황산(H2SO4), 질산(HNO3), 인산(H3PO4) 및 염산(HCl)을 포함하는 군에서 선택된 1 이상인 것이 바람직하며, 산 용액에 과산화수소수(H2O2·nH2O), 과망간산칼륨수용액(KMnO4·nH2O), 싸이오황산칼륨수용액(K2S2O8·nH2O), 이산화염소수(Cl2O·nH2O) 및 하이포염소산나트륨수용액(NaClO(aq))을 포함하는 군에서 선택된 1 이상의 산화제 수용액을 혼합한 산 혼합물을 이용하는 것이 최적의 효과를 나타낸다.The acid solution is sulfuric acid (H 2 SO 4), nitric acid (HNO 3), phosphoric acid (H 3 PO 4), and hydrochloric acid is preferred, and hydrogen peroxide in an acid solution at least one selected from the group comprising (HCl) (H 2 O 2 · nH 2 O), potassium permanganate aqueous solution (KMnO 4 · nH 2 O) , thio sulfate aqueous solution of potassium (K 2 S 2 O 8 · nH 2 O), can be a chlorine dioxide (Cl 2 O · nH 2 O ) And an aqueous sodium hypochlorite solution (NaClO (aq)) are mixed with an aqueous solution of an oxidizing agent selected from the group consisting of NaClO (aq) and NaClO (aq).

상기 열가소성 수지는 폴리올레핀 계열의 고분자로서, 폴리프로필렌, 폴리에틸렌 또는 폴리아이소뷰틸렌인 것이 바람직하다.The thermoplastic resin is preferably a polyolefin-based polymer, and is preferably polypropylene, polyethylene or polyisobutylene.

상기 전자파 차폐재는 탄소나노튜브 0.1 내지 15중량%와 열가소성 수지 85 내지 99.9중량%를 혼합하는 것이 바람직하며, 탄소나노튜브 10 내지 15 중량%와 열가소성 수지 85 내지 90 중량%를 혼합하는 것이 최적의 효과를 나타낸다.The electromagnetic wave shielding material preferably contains 0.1 to 15% by weight of carbon nanotubes and 85 to 99.9% by weight of a thermoplastic resin, and mixing 10 to 15% by weight of carbon nanotubes with 85 to 90% by weight of thermoplastic resin .

상기 전자파 차폐재는 저항값이 0.1 내지 103 ohm·cm, 전자파 차폐율이 10 내지 80 dB인 것을 특징으로 한다. 낮은 저항값으로 인하여 우수한 전도성이 부여되는 효과가 있다.The electromagnetic wave shielding material has a resistance value of 0.1 to 10 3 ohm-cm and an electromagnetic shielding ratio of 10 to 80 dB. It has an effect of imparting excellent conductivity due to a low resistance value.

상기 전자파 차폐재는 두께가 1 내지 5 mm인 것을 특징으로 한다.The electromagnetic wave shielding material has a thickness of 1 to 5 mm.

또한, 본 발명은 탄소나노튜브를 1 내지 60분 동안 무전해 도금 표면 처리한 다음 열가소성 수지와 혼합하는 것을 특징으로 하는 전자파 차폐재의 제조방법을 제공한다.In addition, the present invention provides a method for manufacturing an electromagnetic shielding material, characterized in that carbon nanotubes are subjected to electroless plating surface treatment for 1 to 60 minutes and then mixed with a thermoplastic resin.

이때, 탄소나노튜브를 20 내지 40 분 동안 무전해 도금 표면 처리하는 것이 바람직하다.At this time, it is preferable to subject the carbon nanotubes to electroless plating surface treatment for 20 to 40 minutes.

상기 열가소성 수지는 폴리올레핀 계열의 고분자로서, 폴리프로필렌, 폴리에틸렌 또는 폴리아이소뷰틸렌인 것이 바람직하다.The thermoplastic resin is preferably a polyolefin-based polymer, and is preferably polypropylene, polyethylene or polyisobutylene.

상기 전자파 차폐재는 탄소나노튜브 0.1 내지 15중량%와 열가소성 수지 85 내지 99.9중량%를 혼합하는 것이 바람직하며, 탄소나노튜브 10 내지 15 중량%와 열가소성 수지 85 내지 90 중량%를 혼합하는 것이 최적의 효과를 나타낸다.The electromagnetic wave shielding material preferably contains 0.1 to 15% by weight of carbon nanotubes and 85 to 99.9% by weight of a thermoplastic resin, and mixing 10 to 15% by weight of carbon nanotubes with 85 to 90% by weight of thermoplastic resin .

상기 전자파 차폐재는 저항값이 0.1 내지 103 ohm·cm, 전자파 차폐율이 10 내지 80dB인 것을 특징으로 한다.The electromagnetic wave shielding material has a resistance value of 0.1 to 10 3 ohm-cm and an electromagnetic wave shielding rate of 10 to 80 dB.

상기 전자파 차폐재는 두께가 1 내지 5 mm인 것을 특징으로 한다.The electromagnetic wave shielding material has a thickness of 1 to 5 mm.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

실시예 1. Example 1.

단일벽 탄소나노튜브를 폴리프로필렌 내에 균일하게 분산시키기 위하여, 다중벽 탄소나노튜브(MWCNT, Nanosolution, Korea)를 질산 용액에 첨가하고 30분 동안 100 ℃에서 가열하여 표면 처리한 다음 증류수를 이용하여 세척작업을 실시하고 pH를 7로 조절하였다.In order to uniformly disperse single-walled carbon nanotubes in polypropylene, a multi-walled carbon nanotube (MWCNT, Nanosolution, Korea) was added to a nitric acid solution and heated at 100 ° C for 30 minutes, The work was performed and the pH was adjusted to 7.

이후, 상기 표면개질된 단일벽 탄소나노튜브 1중량%와 폴리프로필렌 99중량%를 기계식 방법으로 혼합하여 탄소나노튜브를 함유한 열가소성 수지 전자파 차폐재를 제조하였다.Then, 1 wt% of the surface-modified single-walled carbon nanotubes and 99 wt% of polypropylene were mixed by a mechanical method to prepare a thermoplastic resin electromagnetic shielding material containing carbon nanotubes.

실시예 2. Example 2.

상기 실시예 1.과 동일한 과정을 실시하되, 단일벽 탄소나노튜브 2중량%와 폴리프로필렌 98중량%를 혼합하여 전자파 차폐재를 제조하였다.The same procedure as in Example 1 was carried out except that 2 wt% of single-walled carbon nanotubes and 98 wt% of polypropylene were mixed to prepare an electromagnetic wave shielding material.

실시예 3. Example 3.

상기 실시예 1.과 동일한 과정을 실시하되, 단일벽 탄소나노튜브 5중량%와 폴리프로필렌 95중량%를 혼합하여 전자파 차폐재를 제조하였다.The same procedure as in Example 1 was performed except that 5 wt% of single-walled carbon nanotubes and 95 wt% of polypropylene were mixed to prepare an electromagnetic wave shielding material.

실시예 4. Example 4.

상기 실시예 1.과 동일한 과정을 실시하되, 단일벽 탄소나노튜브 10중량%와 폴리프로필렌 90중량%를 혼합하여 전자파 차폐재를 제조하였다.The same procedure as in Example 1 was carried out, except that 10 wt% of single-walled carbon nanotubes and 90 wt% of polypropylene were mixed to prepare an electromagnetic wave shielding material.

비교예. Comparative Example.

폴리프로필렌을 이용하여 두께 1mm의 전자파 차폐재를 제조하였다.An electromagnetic wave shielding material having a thickness of 1 mm was produced using polypropylene.

실험예 1. Experimental Example 1

상기 실시예 1 내지 4에서 제조한 전자파 차폐재의 전기적 특성을 관찰하기 위하여 4단자법에 의한 면저항 측정기(Mitsubishi Chemical Co., Japan)를 사용하였으며, 그 결과를 도 1에 나타내었다.In order to observe the electrical characteristics of the electromagnetic wave shielding materials prepared in Examples 1 to 4, a 4-terminal sheet resistance meter (Mitsubishi Chemical Co., Japan) was used, and the results are shown in FIG.

실험예 2. Experimental Example 2

상기 실시예 1 내지 4 및 비교예에서 제조한 전자파 차폐재의 차폐 특성을 관찰하기 위하여 ASTM D4935-89에 준하여 전자파차폐 측정기(AGILENT, USA)를 사용하여 분석하였으며, 그 결과를 도 2에 나타내었다.In order to observe the shielding properties of the electromagnetic wave shielding materials prepared in Examples 1 to 4 and Comparative Examples, the electromagnetic wave shielding analyzer (AGILENT, USA) was used according to ASTM D4935-89. The results are shown in FIG.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.
Having described specific portions of the present invention in detail, it will be apparent to those skilled in the art that this specific description is only a preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

황산(H2SO4), 질산(HNO3), 인산(H3PO4) 및 염산(HCl)을 포함하는 군에서 선택된 1 이상의 산 용액과 과산화수소수(H2O2·nH2O), 과망간산칼륨수용액(KMnO4·nH2O), 싸이오황산칼륨수용액(K2S2O8·nH2O), 이산화염소수(Cl2O·nH2O) 및 하이포염소산나트륨수용액(NaClO(aq))을 포함하는 군에서 선택된 1 이상의 산화제 수용액을 혼합한 산 혼합물에서 탄소나노튜브를 20 내지 40 분간 80 내지 100 ℃로 가열하여 표면 처리하고 증류수로 세척하여 pH를 7로 조절한 후, 폴리프로필렌과 혼합하여 두께가 1 내지 5 mm인 전자파 차폐재를 제조하되, 상기 탄소나노튜브와 폴리프로필렌은 각각 10 중량% 및 90 중량%로 혼합되는 것을 특징으로 하는 전자파 차폐재의 제조방법.At least one acid solution selected from the group consisting of sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ) and hydrochloric acid (HCl), hydrogen peroxide water (H 2 O 2 .nH 2 O) Aqueous solution of potassium permanganate (KMnO 4 .nH 2 O), potassium thiosulfate aqueous solution (K 2 S 2 O 8 .nH 2 O), chlorine dioxide water (Cl 2 O.nH 2 O) and sodium hypochlorite aqueous solution (NaClO aq)), the carbon nanotubes were heated at 80 to 100 DEG C for 20 to 40 minutes, surface-treated, washed with distilled water to adjust the pH to 7, and then treated with poly Wherein the carbon nanotubes and the polypropylene are mixed in an amount of 10 wt% and 90 wt%, respectively, to produce an electromagnetic wave shielding material having a thickness of 1 to 5 mm by mixing with propylene. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020120149183A 2012-12-20 2012-12-20 Manufacturing method of carbon nanotube filled-thermoplastic resin for electromagnetic interference shielding material KR101427728B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120149183A KR101427728B1 (en) 2012-12-20 2012-12-20 Manufacturing method of carbon nanotube filled-thermoplastic resin for electromagnetic interference shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120149183A KR101427728B1 (en) 2012-12-20 2012-12-20 Manufacturing method of carbon nanotube filled-thermoplastic resin for electromagnetic interference shielding material

Publications (2)

Publication Number Publication Date
KR20140080842A KR20140080842A (en) 2014-07-01
KR101427728B1 true KR101427728B1 (en) 2014-08-13

Family

ID=51732269

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120149183A KR101427728B1 (en) 2012-12-20 2012-12-20 Manufacturing method of carbon nanotube filled-thermoplastic resin for electromagnetic interference shielding material

Country Status (1)

Country Link
KR (1) KR101427728B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102524930B1 (en) * 2017-10-11 2023-04-26 몰레큘라 레바 디자인 엘엘씨 Shielding formulations using carbon dioxide nanotubes and formulations thereof with targeted oxidation levels
KR102039579B1 (en) 2018-11-13 2019-11-01 한국과학기술연구원 Electromagnetic shielding material comprising aligned carbon nano tube film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665676B1 (en) * 2004-01-17 2007-01-09 경북대학교 산학협력단 carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same
KR20110078265A (en) * 2009-12-31 2011-07-07 제일모직주식회사 Thermoplastic resin composition having good emi shielding property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665676B1 (en) * 2004-01-17 2007-01-09 경북대학교 산학협력단 carbon nanotube/polyethyleneterephthalate composites with high elastic modulus, conductivity and electromagnetic interference shielding property and manufacturing method at the same
KR20110078265A (en) * 2009-12-31 2011-07-07 제일모직주식회사 Thermoplastic resin composition having good emi shielding property

Also Published As

Publication number Publication date
KR20140080842A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
Kruželák et al. Progress in polymers and polymer composites used as efficient materials for EMI shielding
Zhao et al. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption
Wu et al. Interlayer controllable of hierarchical MWCNTs@ C@ FexOy cross-linked composite with wideband electromagnetic absorption performance
Gupta et al. Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption
Kumar et al. Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects
Cheng et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption
Yin et al. Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy
Wu et al. Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites
Verma et al. A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications
Raagulan et al. An effective utilization of MXene and its effect on electromagnetic interference shielding: flexible, free-standing and thermally conductive composite from MXene–PAT–poly (p-aminophenol)–polyaniline co-polymer
Li et al. Unique nanoporous structure derived from Co3O4–C and Co/CoO–C composites towards the ultra-strong electromagnetic absorption
Guo et al. Multifunctional sandwich-structured magnetic-electric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding
KR101307378B1 (en) Thermoplastic resin composition having good EMI shielding property
CN108795379B (en) Preparation method of three-dimensional reticular multi-walled carbon nanotube/nickel ferrite composite wave-absorbing material
Modak et al. Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding
Bera et al. Salt leached viable porous Fe3O4 decorated polyaniline–SWCNH/PVDF composite spectacles as an admirable electromagnetic shielding efficiency in extended Ku-band region
Fu et al. Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding
Zachariah et al. Hybrid materials for electromagnetic shielding: A review
Yadav et al. NiFe2O4 nanoparticles synthesized by dextrin from corn-mediated sol–gel combustion method and its polypropylene nanocomposites engineered with reduced graphene oxide for the reduction of electromagnetic pollution
US20180206367A1 (en) Polymer-based, wideband electromagnetic wave shielding film
Zhang et al. Flexible carbon fiber-based composites for electromagnetic interference shielding
Bian et al. Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding
Lai et al. Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance
Singh et al. Facile synthesis of Al substituted Cu-ferrite infused reduced graphene oxide (rGO) nanohybrid for improving microwave absorption at gigahertz frequencies
CN109750493B (en) Preparation method of graphene electromagnetic shielding composite material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 4